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Abstract

From a logical point of view, Stone duality for Boolean algebras relates
theories in classical propositional logic and their collections of models.
The theories can be seen as presentations of Boolean algebras, and the
collections of models can be topologized in such a way that the theory
can be recovered from its space of models. The situation can be cast
as a formal duality relating two categories of syntax and semantics,
mediated by homming into a common dualizing object, in this case 2.

In the present work, we generalize the entire arrangement from
propositional to first-order logic. Boolean algebras are replaced by
Boolean categories presented by theories in first-order logic, and spaces
of models are replaced by topological groupoids of models and their
isomorphisms. A duality between the resulting categories of syntax
and semantics, expressed first in the form of a contravariant adjunc-
tion, is established by homming into a common dualizing object, now
Sets, regarded once as a boolean category, and once as a groupoid
equipped with an intrinsic topology.
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The overall framework of our investigation is provided by topos
theory. Direct proofs of the main results are given, but the specialist
will recognize toposophical ideas in the background. Indeed, the du-
ality between syntax and semantics is really a manifestation of that
between algebra and geometry in the two directions of the geometric
morphisms that lurk behind our formal theory. Along the way, we
construct the classifying topos of a decidable coherent theory out of
its groupoid of models via a simplified covering theorem for coherent
toposes.

Keywords: First-order logic, duality; categorical logic; topos theory;
topological semantics.
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Introduction

We present an extension of Stone duality for Boolean algebras from clas-
sical propositional logic to classical first-order logic. In broad strokes, the
leading idea is to take the traditional logical distinction between syntax and

2



semantics and analyze it in terms of the classical mathematical distinction
between algebra and geometry, with syntax corresponding to algebra and
semantics to geometry. Insights from category theory allow us to recognize a
certain duality between the notions of algebra and geometry. We see a first
glimpse of this in Stone’s duality theorem for Boolean algebras, the categori-
cal formulation of which states that a category of ‘algebraic’ objects (Boolean
algebras) is the categorical dual of a category of ‘geometrical’ objects (Stone
spaces). “Categorically dual” means that the one category is opposite to
the other, in that it can be obtained (up to equivalence) from the other by
formally reversing the morphisms. In a more far reaching manner, this form
of algebra-geometry duality is exhibited in modern algebraic geometry as
reformulated in the language of schemes in the Grothendieck school, e.g. in
the duality between the categories of commutative rings and the category of
affine schemes.

On the other hand, we are informed by the category theoretic analysis of
logic that it is closely connected with algebra, in the sense that logical the-
ories can be regarded as categories and suitable categories can be presented
as logical theories. For instance, Boolean algebras can be seen as classical
propositional theories, categories with finite products can be seen as equa-
tional theories, Boolean coherent categories as theories in classical first-order
logic, and elementary toposes – e.g. the topos of sheaves on a space – as the-
ories in higher-order intuitionistic logic. Thus the study of these algebraic
objects has a logical interpretation and, vice versa, reasoning in or about log-
ical theories has application in their corresponding algebraic objects. With
the connection between algebra and logic in hand, instances of the algebra-
geometry duality can be seen to manifest a syntax-semantics duality between
an algebra of syntax and a geometry of semantics. This notion of syntax as
‘dual to semantics’ is, expectedly, one which ignores presentation and other
features which, so to speak, models can not distinguish. In the proposi-
tional case, one passes from a propositional theory to a Boolean algebra by
constructing the Lindenbaum-Tarski algebra of the theory, a construction
which identifies provably equivalent formulas (and orders them by provable
implication). Thus any two complete theories, for instance, are ‘algebraically
equivalent’ in the sense of having isomorphic Lindenbaum-Tarski algebras.
The situation is precisely analogous to a presentation of an algebra by gen-
erators and relations: a logical theory corresponds to such a presentation,
and two theories are equivalent if they present ‘the same’ – i.e. isomorphic –
algebras. A similar construction is used to obtain, for a classical first-order
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theory, its ‘corresponding’ Boolean coherent category, resulting in a similar
notion of algebraic or categorical equivalence.

Given this connection between formal theories and categories, Stone du-
ality manifests a syntax-semantics duality for propositional logic as follows.
While a Boolean algebra can be regarded as a propositional theory modulo
‘algebraic’ equivalence, on the other hand a Stone space can be seen as a
space of corresponding two-valued models of such a theory. A model of a
propositional theory is of course just a valuation of the propositional letters,
or equivalently, a Boolean homomorphic valuation of all formulas. Thus we
obtain the set of models of the theory corresponding to a Boolean algebra by
taking morphisms in the category of Boolean algebras from the given algebra
into the two-element Boolean algebra, 2,

ModB
∼= HomBA(B, 2) . (1)

And with a suitable topology in place—given in terms of the elements of
the Boolean algebra B—we can retrieve B from the space of models ModB by
taking morphisms in the category of Stone spaces from it into the two-element
Stone space, 2,

B ∼= HomStone(ModB, 2)

Here, the two-element set, 2, is in a sense living a ‘dual’ life, and ‘homming
into 2’ forms a contravariant adjunction between the ‘syntactical’ category
of Boolean algebras and the category of topological spaces, which, moreover,
becomes an equivalence once we restrict to the ‘semantical’ subcategory of
Stone spaces.

BA Stone

HomBA(−,2)

33BA Stone
ss

HomStone(−,2)

≃

Our construction for first-order logic generalizes this set-up by, on the
‘syntax’ side, representing first-order theories by Boolean coherent categories.
On the semantical side we have, for each theory, a space of models, augmented
with a space consisting of the isomorphisms between those models, such that
these spaces form a topological groupoid, that is to say, such that the com-
position, domain and codomain, inverse arrow and identity arrow maps are
all continuous. Our ‘semantic’ side is, accordingly, a category consisting of
topological groupoids and continuous homomorphisms between them. Where
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in Stone Duality one considers the lattice of open sets of a space in order to
recover a Boolean algebra, we consider the topos (or ‘generalized space’) of
so-called equivariant sheaves on a topological groupoid in order to recover a
Boolean coherent category. In particular, we show that the topos of equiv-
ariant sheaves on the topological groupoid of models and isomorphisms of a
theory is the so-called classifying topos of (the Morleyization of) the theory,
from which it is known that the theory can be recovered up to a notion of
equivalence. (Here we build upon earlier results in [1] to the effect that any
such topos can be represented by a topological groupoid constructed from
its points. Our construction differs from the one given there in choosing a
simpler cover which is better suited for our purpose).

Our semantic representation of this topos can also be understood from
the perspective of definable sets. Suppose we have a theory, T, in first order
logic or some fragment of it, and that φ(~x) is some formula in the language
of the theory. Then φ(~x) induces a definable set functor,

[[φ(~x)]] : ModT
// Sets

from the groupoid of T-models to the category of sets, which sends a modelM
to the extension, [[φ(~x)]]M, of φ(~x) inM. The question is, then, whether these
definable set functors can somehow be characterized among all functors of
the form ModT → Sets, so that the theory can be recovered from its models
in terms of them. Notice, incidentally, that in case of a positive answer, the
category of sets takes on the role of a dualizing object, in analogy with 2 for
Stone duality. For the models of a theory can be seen as suitable functors
from the algebraic representation of the theory, CT, into Sets, so that both
obtaining the models from the theory and recovering the theory from the
models is done by ‘homming’ into Sets,

ModT ≃ Hom(CT,Sets)

CT ≃ Hom(ModT,Sets)

Here the hom-sets must be suitably restricted from all functors to just those
preserving the relevant structure, the determination of which is part of the
task at hand.

Now, positive, and elegant, answers to the question of the characteriza-
tion of definable set functors exist, to begin with, for certain fragments of
first-order logic. For algebraic theories—axiomatized only by equations in
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languages with only function symbols (and equality)—the categories of mod-
els (algebras) have all limits and colimits, and Lawvere duality tells us that an
algebraic theory T can be recovered (up to splitting of idempotents) from its
category of models in the form of those functors ModT

//Sets which preserve
limits, filtered colimits, and regular epimorphisms (see [2],[3]). Expanding
from the algebraic case, recall, e.g. from [4, D1.1.], that the Horn formulas
over a first-order signature are those formulas which are constructed using
only connectives ⊤ and ∧. Allowing also existential quantification brings us
to regular formulas. A Horn (regular) theory is one which can be axioma-
tized using sequents involving only Horn (regular) formulas. In between, a
Cartesian theory is a regular theory which can be axiomatized using only
formulas that are Cartesian relative to the theory, in the sense, briefly, that
existential quantification does not occur except under a certain condition.
Now, the category ModT of models and homomorphisms of a Cartesian the-
ory T has limits and filtered colimits (but not, in general, regular epis), and
Gabriel-Ulmer duality (see e.g. [5]) informs us, among other things, that the
definable set functors for Cartesian formulas (relative to T) can be charac-
terized as the limit and filtered colimit preserving functors ModT → Sets
(and that the theory can be recovered in terms of them). If we allow for
unrestricted existential quantification and pass to regular logic, then cate-
gories of models need no longer have arbitrary limits. But they still have
products and filtered colimits, and, as shown by M. Makkai [6], the definable
set functors for regular formulas can now be characterized as those functors
ModT → Sets that preserve precisely that.

Adding the connectives ⊥ and ∨ to regular logic gives us the fragment
known as coherent logic (see [4, D1.1.]), in which a far greater range of theo-
ries can be formulated. The theory of fields, for instance, cannot be expressed
as a regular theory (since the category of fields does not have arbitrary prod-
ucts), but it can be expressed as a coherent theory (see [4, D1.1.7.(h)]). (In
fact, it is a decidable coherent theory, where “decidable” means, here, that
there is an inequality predicate, in the sense of a coherent formula which
is provably the complement of equality.) Moreover, any classical first-order
theory can be Morleyized to yield a coherent theory with the same cate-
gory of models, see [4, D1.5.13] (we take the morphisms between models of
a classical first-order theory to be the elementary embeddings). Thus the
categories of models of coherent theories can not, in general, be expected
to have more structure than those for classical first-order theories. What
they do have are ultra-products. Although ultra-products are not an intrin-
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sic feature of categories of models (for coherent theories), in the sense that
they are not a categorical invariant, Makkai [7] shows that model categories
and the category of sets can be equipped with a notion of ultra-product
structure—turning them into so-called ultra-categories—which allows for the
characterization of definable set functors as those functors that preserve this
additional structure. Moreover, this approach can be modified in the case of
classical first-order theories so that only the ultra-groupoids of models and
isomorphisms, equipped with ultra-product structure, need be considered,
see [8].

Our approach, similarly, relies on equipping the models of a theory with
external structure, but in our case the structure is topological. We, too,
restrict consideration to groupoids of models and isomorphisms, instead of
categories of models and homomorphisms or elementary embeddings. We
carry our construction out for decidable coherent theories, corresponding
to (small) decidable coherent categories (“decidable” meaning, in the cat-
egorical setting, that diagonals are complemented). As we remarked, the
theory of fields is a notable example of such a theory, and the decidable co-
herent theories do include all classical first-order theories in the sense that
the Morleyization of a classical theory is decidable coherent. Accordingly,
our construction restricts to the classical first-order case, corresponding to
Boolean coherent theories.

The first part of the construction (Section 1) concerns the characterization
of definable set functors for a theory and the recovery of the theory from its
groupoid of models in terms of them. The idea is that definable sets can be
characterized as being, in a sense, compact ; not by regarding each individual
set as compact, but by regarding the definable set functor as being a compact
object in a suitable category. Pretend, for a moment, that the models of a
theory T form a set and not a proper class, and suppose, for simplicity, that
the models are all disjoint. A definable set functor from the groupoid of
T-models and isomorphisms,

[[φ(~x)]](−) : ModT
// Sets

can, equivalently, be considered as a set (indexed) over the set (ModT)0 of
models,

∐

M�T

[[φ(~x)]]M
p // (ModT)0 (2)

with p−1(M) = [[φ(~x)]]M, together with an action on this set by the set
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(ModT)1 of isomorphisms,

(ModT)1 ×(ModT)0

∐

M�T

[[φ(~x)]]M
α //

∐

M�T

[[φ(~x)]]M (3)

such that for any T-model isomorphism, f : M → N, and element, ~m ∈
[[φ(~x)]]M, we have α(f , ~m) = f(~m) ∈ [[φ(~x)]]N. Now, if the set of T-models
and the set of isomorphisms are topological spaces forming a topological
groupoid, then we can ask for the collection

∐

M�T

[[φ(~x)]]M

of elements of the various definable sets to be a space, in such a way that
the projection function p in (2) is a local homeomorphism, and such that
the action α in (3) is continuous. This makes definable set functors into
equivariant sheaves on the groupoid, and we show that in the topos of all
such sheaves they can be characterized as the compact decidable objects (up
to a suitable notion of equivalence).

The second part (Section 2) concerns the construction, based on the rep-
resentation result of the first part, of a duality between the category of de-
cidable coherent categories (representing theories in first-order logic) and the
category of topological groupoids of models. Specifically, we construct an
adjunction between the category of decidable coherent categories and a cat-
egory of ‘coherent’ topological groupoids, such that the counit component of
the adjunction is an equivalence, up to pretopos completion. As a technical
convenience, we introduce a size restriction both on theories and their mod-
els (corresponding to the pretence, above, that the collection of models of a
theory forms a set). The restriction, given a theory, to a set of models large
enough for our purposes can be thought of as akin to the fixing of a ‘monster’
model for a complete theory, although in our case a much weaker saturation
property is asked for, and a modest cardinal bound on the size of the models
is sufficient.

In summary, we present a ‘syntax-semantics’ duality which shows how to
recover a coherent decidable or a classical first-order theory from its models.
Compared with the duality theory of Makkai [7, 8], we give an alternative
notion of external structure with which to equip the models, which in our
case is topological instead of based on ultra-products. This permits the use
of topos theory in establishing the main results, and in particular results in
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a semantic construction of the classifying topos of the theory. Finally, our
construction restricts to classical Stone duality in the propositional case.

Many more details of the results contained herein can be found in the
second author’s doctoral dissertation [9].

1 The Representation Theorem

1.1 Theories and Models

We show how to recover a classical, first-order theory from its groupoid of
models and model-isomorphisms, bounded in size and equipped with topo-
logical structure. We present this from a logical perspective, that is, from
the perspective of the syntax and model theory of first-order theories. One
can, of course, go back and forth between this perspective and the categor-
ical perspective of decidable or Boolean coherent categories and set-valued
coherent functors. Section 2 briefly outlines the translation between the two,
and presents a duality between the ‘syntactical’ category of theories and a
‘semantical’ category of model-groupoids. In categorical terms, the purpose
of the current section is to show that the topos of coherent sheaves on a
decidable coherent category can be represented as the topos of equivariant
sheaves on a topological groupoid of ‘points’, or set-valued coherent functors,
and invertible natural transformations. This builds upon earlier results in [1]
and [10] to the effect that a coherent topos can be represented by a topolog-
ical groupoid constructed from its points (our construction differs from the
one given in loc.cit. in choosing a simpler cover which is better suited for our
purpose).

Let Σ be a (first-order, possibly many-sorted) signature. Recall that a
formula over Σ is coherent if it is constructed using only the connectives ⊤,
∧, ∃, ⊥, and ∨. We consider formulas in suitable contexts, [~x | φ], where the
context ~x is a list of distinct variables containing (at least) the free variables
of φ. A sequent, φ ⊢~x ψ—where ~x is a suitable context for both φ and
ψ—is coherent if both φ and ψ are coherent. Henceforth we shall not be
concerned with axiomatizations, and so we consider a (coherent) theory to
be a deductively closed set of (coherent) sequents.

Let T be a coherent (alternatively first-order) theory over a signature,
Σ. Recall that the syntactic category, CT, of T has as objects equivalence
classes of coherent (alt. first-order) formulas in context, e.g. [~x | φ], which is
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equivalent to a formula in context, [~y | ψ], if the contexts are α-equivalent
and T proves the formulas equivalent1, i.e. T proves the following sequents.

φ ⊢~x ψ[~x/~y]

ψ[~x/~y] ⊢~x φ

An arrow between two objects, say [~x | φ] and [~y | ψ] (where we may assume
that ~x and ~y are distinct), consists of a class of T-provably equivalent formulas
in context, say [~x, ~y | σ], such that T proves that σ is a functional relation
between φ and ψ:

σ ⊢~x,~y φ ∧ ψ

φ ⊢~x ∃~y. σ

σ ∧ σ(~z/~y) ⊢~x,~y,~z ~y = ~z

If T is a coherent theory, then CT is a coherent category. If T, in addition,
has an inequality predicate (for each sort), that is, a formula with two free
variables (of that sort), x 6= y, such that T proves

x 6= y ∧ x = y ⊢x,y ⊥

⊤ ⊢x,y x 6= y ∨ x = y

then CT is decidable, in the sense that for each object, A, the diagonal, ∆ :
A // // A × A, is complemented as a subobject. We call a coherent theory
which has an inequality predicate (for each sort) a decidable coherent theory
for that reason (and with apologies for overloading the term). Finally, if T is
a first-order theory, then CT is a Boolean coherent category, i.e. a coherent
category such that every subobject is complemented.

Conversely, given a coherent category, C, one can construct the coherent
theory, TC, of C by having a sort for each object and a function symbol for
each arrow, and taking as axioms all sequents which are true under the canon-
ical interpretation of this language in C (again, see [4] for details). A coherent
decidable category allows for the construction of a coherent decidable the-
ory (including an inequality predicate for each sort), and Boolean coherent
C allows for the construction of a first-order TC. Thus we can turn theories

1See [4, D1] for further details. Note that we, unlike [4], choose to identify T-provably
equivalent formulas. The reason is that they define exactly the same sets, i.e. the same
definable set functors.
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into categories and categories back into theories. It is in this sense that we
say that (decidable) coherent categories represent (decidable) coherent the-
ories, and Boolean coherent categories represent first-order theories. (Since
Boolean coherent categories are, of course, coherent, building the Boolean
coherent syntactical category of a classical first-order theory and then taking
its coherent internal theory will produce a decidable coherent theory with
the same models as the original classical one; thus yielding an alternative,
but less economical, way of Morleyizing a classical theory than the one pre-
sented in [4, D1.5.13].) We show how to recover a theory from its models in
the sense that we recover its syntactic category, up to pretopos completion.
Roughly, the pretopos completion of a theory is the theory equipped with
disjoint sums and quotients of equivalence relations, see e.g. [8]. A theory
and its pretopos completion have the same models in (the pretopos) Sets.

The category of models and homomorphisms of a coherent theory T is
equivalent to the category of coherent functors from CT into the category
Sets of sets and functions and natural transformations between them,

ModT ≃ Hom(CT,Sets)

and the same holds for models in an arbitrary coherent category, E ,

ModT(E) ≃ Hom(CT, E)

Indeed, this is the universal property that characterizes CT. The same is
true for classical first-order theories if “homomorphism” is replaced by “ele-
mentary embedding” (Note that the elementary embeddings between models
of a classical first-order theory coincide with the homomorphisms between
models of its Morleyization.) We pass freely between considering models
traditionally as structures and algebraically as functors. In passing, we note
that decidability for coherent theories can be characterized semantically:

Lemma 1.1.1 Let T be a coherent theory over a signature Σ, and ModT

the category of T-models and homomorphisms. Then T is decidable (i.e.
has an inequality predicate for each sort) if and only if for every T-model
homomorphism, f : M → N and every sort A of Σ, the component function
fA : [[A]]M → [[A]]N is injective.

Proof This follows from a slight rewriting of the proof of [4, D3.5.1]. ⊣
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Given a coherent theory T taking sheaves on CT equipped with the coher-
ent coverage (finite epimorphic covering families) results in a topos Sh(CT)
with the universal property that the category of T-models in any topos E
is equivalent to the category of geometric morphisms from E to Sh(CT) and
geometric transformations between them,

ModT(E) ≃ Hom(E , Sh(CT))

The topos Sh(CT) is known as the classifying topos of T (see [4, D3]).

1.2 Stone Representation

Let T be a classical first-order theory or a decidable coherent theory. We cut
down to a set of T-models by choosing an regular cardinal, κ, such that T (as
a deductively closed set of sequents) is of cardinality < κ. Denote by Setsκ
the category of sets of size (hereditarily) less than κ – or, as we shall say
briefly, κ-small sets – and by XT the set of T-models in Setsκ. This set of
models is large enough for our purposes in that, using Deligne’s Theorem (and
thus the Axiom of Choice), the coherent functors from the coherent category
CT to Setsκ jointly reflect covers with respect to the coherent coverage on CT
and the canonical coverage on Setsκ. Precisely:

Lemma 1.2.1 For any family {fi : Ci → C i ∈ I} in CT, if for all coher-
ent functors F : C // Setsκ, we have that the F (fi) are jointly surjective,
then there exists i1, . . . , in such that {fi1 , . . . , fin} cover C in CT.

For a first-order theory, this comes to saying that for any T-type p, there
exists a model M in XT such that M realizes p. We say that XT is a saturated
set of models for T.

Next, for [~x | φ] ∈ CT, the definable set functor given by φ restricts to a
functor

[[~x | φ]](−) : XT
// Sets

M 7−→ [[~x | φ]]M

which, following the equivalence SetsXT ≃ Sets/XT, corresponds to the set
over XT:

[[~x | φ]]XT
:=

{

〈M,~b〉 M ∈ XT,~b ∈ [[~x | φ]]M
}

π1 // XT

12



Where π1 projects out the model M. Note the notation “[[~x | φ]]XT
” for the

set on the left, which we shall make extensive use of below. The mapping
[~x | φ] 7→ (π1 : [[~x | φ]]XT

→ XT) gives us the object part of a functor,

Md : CT // Sets/XT

(which sends an arrow of CT to the obvious function over XT).

Proposition 1.2.2 (Stone representation for coherent categories) The
functor

Md : CT // Sets/XT

is coherent and reflects covers with respect to the coherent coverage on CT and
the canonical coverage on Sets/XT. As a consequence, Md is conservative,
that is, Md is faithful and reflects isomorphisms.

Proof Considering each T-model M as a coherent functor from CT to Sets,
we have a commuting triangle:

Sets/XT

∏

M∈XT
SetsM

CT

Sets/XT

Md

����
��

��
��

�
CT

∏

M∈XT
SetsM

〈...,M,...〉

��?
??

??
??

??

≃

Then Md is coherent since all M ∈ XT are coherent, and Md reflects covers
since the M ∈ XT jointly reflect covers. ⊣

Let GT be the set of isomorphisms between models in XT, giving us a
groupoid,

GT ×XT
GT GT

c // GT XT

s //
GT XT

oo IdGT XT

t
//GT

i

��

where c is composition of arrows; i sends an arrow to its inverse; s sends
an arrow to its source/domain and t to its target/codomain; and Id sends
an object to its identity arrow. By equipping XT with the logical topology
defined below, and then introducing continuous GT-actions, we will make the
objects in the image ofMd—that is, the definable set functors—compact and
generating, and the embedding full. That is, we factor Md, first, through the
category of sheaves on XT (equipped with the logical topology) and, second,
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through the category of equivariant sheaves, or sheaves with a continuous
GT-action (u∗ and v∗ are forgetful functors):

CT Sh(XT)
M //CT

ShGT
(XT)

M† ))RRRRRRRRRRRRR Sh(XT)

ShGT
(XT)

OO
v∗

CT Sh(XT)//

Sets/XT

CT

55
Md

lllllllllllll
Sets/XT

Sh(XT)

OO
u∗

Sh(XT) Sh(CT)
m // //

Sets/XT

Sh(XT)

u ����

Sets/XT

Sh(CT)

md

'' ''OOOOOOOO

Sh(XT) Sh(CT)// //Sh(XT)

ShGT
(XT)

v ����

Sh(CT)

ShGT
(XT)

77 77

m†oooooooo

The diagram on the right then shows the induced geometric morphisms. Our
main result of Section 1 (Theorem 1.6.11) is that M† is full, faithful, and
cover reflecting, and that CT generates ShGT

(XT) (as a full subcategory),
whence m† is an equivalence:

ShGT
(XT) ≃ Sh(CT)

1.3 Definable Sets are Sheaves on a Space of Models

We introduce the following ‘logical’ topology on the set XT of T-models.

Definition 1.3.1 The logical topology on XT is defined by taking as basic
open sets those of the form

〈〈[~x | φ],~b〉〉 :=
{

M ∈ XT
~b ∈ [[~x | φ]]M

}

⊆ XT

for [~x | φ] ∈ CT and b ∈ Setsκ, with ~b the same length as ~x.

In Section 2.1 we will give a more intrinsic specification, in terms of the
objects and morphisms of a decidable coherent category, rather than in terms
of the formulas of a decidable coherent theory.

Next, we factor Md : CT // Sets/XT through Sh(XT) by making each
[[~x|φ]]XT

into a sheaf onXT with respect to the following topological structure.
We shall use ∗ to denote concatenation of tuples,

〈a1, . . . , an〉 ∗ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉.

Definition 1.3.2 For an object [~x | φ] of CT, the logical topology on the set

[[~x | φ]]XT
=

{

〈M,~a〉 M ∈ XT,~a ∈ [[~x | φ]]M
}
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is given by basic opens of the form

〈〈[~x, ~y | ψ],~b〉〉 :=
{

〈M,~a〉 ~a ∗~b ∈ [[~x, ~y | φ ∧ ψ]]M
}

(where ~b is of the same length as ~y)

For any object [~x | φ] in CT, we now have the following:

Lemma 1.3.3 The projection π1 : [[~x|φ]]XT
→ XT is a local homeomorphism.

Proof First, the projection is continuous. For let a basic open 〈〈[~y | ψ],~b〉〉 ⊆
XT be given. Then

π−1
1

(

〈〈[~y | ψ],~b〉〉
)

= 〈〈[~x, ~y | ψ],~b〉〉 ⊆ [[~x | φ]]XT

Next, the projection is open. For given a basic open 〈〈[~x, ~y | ψ],~b〉〉 ⊆ [[~x |φ]]XT

we have

π1

(

〈〈[~x, ~y | ψ],~b〉〉
)

= 〈〈[~y | ∃~x. φ ∧ ψ],~b〉〉 ⊆ XT

which is open. Finally, let 〈M,~a〉 ∈ [[~x | φ]]XT
be given. Then

〈M,~a〉 ∈ V := 〈〈[~x, ~y | ~x = ~y],~a〉〉 ⊆ [[~x | φ]]XT

and 〈N, ~a′〉 ∈ V if and only if ~a = ~a′. Thus π1 ↾V is injective. We now have
that π1 ↾V : V → π1(V ) is continuous, open, and bijective, and therefore a
homeomorphism. ⊣

Lemma 1.3.4 Given an arrow

[~x, ~y | σ] : [~x | φ] // [~y | ψ]

in CT, the corresponding function fσ : [[~x | φ]]XT
→ [[~y | ψ]]XT

is continuous.

Proof Given a basic open 〈〈[~y, ~z | ξ],~c〉〉 ⊆ [[~y | ψ]]XT
, then

f−1
σ (〈〈[~y, ~z | ξ],~c〉〉) = 〈〈[~x, ~z | ∃~y. σ ∧ ξ],~c〉〉 ⊣

15



Proposition 1.3.5 The functor Md : CT // Sets/XT factors through the
category Sh(XT) of sheaves as

CT Sh(XT)M
//

Sets/XT

CT

::
Md

tttttttttttt
Sets/XT

Sh(XT)

OO

u∗

where u∗ : Sh(XT) // Sets/XT is the forgetful (inverse image) functor.
Moreover, M is coherent and reflects covers.

Proof M is obtained by Lemma 1.3.3 and Lemma 1.3.4. Since Md is co-
herent and the forgetful functor u∗ reflects coherent structure, M is coherent.
Since u∗ preserves covers (being geometric) and Md reflects them, M reflects
covers. ⊣

1.4 GT is an Open Topological Groupoid

Consider now the set GT of T-model isomorphisms between the models in
XT. Such an isomorphism, f : M → N, consists of a family of bijections,
fA : [[x : A | ⊤]]M → [[x : A | ⊤]]N, indexed by the sorts of T, subject to the
usual conditions ensuring that f is an invertible homomorphism of T-models.
We equip GT with a topology to make the groupoid,

GT ×XT
GT GT

c // GT XT

s //
GT XT

oo IdGT XT

t
//GT

i

��

of T-models and isomorphisms a topological groupoid. (For shorter notation
we write “GT”, or “GT ⇉ XT” if we want to display the set of objects and
the set of arrows of the groupoid.)

Definition 1.4.1 The logical topology on GT is defined by taking as sub-
basic open sets those of the form

• s−1 (〈〈[~x | φ],~a〉〉) =
{

f ∈ GT ~a ∈ [[~x | φ]]s(f)
}

• 〈〈B : b 7→ c〉〉 :=
{

f ∈ GT b ∈ [[x : B | ⊤]]s(f) ∧ fB(b) = c
}

, where B is
a sort of T.

16



• t−1 (〈〈[~x | ψ], ~e〉〉) =
{

f ∈ GT ~e ∈ [[~x | ψ]]t(f)
}

The most readable form to present a basic open set U is as an array displaying
the ‘source condition’, the ‘preservation condition’, and the ‘target condition’,
e.g.:

U =





[~x | φ],~a
~B : ~b 7→ ~c

[~y | ψ], ~d





=
{

f : M ⇒ N ~a ∈ [[~x | φ]]M ∧~b ∈ [[~x : ~B | ⊤]]M ∧ f ~B(
~b) = ~c ∧ ~d ∈ [[~y | ψ]]N

}

Lemma 1.4.2 With respect to the logical topologies on GT and XT, the
groupoid

GT ×XT
GT GT

c // GT XT

s //
GT XT

oo IdGT XT

t
//GT

i

��

is a topological groupoid (i.e. the source, target, identity, inverse, and com-
position maps are all continuous).

Proof Straightforward verification. ⊣

It is clear that if we are presented with a basic open set

〈〈[~y : ~B | φ],~b〉〉 ⊆ XT or 〈〈[~x : ~A, ~y : ~B | ψ],~b〉〉 ⊆ [[~x : ~A | φ]]XT

we can assume without loss of generality that, for i 6= j, Bi = Bj implies

bi 6= bj . We say that 〈〈[~y : ~B | φ],~b〉〉 is presented in reduced form if this
condition is satisfied. It is clear that, as long as we are careful, we can
replace elements in a model by switching to an isomorphic model. We write
this out as a technical lemma for reference.

Lemma 1.4.3 Let a list of sorts ~A of T and two tuples ~a and ~b of Setsκ be
given, of the same length as ~A, and satisfying the requirement that whenever
i 6= j, Ai = Aj implies ai 6= aj and bi 6= bj. Then for any M ∈ XT, if

~a ∈ [[~x : ~A | ⊤]]M, there exists an N ∈ XT and an isomorphism f : M → N

in GT such that f ~A(~a) =
~b.

Proposition 1.4.4 The groupoid GT is an open topological groupoid.
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Proof It remains (by Lemma 1.4.2) to verify that the source map is open,
from which it follows that the target map is open as well. Let a basic open
subset

V =







[~x : ~A | φ],~a
~B : ~b 7→ ~c

[~y : ~D | ψ], ~d







of GT be given, and suppose f : M → N is in V . We must find an open
neighborhood around M which is contained in s(V ). We claim that

U = 〈〈[~x : ~A, ~y : ~D, ~z : ~B | φ ∧ ψ],~a ∗ f−1
~D
(~d) ∗~b〉〉

does the trick. Clearly, M ∈ U . Suppose K ∈ U . Consider the tuples
f−1
~D
(~d) ∗~b and ~d ∗ ~c together with the list of sorts ~D ∗ ~B. Since f ~D∗ ~B sends

the first tuple to the second, we can assume that the conditions of Lemma
1.4.3 are satisfied (or a simple rewriting will see that they are), and so there
exists a T-model L and an isomorphism g : K → L such that g ∈ V . So
U ⊆ s(V ). ⊣

1.5 Definable Sets as Equivariant Sheaves

Recall that if H is an arbitrary topological groupoid, which we also write
as H1 ⇉ H0, the topos of equivariant sheaves (or continuous actions) on
H, written Sh(H) or ShH1(H0), consists of the following [4, B3.4.14(b)], [11],
[12]. An object of Sh(H) is a pair 〈a : A→ H0, α〉, where a is a local homeo-
morphism (that is, an object of Sh(H0)) and α : H1×H0A→ A is a continuous
function from the pullback (in Top) of a along the source map s : H1 → H0

to A such that
a(α(f, x)) = t(f)

and satisfying the axioms for an action:

(i) α(1h, x) = x for h ∈ H0.

(ii) α(g, α(f, x)) = α(g ◦ f, x).

For illustration, it follows that for f ∈ H1, α(f,−) is a bijective function
from the fiber over s(f) to the fiber over t(f). An arrow

h : 〈a : A→ H0, α〉 // 〈b : B → H0, β〉

18



is an arrow of Sh(H0),

A

H0

a ��?
??

??
?A B

h // B

H0

b����
��

��

which commutes with the actions:

H1 ×H0 B B
β

//

H1 ×H0 A

H1 ×H0 B

1H1
×H0

h

��

H1 ×H0 A A
α // A

B

h

��

We now return to the definable set functors, [[~x | φ]](−) : ModT
// Sets.

Ignoring the isomorphisms between the T-models for the moment, we have
described such a functor – restricted to κ-small models – first as a set and
then (introducing topological structure) as a sheaf over XT. The action of
the functor on the model isomorphisms can now be introduced as an action
of the groupoid on the sheaf, as follows.

Definition 1.5.1 For each [~x | φ] ∈ CT the function

θ[~x | φ] : GT ×XT
[[~x | φ]]XT

// [[~x | φ]]XT
(4)

is defined by 〈f , 〈s(f),~a〉〉 7→ 〈t(f), f(~a)〉. (The subscript on θ will usually be
left implicit.)

Lemma 1.5.2 The pair 〈M([~x | φ]), θ〉 is an object of ShGT
(XT), i.e. the

function
θ : GT ×XT

[[~x | φ]]XT

// [[~x | φ]]XT

is a continuous action of GT on [[~x | φ]]XT
.

Proof We verify that θ is continuous. Let a basic open

U = 〈〈[~x : ~A, ~y : ~B | ψ],~b〉〉 ⊆ [[~x : ~A | φ]]XT

be given, and suppose θ(f , 〈M,~a〉) = 〈N, f ~A(~a)〉 ∈ U for M,N ∈ XT and
f : M → N in GT. Then we can specify an open neighborhood around
〈f , 〈M,~a〉〉 which θ maps into U as:

〈f , 〈M,~a〉〉 ∈





−
~B : f−1

~B
(~b) 7→ ~b

−



×XT
〈〈[~x : ~A, ~y : ~B | ψ], f−1

~B
(~b)〉〉

⊣
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1.6 Stable Subsets

For a subobject (represented by an inclusion) [~x | ξ] � � // [~x | φ] in CT, the open
subset [[~x | ξ]]XT

⊆ [[~x | φ]]XT
is closed under the action θ in the usual sense

that θ(a) ∈ [[~x | ξ]]XT
for any point a ∈ [[~x | ξ]]XT

. For an object, 〈A→ XT, α〉,
of ShGT

(XT), we call a subset, S ⊆ A, that is closed under the action of GT

stable, so as to reserve “closed” to mean topologically closed. We claim that
the only stable opens of [[~x | φ]]XT

come from subobjects of [~x | φ] as joins.
Specifically:

Lemma 1.6.1 Let [~x : ~A | φ] in CT and U a basic open subset of [[~x : ~A |φ]]XT

of the form
U = 〈〈[~x : ~A, ~y : ~B | ψ],~b〉〉

be given. Then the stabilization (closure) of U under the action θ of GT on

〈〈[~x : ~A | φ]〉〉 is a subset of the form [[~x : ~A | ξ]]XT
⊆ [[~x : ~A | φ]]XT

.

Proof We can assume without loss that U is in reduced form. Let ϕ be
the formula expressing the conjunction of inequalities yi 6= yj for all pairs of

indices i 6= j such that Bi = Bj in ~B. We claim that the stabilization of U

is [[~x : ~A | ξ]]XT
where ξ is the formula ∃~y: ~B. φ ∧ ψ ∧ ϕ. First, [[~x : ~A | ξ]]XT

is a stable set containing U . Next, suppose 〈M,~a〉 ∈ [[~x : ~A | ξ]]XT
. Then

there exists ~c such that ~a ∗ ~c ∈ [[~x : ~A, ~y : ~B | φ ∧ ψ ∧ ϕ]]M. Then ~b and ~c

(with respect to ~B) satisfy the conditions of Lemma 1.4.3, so there exists

a T-model N with isomorphism f : M → N such that f ~B(~c) = ~b. Then
θ(f , 〈M,~a〉) ∈ U , and hence 〈M,~a〉 is in the stabilization of U . ⊣

Definition 1.6.2 We call a subset of the form [[~x | ξ]]XT
⊆ [[~x | φ]]XT

, for a
subobject

[~x | ξ] � � // [~x | φ]

in CT, a definable subset of [[~x | φ]]XT
.

Corollary 1.6.3 Any open stable subset of [[~x : ~A | φ]]XT
is a union of defin-

able subsets.

We also note the following:

Lemma 1.6.4 Let 〈〈[~x : ~A | φ],~a〉〉 be a basic open of XT in reduced form.

Then there exists a sheaf M([~x : ~A | ξ]) and a (continuous) section

s : 〈〈[~x : ~A | φ],~a〉〉 // [[~x : ~A | ξ]]XT
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such that [[~x : ~A | ξ]]XT
is the stabilization of the open set s(〈〈[~x : ~A | φ]〉〉) ⊆

[[~x : ~A | ξ]]XT
.

Proof Let ϕ be the formula expressing the inequalities xi 6= xj for all pairs

of indices i 6= j such that Ai = Aj in ~A. Let ξ := φ ∧ ϕ and consider the

function s : 〈〈[~x : ~A | φ],~a〉〉 //[[~x : ~A|ξ]]XT
defined byM 7→ 〈M,~a〉. The image

of s is the open set 〈〈[~x : ~A, ~y : ~A | ~x = ~y],~a〉〉, so s is a (continuous) section.

And by the proof of Lemma 1.6.1, the stabilization of 〈〈[~x : ~A, ~y : ~A | ~x = ~y],~a〉〉

is exactly [[~x : ~A | ξ]]XT
. ⊣

Consider now the topos of equivariant sheaves ShGT
(XT). For an arrow,

f : C → D, of CT, clearly the function M(f) : M(C) → M(D) commutes
with the actions θC and θD, so that, by Lemma 1.5.2, we have a functor
M† : CT // ShGT

(XT) which factorsM : CT // ShGT
(XT) through ShGT

(XT):

CT ShGT
(XT)

M†
//

Sh(XT)

CT

77
M

oooooooooo
Sh(XT)

ShGT
(XT)

OO
v∗ (5)

where v∗ is the forgetful functor. We call the image of M† the definable
objects and arrows of ShGT

(XT). Since M is coherent and the forgetful
functor v∗ reflects coherent structure, M† is coherent. Therefore, (5) induces
a commuting diagram of geometric morphisms:

Sh(CT) ShGT
(XT)oooo

m†

Sh(XT)

Sh(CT)

m

wwwwoooooooo
Sh(XT)

ShGT
(XT)

v����

where m† is a surjection because m is. We state these facts for reference:

Lemma 1.6.5 M† : CT // ShGT
(XT) is coherent, conservative (i.e. faithful

and reflects isomorphisms), and reflects covers.

The remainder of this section is devoted to establishing that the geometric
morphism

m† : ShGT
(XT) // Sh(CT)

is an equivalence. The main remaining step is to establish that the definable
objects generate ShGT

(XT) (Corollary 1.6.10). First, it is a known fact that
any equivariant sheaf on an open topological groupoid has an open action
(see e.g. [11]):
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Lemma 1.6.6 For any object in ShGT
(XT),

〈

R XT

r // , ρ
〉

the projection π2 : GT ×XT
R // R is open.

Proof By Proposition 1.4.4, since pullback preserves open maps of spaces.⊣

Corollary 1.6.7 For any object 〈r : R → XT, ρ〉 in ShGT
(XT), the action

ρ : GT ×XT
R // R

is open. Consequently, the stabilization of any open subset of R is again
open.

Proof Let a basic open V ×XT
U ⊆ GT ×XT

R be given (so that U ⊆ R and
V ⊆ GT are open). Observe that, since the inverse map i : GT

// GT is a
homeomorphism, i(V ) is open, and

ρ(V ×XT
U) = {y ∈ R ∃〈f, x〉 ∈ V ×XT

U. ρ(f, x) = y}
= {y ∈ R ∃f−1 ∈ i(V ). s(f−1) = r(y) ∧ ρ(f−1, y) ∈ U}
= π2(ρ

−1(U) ∩ (i(V )×XT
R))

is open by Lemma 1.6.6. Finally, for any open U ⊆ R, the stabilization of U
is ρ(GT ×XT

U). ⊣

Lemma 1.6.8 For any object 〈 R XT

r // , ρ〉 in ShGT
(XT), and any element

x ∈ R, there exists a basic open 〈〈[~x : ~A | φ],~a〉〉 ⊆ XT and a section v :

〈〈[~x : ~A | φ],~a〉〉 → R containing x such that for any f : M → N in GT such

that M ∈ 〈〈[~x : ~A | φ],~a〉〉 and f ~A(~a) = ~a (thus N is also in 〈〈[~x : ~A | φ],~a〉〉),
we have ρ(f , v(M)) = v(N).

Proof Given x ∈ R, choose a section s : 〈〈[~y : ~B | ψ],~b〉〉 → R such that

x ∈ s(〈〈[~y : ~B | ψ],~b〉〉). Pull the open set s(〈〈[~y : ~B | ψ],~b〉〉) back along the
continuous action ρ,

GT ×XT
R Rρ

//

V

GT ×XT
R

��
⊆

��

V s(〈〈[~y : ~B | ψ],~b〉〉)// s(〈〈[~y : ~B | ψ],~b〉〉)

R

��
⊆

��
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to obtain an open set V containing 〈1r(x), x〉. Since V is open, we can find a
box of basic opens around 〈1r(x), x〉 contained in V :

〈1r(x), x〉 ∈ W :=





[~z : ~C | ξ],~c
~K : ~k 7→ ~k

[~z′ : ~C ′ | η], ~c′



×XT
v′(U[~y′:~D | θ],~d) ⊆ V

where v′ is a section v′ : 〈〈[~y′ : ~D | θ], ~d〉〉 → R with x in its image. Notice that

the preservation condition of W (i.e. ~K : ~k 7→ ~k) must have the same sets
on both the source and the target side, since it is satisfied by 1r(x). Now,
restrict v′ to the subset

U := 〈〈[~z : ~C, ~z′′ : ~K, ~z′ : ~C ′, ~y′ : ~D | ξ ∧ η ∧ θ],~c ∗ ~k ∗ ~c′ ∗ ~d〉〉

to obtain a section v = v′ ↾U : U → R. Notice that x ∈ v(U). Furthermore,

v(U) ⊆ s(〈〈[~y : ~B | ψ],~b〉〉), for if v(M) ∈ v(U), then 〈1M, v(M)〉 ∈ W , and so

ρ(〈1M, v(M)〉) = v(M) ∈ s(〈〈[~y : ~B | ψ],~b〉〉). Finally, if M ∈ U and f : M →
N is an isomorphism in GT such that

f ~C∗ ~K∗ ~C′∗ ~D(~c ∗
~k ∗ ~c′ ∗ ~d) = ~c ∗ ~k ∗ ~c′ ∗ ~d

then 〈f , v(M)〉 ∈ W , and so ρ(f , v(M)) ∈ s(〈〈[~y : ~B | ψ],~b〉〉). But we also

have v(N) ∈ v(U) ⊆ s(〈〈[~y : ~B | ψ],~b〉〉), and r(ρ(f , v(M))) = r(v(N), so
ρ(f , v(M)) = v(N). ⊣

Lemma 1.6.9 For any object in ShGT
(XT),

〈 R XT

r // , ρ〉

and any element x ∈ R, there exists a morphisms of ShGT
(XT) with definable

domain and with x in its image.

Proof First, we construct a function over XT with definable domain and
with x in its image. Choose a section v : 〈〈[~x : ~A | φ],~a〉〉 → R with the

property described in Lemma 1.6.8 such that x ∈ v(〈〈[~x : ~A | φ],~a〉〉). We can

assume that 〈〈[~x : ~A | φ],~a〉〉 is on reduced form. Then, by Lemma 1.6.4 there

exists an object [~x : ~A | ξ] in CT and a section s : 〈〈[~x : ~A | φ],~a〉〉 → [[~x : ~A |

ξ]]XT
such that [[~x : ~A | ξ]]XT

is the stabilization of s(〈〈[~x : ~A | φ],~a〉〉). Define a

mapping v̂ : [[~x : ~A |ξ]]XT
→ R as follows: for an element 〈N,~c〉 ∈ [[~x : ~A |ξ]]XT

,
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there exists 〈M,~a〉 ∈ s(〈〈[~x : ~A | φ],~a〉〉) ⊆ [[~x : ~A | ξ]]XT
and f : M → N in GT

such that f ~A(~a) = ~c. Set v̂(〈N,~c〉) = ρ(f , v(M)). We verify that v̂ is well

defined: suppose 〈M′,~a〉 ∈ s(〈〈[~x : ~A | φ],~a〉〉) ⊆ [[~x : ~A | ξ]]XT
and g : M′ → N

in GT is such that g ~A(~a) = ~c. Then g−1 ◦ f : M → M′ sends ~a ∈ [[~x : ~A | φ]]M

to ~a ∈ [[~x : ~A | φ]]M
′
, and so by the choice of section v : 〈〈[~x : ~A | φ],~a〉〉 → R,

we have that ρ(g−1 ◦ f , v(M)) = v(M′). But then

ρ(g, v(M′)) = ρ(g, ρ(g−1 ◦ f , v(M))) = ρ(f , v(M))

so the value of v̂ at 〈N,~c〉 is indeed independent of the choice of 〈M,~a〉 and
f . Finally, the following triangle commutes,

[[~x : ~A | ξ]]XT

〈〈[~x : ~A | φ],~a〉〉

__

s __?
??

?
[[~x : ~A | ξ]]XT

R
v̂ // R

〈〈[~x : ~A | φ],~a〉〉

??

v??��
��

(6)

and so x is in the image of v̂.
Second, we verify that the function v̂ : [[~x : ~A |ξ]]XT

→ R is the underlying
function of a morphism,

[[~x : ~A | ξ]]XT

XT

p ��?
??

??
?

[[~x : ~A | ξ]]XT
R

v̂ // R

XT

r����
��

��

of ShGT
(XT), where the action on [[~x : ~A | ξ]]XT

is denoted θ (recall 4 on page
19). The definition of v̂ makes it straightforward to see that v̂ commutes

with the actions θ and ρ of [[~x : ~A | ξ]]XT
and R, respectively. Remains to

show that v̂ is continuous. Recall the triangle (6). Let y ∈ v̂([[~x : ~A | ξ]]XT
) be

given, and suppose U is a open neighborhood of y. By Corollary 1.6.7, we
can assume that U ⊆ v̂([[~x : ~A | ξ]]XT

). Suppose y = v̂(〈N,~c〉) = ρ(f , v(M))
for a f : M → N such that θ(f , s(M)) = 〈N,~c〉. We must find an open
neighborhood W around 〈N,~c〉 such that v̂(W ) ⊆ U . First, define the open
neighborhood T ⊆ GT ×XT

R around 〈f , v(M)〉 by

T := ρ−1(U) ∩
(

GT ×XT
v(〈〈[~x : ~A | φ],~a〉〉)

)

From the homeomorphism v(〈〈[~x : ~A | φ],~a〉〉) ∼= s(〈〈[~x : ~A | φ],~a〉〉) we obtain a

homeomorphism GT ×XT
v(〈〈[~x : ~A | φ],~a〉〉) ∼= GT ×XT

s(〈〈[~x : ~A | φ],~a〉〉). Set
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T ′ ⊆ GT ×XT
s(〈〈[~x : ~A | φ],~a〉〉) to be the open subset corresponding to T

under this homeomorphism,

〈f , v(M)〉 ∈ T ⊆ GT ×XT
v(〈〈[~x : ~A | φ],~a〉〉)

∼=

〈f , s(M)〉 ∈ T ′ ⊆ GT ×XT
s(〈〈[~x : ~A | φ],~a〉〉)

Then 〈N,~c〉 = θ(f , s(M)) ∈ θ(T ′), and by Corollary 1.6.7, θ(T ′) is open. We
claim that v̂(θ(T ′)) ⊆ U : for suppose 〈g, s(P)〉 ∈ T ′. Then 〈g, v(P)〉 ∈ T ⊆
ρ−1(U), and so v̂(θ(g, s(P))) = ρ(〈g, v(P)〉) ∈ U . Thus θ(T ′) is the required
W . ⊣

Corollary 1.6.10 The definable objects generate the topos ShGT
(XT).

We are thus in a position to conclude:

Theorem 1.6.11 For a decidable coherent theory T with a saturated set of
κ-small models XT, we have an equivalence of toposes,

ShGT
(XT) ≃ Sh(CT) .

Proof Since, by Corollary 1.6.10, the definable objects form a generating
set, the full subcategory of definable objects is a site for ShGT

(XT) when
equipped with the canonical coverage inherited from ShGT

(XT) (see e.g. [4,
C2.2.16]). We argue first that M† : CT // ShGT

(XT) is full: because M†

is coherent (Lemma 1.6.5), definable objects are decidable. Therefore, any
graph of a morphism between definable objects is complemented. Because
M† reflects covers and any subobject of a definable object is a join of defin-
able subobjects (Lemma 1.6.3), definable objects are compact in ShGT

(XT)
(in the sense that any covering family of subobjects has a finite covering sub-
family). But then every complemented subobject of a definable object is a
finite join of definable subobjects, and therefore definable. Hence M† is full.
By Lemma 1.6.5, M† is also faithful. Finally, the canonical coverage inher-
ited from ShGT

(XT) coincides with the coherent coverage since M† reflects
covers precisely with respect to the canonical coverage on ShGT

(XT) and the
coherent coverage on CT. Therefore, CT equipped with the coherent coverage
is a site for ShGT

(XT), so ShGT
(XT) ≃ Sh(CT). ⊣

25



Remark 1.6.12 An alternate proof of Theorem 1.6.11, following the lines
of [10], is given in [9, Chapter 3]. It proceeds by showing that the spatial
covering

m : Sh(XT) // Sh(CT)

of Section 1.2 is an open surjection and thus, by results of [13], an effective
descent morphism. The groupoid representation ShGT

(XT) ≃ Sh(CT) then
follows from descent theory.

2 Duality

2.1 Representation Theorem for Decidable Coherent
Categories

Since one can pass back and forth between coherent theories and categories
by taking the theories of categories and the syntactic categories of theories,
Proposition 1.2.2 translates to a representation result for decidable coherent
categories, in terms of groupoids of Setsκ-valued coherent functors and in-
vertible natural transformations between them. We spell this representation
out, including a more direct characterization of the topology on the set of
Setsκ-valued coherent functors (Definition 2.1.2).

Let D be a (small) decidable coherent category, that is, a category with
finite limits, images, stable covers, finite unions of subobjects, and comple-
mented diagonals ([4, A1.4]). For a (regular) cardinal κ, we say that D has
a saturated set of κ-small models if the coherent functors from D to the
category of (hereditarily) κ-small sets,

D // Setsκ

jointly reflect covers, in the sense, again, that for any family of arrows fi :
Ci → C in D, if for all M : D // Setsκ in XD

⋃

i∈I

Im (M(fi)) =M(C)

then there exists fi1, . . . , fin such that Im (fi1) ∨ . . . ∨ Im (fin) = C.

Definition 2.1.1 Let dCoh be the category of small decidable coherent
categories with coherent functors between them. For κ a (regular) cardinal,
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let dCohκ be the full subcategory of those categories which have a saturated
set of κ-small models, i.e. such that the coherent functors to Setsκ reflect
covers.

Note that any coherent category which is of cardinality < κ is in dCohκ, as
are all distributive lattices.

Definition 2.1.2 For D in dCohκ:

1. Let XD be the set of coherent functors from D to Setsκ,

XD = HomdCoh(D,Setsκ) .

2. Let GD be the set of invertible natural transformations between func-
tors inXD, with s and t the source and target, or domain and codomain,
maps,

s, t : GD ⇉ XD

Denote the resulting groupoid by GD.

3. The coherent topology on XD is given by taking as a subbasis the col-
lection of sets of the form,

〈〈~f,~a〉〉 = 〈〈〈f1 : A→ B1, . . . , fn : A→ Bn〉, 〈a1, . . . , an〉〉〉

= {M ∈ XD ∃x ∈M(A).M(f1)(x) = a1 ∧ . . . ∧M(fn)(x) = an}

for a finite span of arrows

B1 Bn

A

B1

f1

����
��

��
��

��
��

�
A

Bn

fn

��?
??

??
??

??
??

??

. . . . . .

A

Bi

fi

��

in D and a1, . . . , an ∈ Setsκ. Let the coherent topology on GD be the
coarsest topology such that s, t : GD ⇉ XD are both continuous and
all sets of the form

〈〈A, a 7→ b〉〉 = {f :M → N a ∈M(A) ∧ fA(a) = b}

are open, for A an object of D and a, b ∈ Setsκ.
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Remark 2.1.3 Note that if D is a Boolean algebra and we require coherent
functors into Sets to send the terminal object to the distinguished terminal
object {⋆} in Sets, then XD is the Stone space of D.

For D in dCohκ, we have the decidable coherent theory TD of D, and its
syntactic category, CTD

(as described in Section 1.1). Sending an object,
D, in D to the object [x : D | ⊤] in CTD

, and an arrow f : C → D to
[x : C, y : D | f(x) = y], defines a functor

ηD : D // CTD

which is one half of an equivalence, the other half being the (or a choice of)
canonical TD-model in D.

Now, any TD-model, M, in Setsκ can be seen as a coherent functor,
M : CTD

// Setsκ. Composition with ηD

D Setsκ
M◦ηD //D

CTD

ηD

��

Setsκ

CTD

::

M

tttttttttttttttt

induces restriction functions

XTD
XD

φ0

//

GTD

XTD

t

��

GTD
GD

φ1 // GD

XD

t

��
XTD

XD
φ0

//

GTD

XTD

s

��

GTD
GD

φ1 // GD

XD

s

��

commuting with source and target (as well as composition and insertion of
identities) maps.

Lemma 2.1.4 The maps φ0 and φ1 are homeomorphisms of spaces.

Proof Any coherent functor M : D // Setsκ lifts to a unique TD-model
M : CTD

// Setsκ, to yield an inverse ψ0 : XD → XTD
to φ0. Similarly, an

invertible natural transformation of functors f : M → N lifts to a unique
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TD-isomorphism f : M → N to yield an inverse ψ1 : GD → GTD
to φ1. We

verify that these four maps are all continuous. For a subbasic open

U = 〈〈〈f1 : A→ B1, . . . , fn : A→ Bn〉, 〈a1, . . . , an〉〉〉 ⊆ XD

we have

φ−1
0 (U) = 〈〈[y1 : B1, . . . , yn : Bn | ∃x : A.

∧

1≤i≤n

fi(x) = yi],~a〉〉

so φ0 is continuous. To verify that ψ0 is continuous, there are two cases to
consider, namely non-empty and empty context. For basic open

〈〈[x : A1, . . . , xn : An | φ], 〈a1, . . . , an〉〉〉 ⊆ XTD

the canonical interpretation of TD in D yields a subobject of a product in D,

[[x : A1, . . . , xn : An | φ]]
� ,2 // A1 × . . .× An

πi // Ai.

Choose a monomorphism r : R // //A1× . . .×An representing that subobject.
Then

ψ−1
0 (〈〈[x : A1, . . . , xn : An | φ], 〈a1, . . . , an〉〉〉)

= 〈〈〈π1 ◦ r : R → A1, . . . , πn ◦ r : R→ An〉, 〈a1, . . . , an〉〉〉

and it is clear that this is independent of the choice of product diagram and
of representing monomorphism. For the empty context case, consider a basic
open U = 〈〈[ | ϕ], ⋆〉〉, where ϕ is a sentence of TD and ⋆ is the element of the
distinguished terminal object of Sets (traditionally ⋆ = ∅, notice that any
〈〈[ | ϕ], a〉〉 with a 6= ⋆ is automatically empty). The canonical interpretation
of ϕ in D yields a subobject of a terminal object, [[ϕ]] � ,2 // 1. Choose a
representative monomorphism r : R // //1. Then, independently of the choices
made,

ψ−1
0 (U) =

⋃

a∈Setsκ

〈〈r : R → 1, a〉〉.

So ψ0 is continuous. With φ0 continuous, it is sufficient to check φ1 on
subbasic opens of the form U = 〈〈A, a 7→ b〉〉 ⊆ GD. But

φ−1
1 (U) =





−
[x : A | ⊤] : a 7→ b

−




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so φ1 is continuous. Similarly, it is sufficient to check ψ1 on subbasic opens
of the form

U =





−
[x : A | ⊤] : a 7→ b

−





but ψ−1
1 (U) = 〈〈A, a 7→ b〉〉, so ψ1 is continuous. ⊣

Corollary 2.1.5 Definition 2.1.2 yields, for a decidable coherent category
D, a topological groupoid GD such that

GD
∼= GTD

in the category Gpd.

We can now state the main representation result of this section.

Theorem 2.1.6 For a decidable coherent category with a saturated set of
κ-small models, the topos of coherent sheaves on D is equivalent to the topos
of equivariant sheaves on the topological groupoid GD of models and isomor-
phisms equipped with the coherent topology,

Sh(D) ≃ Sh(GD) .

Proof The equivalence ηD : D // CTD
yields an equivalence Sh(D) ≃

Sh(CTD
), whence

Sh(D) ≃ Sh(CTD
) ≃ Sh(GTD

) ∼= Sh(GD)

by Theorem 1.6.11. ⊣

2.2 The Semantical Functor Mod

We proceed to construct a ‘syntax-semantics’ adjunction between the cate-
gory dCohκ (syntax) and a subcategory of topological groupoids (semantics).
Given a coherent functor

F : A // D

between two objects of dCohκ, precomposition with F ,

A DF // D Setsκ
M //

D Setsκ
N

//⇓
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yields a homomorphism of (discrete) groupoids

XD XA
f0

//

GD

XD

t

��

GD GA
f1 // GA

XA

t

��
XD XA

f0

//

GD

XD

s

��

GD GA
f1 // GA

XA

s

��

(7)

We verify that f0 and f1 are both continuous. For basic open

U = 〈〈〈g1 : A→ B1, . . . , gn : A→ Bn〉, 〈a1, . . . , an〉〉〉 ⊆ XA,

we see that

f−1
0 (U) = 〈〈〈F (g1) : FA→ FB1, . . . , F (gn) : FA→ FBn〉, 〈a1, . . . , an〉〉〉 ⊆ XD.

And for basic open U = 〈〈C, a 7→ b〉〉 ⊆ GA, we see that

f−1
1 (U) = 〈〈F (C), a 7→ b〉〉 ⊆ GD

Thus composition with F yields a morphism of topological groupoids,

f : GD
// GA,

and thereby we get a contravariant functor,

Mod : dCohop
κ

// Gpd.

which we shall refer to as the semantical functor.
Summarizing, for any decidable coherent category D, we take

Mod(D) = HomdCoh(D,Setsκ) ,

regarded as a groupoid of natural isomorphisms and equipped with the co-
herent topology, as in Definition 2.1.1.

2.3 The Syntactical Functor Form

We construct an adjoint to the semantical functor Mod from a subcategory
of Gpd containing the image of Mod. As in the propositional (distributive
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lattices) case, there are various subcategories that will work for this; we
choose one such that is convenient for the present purpose, namely those
groupoids G which are coherent, in the sense that Sh(G) is a coherent topos,
that is, has a coherent site of definition (see [4, D3.3]).

Recall that an object A in a topos is compact if every covering of it (in
terms of morphisms or subobjects) has a finite subcovering ([4, D3.3.2]).

Definition 2.3.1 CohGpd is the subcategory of Gpd consisting of coher-
ent groupoids and those morphisms f : G // H which preserve compact ob-
jects, in the sense that the induced inverse image functor f ∗ : Sh(H) // Sh(G)
sends compact objects to compact objects.

Remark 2.3.2 Recall (e.g. from [4]) that:

(i) An object C in a topos E is coherent if (1) it is compact; and (2) it is
stable, in the sense that for any morphism f : B //A with B compact,
the domain K of the kernel pair of f ,

K
k1 //

k2

// B
f // A

is again compact.

(ii) In a coherent topos, Sh(C) say, with C a small coherent category, the full
subcategory, D � � // Sh(C), of coherent objects is a pretopos. D forms
a coherent site for Sh(C); includes C (through the Yoneda embedding);
and is a pretopos completion of C. Thus one can recover C from Sh(C)
up to pretopos completion as the coherent objects.

(iii) Any compact decidable object is coherent. The full subcategory of
decidable objects in a coherent category is again a coherent category.
Accordingly, the full subcategory of compact decidable objects in a
coherent topos is a decidable coherent category.

By Theorem 2.1.6, Mod(D) is a coherent groupoid, for any D in dCohκ, and
we can recover D from Mod(D), up to pretopos completion, by taking the
compact decidable objects in Sh(Mod(D)). For arbitrary coherent groupoids,
however, this procedure will yield an decidable coherent category, but not
necessarily one in dCohκ, i.e. not necessarily with a saturated set of smaller
than κ models. However, one can use the groupoid, Sets∗κ of smaller than
κ sets and bijections to classify a suitable collection of objects, as we now
proceed to describe.
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2.3.3 The Decidable Object Classifier

Definition 2.3.4 The topological groupoid S consists of (hereditarily) κ-
small sets with bijections between them, equipped with topology as follows.
The topology on the set of objects, S0, is generated by the empty set and
basic opens of the form

〈〈a1, . . . , an〉〉 := {A ∈ Setsκ a1, . . . , an ∈ A}

while the topology on the set, S1 of bijections between κ-small sets is the
coarsest topology such that the source and target maps s, t : S1 ⇉ S0 are
both continuous, and containing all sets of the form

〈〈a 7→ b〉〉 :=
{

f : A
∼= // B in Setsκ a ∈ A ∧ f(a) = b

}

We recognize S as the groupoid of models and isomorphisms for the decidable
coherent theory, T6=, of equality and inequality (with the obvious signature
and axioms).

Lemma 2.3.5 There is an isomorphism S ∼= GT6=
in Gpd.

Proof Any set A in Setsκ is the underlying set of a canonical T6=-model,
and any bijection f : A → B is the underlying function of a T6=-model
isomorphism, and thereby we obtain bijections S0

∼= XT6=
and S1

∼= GT6=

which commute with source, target, composition, and embedding of identities
maps. Remains to show that the topologies correspond. Clearly, any basic
open 〈〈~a〉〉 ⊆ S0 corresponds to the open set 〈〈[~x | ⊤],~a〉〉 ⊆ XT6=

. We show that,
conversely, any basic open 〈〈[~x | φ],~a〉〉 ⊆ XT6=

corresponds to an open set of S0

by induction on [~x | φ]. First, 〈〈[ | ⊤], a〉〉 is XT6=
if a = ⋆ and empty otherwise,

where {⋆} is the distinguished terminal object of Sets, and 〈〈[~x | ⊤],~a〉〉 ∼= 〈〈~a〉〉.
Next, 〈〈[x, y | x = y], a, b〉〉 corresponds to 〈〈a〉〉 ⊆ S0 if a = b, and the empty set
otherwise. Similarly, 〈〈[x, y | x 6= y], a, b〉〉 corresponds to 〈〈a, b〉〉 ⊆ S0 if a 6= b
and the empty set otherwise. Now, suppose 〈〈[~x | φ],~a〉〉 corresponds to an

open set U ⊆ S0. Then 〈〈[~x, y | φ],~a, b〉〉 ∼= U ∩ 〈〈b〉〉. Next, if 〈〈[x, ~y | φ], a,~b〉〉

corresponds to an open set Ua ⊆ S0 for each a ∈ Setsκ, then 〈〈[~y | ∃x. φ],~b〉〉 ∼=
⋃

a∈Setsκ
Ua. Finally, if 〈〈[~x | φ],~a〉〉 and 〈〈[~x | ψ],~a〉〉 correspond to open sets

U, V ⊆ S0, then 〈〈[~x | φ ∧ ψ],~a〉〉 ∼= U ∩ V , and 〈〈[~x | φ ∨ ψ],~a〉〉 ∼= U ∪ V .
Therefore, S0

∼= XT6=
as spaces. For the spaces of arrows, it remains only
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to observe that open subsets of the form 〈〈a 7→ b〉〉 ⊆ S1 correspond to open
subsets of the form





−
a 7→ b
−



 ⊆ GT6=

and we can conclude that S is a topological groupoid isomorphic to GT6=
in

Gpd. ⊣

The topos Sh(S) of equivariant sheaves on S, therefore, classifies decidable
objects, as Sh(S) ≃ Sh

(

GT6=

)

≃ Sh
(

CT6=

)

, where the last equivalence is by
Theorem 1.6.11.

Corollary 2.3.6 The groupoid S of small sets is coherent.

Corollary 2.3.7 There is an equivalence of toposes,

SetsFini ≃ Sh
(

CT6=

)

≃ Sh(S)

where Fini is the category of finite sets and injections.

Proof SetsFini ≃ Sh
(

CT6=

)

by [14, VIII, Exc.7–9]. ⊣

Definition 2.3.8 We fix the generic decidable object, U , in Sh(S) to be the
definable sheaf 〈[[x | ⊤]]XT6=

→ XT6=
∼= S0, θ[x | ⊤]〉, which we also abbreviate as

U = 〈U → S0, θU〉 (see the following remark).

Remark 2.3.9 Without reference to T6=, we can characterize U as the fol-
lowing equivariant sheaf: U → S0 is the set over S0 such that the fiber over
a set A ∈ S0 is the set A (i.e. U =

∐

A∈S0
A), and the action by the set

S1 of isomorphisms is just applying those isomorphisms to the fibers. Thus,
forgetting the topology, U is simply the inclusion S

� � // Sets. The topology
on U is the coarsest such that the projection U → S0 is continuous and such
that for each a ∈ Setsκ the image of the section sa : 〈〈a〉〉 → U defined by
sa(A) = a is an open set. It is straightforward to verify that this is just an
alternative description of 〈[[x | ⊤]]XT6=

→ XT6=
∼= S0, θ[x | ⊤]〉.
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2.3.10 Formal Sheaves

We use the groupoid S of (small) sets to recover an object in dCohκ from
a coherent groupoid by considering the set HomCohGpd(G, S) of morphisms
into S. (Consider the analogy to the propositional case, where the algebra
of clopen sets of a Stone space is recovered by homming into the discrete
space 2.) First, however, a note on notation and bookkeeping: because we
shall be concerned with functors into Setsκ—a subcategory of Sets which is
not closed under isomorphisms—we fix certain choices on the nose, instead
of working up to isomorphism or assuming a canonical choice as arbitrar-
ily given. Without going into the (tedious) details of the underlying book-
keeping, the upshot is that we allow ourselves to treat (the underlying set
over G0 and action of) an equivariant sheaf over a groupoid, G as a func-
tor G // Sets in an intuitive way. In particular, we refer to the definable
set [[~x | φ]]M as the fiber of [[~x | φ]]XT

→ XT over M, although that is not
strictly speaking the fiber (strictly speaking the fiber is, according to our
definition, the set {M} × [[~x | φ]]M). Moreover, we chose the induced inverse
image functor f ∗ : Sh(H) // Sh(G) induced by a morphism, f : G // H,
of topological groupoids so that, for A ∈ Sh(H) the fiber over x ∈ G0 of
f ∗(A) is the same set as the fiber of A over f0(x) ∈ H0. For example, and
in particular, any morphism of topological groupoids f : G // S induces a
geometric morphism f : Sh(G) // Sh(S) the inverse image part of which
takes the generic decidable object U of 2.3.8 to an (equivariant) sheaf over
G,

G0 S0
f0

//

A

G0

��

A U = [[x | ⊤]]XT6=

// U = [[x | ⊤]]XT6=

S0

��

such that the fiber Ax over x ∈ G0 is the same set as the fiber of U over
f0(x), which is the set f0(x) ∈ S0 = Setsκ. We hope that this is sufficiently
intuitive so that we may hide the underlying book-keeping needed to make
sense of it. With this in mind, then, we make the following stipulation.

Definition 2.3.11 For a coherent groupoid G, let Form(G) →֒ Sh(G) be
the full subcategory consisting of objects of the form f ∗(U) for all f : G //S

in CohGpd. Such objects will be called formal sheaves.

Observe that:
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Lemma 2.3.12 For a coherent groupoid G, a morphism f : G // S of
topological groupoids is in CohGpd if (and only if) the classified object
f ∗(U) ∈ Sh(G) is compact.

Proof Assume that f ∗(U) is compact. By Corollary 2.3.7 we have that CT6=

is a site for Sh(S). Write S for the image of the full and faithfull inclusion
of CT6=

into Sh(S). We have that U is in S, as the image of the object [x | ⊤]
in CT6=

. Since U is decidable, so is f ∗(U). Therefore, since f ∗(U) is compact,
it is coherent. Now, as an inverse image functor, f ∗ is coherent and since
Sh(G) is a coherent topos, this means that for any A in S we have that
f ∗(A) is coherent, and therefore, in particular, compact. Finally, for any
compact object E in Sh(S) there is a cover e : A1 + . . . + An

// // E, where
A1, . . . , An are objects of S, and f ∗ takes this to a cover e : f ∗(A1) + . . . +
f ∗(An) // //f ∗(E), whence f ∗(E) is compact. Hence f ∗ takes compact objects
to compact objects, so f : G // S is in CohGpd. ⊣

The formal sheaves on a coherent groupoid can be characterized directly:

Lemma 2.3.13 An equivariant sheaf A = 〈A→ G0, α〉 on a coherent group-
oid G is formal just in case:

(i) A is compact decidable;

(ii) each fibre Ax for x ∈ G0 is an element of Setsκ;

(iii) for each set a ∈ Setsκ, the set 〈〈A, a〉〉 = {x ∈ G0 a ∈ Ax} ⊆ G0

is open, and the function sA,a : {x ∈ G0 a ∈ Ax} → A defined by
s(x) = a is a continuous section; and

(iv) for any a, b ∈ Setsκ, the set

〈〈A, a 7→ b〉〉 = {g : x→ y a ∈ Ax ∧ α(g, a) = b} ⊆ G1

is open.

Proof Let a morphism f : G // S in CohGpd be given, inducing a geo-
metric morphism f : Sh(G) // Sh(S) such that the inverse image preserves
compact objects. Then f ∗(U) is a compact decidable object with fibers in
Setsκ; the set 〈〈f ∗(U), a〉〉 = f−1

0 (〈〈a〉〉) ⊆ G0 is open; the continuous section
〈〈a〉〉 → U defined by M 7→ a pulls back along f0 to yield the required section;
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and the set 〈〈f ∗(U), a 7→ b〉〉 = f−1
1 (〈〈a 7→ b〉〉) ⊆ G1 is open. So f ∗(U) satisfies

conditions (i)–(iv).
Conversely, suppose that A = 〈A→ G0, α〉 satisfies conditions (i)–(iv).

Define the function f0 : G0 → S0 by x 7→ Ax, which is possible since Ax ∈
Setsκ by (ii). Then for a subbasic open set 〈〈a〉〉 ⊆ S0, we have

f−1
0 (〈〈a〉〉) = {x ∈ G0 a ∈ Ax} = 〈〈A, a〉〉

so f0 is continuous by (iii). Next, define f1 : G1 → S1 by

g : x→ y 7→ α(g,−) : Ax → Ay.

Then for a subbasic open 〈〈a 7→ b〉〉 ⊆ S1, we have

f−1
1 (〈〈a 7→ b〉〉) =

{

g ∈ G1 a ∈ As(g) ∧ α(g, a) = b
}

= 〈〈A, a 7→ b〉〉

so f1 is continuous by (iv). It remains to show that f ∗(U) = A. First, we
must verify that what is a pullback of sets:

G0 S0
f0

//

A

G0

��

A U// U

S0

��

is also a pullback of spaces. Let a ∈ A with V ⊆ A an open neighborhood.
We must find an open box around a contained in V . Intersect V with the
image of the section sA,a(〈〈A, a〉〉) to obtain an open set V ′ containing a and
homeomorphic to a subset W ⊆ G0. Then we can write V ′ as the box
W ×S0 〈〈[x, y | x = y], a〉〉 for the open set 〈〈[x, y | x = y], a〉〉 ⊆ U . Conversely,

let a basic open 〈〈[x, ~y | φ],~b〉〉 ⊆ U be given, for φ a formula of T6=. We must
show that it pulls back to an open subset of A. Let a ∈ Az be given and
assume that a (in the fiber over f0(z)) is in 〈〈[x, ~y | φ],~b〉〉. Now, since A is
decidable, there is a canonical interpretation of [x, ~y | φ] in Sh(G) obtained by
interpreting A as the single sort, and using the canonical coherent structure
of Sh(G). Thereby, we obtain an object

B := [[x, ~y | φ]]A � � // A× . . .×A
π1 // A

in with an underlying open subset B ⊆ A ×G0 . . . ×G0 A
π1 // A. One can

verify that B satisfies conditions (i)–(iv), se the proof of Lemma 2.3.15 below.
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Let W ⊆ B be the image of the continuous section sB,a,~b(〈〈B, a,
~b〉〉). Then the

pullback of 〈〈[x, ~y | φ],~b〉〉 along f0 is the image of W along the projection
π1 : A× . . .×A // A, which is an open subset of A. ⊣

The logically definable objects in the category of equivariant sheaves on the
groupoid of models and isomorphisms of a theory are readily seen to be a
(guiding) example of objects satisfying conditions (i)–(iv) of Lemma 2.3.13,
so we have:

Lemma 2.3.14 For any CT in dCohκ, the canonical interpretation functor
M† of 1.6.11 factors through Form(GT),

M† : CT // Form(GT)
� � // Sh(GT)

Next, we show that the formal sheaves on a coherent groupoid form a decid-
able coherent category.

Lemma 2.3.15 Let G be an object of CohGpd. Then Form(G) � � // Sh(G)
is a (positive) decidable coherent category.

Proof We verify that Form(G) is closed under the relevant operations us-
ing the characterization of Lemma 2.3.13. By Remark 2.3.2, it suffices to
show that conditions (ii)–(iv) of Lemma 2.3.13 are closed under finite limits,
images, and finite coproducts.

Initial object. Immediate.

Terminal object. The canonical terminal object, write 〈X ′ → X,α〉,
is such that the fiber over any x ∈ G0 is {⋆} ∈ Setsκ, whence the set
{x ∈ G0 a ∈ X ′

x} is X if a = ⋆ and empty otherwise. Similarly, the set
{g : x→ y a ∈ X ′

x ∧ α(g, a) = b} ⊆ G1 is G1 if a = ⋆ = b and empty
otherwise.

Finite products. We do the binary product A × B. The fiber over
x ∈ G0 is the product Ax × Bx, and so it is in Setsκ. Let a set 〈〈A × B, c〉〉
be given. We may assume that c is a pair, c = 〈a, b〉, or 〈〈A × B, c〉〉 is empty.
Then,

〈〈A × B, 〈a, b〉〉〉 = 〈〈A, a〉〉 ∩ 〈〈B, b〉〉

and the function sA×B,〈a,b〉 : 〈〈A × B, 〈a, b〉〉〉 → A×G0 B is continuous by the
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following commutative diagram:

〈〈A, a〉〉

A

sA,a

��

〈〈B, b〉〉

B

sB,b

��

〈〈A, a〉〉 〈〈A × B, 〈a, b〉〉〉oo ⊇
? _〈〈A × B, 〈a, b〉〉〉

A×G0 B

sA×B,〈a,b〉

��

〈〈A × B, 〈a, b〉〉〉 〈〈B, b〉〉� � ⊆ //

A A×G0 Boo π1
A×G0 B B

π2 //

Similarly, the set 〈〈A × B, c 7→ d〉〉 is either empty or of the form

〈〈A × B, 〈a, b〉 7→ 〈a′, b′〉〉〉

in which case

〈〈A × B, 〈a, b〉 7→ 〈a′, b′〉〉〉 = 〈〈A, a 7→ a′〉〉 ∩ 〈〈B, b 7→ b′〉〉.

Equalizers and Images. Let A be a subobject of B = 〈π1 : B → G0, β〉,
with A ⊆ B, and B satisfying the properties (ii)–(iv) of Lemma 2.3.13. Then
given a set 〈〈A, a〉〉,

〈〈A, a〉〉 = π1(A ∩ sB,a(〈〈B, a〉〉))

and we obtain sA,a as the restriction

〈〈B, a〉〉 G0
� � //

B

〈〈B, a〉〉

99

sB,a

sssssssssssssssss
B

G0

π1

��
〈〈A, a〉〉 〈〈B, a〉〉� � //

A

〈〈A, a〉〉

99

sA,a

ssssssssssssssssss
A

〈〈B, a〉〉

A B� � //

Similarly, given a set 〈〈A, a 7→ b〉〉 ⊆ G1,

〈〈A, a 7→ b〉〉 = 〈〈B, a 7→ b〉〉 ∩ s−1(〈〈A, a〉〉)

where s is the source map s : G1 → G0. We conclude that Form (G) is closed
under both equalizers and images.

Binary coproducts. Write binary coproducts in Setsκ as X + Y =
{〈0, x〉, 〈1, y〉 x ∈ X ∧ y ∈ Y }. Then if 〈〈A+ B, c〉〉 is non-empty, c is a pair
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c = 〈0, a〉 or c = 〈1, b〉. If the former, then 〈〈A+ B, 〈0, a〉〉〉 = 〈〈A, a〉〉, and the
section is given by composition:

〈〈A+ B, 〈0, a〉〉〉 = 〈〈A, a〉〉 G0
� � //

A

〈〈A+ B, 〈0, a〉〉〉 = 〈〈A, a〉〉

OO

sA,a

A A+B
p1 // A+B

G0

��

The latter case is similar, and so is verifying that the set 〈〈A+ B, c 7→ d〉〉 is
open. ⊣

Lemma 2.3.16 Let G be a coherent groupoid. Then Form(G) � � // Sh(G) has
a saturated set of κ-small models.

Proof This follows from the fact that the coherent inclusion

Form(G) � � // Sh(G)

reflects covers, since every formal sheaf is compact, and any point, given by
an element x ∈ G0,

Sets // Sets/G0
// // Sh(G0) // // Sh(G) // // Sh(Form(G))

yields a coherent functor Form(G) // Setsκ
� � // Sets, since the value of the

point at an equivariant sheaf is the fiber over x, and formal sheaves have
fibers in Setsκ. ⊣

Lemma 2.3.17 If f : G //H is a morphism of CohGpd, then the induced
coherent inverse image functor f ∗ : Sh(H) // Sh(G) restricts to a coherent
functor Form(f) = F : Form(H) // Form(G),

Sh(H) Sh(G)
f∗

//

Form(H)

Sh(H)

� _

��

Form(H) Form(G)
F // Form(G)

Sh(G)

� _

��

Proof If A is an object of Form(H) classified by h : H // S, then f ∗(A) =
F (A) is classified by h ◦ f : G // S in CohGpd. ⊣
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This completes the construction of the ‘syntactical’ functor:

Definition 2.3.18 The functor

Form : CohGpd // dCohop
κ

is defined by sending a groupoid G to the decidable coherent category

Form(G) � � // Sh(G)

of formal sheaves, and a morphism f : G //H to the restricted inverse image
functor f ∗ : Form(H) // Form(G).

2.4 The Syntax-Semantics Adjunction

We now show that the syntactical functor is left adjoint to the semantical
functor:

dCohκ
op CohGpd

Mod --
dCohκ

op CohGpdmm
Form

⊤

First, we identify a counit candidate. Given D in dCohκ, we have the
‘evaluation’ functor

YD : D // Sh(GD)

which sends an object D to the ‘definable’ equivariant sheaf which is such
that the fiber of Y(D) over F ∈ XD is the set F (D), or more informatively,
such that the diagram,

CTD
Sh(GTD

)
M†

//

D

CTD

ηD
��

D Sh(GD)
YD // Sh(GD)

Sh(GTD
)

∼=
��

commutes, using the map ηD and isomorphism GD
∼= GTD

from Section 2.1.
YD factors through Form(GD), by Lemma 2.3.14, to yield a coherent functor

ǫD : D // Form(GD) = Form ◦Mod(D)

And if F : A // D is an arrow of dCohκ, the square

D Form ◦Mod(D)ǫD
//

A

D

F

��

A Form ◦Mod(A)
ǫA // Form ◦Mod(A)

Form ◦Mod(D)

Form ◦Mod(F )

��
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commutes.
Next, we consider the unit. Let H be a groupoid in CohGpd. We

construct a morphism

ηH : H // GForm(H) = Mod(Form(G)).

First, as previously noticed, each x ∈ H0 induces a coherent functor Mx :
Form(H) // Setsκ. This defines a function η0 : H0 → XForm(H). Similarly,
any a : x → y in H1 induces an invertible natural transformation fa : Mx →
My. This defines a function η1 : H1 → GForm(H), such that 〈η1, η0〉 is a
morphism of discrete groupoids. We argue that η0 and η1 are continuous.
Let a subbasic open U = (〈g1 : A → B1, . . . , gn : A → Bn〉, 〈a1, . . . , an〉) ⊆
XForm(H) be given, with gi : A = 〈A→ H0, α〉 // Bi = 〈Bi → H0, βi〉 an
arrow of Form(H) and ai ∈ Setsκ, for 1 ≤ i ≤ n. Form the canonical
product B1 × . . . × Bn in Sh(H), so as to get an arrow g = 〈g1, . . . , gn〉 :
A // B1 × . . . × Bn in Form(H). Denote by C the canonical image of g in
Sh(H) (and thus in Form(H)), such that the underlying set C (over H0) of
C is a subset of B1 ×H0 . . .×H0 Bn. Then

η−1
0 (U) = {x ∈ H0 ∃y ∈ Mx(A).Mx(gi)(y) = ai for 1 ≤ i ≤ n}

= {x ∈ H0 ∃y ∈ Ax. gi(y) = ai for 1 ≤ i ≤ n}

= {x ∈ H0 〈a1, . . . , an〉 ∈ Mx(C)}

= {x ∈ H0 〈a1, . . . , an〉 ∈ Cx}

which is an open subset of H0 by Lemma 2.3.13 since C is in Form(H). Thus
η0 is continuous. Next, consider a subbasic open of GForm(H) of the form
U = (A, a 7→ b) ⊆ GForm(H), for A = 〈A→ H0, α〉 in Form(H). Then

η−1
1 (U) = {g : x→ y a ∈ Mx(A) ∧ (fg)A(a) = b} ⊆ H1

= {g : x→ y a ∈ Ax ∧ α(g, a) = b} ⊆ H1

which is an open subset of H1, since A is in Form(H). Thus η1 is also
continuous, so that 〈η1, η0〉 is a morphism of continuous groupoids.

Lemma 2.4.1 The triangle

Form(H) Sh
(

GForm(H)

)

YForm(H)

//

Sh(H)

Form(H)

66

)
	
mmmmmmmmmmmmmmm

Sh(H)

Sh
(

GForm(H)

)

OO

η∗
Form(H) (8)
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commutes.

Proof LetA = 〈A→ H0, α〉 in Form(H) be given, and write EA → XForm(H)

for the underlying sheaf of YForm(H)(A). Write a : H → S and a′ : GForm(H) →
S, respectively, for the CohGpd morphisms classifying these objects. Then
the triangle

H

S

a

��?
??

??
??

??
??

??
?H GForm(H)

ηForm(H) // GForm(H)

S

a′

����
��

��
��

��
��

�

in Gpd can be seen to commute. Briefly, for x ∈ H0, we have a(x) = Ax =
Mx(A) = (EA)Mx

= (EA)η0(x) = a′(η0(x)) and similarly for elements of H1.⊣

It follows from Lemma 2.4.1 that the inverse image functor η∗Form(H) preserves
compact objects, and so ηForm(H) : H // GForm(H) is indeed a morphism of
CohGpd. It remains to verify that it is the component of a natural trans-
formation. Given a morphism f : G // H of CohGpd, we must verify that
the square

H Mod ◦Form(H)ηForm(H)

//

G

H

f

��

G Mod ◦Form(G)
ηForm(G) // Mod ◦Form(G)

Mod ◦Form(H)

Mod ◦Form(f)

��

commutes. Let x ∈ G0 be given. We chase it around the square. Applying
ηForm(G), we obtain the functor Mx : Form(G) //Sets which sends an object
A = 〈A→ G0, α〉 to Ax. Composing with Form(f) : Form(H) // Form(G),
we obtain the functor Form(H) // Sets which sends an object 〈B → H0, β〉
to the fiber over x of the pullback

G0 H0
f0

//

f ∗
0 (B)

G0

��

f ∗
0 (B) B// B

H0

��

which is the same as the fiber Bf0(x). And this is the same functor that
results from sending x to f0(x) and applying ηForm(H). For a : x → y in
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G1, a similar check establishes that η1 ◦ f1(a) : Mf0(x) → Mf0(y) equals
η1(a) ◦ Form(f) : Mx ◦ Form(f) → My ◦ Form(f). It remains to verify the
triangle identities.

Lemma 2.4.2 The triangle identities hold:

Form ◦Mod ◦Form(H) Form(H)oo
ǫForm(H)

Form(H)

Form ◦Mod ◦Form(H)

OO

Form(ηH)

Form(H)

Form(H)

dd

1Form(H)

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

=

Mod ◦Form◦Mod(D) Mod(D)
Mod(ǫD)

//

Mod(D)

Mod ◦Form◦Mod(D)

ηMod(D)

��

Mod(D)

Mod(D)

1Mod(D)

$$JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

=

Proof We begin with the first triangle, which we write:

Form(GForm(H)) Form(H)oo
ǫForm(H)

Form(H)

Form(GForm(H))

OO

Form(ηH)

Form(H)

Form(H)

bb

1Form(H)

EEE
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE
EE

This triangle commutes by the definition of ǫForm(H) and Lemma 2.4.1, as can
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be seen by the following diagram:

Sh(H) Sh
(

GForm(H)

)

oo
η∗
H

Form(H)

Sh(H)

� _

��

Form(H) Form(GForm(H))
ǫForm(H) // Form(GForm(H))

Sh
(

GForm(H)

)

� _

��

Form(H)

Sh
(

GForm(H)

)

YForm(H)

''OOOOOOOOOOOOOOOOOO

=

=

We pass to the second triangle, which can be written as:

GForm(GD) GD
Mod(ǫD)

//

GD

GForm(GD)

ηGD

��

GD

GD

1GD

""EE
EE

EE
EE

EE
EEE

EE
EE

EE
EE

EE
EE

E

Let N : D // Sets in XD be given. As an element in XD, it determines
a coherent functor MN : Form(GD) // Sets, the value of which at A =
〈A→ XD, α〉 is the fiber AN. Applying Mod(ǫD) is composing with the
functor ǫD : D // Form(GD), to yield the functor MN ◦ ǫD : D // Sets, the
value of which at an object B in D is the fiber over N of YD(B), which of
course is just N(B). For an invertible natural transformation f : M → N in
GD, the chase is entirely similar, and we conclude the the triangle commutes.⊣

Theorem 2.4.3 The contravariant functors Mod and Form are adjoint,

dCohκ
op CohGpd

Mod --
dCohκ

op CohGpdmm
Form

⊤

where Mod sends a decidable coherent category D to the semantic groupoid
HomdCoh(D,Setsκ) equipped with the coherent topology, and Form sends a
coherent groupoid G to the full subcategory Form(G) � � // Sh(G) of formal
sheaves, i.e. those classified by the morphisms in HomCohGpd(G, S).

Notice that if D is an object of dCohκ, then the counit component ǫD :
D // Form ◦Mod(D) is a Morita equivalence of categories, in the sense that
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it induces an equivalence Sh(D) ≃ Sh(Form ◦Mod(D)). In the case where D
is a pretopos, the counit is, moreover, also an equivalence of categories, since
any decidable compact object in Sh(D) is coherent and therefore isomorphic
to a representable in that case. Furthermore, for any D in dCohκ, we have
that the unit component ηGD

: GD
// GForm(GD) is a Morita equivalence of

topological groupoids, in the sense that it induces an equivalence Sh(GD) ≃
Sh

(

GForm(GD)

)

. We refer to the full image of Mod in Gpd as SemGpd, the
category of semantic groupoids.

Corollary 2.4.4 The adjunction of Theorem 2.4.3 restricts to an adjunction

dCohκ
op SemGpd

Mod --
dCohκ

op SemGpdmm
Form

⊤

with the property that the unit and counit components are Morita equivalences
of categories and topological groupoids respectively.

2.5 Stone Duality for Classical First-Order Logic

Returning to the classical first-order logical case, we can restrict the adjunc-
tion further to the full subcategory BCohκ

� � // dCohκ of Boolean coherent
categories. Unlike in the decidable coherent case, the pretopos completion
of a Boolean coherent category is again Boolean, so that BCohκ is closed
under pretopos completion. Since, as we mentioned in Section 1.1, com-
pleting a first-order theory so that its syntactic category is a pretopos in-
volves only a conservative extension of the theory and does not change the
category of models, it is natural to represent the classical first-order the-
ories by the subcategory of Boolean pretoposes (see e.g. [15], [16]). We
shall refer to the groupoids in the image of the semantic functor Mod re-
stricted to the full subcategory of Boolean pretoposes BPTopκ

� � // dCohκ,
as Stone groupoids. Thus StoneGpd � � //SemGpd is the full subcategory of
topological groupoids of models of theories in classical, first-order logic (the
morphisms are still those continuous homomorphisms that preserve compact
sheaves).

Corollary 2.5.1 The adjunction of Theorem 2.4.3 restricts to an adjunction

BPTopκ
op StoneGpd

Mod ..
BPTopκ

op StoneGpdmm
Form

⊤
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with the property that the unit and counit components are Morita equivalences
of topological groupoids and equivalences of pretoposes, respectively.

Moreover, given the obvious notion of ‘continuous natural transforma-
tion’ of topological groupoid homomorphisms, the unit components of the
foregoing adjunction can also be shown to be equivalences. Thus we have
our main result:

Theorem 2.5.2 The adjunction of Corollary 2.5.1 is a (bi-)equivalence,

BPTopκ
op ≃ StoneGpd (9)

establishing a duality between the category of (κ-small) Boolean pretoposes
and Stone topological groupoids.

Finally, a remark on the posetal case and classical Stone duality for
Boolean algebras. By a coherent space we mean a compact topological space
such that the compact open sets are closed under intersection and form a basis
for the topology. A coherent function between coherent spaces is a continu-
ous function such that the inverse image of a compact open is again compact.
Stone duality can be obtained as a restriction of a contravariant adjunction
between the category dLat of distributive lattices and homomorphisms and
the category CohSpace of coherent spaces and coherent functions

dLatop CohSpace
--

dLatop CohSpacell ⊤ (10)

where, as in Stone duality, the right adjoint is the ‘Spec’ functor obtained
by taking prime filters (or homming into the lattice 2), and the left adjoint
is obtained by taking the distributive lattice of compact opens (or homming
into the Sierpiński space, i.e. the set 2 with one open point). This adjunc-
tion restricts to a contravariant equivalence between distributive lattices and
sober coherent spaces, and further to the full subcategory of Boolean alge-
bras, BA →֒ dLat, and the full subcategory of Stone spaces and continuous
functions, Stone →֒ CohSpace, so as to give the contravariant equivalence
of classical Stone duality:

BAop Stone
,,

BAop Stonell ≃ (11)

The adjunction (10) can be obtained from the adjunction of Theorem
2.4.3 as follows. A poset is a distributive lattice if and only if it is a coherent
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category (necessarily decidable), and as we remarked after Definition 2.1.1,
such a poset always has enough κ-small models, so that

dLat � � // dCohκ

is the subcategory of posetal objects. On the other side, any space can be
considered as a trivial topological groupoid, with only identity arrows, and
it is straightforward to verify that this yields a full embedding

CohSpace � � // CohGpd.

Since a coherent functor from a distributive lattice L into Sets sends the
top object in L to the terminal object 1 in Sets, and everything else to a
subobject of 1, restricting the semantic functor Mod to dLat gives us the
right adjoint of (10). In the other direction, applying the syntactic functor
Form to the subcategory CohSpace � � // CohGpd does not immediately
give us a functor into dLat, simply because the formal sheaves do not form
a poset (for instance, by Lemma 2.3.13, the formal sheaves on a coherent
groupoid include all finite coproducts of 1). However, if we compose with
the functor Sub(1) : dCohκ

// dLat which sends a coherent category C to
its distributive lattice SubC(1) of subobjects of 1, then it is straightforward
to verify that we have a restricted adjunction

dLatop CohSpace
Mod --

dLatop CohSpacell
Form1

⊤

where Form1(C) = SubForm(C)(1). Moreover, this is easily seen to be precisely
the adjunction (10), of which classical Stone duality for Boolean algebras is
a special case. Indeed, again up to the reflection into Sub(1), the duality
(11) is precisely the poset case of the duality (9) between (κ-small) Boolean
pretoposes and Stone topological groupoids.
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[3] J. Adámek, F. W. Lawvere, and J. Rosický, “On the duality between
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