
Natural models of homotopy type theory∗

Steve Awodey

December 28, 2016

Abstract

The notion of a natural model of type theory is defined in terms of that
of a representable natural transfomation of presheaves. It is shown
that such models agree exactly with the concept of a category with
families in the sense of Dybjer, which can be regarded as an algebraic
formulation of type theory. We determine conditions for such models
to satisfy the inference rules for dependent sums Σ, dependent prod-
ucts Π, and intensional identity types Id, as used in homotopy type
theory. It is then shown that a category admits such a model if it has
a class of maps that behave like the abstract fibrations in axiomatic
homotopy theory: they should be stable under pullback, closed un-
der composition and relative products, and there should be weakly
orthogonal factorizations into the class. It follows that many familiar
settings for homotopy theory also admit natural models of the basic
system of homotopy type theory.

Homotopy type theory is an interpretation of constructive Martin-Löf type
theory [20] into abstract homotopy theory. It allows type theory to be used
as a formal calculus for reasoning about homotopy theory, as well as more
general mathematics such as can be formulated in category theory or set
theory under this new interpretation. Because constructive type theory has
been implemented in computational proof assistants like Coq, homotopy
type theory also facilitates the use of such computational tools in homotopy
theory, category theory, set theory, and other fields of mathematics. This is
just one aspect of the Univalent Foundations Program, which has recently
been the object of quite intense investigation [24].

∗Penultimate version; published as [2]

1

One thing missing from homotopy type theory, however, has been a no-
tion of model that is both faithful to the precise formalism of type theory
and yet general and flexible enough to be a practical tool for semantic in-
vestigations. Past attempts have involved either highly structured categories
corresponding closely to the syntax of type theory, such as the categories
with families of Dybjer [7], which are, however, somewhat impractical to
work with semantically; or they use the more more natural and flexible set-
ting of homotopical algebra, as in [4, 6], but they must then be equipped (if
possible) with structures satisfying unnatural coherence conditions, in order
to model the type theory precisely.

Here we present a new approach which attemps to combine the advantages
of these two strategies. It is based on the observation that a category with
families is the same thing as a representable natural transformation in the
sense of Grothendieck. Ideas from Voevodsky [18] and Lumsdaine-Warren
[19] are also used in an essential way. In the first section, the basic concept
of a natural model is defined and shown to be adequate. The second section
determines conditions for when the basic type constructors Σ,Π, Id are also
modelled. This draws heavily on the methodology of [18]. Finally, the third
section investigates the question of when a category admits such a model,
concluding with the main result which provides a general, sufficient condition.
This is closely related to the main result of [19], which uses similar reasoning.

1 Natural models

The following concept is usually attributed to Grothendieck and is widely
used in the theory of stacks (cf. Def. 4.8.2 [21, Tag 0023]).

Definition 1. Let C be a small category. A natural transformation

f : Y //X

of presheaves on C is called representable if all of its fibers are representable
objects, in the following sense: for every C ∈ C and x ∈ X(C), there is a
D ∈ C, a p : D // C, and a y ∈ Y (D) such that the following square is a
pullback,

yD

yp

��

y
// Y

f

��

yC x
// X.

(1)

2

As here, we shall freely use the Yoneda lemma to identify elements x ∈ X(C)
with natural maps x : yC //X.

Our first observation is that a representable natural transformation is the
same thing as a category with families in the sense of Dybjer [7]. Indeed,
let us write the objects of C as Γ,∆, . . . and the arrows as σ : ∆ // Γ, . . . ,
thinking of C as a “category of contexts”. Let p : Ũ //U be a representable
map of presheaves, and write its elements as:

A ∈ U(Γ) ⇔ Γ ` A : type

a ∈ Ũ(Γ) ⇔ Γ ` a : A,

where A = p ◦ a, as indicated in:

Ũ
p

��

yΓ

a

??

A
// U .

Thus we regard U as the presheaf of types, with U(Γ) the set of all types

in context Γ, and Ũ as the presheaf of terms, with Ũ(Γ) the set of all terms

in context Γ, while the component pΓ : Ũ(Γ) // U(Γ) is the typing of the
terms in context Γ (cf. [14] for an early statement of this point of view).

Observe that naturality of p : Ũ // U means that for any “substitution”
σ : ∆ // Γ, we have an action on types and terms:

Γ ` A : type ⇒ ∆ ` Aσ : type

Γ ` a : A ⇒ ∆ ` aσ : Aσ .

While, by functoriality, given any further τ : ∆′ //∆, we have

(Aσ)τ = A(σ ◦ τ) (aσ)τ = a(σ ◦ τ),

as well as
A1 = A a1 = a

for the identity substitution 1 : Γ // Γ.
Finally, the representability of p : Ũ //U is exactly the operation of con-

text extension: given any Γ ` A : type, by Yoneda we have the corresponding

3

map A : Γ // U , and we let pA : Γ�A // Γ be the resulting fiber of p as in
(1). We therefore have a pullback square:

Γ�A

pA

��

qA // Ũ
p

��

Γ
A
// U ,

(2)

where the map qA : Γ�A // Ũ determines a term

Γ�A ` qA : ApA.

In (2) and henceforth, we omit the y for the Yoneda embedding, letting the
Greek letters serve to distinguish representable presheaves.

The fact that (2) is a pullback means that given any σ : ∆ // Γ and
∆ ` a : Aσ, there is a map

(σ, a) : ∆ // Γ�A,

and this operation satisfies the equations

pA ◦ (σ, a) = σ

qA(σ, a) = a,

as indicated in the following diagram.

∆

σ

##

(σ,a)

!!

a

��

Γ�A

pA
��

qA
// Ũ
p

��

Γ
A
// U

Moreover, by the uniqueness of (σ, a), for any τ : ∆′ //∆, we also have:

(σ, a) ◦ τ = (σ ◦ τ, aτ)

(pA, qA) = 1.

Comparing the foregoing with the definition of a category with families
in [7], we have shown:1

1Since completing this paper, the author has learned that the following fact was also
observed independently by M. Fiore, see [9].

4

Proposition 2. Let p : Ũ // U be a natural transformation of presheaves
on a small category C with a terminal object. Then p is representable in the
sense of Definition 1 just in case (C, p) is a category with families.

The notion of a category with families is a variable-free way of present-
ing dependent type theory, including contexts and substitutions, types and
terms in context, and context extension. Accordingly, we may think of a rep-
resentable map of presheaves on a category C as a “type theory over C” —
with C serving as the category of contexts and substitutions (the requirement
that C should have a terminal object, representing the “empty context”, is
purely conventional). As we shall see below, such a map of presheaves is es-
sentially determined by a class of maps in C that is closed under all pullbacks;
these maps will be the types in context.

Definition 3. By a natural model of type theory on a small category C we
mean a representable map of presheaves,

p : Ũ // U .

Corollary 4. Natural models of type theory are evidently closed under com-
position, coproducts, and pullbacks along arbitrary maps U ′ // U .

1.1 Algebraic character

As for many concepts, the notion of representability of a natural transforma-
tion f : A //B may be regarded in either of two ways: as a property of the
map: for each C ∈ C and x ∈ X(C), one can find a D ∈ C, a p : D // C,
and a y ∈ Y (D) such that . . . ; or as a structure on the map: there is an
explicitly given function that chooses the (D ∈ C, p : D // C, y ∈ Y (D))
for each (C ∈ C, x ∈ X(C)) in such a way that Since the values of the
function are uniquely determined up to specific isomorphisms, and most of
the required constructions on those values respect isomorphisms, it generally
makes no difference which notion is assumed, and so the more flexible “prop-
erty” version is often more convenient. However, there are some steps below
where the structured version is required, and for that reason we shall hence-
forth assume that a representable natural transformation includes a specific
representability structure, consisting of a “canonical” pullback square of the
form (1) for every yC //X (no coherence). We will not dwell on the choice
of structure, however, and will recall this assumption where it is required.

5

The situation is entirely analogous to that of a “category with binary
products”; and indeed, as in that case, one can understand the “property
versus structure” difference as the condition that a cetain functor should
have an adjoint versus the selection of a specific adjoint (among all isomor-
phic options). The latter approach has the advantage of making explicit an
algebraic structure that is perhaps not evident in the former. Indeed, as has
recently been emphasized (e.g. in [5]), the notion of a category with families
is essentially algebraic, consisting of the four sorts: contexts, substitutions,
types, terms ; operations defined on the sorts, including in particular context
extension; and equations between terms built from the operations. The same
is, of course, true of the equivalent concept of a natural model of type theory,
in the form of a representable natural transformation f : A // B over a
category C, as we now briefly indicate.

Regarded as a many-sorted algebraic theory, a natural model consists of
four basic sorts

C0, C1, A, B

along with the following operations and equations:

category: the usual domain, codomain, identity and composition arrows for
the index category:

C1 ×C0 C1
◦ // C1

dom
//

cod //

C0idoo

together with the familiar equations for a category.

presheaf: the indexing and action operations for the presheaves:

C1 ×C0 A
α // A

pA
��

C0

C1 ×C0 B
β
// B

pB
��

C0

together with the equations making α a (contravariant) action of C1

on A:

pA(α(u, a)) = dom(u),

α(u ◦ v, a) = α(v, α(u, a)),

α(1pA(a), a) = a,

6

and similarly for β.

natural transformation: an operation

f : A //B

satisfying the naturality equations:

pB ◦ f = pA, f ◦ α = β ◦ (C1 ×C0 f).

representable: note that a natural transformation f : A // B is repre-
sentable just if the associated functor on the categories of elements,∫

C f :
∫
CA

//
∫
CB

has a right adjoint f ∗ :
∫
CB

//
∫
CA (cf. [3], § 8), which is an algebraic

condition.

In more detail, we requiring the following additional structure:

• an operation
(f ∗)0 : B // A

taking the objects of
∫
CB to those of

∫
CA (not necessarily pre-

serving the indexing over C0),

• an operation on the arrows in the categories of elements:

(f ∗)1 : C1 ×C0 B // C1 ×C0 A

respecting domains and codomains,

dom(π1((f ∗)1(u, b))) = (f ∗)0(dom(u)),

pA(π2((f ∗)1(u, b))) = (f ∗)0(cod(u)),

and satisfying the functoriality equations,

(f ∗)1((u, b) ◦ (u′, b′)) = (f ∗)1(u, b) ◦ (f ∗)1(u′, b′),

(f ∗)1(1, b) = (1, b).

7

• two further operations

η : A // C1 ×C0 A

ε : B // C1 ×C0 B

satisfying the standard equations for natural transformations of
the form η : 1 // f ∗ ◦ f and ε : f ◦ f ∗ // 1.

• the familiar triangle identities for an adjunction.

The remaining details are left to the reader.

2 Modelling the type constructors

When does a natural model of type theory also model the various type con-
structors, such as (dependent) product Π, sum Σ, and identity types Id? As

the notation p : Ũ // U suggests, the notion of a natural model is similar
to Voevodsky’s notion of a universe [18], and we shall modify the approach
taken there in order to determine conditions ensuring that the usual type-
forming operations are modeled in our setting. (Related ideas were used
already in [10, 22].)

We require the following preliminary observations regarding polynomial
functors, for more on which see [12].

Given a map f : B //A in a locally cartesian closed category E , there is
an associated polynomial endofunctor Pf : E // E , defined for every object
X ∈ E by

Pf (X) =
∑
a:A

XBa (3)

where, as usual, we write Ba = f−1(a) for the fiber of f at a : A, using the
internal language of E as explained in [12]. Formally, this functor is defined
from the LCCC structure on E as a composite:

Pf (X) =
∑
A

∏
f

B∗(X)

8

where:

B∗ : E // E/B is pullback along B // 1,∏
f

: E/B // E/A is right adjoint to pullback along f : B // A,∑
A

: E/A // E is composition along A // 1.

The following lemma can be found, in essentially the same form, in [8, 15].

Lemma 5. There is a natural bijection between maps g : Y //
∑

a:AX
Ba

and pairs of maps
(
g1 : Y // A, g2 : Y ×A B // X

)
as indicated in the

following diagram.

X Y ×A B
g2
oo

��

// B

f
��

Y g1
// A

(4)

Proof. Given

g : Y //
∑

a:AX
Ba =

∑
A

∏
f B
∗(X)

compose with the projection π1 :
∑

A

∏
f B
∗(X) // A to get g1 = π1 ◦ g :

Y // A, making g a map over A,

Y
g
//

g1
&&

∑
A

∏
f B
∗(X)

π1

��

A.

As an object over A, the map π1 is∏
f

B∗(X) =
∏
f

f ∗A∗(X) = (A∗(X))f .

We can therefore take the exponential transpose of g to get another map over
A of the form:

Y ×A B
g̃
//

g1×f
%%

A∗(X)

��

A.

9

Composing g̃ with the second projection A∗(X) = A × X // X gives g2 :
Y ×A B //X as indicated in

Y ×A B
g̃
//

g1×f
&&

g2

&&
A×X

��

// X

A.

(5)

This assignment of (g1, g2) to g is clearly reversible and natural in Y .

Since the isomorphism of lemma 5 is natural in Y , it is convenient to
consider the generic case, where Y =

∑
a:AX

Ba and g is the identity. In that
case, we have a diagram of the form,

X

G

u2

OO

��

// B

f

��∑
a:AX

Ba
u1
// A

where u1 is the canonical projection π1 :
∑

a:AX
Ba // A, and the “generic

pulled-back object” G can be described over A as XBa ×A Ba. The map
u2 : G //X is then evaluation over A, composed with the second projection
as in (5).

Now given any g : Y //
∑

a:AX
Ba , the associated maps g1 : Y //A and

g2 : Y ×A B // X are given by pullback and composition, as indicated in
the following diagram.

X

Y ×A B //

g2

77

��

G

u2

OO

��

// B

f

��

Y
g

//

g1

77

∑
a:AX

Ba u1 // A

(6)

10

Now consider the case of the polynomial functor P = Pp of a natural

model p : Ũ // U , with the form

P (X) =
∑
A :U

XA, (7)

where we write simply A = ŨA for the fiber of p over A : U . This is justified
by considering the pullback

1�A

��

// Ũ
p

��

1
A
// U ,

(8)

as the case of (2) where Γ = 1 is terminal, and therefore 1�A = A is just an
object of C, i.e. a “closed type”.

Applying Lemma 5 to (7) in the case f = p and X = U and Y = Γ
representable, we obtain a natural, bijective correspondence:

(A,B) : Γ //
∑
A :U

UA

=================

U Γ�ABoo

��

// Ũ
p

��

Γ
A
// U

========================
Γ ` A : type, Γ�A ` B : type

(9)

Thus just as U classifies types in context Γ ` A : type, we can say that
P (U) =

∑
A :U UA classifies types in an extended context Γ�A ` B : type.

For the record:

Proposition 6. The presheaf P (U) =
∑

A :U UA classifies types in context
A ` B : type, in the sense that there is a natural isomorphism between maps
Γ //

∑
A :U UA and pairs Γ ` A : type and Γ�A ` B : type, as displayed in

11

the following diagram.

U

Γ�A //

B

99

��

·

OO

��

// Ũ
p

��

Γ //

A

88

∑
A :U UA // U

(10)

Proof. This is just diagram (6) specialized to the present case.

Remark 7. Throughout this section, we are using the same methodology
as in [18](section 1.4), pioneered by Hofmann in [13](section 4), to reduce
certain general type constructions to generic cases on a universe (cf. also Fu
[10]).

2.1 Products

Proposition 8. Let P (X) =
∑

A :U X
A be the polynomial functor associated

to a natural model p : Ũ //U . Then the type-theoretic rules for (extensional)
dependent products are modelled by maps of the form

λ : P (Ũ) // Ũ (11)

Π : P (U) // U (12)

making the following diagram a pullback.

P (Ũ)

P (p)

��

λ // Ũ
p

��

P (U)
Π
// U

(13)

Proof. Replacing P by its definition, we obtain a diagram of the form:∑
A :U ŨA

��

λ // Ũ
p

��∑
A :U UA Π

// U .

(14)

12

Using proposition 6, which states that
∑

A :U UA classifies pairs Γ ` A : type
and Γ�A ` B : type, the operation Π :

∑
A :U UA // U is seen to be the

type-theoretic formation rule,

Γ ` A : type Γ�A ` B : type

Γ `
∏
A

B : type. (Π-form)

Now just as P (U) =
∑

A:U UA classifies pairs of the form

Γ ` A : type, Γ�A ` B : type,

so P (Ũ) =
∑

A :U ŨA classifies pairs of the form

Γ ` A : type, Γ�A ` b : B.

This follows from lemma 5 just as did proposition 6, but replacing the
presheaf of types U by the presheaf of terms Ũ .

Thus the operation λ :
∑

A :U ŨA // Ũ models the type-theoretic intro-
duction rule,

Γ ` A : type Γ�A ` b : B

Γ ` λAb :
∏
A

B. (Π-intro)

Consider the elimination rule:

Γ ` f :
∏
A

B Γ ` a : A

Γ ` f(a) : B[a]

(Π-elim)

and the associated computation rule (β):

Γ�A ` b : B Γ ` a : A

Γ ` (λAb)(a) = b[a] : B[a] .
(Π-comp β)

The notation B[a] and b[a] is interpreted as follows: given Γ ` a : A, we have

Ũ
p

��

Γ

a

??

A
// U ,

13

and so by taking a pullback, we get a substitution (1, a) : Γ // Γ�A into the
context extension Γ�A:

Γ

1

##

(1,a)

!!

a

��

Γ�A

��

// Ũ
p

��

Γ
A
// U .

Now Γ�A ` B : type and Γ�A ` b : B are of the form

Ũ
p

��

Γ�A

b

==

B
// U ,

so we can set

B[a] = B ◦ (1, a)

b[a] = b ◦ (1, a),

as indicated in

Ũ
p

��

Γ

b[a] ,,

(1,a)
//

B[a]

::
Γ�A

b

==

B // U ,

to get the terms

Γ ` B[a] : type

Γ ` b[a] : B[a].

Now suppose that (14) is a pullback. We require a term Γ ` f(a) : B[a],
assuming we have the premises Γ ` f :

∏
AB and Γ ` a : A. The first

14

premise means there are maps (A,B) and f as indicated in

Γ

(A,B)

""

(A,f̃)
##

f

##∑
A :U ŨA

P (p)

��

λ
// Ũ
p

��∑
A :U UA Π

// U .

(15)

Since the square is a pullback, there is a map (A, f̃) as indicated, and by the

classifying property of
∑

A :U ŨA, it corresponds uniquely to a term Γ�A `
f̃ : B,

Ũ
p

��

Γ�A

f̃
==

B
// U .

Now set:
f(a) = f̃ [a] = f̃ ◦ (1, a),

so that indeed Γ ` f(a) : B[a], as required.
For the computation rule (β), suppose Γ�A ` b : B. Then Γ ` λAb :

∏
AB

and diagram (15) becomes

Γ

(A,B)

""

(A,λ̃Ab)
##

λAb

##∑
A :U ŨA

P (p)

��

λ
// Ũ
p

��∑
A :U UA Π

// U ,

(16)

for some Γ�A ` λ̃Ab : B,

Ũ
p

��

Γ�A

λ̃Ab
==

B
// U .

15

But clearly Γ�A ` b : B also satisfies the condition λ ◦ (A, b) = λAb, so by
the universal property of the pullback, we have

Γ�A ` λ̃Ab = b : B .

But then
Γ ` (λAb)(a) = (λ̃Ab)[a] = b[a] : B[a] ,

as required.
An additional computation rule is required for extensional Π-types, and it

is also satified, namely the so-called η-rule. This rule is written with variables
in the form λx : A.f(x) = f :

∏
AB. In the variable-free style of categories

with families, this takes the form (cf. [7], 2.2):

Γ ` f :
∏
A

B

Γ ` λA(fpA(qA)) = f :
∏
A

B ,
(Π-comp η)

where, recall from (2), that for any Γ ` A : type the terms pA and qA are
defined by

Γ�A

pA
��

qA // Ũ
p

��

Γ
A
// U .

We have:

(fpA)(qA) = (̃fpA)[qA] = (̃fpA)(1, qA) = f̃pA(1, qA) = f̃ .

Therefore

λA(fpA(qA)) = λ ◦ (A, fpA(qA)) = λ ◦ (A, f̃) = f.

The straightforward verification of the converse implication is omitted.

Examining the proof (along with some further reasoning), we see that a
more precise formulation of Proposition 8 is possible:

Corollary 9. The type-theoretic formation and introduction rules for depen-
dent products are modelled by maps of the form

λ : P (Ũ) // Ũ (17)

Π : P (U) // U (18)

16

making the following square commute.

P (Ũ)

P (p)

��

λ // Ũ
p

��

P (U)
Π
// U

(19)

The square is a weak pullback, with a distinguished section of the canonical
map P (Ũ) // P (U)×U Ũ , if and only if the elimination and β computation
rules hold, and a pullback if and only if in addition the η computation rule
holds.

A similar strengthening is also possible for the following treatment of the
type constructors Σ and Id.

Remark 10. The type and term constructors Π, λ, and −1(−2) occurring
in the formation, introduction, and elimination rules are also required to
respect substitutions σ : ∆ // Γ. Specifically, consider e.g. the Π-formation
rule:

Γ ` A : type Γ�A ` B : type

Γ `
∏
A

B : type. (20)

Applying σ : ∆ // Γ to the premises gives a new instance of the rule

∆ ` Aσ : type ∆�Aσ ` Bσ : type

∆ `
∏
Aσ

Bσ : type.

On the other hand, one can instead apply σ : ∆ // Γ to the conclusion of
(20) to obtain

∆ ` (
∏
A

B)σ : type.

It is part of the definition of “modelling the product rules in a category with
families” that these two things should be the same,

∆ ` (
∏
A

B)σ =
∏
Aσ

Bσ : type

17

as elements of U(∆). But indeed, we have

(
∏
A

B)σ = (Π ◦ (A,B)) ◦ σ

= Π ◦ ((A,B) ◦ σ)

= Π ◦ (Aσ,Bσ)

=
∏
Aσ

Bσ

as indicated in the following diagram

∆

(Aσ,Bσ)))

σ // Γ

(A,B)

��

∏
Aσ Bσ

��∑
A :U UA Π

// U ,

where the equation
(A,B) ◦ σ = (Aσ,Bσ)

follows easily from proposition 6. The other two required equations,

(λAb)σ = λAσ(bσ)

(f(a))σ = (fσ)(aσ)

follow similarly.

Remark 11. Our specification differs from that in [18] only in the specifi-
cation of the objects on the left side of the square (19) via the polynomial
functor P (X) =

∑
A :U X

A, rather than by applying the Π constructor in
presheaves to the generic case, as in the “logical framework” approach.

2.2 Sums

For the sum constructor Σ we shall replace the family∑
A :U ŨA //

∑
A :U UA

in diagram (14) by a different one, corresponding to the different premises of
the Σ-introduction rule,

Γ ` A : type Γ�A ` B : type Γ ` a : A Γ ` b : B[a]

Γ ` 〈a, b〉 :
∑
A

B. (Σ-intro)

18

The base object
∑

A :U UA remains the same, corresponding to the fact that
the Σ-formation rule has the same form as the one for Π, namely,

Γ ` A : type Γ�A ` B : type

Γ `
∑
A

B : type. (Σ-form)

But the object over
∑

A :U UA must now classify data of the form(
Γ ` A : type, Γ�A ` B : type, Γ ` a : A, Γ ` b : B[a]

)
. (21)

This is accomplished with the following object (again constructed using the
internal language in presheaves):∑

(A :U)

∑
(B :UA)

∑
(a:A)

B(a) .

We have a projection π associated to the first two sums,∑
(A :U)

∑
(B :UA)

∑
(a:A) B(a)

∼= //

π
++

∑
(A,B) : (

∑
A :U UA)

∑
(a:A) B(a)

��∑
A :U UA ,

and factorizations of maps of the form (A,B) : Γ //
∑

A :U UA through π,∑
(A :U)

∑
(B :UA)

∑
(a:A) B(a)

π

��

Γ
(A,B)

//

66

∑
A :U UA

are then in natural, bijective correspondence with data of the form (21), as
can be proved similarly to proposition 6.

Proposition 12. Given a natural model p : Ũ //U , the type theoretic rules
for (extensional) dependent sum are modelled by maps

pair :
∑

(A :U)

∑
(B :UA)

∑
(a:A)

B(a) // Ũ (22)

Σ :
∑
A :U

UA // U (23)

19

making the following diagram a pullback.∑
(A :U)

∑
(B :UA)

∑
(a:A) B(a)

π

��

pair
// Ũ

p

��∑
A :U UA Σ

// U

(24)

Proof. The operations (22) and (23) clearly give the Σ-introduction and for-
mation rules, respectively. We shall prove the extensional elimination rule,
which has the two parts

Γ ` c :
∑
A

B

Γ ` π1(c) : A

Γ ` c :
∑
A

B

Γ ` π2(c) : B[π1(c)]

(Σ-elim)

with associated Σ-computation rules :

π1(〈a, b〉) = a (Σ-comp)

π2(〈a, b〉) = b

〈π1(c), π2(c)〉 = c .

To show this, assume that (24) is a pullback, let Γ be any object, and suppose

that we have (A,B) : Γ // (
∑

A :U UA) and c : Γ // Ũ such that Σ ◦ a =
p ◦ c : Γ // U , which means exactly that Γ ` c :

∑
AB. There is then a

unique map

c̃ : Γ //
∑

(A :U)

∑
(B :UA)

∑
(a:A)

B(a)

with π ◦ c̃ = (A,B) and pair ◦ c̃ = c. Since c̃ is known to be uniquely of the
form (21), we can write it as

c̃ =
(
A,B, π1(c), π2(c)

)
with π1(c) : A and π2(c) : B[π1(c)]. We then write

pair
(
A,B, π1(c), π2(c)

)
= 〈π1(c), π2(c)〉

accordingly. Thus indeed c = 〈π1(c), π2(c)〉, as required. To prove the other
two Σ-computation equations, it suffices by the uniqueness of elements clas-
sified to show that, for any a : A and b : B[a], we have

(A,B, a, b) =
(
A,B, π1(〈a, b〉), π2(〈a, b〉)

)
.

20

But this is now clear, since

pair(A,B, a, b) = 〈a, b〉
= 〈π1(〈a, b〉), π2(〈a, b〉)〉
= pair(A,B, π1(〈a, b〉), π2(〈a, b〉)).

Again, the converse is just as direct.

As in the case of products, the operations Σ, π1, π2, and pair can easily
be shown to respect substitution σ : ∆ // Γ.

Remark 13. The map∑
(A :U)

∑
(B :UA)

∑
(a:A) B(a)

π

��∑
A :U UA

(25)

from (24) can also be understood in terms of polynomial functors. As in (3),
let

Pp(X) =
∑
A :U

XA

be the polynomial functor Pp : Ĉ // Ĉ determined by the map p : Ũ // U .

The map π above also determines a polynomial functor Pπ : Ĉ // Ĉ, again
via (3). These are related by

Pπ = Pp ◦ Pp .

Thus in particular the composite Pp
2 = Pp ◦ Pp : Ĉ // Ĉ is also polynomial,

and π is the map representing it. Moreover, recall from [12] that pullback
diagrams of maps

B

f
��

// D

g
��

A // C

in Ĉ correspond to morphisms of the polynomial functors on Ĉ that they
determine, Pf ⇒ Pg (cartesian natural transformations). Thus the pullback
condition (24) says that there is a map of polynomial functors Pp ◦Pp ⇒ Pp .

21

It is easy to see that there is also a map 1C ⇒ Pp, determined by the terminal
object of C, with its unique term,

1

��

// Ũ
p

��

1 // U .

(26)

The further investigation of this structure is left to future work (cf. [16],
section 2, for a related development).

Remark 14. We mention only in passing the full internal subcategory U in
Ĉ determined by p : Ũ //U , which may be called the category of types. This
presheaf of categories has U0 = U as its object of objects, and as object of
arrows U1 the exponential

BA

��

U × U

in Ĉ/(U×U), where we have written A = p∗1(Ũ) and B = p∗2(Ũ) for the results

of pulling p : Ũ //U back along the two projections p1, p2 : U×U //U . This
internal category can be seen to be cartesian closed, in virtue of the rules
just given for 1, Σ, and Π. Indeed, the category of all types Γ ` A : type in a
given context Γ is always cartesian closed, and substitution ∆ //Γ preserves
the cartesian closed structure.

2.3 Extensional identity

The formation and introduction rues for identity types are as follows.

Γ ` A : type Γ ` a : A Γ ` b : A

Γ ` IdA(a, b) : type
(Id-form)

Γ ` a : A

Γ ` i(a) : IdA(a, a)
(Id-intro)

To interpret these, we use the “diagonal” map δ : Ũ // Ũ ×U Ũ of a
natural model p : Ũ // U , formed by first taking the pullback of p against

22

itself, and then factoring the identity morphism 1 : Ũ // Ũ as indicated in
the following diagram.

Ũ

1

##

δ
""

1

!!

Ũ ×U Ũ //

��

Ũ
p

��

Ũ p
// U

Proposition 15. For a natural model p : Ũ // U , the type theoretic rules
for extensional identity types are modelled by maps

i : Ũ // Ũ (27)

Id : Ũ ×U Ũ // U (28)

making the following diagram a pullback.

Ũ i //

δ
��

Ũ
p

��

Ũ ×U Ũ Id
// U

(29)

Proof. Since maps (A, a, b) : Γ // Ũ ×U Ũ correspond naturally to pairs of
terms Γ ` a, b : A of the same type Γ ` A : type, we can set

IdA(a, b) = Id ◦ (A, a, b).

Then Id : Ũ ×U Ũ // U validates the Id-formation rule.
Moreover, given any element a : Γ //Ũ , the commutativity of (29) means

exactly that Γ ` i ◦ a : IdA(a, a). So setting

i(a) = i ◦ a

also gives the introduction rule. The interpretation of the formation and

23

introduction rules is then displayed by the following diagram.

Ũ i //

δ
��

Ũ
p

��

Γ

a
00

(A,a,b)
//

A
''

Ũ ×U Ũ

��

Id
// U

U

(30)

Suppose (29) is a pullback. Then for any (A, a, b) : Γ // Ũ ×U Ũ and

c : Γ // Ũ such that Id(A, a, b) = p ◦ c, meaning that

Γ ` c : IdA(a, b),

there is a unique u : Γ // Ũ with δ ◦ u = (A, a, b) and i ◦ u = c. But this
means that

Γ ` a = b : A and Γ ` c = i(a) : IdA(a, a).

Thus we have the standard rules for extensional Identity types:

Γ ` c : IdA(a, b)

Γ ` a = b : A

Γ ` c : IdA(a, b)

Γ ` c = i(a) : IdA(a, a)
(ext-Id-elim)

The converse is, again, equally direct.

Summing up:

Theorem 16. A natural model of extensional Martin-Löf type theory with
product, sum, and identity types is given by a small category C equipped with
a representable map of presheaves,

p : Ũ // U ,

together with maps,
Π, λ, Σ, pair, Id, i,

as in propositions 8, 12, and 15, such that the squares (19), (24), and (29)
are pullbacks.

24

2.4 Intensional identity

Models of extensional type theory can be obtained easily from locally carte-
sian closed categories by various methods, including [13]. We are mainly
interested here in models of the intensional theory. The formation and intro-
duction rules remain the same as in the extensional case, but the elimination
rule takes a somewhat more complex form inspired by inductive definitions.
We shall confine attention here to the modifications required for modelling
intensional identity types, but an analogous treatment is also possible for
sum and product types, which we leave for future work.

As in (27) and(28), we assume maps

i : Ũ // Ũ
Id : Ũ ×U Ũ // U ,

but now we merely require the resulting square to commute:

Ũ i //

δ
��

Ũ
p

��

Ũ ×U Ũ Id
// U .

(31)

Once again we can set

IdA(a, b) = Id ◦ (A, a, b)

to validate the Id-formation rule:

Γ ` A : type Γ ` a : A Γ ` b : A

Γ ` IdA(a, b) : type .
(Id-form)

Also as before, given any element a : Γ // Ũ , we have Γ ` i ◦ a : IdA(a, a).
So setting

i(a) = i ◦ a

again gives the introduction rule:

Γ ` a : A

Γ ` i(a) : IdA(a, a) .
(Id-intro)

25

Now take the pullback of p along Id. We obtain an object I over Ũ ×U Ũ ,
together with a factorization ρ = (δ, i) of the diagonal δ:

Ũ

δ

!!

ρ

##

i

""

I //

��

Ũ
p

��

Ũ ×U Ũ Id
// U .

This structure serves as a “generic identity type”. Indeed, consider the follow-
ing diagram, in which the parallel vertical arrows are the evident projections,
and the indicated squares are constructed as pullbacks.

Ũ

p

��

Γ�Acoo

ρA

��

// Ũ

ρ

��

i

""

U Γ�A�A�IdAC
oo

j(c)

cc

��

// I

��

// Ũ

p

��

Γ�A�A

�� ��

q2A

// Ũ ×U Ũ Id
//

�� ��

U

Γ�A

pA

��

qA
// Ũ

p

��

Γ
A

// U

(32)

The interpretation of Γ�A�A ` IdA : type is the center horizontal composite

Id ◦ q2
A : Γ�A�A // U ,

and so the context extension Γ�A�A�IdA is the indicated pullback of I along
q2
A. Observe that

Γ�A�A = (Γ�A)×Γ (Γ�A),

26

and that the map
ρA : Γ�A // Γ�A�A�IdA (33)

factors the diagonal δA : Γ �A // Γ �A �A, because it is the pullback of
ρ : Ũ // I, which factors the diagonal Ũ // Ũ ×U Ũ . The map ρA interprets
the substitution a 7→ (a, a, i(a)) associated to the introduction term i.

We can now state the Id-elimination rule as follows:

Γ ` A : type Γ�A�A�IdA ` C : type Γ�A ` c : CρA

Γ�A�A�IdA ` j(c) : C
(Id-elim)

where the indicated substitution CρA is taken along the map ρA just defined
(33).

The associated computation rule then has the form:

Γ ` A : type Γ�A�A�IdA ` C : type Γ�A ` c : CρA

Γ�A ` j(c)ρA = c : CρA .
(Id-comp)

The elimination and computation rules are interpreted in the upper left
square of the diagram (32), where the dotted arrow j(c) indicates a choice
of diagonal filler interpreting the corresponding term. Since the rules are
supposed to hold for all types C and terms c, they are evidently equivalent
to the following condition.

For any Γ : type and Γ ` A : type, the substitution ρA has the
left-lifting property with respect to p : Ũ // U .

Here, recall that a map f : A // B is said to have the left lifting property
with respect to another g : C //D, written

f t g ,

if every commutative square from f to g has at least one diagonal filler,

A

f
��

// C

g
��

B //

>>

D.

Remark 17. Let us consider the requirement that the rules must respect
substitution, in the sense of remark 10, for the present case. The formation

27

and introduction rules clearly satisfy this condition, since they are modeled
by composition with particular maps. Indeed, consider the diagram (30),
which gives the interpretation of formation and introduction, and take any
substitution σ : ∆ // Γ.

Ũ i //

δ

��

Ũ

p

��

∆

aσ

00

σ
//

(Aσ,aσ,bσ)
..

Γ

a

77

(A,a,b)
//

A

''

Ũ ×U Ũ

��

Id
// U

U

(34)

As indicated in the diagram above, we then have the required conditions:

IdA(a, b)σ = (Id ◦ (A, a, b))σ = Id ◦ ((A, a, b)σ)

= Id ◦ (Aσ, aσ, bσ) = IdAσ(aσ, bσ)

i(a)σ = (i ◦ a)σ = i ◦ (a ◦ σ) = i ◦ (aσ) = i(aσ).

The corresponding condition for the elimination rule has the form:

j(c)σ = j(cσ).

More precisely, for any substitution σ : ∆ // Γ, we require that

j(c)σIdA = j(cσA), (35)

as indicated in the following diagram.

∆�Aσ

ρAσ

��

σA // Γ�A

ρA

��

c // Ũ

p

��

∆�Aσ �Aσ �IdAσ σIdA
//

j(cσA)

33

��

// Γ�A�A�IdA

j(c)

::

C
//

��

U

∆ σ
// Γ

28

In the cases of Π and Σ, the analogous condition followed from the uniqueness
of a certain map into a pullback. But in this case, there is no such uniqueness,
and one must instead require the existence of a family of maps j(c), in all
situations of the form

Γ�A

ρA
��

c // Ũ
p

��

Γ�A�A�IdA

j(c)

99

C
// U ,

(36)

and selected in such a way as to be compatible with all maps of the form
σ : ∆ // Γ, in the sense of (35).

We shall take a different approach in what follows: as in the cases of Π
and Σ, we shall specify a single map j in a suitable universal case, which
then gives rise to the individual maps j(c) in a uniform way, which is then
automatically natural in the sense of (35).

We require a preliminary definition. Let f : A // B and g : C // D
be maps in a cartesian closed category C, and consider the following square,
which always commutes.

CB

gB

��

Cf // CA

gA

��

DB

Df
// DA.

(37)

Taking the pullback of Df and gA, we obtain a canonical comparison map
c = (gB, Cf) as indicated in the following.

CB

gB

��

Cf //

c

&&

CA

gA

��

DB ×DA CA

xx

88

DB

Df
// DA.

(38)

Definition 18. A left-lifting structure s for f with respect to g, written

f ts g

29

is a section of the comparison map c = (gB, Cf) in (38),

CB
c

// DB ×DA CA .

s
{{

(39)

Lemma 19. Let f : A // B and g : C //D be maps in a locally cartesian
closed category C. The following conditions are equivalent.

1. f has a left-lifting structure s with respect to g,

f ts g.

2. For each object X and maps α, β as indicated in the diagram below
(making the outer, stretched square commute),

X

α

��

γ(α,β)

β

""

CB

gB

��

Cf
// CA

gA

��

DB

Df
// DA.

(40)

there is an associated map γ(α, β) as shown (making the evident tri-
angles commute), and the assignment is natural in X in the sense that
for any u : Y //X,

γ(α, β) ◦ u = γ(α ◦ u, β ◦ u).

3. For all objects X,
(X × f) t g

naturally in X, in the sense that there exists a family c(a, b) of diagonal
fillers

X × A
X×f

��

a // C

g

��

X ×B
b

//

c(a,b)

77

D

30

that are natural in X, meaning that for every u : Y //X,

c(a, b) ◦ (u×B) = c(a ◦ (u× A), b ◦ (u×B))

as in the following diagram, where we have written c = c(a, b) and
c′ = c(a ◦ (u× A), b ◦ (u×B)).

Y × A u×A
//

Y×f
��

X × A
X×f

��

a // C

g

��

Y ×B
u×B

//

c′

33

X ×B
c

;;

b
// D

Proof. (Sketch) To show that 1 implies 2, suppose f ts g and take any α
and β making the following commute.

X

α

β

!!

CB

gB

��

Cf
// CA

gA

��

DB

Df
// DA.

Then as γ(α, β) : X // CB we can take the composite map

X
(α,β)

// DB ×DA CA s // CB.

Conversely, in diagram (40) let X = DB ×DA CA and let α and β be the
projections from the pullback. The resulting map γ : DB ×DA CA // CB is
then the required section s.

Now assume condition 2. To prove 3, take any X and suppose we have
a : X × A // C and b : X ×B //D making the following commute.

X × A
X×f

��

a // C

g

��

X ×B
b

// D

31

transposing, we obtain a commutative diagram

X

ã

b̃

!!

CB

gB

��

Cf
// CA

gA

��

DB

Df
// DA.

Thus there is a map γ(ã, b̃) : X //CB making the evident triangles commute.
Transposing again provides the required map

c(a, b) = γ̃(ã, b̃) : X ×B // C.

The converse is just as direct.

Proposition 20. Given a natural model p : Ũ //U , the type theoretic rules
for intensional identity types are modelled by maps

i : Ũ // Ũ (41)

Id : Ũ ×U Ũ // U (42)

with p ◦ i = Id ◦ δ, and such that the canonical map (δ, i)

Ũ

δ

!!

(δ,i)

##

i

!!

I //

��

Ũ
p

��

Ũ ×U Ũ Id
// U

has a left-lifting structure j with respect to p, when both are regarded as maps
over U ,

(δ, i) tj U∗(p).

32

Proof. Let us write ρ = (δ, i). By lemma 19, a left-lifting structure j for ρ
with respect to p, both regarded as maps over U , is equivalent to a natural
(in X) choice of diagonal fillers j(a, b) for all squares over U of the form

X ×U Ũ
X×Uρ

��

a // U∗Ũ
U∗p
��

X ×U I b
//

j(a,b)

66

U∗U ,

where U∗ : Ĉ // Ĉ/U is the base change. Letting X = (A : Γ // U) as an
object over U , and consulting (32), we see that:

dom(X ×U Ũ) = Γ�A

dom(X ×U I) = Γ�A�A�IdA
dom(X ×U ρ) = ρA : Γ�A // Γ�A�A�IdA

Thus, transposing the above diagram to forget the base U , we arrive at the
equivalent filling problem

Γ�A

ρA
��

// Ũ
p

��

Γ�A�A�IdA //

j

66

U .

Comparing this to the diagram (36), we see that the assumed left-lifting
structure j indeed provides a choice of fillers j that is natural in Γ, as required
to correctly interpret the elimination rule.

3 Supporting a natural model

The representability of a natural transformation p : Ũ // U imposes con-
ditions on the maps in C that represent it (cf. corollary 24), and the re-
quirement that p should model the type-forming operations Σ,Π, Id imposes
further conditions on those maps. Our goal is to determine conditions on
a category C that are sufficient to ensure that it carries a natural model of
type theory.

Let p : Ũ //U be a representable natural transformation over C. Recall-
ing our convention from Section 1.1, for each object C ∈ C and each element

33

A ∈ U(C), we have a selected object C �A, a map pA : C �A // C and an

element qA ∈ Ũ(C �A), all fitting into a pullback square of the form:

C �A

pA
��

qA // Ũ
p

��

C
A
// U .

(43)

Such a map pA : C�A //C arising as a canonical pullback of p will be called a
display map, and the corresponding pullback square, a display square for pA.

Remark 21. Observe that a display map has a pullback along any map,
even though C is not assumed to have all pullbacks. Indeed, for any display
map pA : C�A //C and any map s : D //C, there is a uniquely determined
pullback square with pAs : D�As //D a display map, as shown on the left
in the diagram below:

D�As

qAs

""

pAs
��

// C �A

��

pA
��

qA // Ũ
p

��

D

As

<<s
// C

A
// U

because the outer rectangle and the righthand square are canonical pullbacks.

Conversely, let D ⊆ C1 be a class of maps in C that is closed under all
pullbacks along arbitrary maps in C, in the sense that (i) the pullback of
a map in D along any map in C always exists, and (ii) given any pullback
square

A

g
��

// C

f
��

B // D

(44)

if f ∈ D then g ∈ D. Observe that D is closed under isomorphisms in the
arrow category. Call such a class D ⊆ C1 a stable class of maps in C. We
define two presheaves D0,D1 and a natural transformation π : D1

// D0

34

between them as follows:

D1(C) = {(a, d) ∈ C1 ×D | cod(a) = dom(d)}
D0(C) = {(b, d) ∈ C1 ×D | cod(b) = cod(d)}

πC : D1(C) //D0(C)

πC(a, d) = (d ◦ a, d).

Schematically, we have the following situation.

D1(C) =

·
d∈D
��

C

a

??

·

πC
��

D0(C) =

·
d∈D
��

C
b
// ·

The action of the presheaves is by precomposition in the first factor, thus for
s : C ′ // C, we let

D1(s)(a, d) = (a ◦ s, d),

D0(s)(b, d) = (b ◦ s, d).

This is plainly (strictly) functorial. The component πC is simply composition
with the arrow d in the second factor, which is obviously natural.

Remark 22. The natural transformation π : D1
// D0 can be defined ex-

plicitly by ∐
d∈D

yd :
∐
d∈D

ydom(d) //
∐
d∈D

ycod(d) .

The current description of π : D1
// D0 is more closely related to a coher-

ence theorem for certain kinds of indexed categories (respectively fibrations),
which takes the pseudofunctor D : Cop //Cat given by a stable class of maps,
with action by pullback, and returns an equivalent presheaf of categories, i.e.

35

a “strictification” of the pseudofunctor (or “splitting” of the associated fi-
bration). Several such strictifications have been studied previously: this one
is left adjoint to the inclusion of functors into pseudofunctors, and there is
also a right adjoint, and others (all three are attributed to Giraud in cf. [23],
which also gives the relation to work of Benabou). The use of this left adjoint
construction to obtain a model of intensional type theory is the main result
of [19], and the development in this section can be regarded as a reformula-
tion, to the present setting of natural models, of results obtained in [19] for
the closely related setting of categories with attributes. Also see remark 34
below.

Proposition 23. Let D ⊆ C1 be a stable class of maps in C. Then the
natural transformation π : D1

//D0 just defined is representable.

Proof. Let C ∈ C and A ∈ D0(C). We require an object C �A, a map
pA : C �A // C and an element qA ∈ D1(C �A) fitting into a pullback square
of the form:

C �A

pA
��

qA // D1

π

��

C
A
// D0 .

(45)

Now A ∈ D0(C) is a cospan of the form, say,

A1

dA
��

C
|A|
// A0

with dA ∈ D. So we can take a pullback to define pA : C �A // C and q′A as
indicated in:

C �A

pA
��

q′A // A1

dA
��

C
|A|
// A0 .

(46)

Let qA ∈ D1(C �A) be defined by qA = (q′A, dA). To see that the square (45)
commutes, observe that

πC�A(q′A, dA) = (dA ◦ q′A, dA) = (|A| ◦ pA, dA) = D0(pA)(|A|, dA) = D0(pA)(A).

The proof that (45) is a pullback is a routine unwinding of the definitions.

36

Corollary 24. A representable natural transformation determines a stable
class of maps D ⊆ C1, namely all those maps isomorphic to display maps,
and every stable class of maps D ⊆ C1 is determined in this way by a repre-
sentable natural transformation π : D1

//D0.

Proof. Every display map is clearly in D, and a display map has a pullback
along any map by Remark 21. It follows directly that D is stable. Conversely,
every map d : D // C in D occurs as a display map for the associated
representable natural transformation π : D1

//D0 of Proposition 23, in the
form:

C �D

pD
��

id // D

d
��

C
id
// C .

Remark 25. Note that by specifying π : D1
//D0 as π =

∐
d∈D yd, as men-

tioned in Remark 22, we can obtain a simplification of Proposition 23 and its
corollary: the representability of π follows immediately from the indecom-
posibility of representable functors and the good behavior of coproducts of
presheaves. The corollary then also follows more directly. But also note that
different representable natural transformations on a category C may give rise
to the same stable class of maps D ⊆ C1. We shall not pursue this line of
inquiry further, since it is not required for what follows.

Our task now is to determine conditions on a stable class of maps D
that will ensure that the associated representable natural transformation
π : D1

//D0 models the various type-theoretic rules in the sense determined
in section 2.

3.1 Sums and Products

Recall from proposition 12 the condition on π : D1
//D0 required to model

the rules for sum types Σ: there should be maps

pair :
∑

(A :D0)

∑
(B :D[A]

0)

∑
(a:[A])

B(a) //D1

Σ :
∑
A :D0

D[A]
0

//D0

37

making the following diagram a pullback,∑
(A :D0)

∑
(B :D[A]

0)

∑
(a:[A]) B(a)

π1
��

pair
// D1

π

��∑
A :D0

D[A]
0 Σ

// D0

(47)

where [A] denotes the fiber of π over A, i.e. the object given by pullback:

[A]

��

// D1

π

��

X
A
// D0.

Take any X ∈ C and (A,B) : X //
∑

A :D0
D[A]

0 , and we seek an assign-
ment of a map Σ(A,B) : X //D0, in a way that is natural in X.

Using Lemma 5, the map (A,B) : X //
∑

A :D0
D[A]

0 uniquely determines
maps A : X //D0 and B : [A] = X ×D0 D1

//D0, as already suggested by
the notation. These in turn correspond uniquely (by Yoneda) to cospans:

A = (a ∈ C, p ∈ D)

B = (b ∈ C, q ∈ D)

as indicated in:
B1

q

��

B0

X ×A0 A1

b

::

pX
��

// A1

p

��

X a
// A0.

(48)

Here we have used the following easily proved fact, which we record for later
reuse:

38

Lemma 26. When A : X // D0 corresponds to the cospan (a, p), then A
factors through a : X //A0 via the map (idA0 , p) : A0

//D0, and the following
is then a pullback:

A1

p

��

// D1

π

��

A0
(id, p)

// D0.

Thus
[A] = X ×D0 D1 = X ×A0 A1 .

Returning to diagram (48), it might now be expected that the sum
Σ(A,B) would be built by first pulling q back along b to give qX , and then
composing with pX :

B1

q

��

·

Σ(A,B)?

""

99

qX

��

B0

X ×A0 A1

b

::

pX
��

// A1

p

��

X a
// A0.

(49)

This is “morally” what we want to do, since the resulting composite is indeed
the display map X �Σ(A,B) //X, and so the requirement that D is closed
under composition suggests itself. There is a problem with this construction,
however: Σ(A,B) must be a cospan (c ∈ C, d ∈ D) of the form: ·

d

��
X c

// ·
But the only candidate in sight for c is the identity on X, and that assignment
would not be natural in X!

Instead, we shall use a construction similar to that applied in section 2
to devise a “generic case” in which to perform the operation of pullback-
plus-composition, so that all other cases result simply from mapping into

39

the generic one. This construction, however, requires that D not only be
closed under composition, but also that certain right adjoints to pullback
exist. To state the required condition precisely, for any object C ∈ C, let us
write D(C) for the full subcategory D(C) ↪→ C/C on the D-maps into C as
objects.

Definition 27. A stable class of maps D ⊆ C1 is closed if the following
conditions hold:

1. C has a terminal object 1, and every map C // 1 is in D.

2. D is closed under composition.

3. For any d : D // C in D, the pullback functor d∗ : D(C) // D(D)
has a right adjoint d∗ : D(D) // D(C), and the inclusion functor
D(C) ↪→ C/C preserves exponentials.

Proposition 28. If D ⊆ C1 is a closed, stable class of maps, then the
associated representable natural transformation π : D1

// D0 models the
rules for sums Σ and products Π.

Proof. Taking up the argument from diagram (48), consider the following
construction:

B1

q

��

·

::

qX

��

// G

ee

q′

��

B0

X ×A0 A1

b

;;

pX

��

b×A0
A1

// BA1
0 ×A0 A1

ev

dd

p′

��

// A1

p

��

X b //

a

55BA1
0

// A0.

(50)

40

We first factor the map a : X //A0 through the transpose b : X //BA1
0 of

b : X ×A0 A1
// B0 over A0 (regarding B0 as a constant object over A0 by

base change along A0
//1). Here we know that BA1

0 exists in D(A0) because
both p and B0

// 1 are in D, and we know that BA1
0 is also an exponential

in C/A0 by the definition of “closed”.
Pulling p back along a in two stages gives the two lower pullback squares.

Next, still working over A0, the map b now factors as ev ◦ (b×A0 A1) by the
exponential adjunction. The pullback qX of q along b can therefore also be
constructed in two stages, giving first the map q′ : G // BA1

0 ×A0 A1 as the
pullback of q along the evaluation ev.

The generic case of the “pullback and compose” construction (49) that
we seek now has the form:

B1

q

��

B0 G

ee

%%

q′

��

BA1
0 ×A0 A1

ee

p′

��

// A1

p

��

BA1
0

// A0.

The composite p′ ◦ q′ : G // BA1
0 is the D component of the desired cospan

(b, p′◦q′) defining Σ(A,B) : X //D0. Observe that the pullback of p′◦q′ along
b is indeed pX ◦ qX , and that the same is true for any given y : Y // BA1

0 ,
because any such map is uniquely of the form y = c : Y // BA1

0 for c =
ev ◦ (y ×A0 A1) : Y ×A0 A1

//B0.

This defines the natural transformation Σ :
∑

A :D0
D[A]

0
//D0. Explicitly,

given (A,B) : X //
∑

A :D0
D[A]

0 , where A = (a, p) and B = (b, q), we define

Σ(A,B) : X // D0 by Σ(A,B) = (b, p′ ◦ q′). This assignment is natural in
X, for given any s : Y //X, we have

Σ(A,B)s = (b ◦ s, p′ ◦ q′) = (b ◦ s′, p′ ◦ q′) = Σ(As,Bs),

41

because the D-component is fixed, and exponential transposition is natural.

B1

q

��

B0 G1

dd

q′

��

Y ×A0 A1

bs′

44

pY

��

s′
// X ×A0 A1

b

;;

pX

��

b×A0
A1

// BA1
0 ×A0 A1

ev

dd

p′

��

// A1

p

��

Y
s //

bs′

55X
b // BA1 // A0

To define the pairing map,

pair :
∑

(A :D0)

∑
(B :D[A]

0)

∑
(a:[A])

B(a) //D1,

take an element (A,B, c) : X //
∑

(A :D0)

∑
(B :D[A]

0)

∑
(a:[A]) B(a), and we

require an element pair(A,B, c) : X //D1 via an assignment that is natural
in X. The map (A,B, c) determines data of the form:

A = (a ∈ C, p ∈ D)

B = (b ∈ C, q ∈ D)

c = (a′, b′),

where:
B1

q

��

B0

X ×A0 A1

b′

::

b

99

pX
��

// A1

p

��

X a
//

a′
99

A0.

42

But this is just a section of the composite pX ◦ qX ,

B1

q

��

·

::

qX

��

// G

ee

q′

��

B0

X ×A0 A1

b

;;

pX

��

b×A0
A1

// BA1
0 ×A0 A1

ev

dd

p′

��

// A1

p

��

X

(a′,b′)

??

b //

a

66BA1
0

// A0

or, equivalently, a section of the composite p′ ◦ q′ over b. But this in turn is
exactly an element c′ of the generic Σ-type,

G

q′

��

BA1
0 ×A0 A1

p′

��

// A1

p

��

X

c′

<<

b

// BA1
0

// A0.

So we can set
pairX(A,B, c) = (c′, p′ ◦ q′) ∈ D1(X).

Again, this is plainly natural in X, because the action in the first component
is precomposition and second component is fixed.

43

It is immediate that this assignment makes (47) a pullback: for fixed
A = (a, p) and B = (b, q), the correspondence c = (a′, b′) 7→ c′ is clearly
reversible.

For the products Π, we start from the object constructed in (50):

B1

q

��

B0 G

ee

q′

��

BA1
0 ×A0 A1

ev

ee

p′

��

// A1

p

��

BA1
0

// A0.

But now rather than composing p′◦q′, we use the right adjoint p′∗ to pullback
along p′ to build the map p′∗q

′ : G′ //BA1
0 :

B1

q

��

B0 G

ee

q′

��

G′

p′∗q
′

%%

BA1
0 ×A0 A1

ev

ee

p′

��

// A1

p

��

BA1
0

// A0.

(51)

Note that p′∗q
′ (exists and) is in D by our assumption that D is closed.

Now, as in the previous case, given (A,B) : X //
∑

A :D0
D[A]

0 , we have
A = (a ∈ C, p ∈ D) and B = (b ∈ C, q ∈ D), from which we can construct
p′, q′, and b : X //BA1

0 . Then set:

Π(A,B) = (b, p′∗q
′) : X //D0 .

The assignment is again obviously natural in X. The construction of λ and
verification that the resulting square is a pullback are entirely analogous to
the case of pair, and are omitted.

44

Finally, observe that for any y : Y //BA1
0 , the Beck-Chevalley conditions

for the left and right adjoints to pullback y∗ give:

y∗(p′ ◦ q′) = (pY) ◦ (qY)

y∗(p′∗q
′) = (pY)∗(qY) .

This ensures that the context extension operation behaves correctly.

3.2 Identity types

As was the case for sums and products, in order to model intensional identity
types Id, we require an additional condition on the stable class of maps
D ⊆ C1. It may be surprising that we also still need the class to be closed
in the sense of definition 27; this is used to again construct certain “generic”
cases.

Let D ⊆ C1 be a class of maps in a category C. We shall say that a map
a : A // B in C is anodyne if it has the left lifting property with respect
to all maps in D. The class D ⊆ C1 will be called factorizing if every map
f : A //B in C factors as f = d ◦ a with a anodyne and d ∈ D,

B′

d
��

A

a

>>

f
// B.

Lemma 29. If D ⊆ C1 is a closed, stable, factorizing class of maps, then
the anodyne maps are preserved by pullback along all maps in D. Moreover,
any pullback of an anodyne map between two D-maps is again anodyne.

Proof. This is a familiar fact in axiomatic homotopy theory (also cf. propo-
sition 14 of [11]). Briefly, let d : D //C in D and a : A //C anodyne, and
consider d∗a : d∗A //D. This is also anodyne if it lifts against any b : B //D
in D (using the fact that D-maps are preserved under base change). Apply-
ing d∗ to b gives a corresponding lifting problem at C involving a and d∗b,
which has a solution since a is anodyne and d∗b is in D. Transposing the lift
across the adjunction d∗ a d∗ gives the solution over D.

For the second statement, suppose given f : A // Y and g : B // Y in
D and anodyne a : A // B over Y . Pull back along any h : X // Y to get

45

f ′ : A′ // X and g′ : B′ // X in D with a′ : A′ // B′ over X, which we
claim is also anodyne.

A′

f ′

��

a′

f∗h
// A

f

��

a

B′

g′~~

g∗h
// B

g
~~

X
h

// Y.

Since anodyne maps are preserved by pullback along D-maps, it suffices to
assume that h is anodyne (else factor it into an anodyne followed by a D-
map). The pullback f ∗h : A′ // A of h along f is then anodyne, and so is
g∗h : B′ //B. Since a ◦ f ∗h = g∗h ◦ a′, and anodyne maps are closed under
composition, we shall have a′ anodyne once we prove the following: Given

any maps C
i
// D

j
// E, if both j and j ◦ i are anodyne, so is i.

C

i
��

c // F

f
��

D

j
��

1D
//

d

88

D

E

e

88
k

@@

.

To prove this, we take any f : F //D in D and c : C // F with f ◦ c = i,
and produce a diagonal filler d : D //F , with d◦ i = c and f ◦d = 1D. Since
j is anodyne and D is fibrant (all objects in C are fibrant by the definition of
“closed”), there is an e : E //D with e ◦ j = 1D. Since j ◦ i is anodyne and
f in D there is a k : E // F with k ◦ j ◦ i = c and f ◦ k = e. Let d = k ◦ j.
Then d ◦ i = k ◦ j ◦ i = c, and f ◦ d = f ◦ k ◦ j = e ◦ j = 1D, as required.

Proposition 30. If D ⊆ C1 is a closed, stable, factorizing class of maps,
then the associated representable natural transformation π : D1

//D0 models
the rules for intensional identity types Id.

Proof. Recall from proposition 20 that we require maps

i : D1
//D1 (52)

Id : D1 ×D0 D1
//D0 (53)

46

commuting with π and its diagonal δ,

D1

δ

$$

(δ, i)

%%

i

$$

I //

��

D1

π

��

D1 ×D0 D1 Id
// D0

and a left-lifting structure j for the map (δ, i) with respect to π,

(δ, i) tj π

where both are regarded as maps over D0.
Again, we shall write ρ = (δ, i) : D1

// I.
We begin by constructing the map

Id : D1 ×D0 D1
//D0.

For each A ∈ C, pick a factorization of the diagonal,

IA

dA
��

A

rA
<<

δA
// A× A

with rA anodyne and dA ∈ D, and do the same for every map A : A1
// A0

in D,
IA

dA
��

A1

rA

99

δA
// A1 ×A0 A1.

.

(Of course, the second step subsumes the first.)
For X ∈ C, a map α : X // D1 ×D0 D1 consists of a map A : X // D0

together with two maps a1, a2 : X // D1 over D0. Now A is a cospan
A = (a ∈ C, p ∈ D), and there is a pullback diagram,

A1

p

��

// D1

π

��

X

a1

88

a2

88

a
//

A

88
A0

// D0

47

with the corresponding elements a1, a2 fitting in as shown. These in turn
determine an element (a1, a2) of A1 ×A0 A1, which we could also have con-
structed directly, as indicated in the following:

X

α

%%

(a1, a2)
//

a

''

A1 ×A0 A1

�� ��

// D1 ×D0 D1

�� ��

A1

p

��

// D1

π

��

A0
// D0.

We require an element Id(α) : X //D0, by an assignment that is natural in
X. For this, we take the following cospan:

IA

dA
��

X
(a1, a2)

// A1 ×A0 A1.

To define i : D1
// D1, an element of D1(X) has the form (a, p) with

a : X // A1 and p : A1
// A0 with p ∈ D. Compose with rA : A1

// IA to
get

i(a, p) = (rA ◦ a, dA),

which is again an element of D1(X):

A1

rA
��

X

a

66

rA◦ a
//

(a,a) ++

IA

dA
��

A1 ×A0 A1.

(54)

This specification plainly makes π ◦ i(a, p) = Id ◦ δ(a, p), as required.
Next, the presheaf I : Cop // Set has as elements of I(X) pairs

α : X //D1 ×D0 D1, β : X //D1

48

fitting together as follows:

IA

dA
��

X

b
00

(a1,a2)
//

a

''

A1 ×A0 A1

�� ��

A1

p

��

A0

where α = (a, p) and β = (b, dA). The maps π1 : I // D1 ×D0 D1 and
π2 : I //D1 are of course the projections.

Finally, the map ρ = (δ, i) : D1
// I takes (a, p) : X // D1 with a :

X // A1 and p : A1
// A0 to the pair:

ρ(a, p) = (δ(A, p), i(a, p)),

which is indeed in I(X) by diagram (54).
Now by lemma 19, a left-lifting structure j for ρ with respect to π over

D0 is equivalent to a natural (in X) choice of diagonal fillers j(α, β) for all
squares over D0 of the form

X ×D0 D1

X×D0
ρ

��

α // D0
∗D1

D0
∗π

��

X ×D0 I β
//

j(α,β)

66

D0
∗D0

(55)

where D0
∗ : Ĉ // Ĉ/D0 is the base change. Let the object X over D0 be

A : X //D0, with X ∈ C representable, which clearly suffices by naturality.
Using lemma 26, there is a corresponding cospan (a, p) and a double pullback
diagram:

X ×A0 A1

pA
��

// A1

p

��

// D1

π

��

X a
//

A

99
A0

// D0.

49

Thus X ×D0 D1 = X ×A0 A1 in diagram (55). Proceding similarly for the
other expressions there, we have:

dom(X ×D0 D1) = X ×A0 A1

dom(X ×D0 I) = X ×A0 IA

dom(X ×D0 ρ) = X ×A0 rA

as displayed in the following diagram.

X ×A0 A1

X×A0
rA

��

// A1

rA

��

// D1

ρ

��

i

$$

X ×A0 IA

��

// IA

��

// I

��

// D1

π

��

X ×A0 A1 ×A0 A1

�� ��

// A1 ×A0 A1

�� ��

// D1 ×D0 D1 Id
//

�� ��

D0

X ×A0 A1

pA

��

// A1

p

��

// D1

π

��

X a
// A0

// D0.

(56)

Transposing diagram (55) to forget the base D0, we arrive at the equivalent
filling problem

X ×A0 A1

X×A0
rA
��

α // D1

π

��

X ×A0 IA β
//

66

D0

to be solved naturally in X. Now β is a cospan of the form:

B1

q

��

X ×A0 IA b
// B0

50

with q ∈ D. And α = (c, q) completes the square,

X ×A0 A1

X×A0
rA
��

c // B1

q

��

X ×A0 IA b
// B0.

(57)

By lemma 29, X ×A0 rA is anodyne, and q is in D by assumption, so there is
a diagonal filler j(c, b) for this case, but we need to make a systematic choice
that will be natural in X. In order to do this, we will again construct a
generic case from which all others arise by mapping in. For that, we require
the following.

Lemma 31. Given maps p : A1
//A0 and q : B1

//B0 in a locally cartesian
closed category, there is an object G with maps e1 : G × A1

// B1 and
e0 : G× A0

//B0 such that e0 ◦ (G× p) = q ◦ e1:

G× A1

G×p
��

e1 // B1

q

��

G× A0 e0
// B0

and such that, given any object X with maps f1 : X × A1
// B1 and f0 :

X × A0
//B0 such that f0 ◦ (X × p) = q ◦ f1, there is a (unique) map

f : X //G

such that fi = ei ◦ (f × Ai) for i = 0, 1:

X × A1

f1

((

X×p
��

f×A1

// G× A1

G×p
��

e1
// B1

q

��

X × A0

f0

66

f×A0
// G× A0

e0 // B0 .

In other words, (G, e0, e1) is a universal object for the presheaf (in X) of

51

commutative diagrams of the form

X × A1

X×p
��

f1
// B1

q

��

X × A0 f0
// B0.

Proof. Using in-line notation [X, Y] = Y X , take

G = [A0, B0]×[A1,B0] [A1, B1]

where the pullback is formed with respect to p and q, as in (37).

[A0, B0]×[A1,B0] [A1, B1]

��

// [A1, B1]

[A1,q]

��

[A0, B0]
[p,B0]

// [A1, B0]

(58)

The maps ei for i = 1, 2 are defined by ei = evi ◦ (pi × Ai):(
[A0, B0]×[A1,B0] [A1, B1]

)
× Ai

pi×Ai
��

ei

!!

[Ai, Bi]× Ai evi
// Bi

We have e0 ◦ (G × p) = (ev0 ◦ (p0 × A0)) ◦ (G × p) = q ◦ (ev1 ◦ (p1 × A1))
Verification of the construction is left to the reader.

Returning to the proof of the proposition, we first restore the products
on the left in diagram (57) by restoring the indexing over A0 and moving
q : B1

//B0 to C/A0 by base change along A0
// 1 (but without explicitly

writing A∗0(B1), etc.). We now want to apply the lemma to the case of the
category C/A0, with q : B1

//B0 as named in the lemma and rA : A1
// IA

in place of p : A1
// A0. Although C/A0 is not locally cartesian closed, the

objects B0 and B1 and the maps p : A1
//A0 and IA //A0 are all in D, and

so the required exponentials exists in D(A0), and thus in C/A0. Moreover,
the required pullback (58) exists because q is in D.

52

Applying the lemma to the filling problem in diagram (57), we can there-
fore interpolate the universal case (G, e0, e1) to obtain the following (where
we have written × for ×A0):

X × A1

c

((

X×rA
��

f×A1

// G× A1

G×rA
��

e1
// B1

q

��

X × IA

b

66

f×IA // G× IA
e0 // B0

where f : X //G classifies (X, b, c).
Now G × rA is anodyne, since rA is, so we can find a diagonal filler

j(e1, e0) : G× A0
//B1 for this generic case.

X × A1

c

))

X×rA
��

f×A1

// G× A1

G×rA
��

e1
// B1

q

��

X × IA

b

55

f×IA // G× IA
e0 //

j(e1,e0)

66

B0

Then for any lifting problem of the form (X, b, c) in (57), we can take as a
filler j(c, b) = j(e1, e0) ◦ (f × IA) to have a choice that is natural in X. This
provides the required left-lifting structure for (δ, i) with respect to π.

3.3 The main result

Combining propositions 28 and 30, we have now reached our goal:

Theorem 32. Let D be any closed, stable, factorizing class of maps in a
category C. There is a representable natural transformation π : D1

//D0 over
C that models dependent type theory with extensional sums Σ, extensional
products Π, and intensional identity types Id.

Corollary 33. Let D be any closed, stable, factorizing class of maps in a
category C. There is a category-with-families model of dependent type theory,
with extensional sums Σ, extensional products Π, and intensional identity

53

types Id, with the contexts and substitutions being the objects and morphisms
of C, and as types and terms in context X, a category equivalent to the
D-maps into X and their sections.

Remark 34. A result essentially the same as our corollary 33 was announced
in 2012 by Lumsdaine and Warren, and has finally appeared in [19]. Rea-
soning very similar to that used here is also used in that work, which should
therefore be regarded as prior. The main contribution of the present work is
the concept of a natural model of type theory as an alternative presentation
of the notion of a category with families, and the adaptation of the results
and methods of [19] to this setting.

Examples of categories satisfying the conditions of theorem 32 include:

1. the category of Kan simplicial sets, with the (right) weak factorization
system of the associated Quillen model structure.

2. similarly, the category of fibrant objects in any locally cartesian closed
model category that is right proper, and in which the cofibrations are
the monos; e.g. any right proper, Cisinski model category.

3. more generally, the category of “fibrant” objects in any weak factoriza-
tion system on a (pre)sheaf topos in which the left maps are preserved
by pullback along the right maps (the “Frobenius condition” of van den
Berg and Garner [6]).

4. non-LCC examples of categories with a weak factorization system for
which the right maps are exponentiable, such as groupoids and cate-
gories with iso-fibrations.

5. any πh-tribe, in the sense of Joyal’s categorical axiomatics for homotopy
type theory [17].

6. the syntactic category of contexts C(T) of a system of type theory T
with Σ,Π and Id types (see [11]).

Remark 35. Regarding terminology: LetD be any closed, stable, factorizing
class of maps in a category C. We may call the maps in D typical (since they
are the types), and say thatD is a typical structure on C, and that C (together
with D) is a typical category. Our main theorem then says that any typical
category supports a natural model of basic homotopy type theory.

54

Assuming a class of maps D that is stable and closed, it is enough to
require anodyne-D factorizations just for the diagonal maps A //A×A, in
order to obtain them for all maps. The notion of a typical category is then
closely akin to first-order logic: a category of contexts and substitutions,
equipped with a system of “predicates” closed under Σ, Π, and Id. A notion
of category suitable to model full homotopy type theory, with a (univalent)
universe and higher inductive types, will then be a typical category with
some additional structure.

Acknowledgements

The results developed here are an amalgamation of original ideas and ones
derived from [18] and [19]. The author has benefitted from conversations
with Thierry Coquand, Nicola Gambino, Richard Garner, André Joyal, Pe-
ter Lumsdaine, Andy Pitts, Michael Shulman, Thomas Streicher, Michael
Warren, and Vladimir Voevodsky. Thanks are also due to two anonymous
referees, who contributed many insightful suggestions for improvement, and
to Marco Larrea for a good late catch. The author thanks the Institute for
Advanced Study, where this research was mainly conducted and first pre-
sented, and the Institut Henri Poincaré, where it was concluded. Support
was provided by the Air Force Office of Scientific Research through MURI
grant FA9550-15-1-0053, and by the National Science Foundation. Any opin-
ions, findings, and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the AFOSR
or the NSF.

References

[1] M. Artin, A. Grothendieck, J.-L. Verdier (eds.). SGA4: Théorie des
topos et cohomologie étale des schémas, 1963–1964, Lecture Notes in
Mathematics 269, 270 and 305, Springer, 1972/3.

[2] S. Awodey. Natural models of homotopy type theory, Mathematical
Structures in Computer Science, 1–46, 2016.

[3] S. Awodey, C. Butz, A. Simpson, T. Streicher. Relating first-order set
theories, toposes and categories of classes. Annals of Pure and Applied
Logic, 165 (2), 428–502, 2014.

55

[4] S. Awodey and M.A. Warren. Homotopy theoretic models of identity
types. Math. Proc. Camb. Phil. Soc., 146, 45–55, 2009.

[5] M. Bezem, T. Coquand and S. Huber. A model of type theory in cubical
sets. Unpublished preprint dated 3 May 2014.

[6] B. van den Berg and R. Garner. Topological and simplicial models of
identity types. ACM Transactions on Computational Logic, 13:1, 2012.

[7] P. Dybjer. Internal type theory. LNCS 1158, 120–134, 1996.

[8] R. Dyckhoff and W. Tholen. Exponentiable morphisms, partial prod-
ucts and pullback complements. JPAA 7:49, 103–116, 1987.

[9] M. Fiore. Discrete Generalised Polynomial Functors. Talk given at
ICALP 2012.

[10] Y. Fu. Categorical properties of logical frameworks. Math. Stru. Comp.
Sci. 7, 1–47, 1997.

[11] N. Gambino and R. Garner. The identity type weak factorisation sys-
tem. Theoretical Computer Science 409(1), 94–109, 2008.

[12] N. Gambino and J. Kock. Polynomial functors and polynomial monads.
Math. Proc. Cambridge Phil. Soc. 154, 153–192, 2013.

[13] M. Hofmann. On the interpretation of type theory in locally cartesian
closed categories. In: CSL, 427–441. Springer, 1994.

[14] M. Hofmann, Syntax and semantics of dependent types, in Semantics
of Logics of Computation, Cambridge University Press, 1997.

[15] P.T. Johnstone. Partial products, bagdomains and hyperlocal toposes.
LMS Lecture Note Series 177, 315–339, 1992.

[16] P.T. Johnstone. Variations on the bagdomain theme. Theoretical Com-
puter Science 136, 3–20, 1994.

[17] A. Joyal. Categorical homotopy type theory. Slides from a talk at MIT
dated 17 March 2014.

56

[18] C. Kapulkin, P. LeFanu Lumsdaine and V. Voevodsky. The simplicial
model of univalent foundations. On the arXiv as 1211.2851v2, dated
15 April 2014.

[19] P. LeFanu Lumsdaine and M.A. Warren. The local universes model:
an overlooked coherence construction for dependent type theories. On
the arXiv as 1411.1736, dated 2014.

[20] P. Martin-Löf. An intuitionistic theory of types: Predicative part. Logic
Colloquium ‘73 (Amsterdam) (H.E. Rose and J.C. Shepherdson, eds.),
North-Holland, pp. 73–118, 1975.

[21] The Stacks Project Authors. Stacks Project, http://stacks.math.

columbia.edu, 2016.

[22] T. Streicher. Identity Types and Weak Omega-Groupoids. Talks in
Uppsala at a meeting on “Identity Types - Topological and Categorical
Structure”, dated Nov. 2006.

[23] T. Streicher. Semantics of type theory formulated in terms of repre-
sentability. Unpublished note dated 26 February 2014.

[24] The Univalent Foundations Program, Institute for Advanced Study.
Homotopy Type Theory: Univalent Foundations of Mathematics, 2013.
http://homotopytypetheory.org/book

57

