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Abstract. Any intermediate propositional logic (i.e., a logic including intuitionistic

logic and contained in classical logic) can be extended to a calculus with epsilon- and

tau-operators and critical formulas. For classical logic, this results in Hilbert’s ε-calculus.

The first and second ε-theorems for classical logic establish conservativity of the ε-calculus

over its classical base logic. It is well known that the second ε-theorem fails for the

intuitionistic ε-calculus, as prenexation is impossible. The paper investigates the effect

of adding critical ε- and τ -formulas and using the translation of quantifiers into ε- and

τ -terms to intermediate logics. It is shown that conservativity over the propositional base

logic also holds for such intermediate ετ -calculi. The “extended” first ε-theorem holds if

the base logic is finite-valued Gödel-Dummett logic, fails otherwise, but holds for certain

provable formulas in infinite-valued Gödel logic. The second ε-theorem also holds for finite-

valued first-order Gödel logics. The methods used to prove the extended first ε-theorem

for infinite-valued Gödel logic suggest applications to theories of arithmetic.

§1. Introduction. The ε-calculus was originally introduced by Hilbert as a
formalization of classical first-order logic. It is a way to reduce proofs in first-
order logic to proofs in propositional logic from so-called critical formulas, where
the role of quantifiers is taken over by certain terms. The ε-calculus was the
basis for Hilbert’s approach to proof theory (in particular, consistency proofs).
It still is a useful logical formalism with interesting properties and theoretical
and practical applications.

The ε-calculus is formulated by allowing for terms of the form εx A(x) for
any formula A(x) with x free. A formula of the form A(t) → A(εx A(x)) is
called a critical formula belonging to εx A(x). A proof in the ε-calculus is a
proof in the quantifier-free fragment of classical logic from critical formulas. It
is now possible to define the existential quantifier by ∃xA(x) ≡ A(εx A(x)),
and—in classical logic—the universal quantifier by ∀xA(x) ≡ A(εx ¬A(x)). A
formula A with quantifiers can thus be translated into a formula Aε with ε-terms
but without quantifiers. A formula is provable in classical first-order logic QC
iff its translation is provable in the ε-calculus.
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Hilbert proved two fundamental results about the ε-calculus:

1. The extended first ε-theorem: If A(e⃗) is derivable in the ε-calculus (e⃗ a tuple
of ε-terms), then there are tuples of terms t⃗1, . . . , t⃗n such that A(⃗t1)∨ . . .∨
A(⃗tn) is provable in propositional logic.

2. The second ε-theorem: If Aε is the standard ε-translation of a first-order
formula derivable in the ε-calculus, A is derivable in first-order logic.

The extended first ε-theorem has two important consequences. The first conse-
quence is what Hilbert simply called the first ε-theorem: If A is ε-free and deriv-
able in the ε-calculus, it is derivable in the quantifier-free fragment of first-order
logic, the so-called elementary calculus of free variables (i.e., without critical
formulas, indeed, without any use of ε-terms). This implies that the ε-calculus
is conservative over propositional logic for quantifier-free formulas without iden-
tity. The second consequence is Herbrand’s theorem for existential formulas: If
∃x⃗ A(x⃗) is provable in the ε-calculus, then some disjunction A(⃗t1) ∨ . . . ∨ A(⃗tn)
is provable in propositional logic alone, i.e., is a tautology.1

In contrast to other proof theoretic methods which also yield the existence of
Herbrand disjunctions (such as cut-elimination), the proof based on the extended
first ε-theorem, and consequently the length of the Herbrand disjunction the
proof yields, is insensitive to the propositional complexity of the original proof.
This is an important advantage of methods based on the ε-calculus.

Hilbert’s results and proofs make essential use of classical principles, especially
the law of excluded middle. The question naturally arises whether the results can
also be obtained for weaker logics, and whether the same proof methods can be
used, i.e., whether the use of excluded middle can be avoided. In this paper, we
investigate ε-calculi for intermediate logics, i.e., logics between intuitionistic and
classical logic, and specifically the question of when the extended first ε-theorem
holds in such logics. Well-known examples of intermediate logics are Jankov’s
logic of weak excluded middle and finite- and infinite-valued Gödel-Dummett
logics.

We consider only intermediate logics for two reasons. One is that Hilbert’s
methods rely essentially on the deduction theorem, and this holds in intermediate
logics but not in many other logics. The other is that ε-calculi for intuitionistic
and intermediate logics are of independent interest. What is the effect of adding
ε-operators to intermediate logics? When does the extended first ε-theorem
hold? When is the ε-calculus for a logic conservative over the propositional base
logic? We also, for the most part, discuss only pure logics, i.e., logics without
identity.

In intermediate logics it is necessary to introduce a separate τ -operator which
defines the universal quantifier. Whereas A(εx A(x)) translates ∃xA(x), A(τx A(x))
translates ∀xA(x). The corresponding critical formulas are those of the form
A(τx A(x))→A(t). Weakening the logic makes the addition of τ necessary, since

1See Hilbert and Bernays [1939] for the first presentation of the ε-theorems, Avigad and
Zach [2020] for a survey, and Moser and Zach [2006] for a modern presentation.
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the equivalence of ∀xA(x) and A(εx ¬A(x)) relies on the schema of contraposi-
tion; the equivalence of ∀xA(x) and A(τx A(x)) does not. The system resulting
from a propositional intermediate logic L by adding ε- and τ -terms and critical
formulas is called the ετ -calculus for L.

It is well known that adding the ε-operator to intuitionistic logic in a straight-
forward way results in translations Aε of intuitionistically invalid formulas A
becoming provable. Mints [1977], [1990] has investigated different systems based
on intuitionistic logic with ε-operators which are conservative and in which the
ε-theorem holds. He allows the use of ε-terms only when ∃xA(x) has been estab-
lished; other approaches (e.g., Shirai [1971]) use existence predicates to accom-
plish the same. We investigate the basic ετ -calculus without this assumption.
In our ετ -calculi, ετ -terms are treated syntactically as something like Skolem
functions rather than semantically as choice operators.

We begin (Section 2) by introducing intermediate logics. In Section 3 we
introduce the ετ -calculus and consider the differences in formulas provable in a
logic vs. those provable in the corresponding ετ -calculus. This is essentially the
question of whether the addition of ε- and τ -terms and critical formulas allows
the derivation (or requires the validity) of formulas not provable in the base logic.

We investigate in detail which intuitionistically invalid formulas are provable
in ετ -calculi for intermediate logics in Section 4. We show that quantifier shift
schemas play a special role here. All but three of these are valid in intuitionistic
logic. The addition of ετ -terms and critical formulas results in the provability
of the remaining three. Consequently, no intermediate first-order logic in which
one of these three quantifier shifts is unprovable can have the second ε-theorem
(Proposition 4.1). This includes intuitionistic logic itself, logics complete for
non-constant domain Kripke frames, and infinite-valued Gödel-Dummett logic.

In Section 5, we show that conservativity for the propositional fragment nev-
ertheless holds for all intermediate logics (Theorem 5.3). This in itself is a
surprising result, even though the proof is very easy. It holds for theorems of
the logics with or without identity, however not in general for provability from
theories.

In Sections 6–9 we give a complete characterization of the intermediate logics
where the extended first ε-theorem holds. We show (Theorem 6.2) that whenever
it holds, the underlying logic must prove (or validate) a sentence Bm of the form

(A1 →A2) ∨ (A2 →A3) ∨ · · · ∨ (Am →Am+1).

No Bm is provable in intuitionistic logic, any logic complete for Kripke frames
with branching worlds, or in infinite-valued Gödel-Dummett logic. Consequently,
the extended first ε-theorem does not hold for these logics.

Provability of Bm is also a sufficient condition: We show that the extended
first ε-theorem holds whenever the underlying logic proves at least one Bm. The
argument follows the idea of Hilbert’s proof, but does not make use of excluded
middle. In order to establish the result, we provide a more fine-grained analysis
of the proof of the extended first ε-theorem. We first introduce the notion of
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an elimination set in Section 7: a set of terms which can replace an ε-term in
a proof and render the corresponding critical formulas redundant, using only
the resources of the underlying propositional logic. This is the part of Hilbert’s
proof that uses excluded middle. We isolate here how excluded middle is used.
In Section 8, we show that logics that prove some Bm also have elimination sets.

If such elimination sets exist, the procedure given by Hilbert and Bernays can
be used for a proof of the extended first ε-theorem (Section 9). This establishes
the second half of the characterization, that the extended first ετ -theorem holds
in logics that prove Bm, i.e., the finite-valued Gödel logics (Theorem 9.9). By
putting emphasis on elimination sets, we can also show that in logics in which the
extended first ε-theorem does not hold in general, it may still hold for formulas of
a special form. This allows us to show that the extended first ετ -theorem holds
for negated formulas in Jankov’s logic of weak excluded middle (Theorem 9.8).
We also show that the first ετ -theorem (for theorems not containing ετ -terms)
holds for infinite-valued Gödel-Dummett logic (Theorem 9.10).

The extended first ετ -theorem is closely related to Herbrand’s theorem. We
discuss this connection, as well as the second ετ -theorem, in Section 10. We show
that the second ετ -theorem holds for any intermediate predicate logic that proves
all quantifier shifts and has the extended first ετ -theorem (Proposition 10.2), e.g.,
QLCm + CD , first-order finite-valued Gödel logic.

In the case of some proofs, it is possible to eliminate ετ -terms in a simplified
way where the cases that require the presence of Bm do not arise, and the
linearity schema Lin ((A→B) ∨ (B →A)) is enough. Although we cannot give
an independent characterization of the proofs or theorems for which this is the
case, the simplified procedure will sometimes terminate and produce a Herbrand
disjunction. Conversely, if a Herbrand disjunction exists, there is always a proof
of the original formula for which the procedure terminates and produces the
Herbrand disjunction (Section 11).

This result sheds light on the conditions under which (a version of) Hilbert’s
method which uses principles weaker than excluded middle produces a Herbrand
disjunction. In fact, a similar method can be used to give a partial ε-elimination
procedure for number theory, where linearity of the natural order of N plays a
similar role as the schema of linearity does in the case of logic (Section 12).

§2. Preliminaries. Intermediate propositional logics have been investigated
extensively since the 1950s. Intermediate predicate logics are comparatively less
well understood; however, they constitute an active area of research (see Gabbay,
Shehtman, and Skvortsov [2009]). We begin by collecting some preliminary
definitions.

All the logics we consider are formulated in the standard language of intuition-
istic and classical logic with propositional connectives ∧, ∨, →, the constant ⊥
for absurdity, and the quantifiers ∀ and ∃. ¬A is defined as A→⊥ and ⊤ as ¬⊥.
Terms and atomic formulas are defined as usual. We allow 0-place predicate sym-
bols, i.e., propositional variables. A formula containing no quantifiers is called
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Propositional logics / Axioms
H Intuitionistic logic
KC Logic of weak excluded middle: H + J = ¬A ∨ ¬¬A
LC infinite-valued Gödel logic, linear Kripke frames

H + Lin = (A→B) ∨ (B →A)
LCm m-valued Gödel logic, linear Kripke frames of length < m

H + Bm = (A1 →A2) ∨ · · · ∨ (Am →Am+1)
C Classical logic: H + A ∨ ¬A, H + B2

First-order logics / Axioms
QH Intuitionistic logic
QKC Weak excluded middle: QH + J
QLC Linear Kripke frames: QH + Lin
QLCm QH + Bm

GR Gödel logic on [0, 1], constant-domain linear Kripke frames
QLC + CD = ∀x(A(x) ∨B) → (∀xA(x) ∨B)

G0 Gödel logic on {0} ∪ [1/2, 1]
QLC + CD + K = ∀x¬¬A(x) →¬¬∀xA(x)

Gm m-valued Gödel logic: QH + Bm + CD
QC Classical logic

Table 1. Intermediate logics considered

Result Base logic
Conservativity over Yes Any 5.3
propositional logic
First ετ -Theorem Yes LC 9.10

Yes Any (for negated formulas) 9.11
Extended First ε-Theorem No Any except LCm 6.6

Yes C 9.6
Yes LC, KC (for negated formulas) 9.8
Yes LCm 9.9

Second ετ -Theorem No GR, QLCm 10.3
Yes Gm, QC 10.4

Table 2. Epsilon theorems for intermediate logics

quantifier-free and a quantifier-free formula with only 0-place predicate symbols
is called propositional. For the most part we will consider pure logics, i.e., logics
not involving the identity predicate =. We assume that function symbols are
available, however.

We use A, B, . . . , as metavariables for formulas, and t, s, . . . , as metavariables
for terms. We write A(x) to indicate that x occurs free in A. The result of
substituting s for all (free) occurrences of x in a term t or a formula A is indicated
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by t[s/x] or A[s/x]. When it is clear which variable x is intended, we write A(s)
for A[s/x]. The result of replacing every occurrence of a term t by a term s
in a formula A is indicated by A[s/t]. A substitution instance of a formula A
is any formula resulting from A by uniformly replacing any number of atomic
formulas P (t1, . . . , tn) by formulas B[t1/x1, . . . , tn/xn] (in such a way that free
variables of B are not captured by quantifiers in A of course). In particular,
a substitution instance of a propositional formula A is any formula resulting
from A by uniformly replacing any number of 0-place predicate symbols P by
formulas B.

Definition 2.1. A propositional logic L is a set of propositional formulas
closed under substitution and modus ponens, i.e., if L contains A→B and B it
also contains B. A predicate logic is a set of formulas closed under subsitution,
modus ponens, and the quantifier rules

B →A(x)

B →∀y A(y)

A(x) →B

∃y A(y) →B

which are subject to the eigenvariable condition: x must not be free in the
conclusion.

Logics can be characterized by the formulas derivable from a set of axiom
schemas by modus ponens. This is of course equivalent to closing the axioms
under substitution and modus ponens. For instance, intuitionistic propositional
logic H is obtained from the propositional axioms given in Troelstra and van
Dalen [1988, 4.1]. Classical propositional logic C and predicate logic QC are
obtained by adding ¬A ∨A (or alternatively ¬¬A→A) as an axiom.

Definition 2.2. An intermediate propositional logic L is a propositional logic
that contains H and is contained in C.

The following intermediate propositional logics will play important roles:

1. LC, characterized alternatively as the formulas valid on linearly ordered
Kripke frames or as infinite-valued Gödel logic,2 axiomatized over H using
the schema

(A→B) ∨ (B →A). (Lin)

2. LCm = LC+Bm, characterized as formulas valid on linearly ordered Kripke
frames of height < m, or as the Gödel logic on m truth values, also known
as Sm−1 [Hosoi 1966]. Here, Bm is:

(A1 →A2) ∨ (A2 →A3) ∨ · · · ∨ (Am →Am+1). (Bm)

3. KC, the logic of weak excluded middle [Jankov 1968], axiomatized over H
using the schema

¬A ∨ ¬¬A. (J)

2See [Dummett 1959]. Note that although there is only one infininite-valued Gödel logic
considered as a set of tautologies, there are infinitely many different consequence relations on

infinite truth-value sets with the Gödel truth functions [Baaz and Zach 1998].
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If L is an intermediate propositional logic, we can consider the corresponding
“elementary calculus,” i.e., the system obtained by replacing propositional vari-
ables with atomic formulas of a first-order language, with or without identity.
We will be interested in formulas provable in such an elementary calculus from
a set of assumptions Γ.

Definition 2.3. Suppose L is an intermediate logic. A proof π of A from Γ
in the corresponding elementary calculus is a sequence A1, . . . , An = A of
quantifier-free formulas such that each Ai is either a substitution instance of a
formula in L, is in Γ, or follows from formulas Ak and Al (k, l < i) by modus
ponens, and An ≡ A. We then write Γ ⊢π

L A. If such a proof π exists we write
Γ ⊢L and if Γ is empty, simply L ⊢ A. If L is not mentioned, we mean H.

Given a propositional logic L, and possibly a set of additional axiom schemas Ax
involving quantifiers, we can generate a predicate logic:

Definition 2.4. If L is a propositional logic, and Ax is a set of formulas, then
QL + Ax is the smallest predicate logic containing L, the standard quantifier
axioms

∀xA(x) →A(t) and

A(t) →∃xA(x),

and the formulas in Ax .

If QL + Ax contains intuitionistic predicate logic QH and is contained in
classical predicate logic QC, it is called an intermediate predicate logic.

Definition 2.5. Suppose L is a propositional logic. A proof π of A in QL+Ax
is a sequence A1, . . . , An = A of formulas of predicate logic such that each Ai is
either a substitution instance of a formula in L, of a standard quantifier axiom,
of a formula in Ax , or follows from previous formulas by modus ponens or a
quantifier rule. We then write QL + Ax ⊢π A. If such a proof π exists we write
QL + Ax ⊢ A.

A is a formula in QL + Ax iff QL + Ax ⊢ A. If L itself is characterized by
a set of propositional axioms, it is enough to require substitution instances of
axioms of L in the above definition. For instance, taking H as above, the proofs
in intuitionistic predicate logic QH are just the proofs in the system H2-IQC of
Troelstra and van Dalen [1988, 4.3].

If Ax is empty, QL = QL + Ax is the weakest pure intermediate predicate
logic extending L. For instance, QLC is the weakest predicate logic obtained
from LC, and is axiomatized by QH + Lin. It is complete for linearly-ordered
Kripke frames (see Corsi [1992], Skvortsov [2005]).

It is possible to extend the weakest predicate logic of an intermediate propo-
sitional logic L by adding intuitionistically invalid schemas Ax involving quan-
tifiers. Some important examples are the constant domain principle,

∀x(A(x) ∨B) → (∀xA(x) ∨B), (CD)
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the double negation shift (or Kuroda’s principle),

∀x¬¬A(x) →¬¬∀xA(x) (K)

and the quantifier shifts

(B →∃xA(x)) →∃x(B →A(x)) (Q∃)

(∀xA(x) →B) →∃x(B →A(x)) (Q∀)

QLC+CD axiomatizes the formulas valid in linearly-ordered Kripke frames with
constant domains, and also the first-order Gödel logic GR of formulas valid on the
interval [0, 1]. QH + K characterizes the formulas valid on Kripke frames with
the McKinsey property and QLC+CD +K is the logic of linear Kripke frames
with maximal element. It is also the first-order Gödel logic G0 of formulas valid
on {0} ∪ [1/2, 1]. QLCm is not complete for linear Kripke frames of height < m
(contrary to what one might expect). However, Gm = QLCm +CD is complete
for linearly ordered Kripke frames of height < m with constant domains. It is
also the m-valued first-order Gödel logic Gm.3

§3. ετ-Calculi for Intermediate Logics. Formulas and terms of the ετ -
calculus are defined by simultaneous induction, allowing that if A(x) is a formula
already defined, then εx A(x) and τx A(x) are terms. In εx A(x) and τx A(x) the
variable x is bound. We call terms of the form εx A(x) ε-terms and those of the
form τx A(x), τ -terms (collectively: ετ -terms).

As usual, we consider ε- and τ -terms to be identical up to renaming of bound
variables, and define substitution of ετ -terms into formulas, as in A(εx A(x)), so
that bound variables are tacitly renamed to avoid clashes.

Definition 3.1. A critical formula belonging to εx A(x) is any formula of the
form A(t) →A(εx A(x)).

A critical formula belonging to τx A(x) is any formula of the form A(τx A(x))→
A(t).

Definition 3.2. Suppose L is an intermediate propositional logic. An ετ -
proof π of B is a proof in the elementary calculus of L from critical formulas Γ
of the form

A(t) →A(εx A(x))

A(τx A(x)) →A(t).

We write Lετ ⊢ B if such a π exists, or Γ ⊢π
Lετ B when we want to identify the

critical formulas and the proof π.
The pure ετ -calculus Lετ of L is the set of quantifier-free formulas that have

ετ -proofs.

3See Skvortsov [2005] and Gabbay, Shehtman, and Skvortsov [2009] for the mentioned
Kripke completeness results and Baaz, Preining, and Zach [2007] for the characterizations

in terms of Gödel truth value sets. (Gm, GR,and G0 are the only axiomatizable first-order
Gödel logics.)
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We are interested in the relationships between intermediate predicate logics
QL + Ax and the ετ -calculus Lετ of their propositional fragment L. Since the
language of Lετ does not contain quantifiers, we must define a translation of
predicate formulas that do contain them into the language of the ετ -calculus.

Definition 3.3. The ετ -translation Aετ of a formula A is defined as follows:

Aετ = A if A is atomic

(A ∧B)ετ = Aετ ∧Bετ (A ∨B)ετ = Aετ ∨Bετ

(A→B)ετ = Aετ →Bετ (¬A)ετ = ¬Aετ

(∃xA(x))ετ = Aετ (εx A(x)ετ ) (∀xA(x))ετ = Aετ (τx A(x)ετ )

Again, substitution of ετ -terms for variables must be understood modulo re-
naming of bound variables so as to avoid clashes. Clearly, if A contains no
quantifiers, then Aετ = A.

The point of the classical ε-calculus is that it can replace quantifiers and quan-
tifier inferences. And indeed, in classical first-order logic, a first-order formula A
is provable iff its translation Aε is provable in the pure ε-calculus. The “if”
direction is the content of the second ε-theorem, while the “only if” direction
follows more simply by translating derivations.

We defined the ετ -calculus on the basis of a propositional logic L. It is also
possible to define an “extended” ετ -calculus by adding ετ -terms and critical for-
mulas to the full first-order language including quantifiers, and then considering
proofs in QL + Ax from critical formulas.

Definition 3.4. A proof π in (QL + Ax )ετ of A is a sequence of formulas
of the ετ -calculus (possibly containing quantifiers) ending in A in which each
formula is either an instance of a formula in L, an instance of a schema in Ax , a
standard quantifier axiom, a critical formula, or follows from preceding formulas
by modus ponens or a quantifier rule. We write (QL + Ax )ετ ⊢ A if such a π
exists.

The extended ετ -calculus (QL+Ax )ετ of QL+Ax is the set of formulas that
have proofs in (QL + Ax )ετ .

If A is quantifier-free and Lετ ⊢ A then (QL + Ax )ετ ⊢ A. One may won-
der, however, if (QL + Ax )ετ is stronger than Lετ in the sense that for some
formulas A, (QL + Ax )ετ ⊢ A but not Lετ ⊢ Aετ . This is not so as long as
the ετ -translations of the axioms Ax of QL + Ax are provable in Lετ ; then the
extended ε-calculus is conservative over the pure ε-calculus.

Lemma 3.5. Suppose QL+Ax is an intermediate predicate logic, and for each
quantifier axiom B ∈ Ax, Lετ ⊢ Bετ . If (QL + Ax )ετ ⊢ A, then Lετ ⊢ Aετ .

Proof. By standard proof transformations we may assume that the proof π
in (QL + Ax )ετ is such that every formula is used as a premise of at most
one modus ponens or quantifier inference, and that the eigenvariables of all
quantifier inferences are distinct (the proof is regular). The proof then proceeds
by induction on the length of π.
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Any formula B in π that is not the conclusion of an inference is either in L, a
critical formula, in Ax , or a standard quantifier axiom. Then Bετ is also either
an axiom in L, a critical formula (as can easily be seen from the definition of
the ετ -translation), or, if B ∈ Ax then Lετ ⊢ Bετ (by hypothesis). If B is a
standard quantifier axiom, its ετ -translation is a critical formula:

[A(t) →∃xA(x)]ετ = Aετ (t) →Aετ (εx A
ετ (x))

[∀xA(x) →A(t)]ετ = Aετ (τx A
ετ (x)) →Aετ (t)

If B→A(x) is derivable (where the eigenvariable x is not free in B), then so is
B → A(τx A(x)), by substituting τx A(x) everywhere x appears free in the part
of π leading to B→A(x), and renaming bound variables to avoid clashes. Thus,
if B is the conclusion of a quantifier inference, Lετ ⊢ Bετ . Similarly, if B(x)→A
is derivable, so is B(εx B(x)) →A. (Cf. Moser and Zach [2006, Lemma 7].) ⊣

As we’ll see in Section 4, the quantifier axioms of the intermediate predi-
cate logics considered in the preceding section satisfy the condition that the
ετ -translations of their additional quantifier axioms are derivable from critical
formulas alone (i.e., already in Lετ).

Corollary 3.6. If QL + Ax satisfies the conditions of Lemma 3.5, and A
contains no quantifiers, then (QL + Ax )ετ ⊢ A only if Lετ ⊢ A.

Proof. If A contains no quantifiers, then Aετ ≡ A. ⊣

Proposition 3.7. For any intermediate predicate logic QL + Ax,

(QL + Ax )ετ ⊢ ∀xA(x) ↔A(τx A(x)) and

(QL + Ax )ετ ⊢ ∃xA(x) ↔A(εx A(x)).

Proof. In each case, one direction is an instance of the corresponding quan-
tifier axiom, and the other direction follows from a critical formula by the
corresponding quantifier rule. For instance, A(εx A(x)) → ∃xA(x) is a stan-
dard quantifier axiom, and from the critical formula A(x) → A(εx A(x)) we get
∃xA(x) →A(εx A(x)) by the ∃-rule, since x is not free in A(εx A(x)). ⊣

Proposition 3.8. If QL + Ax satisfies the conditions of Lemma 3.5, then
(QL + Ax )ετ ⊢ A↔Aετ .

Proof. Since QL+Ax includes QH, the substitution rule B↔C ⊢ D(B)↔
D(C) is admissible. The result follows by induction on complexity of A and the
previous proposition. ⊣

§4. Critical Formulas and Quantifier Shifts. We will show later (Theo-
rem 5.3) that any ετ -calculus for an intermediate logic L is conservative over L.
It is well-known that the ετ -calculus over intuitionistic logic is not conserva-
tive over intuitionistic predicate logic. We’ll show now specifically that for any
intermediate logic L, the ετ -translations of all classically valid quantifier shift
principles are provable from critical formulas.
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C(x) t1 t2

∀x(A(x) ∨B) → (∀xA(x) ∨B) A(x) ∨B τx C(x) τx A(x) (CD)

(∃xA(x) ∨B) →∃x(A(x) ∨B) A(x) ∨B εx A(x) εx C(x)

∀x(A(x) ∧B) → (∀xA(x) ∧B) A(x) ∧B τx C(x) τx A(x)

(∃xA(x) ∧B) →∃x(A(x) ∧B) A(x) ∧B εx A(x) εx C(x)

(B →∃xA(x)) →∃x(B →A(x)) B →A(x) εx A(x) εx C(x) (Q∃)

∀x(B →A(x)) → (B →∀xA(x)) B →A(x) τx C(x) τx A(x)

(∀xA(x) →B) →∃x(A(x) →B) A(x) →B τx A(x) εx C(x) (Q∀)

∀x(A(x) →B) → (∃xA(x) →B) A(x) →B τx C(x) εx A(x)

∀x¬¬A(x) →¬¬∀xA(x) ¬¬A(x) τx ¬¬A(x) τx A(x) (K)

Table 3. Quantifier shift formulas whose ετ -translations are
critical formulas. In each case, x is not free in B, and the ετ -
translation of the quantifier shift formula on the left is C(t1)→
C(t2).

Quantifier shift formulas divide into two kinds. On the one hand, we have
conditionals the ετ -translations of which are critical formulas, and are therefore
provable in Lετ (see Table 3). On the other hand, we have formulas provable
from critical formulas together with some propositional principles, all of which
are intuitionistically valid and hence provable in all intermediate logics. For
instance, to obtain the ετ -translation of

(∀xA(x) ∨B) →∀x(A(x) ∨B),

take A1 = A(τx A(x)) and A2 = A(τx (A(x) ∨ B)). Then A1 → A2 is a critical
formula, viz.,

A(τx A(x)) →A(τx (A(x) ∨B)).

Apply modus ponens to it and the principle

(A1 →A2) → ((A1 ∨B) → (A2 ∨B)).

This same pattern works in all cases, the required critical formulas A1→A2 and
propositional principles are given in Table 4.

The most interesting quantifier shift formulas here are CD , Q∀, and Q∃, since
they are not intuitionistically valid. By contrast, we have:

Proposition 4.1. If L is an intermediate propositional logic, then:

1. Kετ , CDετ , (Q∃)ετ , and (Q∀)ετ are provable in Lετ .
2. K, CD, Q∃, and Q∀ are provable in (QL + Ax )ετ .

Proof. (1) They are critical formulas; see Table 3.
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(∀xA(x) ∨B) →∀x(A(x) ∨B) A1 = A(τx A(x)), A2 = A(τx (A ∨B))
∃x(A(x) ∨B) → (∃xA(x) ∨B) A1 = A(εx (A(x) ∨B)), A2 = A(εx A(x))

(A1 ∨B) → (A2 ∨B) (A1 →A2) → ((A1 ∨B) → (A2 ∨B))

∀x(A(x) ∧B) → (∀xA(x) ∧B) A1 = A(τx A(x)), A2 = A(τx (A(x) ∧B))
∃x(A(x) ∧B) → (∃xA(x) ∧B) A1 = A(εx (A(x) ∧B)), A2 = A(εx A(x))

(A1 ∧B) → (A2 ∧B) (A1 →A2) → ((A1 ∧B) → (A2 ∧B))

∃x(B →A(x)) → (B →∃xA(x)) A1 = A(εx (B →A(x))), A2 = A(εx A(x))
(B →∀xA(x)) →∀x(B →A(x)) A1 = A(τx A(x)), A2 = A(τx (B →A(x)))

(B →A1) → (B →A2) (A1 →A2) → ((B →A1) → (B →A2))

∃x(A(x) →B) → (∀xA(x) →B) A1 = A(τx A(x)), A2 = A(εx (A(x) →B))
(∃xA(x) →B) →∀x(A(x) →B) A1 = A(τx (A(x) →B)), A2 = A(εx A(x))

(A1 →B) → (A2 →B) (A1 →A2) → ((A2 →B) → (A1 →B))

Table 4. Proofs of ετ -translations of quantifier shift formulas.
In each case, x is not free in B, A1→A2 is a critical formula, the
ετ -translation of the formula is given on the left. The propo-
sitional principle on the right is provable in intuitionistic logic,
and the ετ -translation of the quantifier shift formula follows by
one application of modus ponens.

(2) Follows from Proposition 3.8. ⊣
The second ε-theorem states that if Aε is provable in the pure ε-calculus, then

A is provable in classical predicate logic. The second ε-theorem fails for any
intermediate predicate logic QL + Ax , in which Aετ is provable in Lετ but A is
not provable in QL + Ax , e.g., when QL + Ax does not prove one of K, CD ,
Q∃, or Q∀.

Note that the only intuitionistically invalid De Morgan rule for quantifiers,

¬∀xA(x) →∃x¬A(x), (Q)

is a special case of Q∀, taking ⊥ for B; Qετ is a critical formula. The ετ -
translation of double negation shift Kετ is

¬¬A(τx ¬¬A(x)) →¬¬A(τx A(x))

and is also a critical formula.
In classical first-order logic, both the addition of ε-operators and critical for-

mulas and the replacement of quantifiers by ε-operators is conservative. The pre-
vious results show that for extensions of first-order intuitionistic logic, this is not
the case: intuitionistically invalid quantified formulas (or their ετ -translations)
become provable. However, these quantifier shifts are provable in some interme-
diate logics, e.g., in some Gödel logics.
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We might think of ετ -terms semantically as terms for objects which serve the
role of generics taking on the role of quantifiers, and indeed in classical logic this
connection is very close. Because of the validity of

∃x(∃y A(y) →A(x)) (Wel1)

∃x(A(x) →∀y A(y)) (Wel2)

in classical logic, there always is an object x which behaves as an ε-term (A(x)
holds iff ∃xA(x) holds), and an object x which behaves as a τ -term (i.e., A(x)
holds iff ∀y A(y) holds). One might expect then that Wel1 and Wel2, when
added to QH, have the same effect as adding critical formulas, i.e., that all
quantifier shifts become provable. Note that Wel1 and Wel2 are intuitionistically
equivalent to

∃x∀y(A(y) →A(x)) (Wel ′1)

∃x∀y(A(x) →A(y)). (Wel ′2)

As is easily checked, QH ⊢ Wel1 ↔ Q∃ and QH ⊢ Wel2 ↔ Q∀, and even
QH ⊢ Wel2 → CD . However, QH + Wel1 ⊬ CD .4

§5. Lετ is Conservative over L. The classical ε-calculus is conservative
over propositional logic. Work by Bell [1993] and DeVidi [1995] shows that,
however, the addition of critical formulas to intuitionistic logic results in intu-
itionistically invalid propositional formulas becoming provable in certain simple
theories. These results require the presence of identity axioms. One may won-
der if these results can be strengthened to the pure logic and the ετ -calculus
alone. The following proposition shows that this is not the case. The addition
of critical formulas to intermediate logics alone does not have any effects on the
propositional level.

Definition 5.1. The shadow As of a formula is defined as follows:

P (t1, . . . , tn)s = XP

(t1 = t2)s = ⊤
(A ∧B)s = As ∧Bs (A ∨B)s = As ∨Bs

(A→B)s = As →Bs (¬A)s = ¬As

(∃xA(x))s = A(x)s (∀xA(x))s = A(x)s

where XP is a propositional variable and ⊤ is any theorem of L.
The shadow of a proof π = A1, . . . , An is As

1, . . . , As
n.

A first-order intermediate logic QL + Ax (over a propositional base logic L)
is preserved under shadow if L ⊢ Bs for all quantifier axioms B ∈ Ax .

The shadow of a formula is a propositional formula obtained by disregarding
all first-order structure. If an intermediate predicate logic QL+Ax is preserved
under shadow, the shadows of its theorems are already valid in L.

4See p. 694 of Skvortsov [2006].
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Proposition 5.2. Suppose QL+Ax is preserved under shadow. If A1, . . . , An ⊢(QL+Ax)ετ

B, then As
1, . . . , A

s
n ⊢L Bs. This also holds if identity axioms are present.

Proof. Consider a derivation π in (QL+Ax )ετ of B from A1, . . . , An, and
a formula C in π not a conclusion of an inference, and not among A1, . . . , An. If
C ∈ L, then also Cs ∈ L. If C is a critical formula, then Cs is of the form A→A.
If C is a standard quantifier axiom, we have (∀xA→A(t))s ≡ (A(t)→∃xA(x))s ≡
A(x)s →A(x)s, which again is in L. (Clearly, A(t)s ≡ A(x)s.)

If C is the conclusion of modus ponens from premises A and A→C, then Cs

follows from As and (A → C)s by modus ponens. If C is the conclusion of a
quantifier rule, the shadows of premise and conclusion are identical, e.g.,

(B →A(x))s ≡ Bs →A(x)s ≡ (B →∀xA(x))s

Thus we have shown that πs is a derivation of Bs from As
1, . . . , As

n in L.
This still holds if identity is present, as the shadows of identity axioms are:

(t = t)s ≡ ⊤ and

(t1 = t2 → (A(t1) →A(t2)))s ≡ ⊤→ (A(t1)s →A(t1)s)

since A(t1)s ≡ A(t2)s. Both are provable in H and thus in L. ⊣
All intermediate predicate logics mentioned above are preserved under shadow.

They are axiomatized by various quantifier shift principles. As we have seen in
the preceding section, the ετ -translations of all such quantifier shift principles
become provable in the corresponding ετ -calculus. However, the shadow of such
a quantifier shift principle is a formula of the form B → B. As a consequence,
we have the following conservativity result for all intermediate ετ -calculi:

Theorem 5.3. If QL + Ax is preserved under shadow, then (QL + Ax )ετ is
conservative over L for propositional formulas. In particular, no new proposi-
tional formulas become provable in Lετ by the addition of critical formulas to
any intermediate logic L, including intuitionistic logic itself.

Bell [1993] claimed that in the extended intuitionistic ε-calculus for QH with
identity, we have D ⊢QHετ M , where M is

¬(B ∧ C) → (¬B ∨ ¬C) (M)

and D is ∀x(x = a ∨ ¬x = a). M is an intuitionistically invalid direction of
De Morgan’s laws. Since the shadow Ds of D is the intuitionistically valid
formula ⊤ ∨ ¬⊤, this seems to contradict Lemma 5.2. The proof starts by
asserting that

∀x [(x = a ∧B) ∨ (x ̸= a ∧ C)] → (B ∧ C)

is provable in QH with identity. This is false, however, as the formula is not true
in any one-element model when B is true and C is false. Theorem 7 of DeVidi
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[1995] fails for the same reason. The results are correct with the additional
assumption a ̸= b.5

§6. The Extended First ετ-Theorem Fails unless L ⊢ Bm. In classical
first-order logic, the main result about the ε-calculus is the extended first ε-
theorem. It states that if A(e1, . . . , en), where the ei are ε-terms, is provable in

the pure ε-calculus, then there are ε-free terms tji such that

A(t1i , . . . , t
1
n) ∨ · · · ∨A(tki , . . . , t

k
n)

is provable in classical propositional logic alone. Such ε-terms ei appear as the
result of translating ∃x1 . . . ∃xn A(x1, . . . , xn) into the ε-calculus.

In the context of intermediate logics, we may formulate the statement as fol-
lows:

Definition 6.1. An intermediate logic L has the extended first ετ -theorem,
if, whenever Lετ ⊢ A(e1, . . . , en) for some ε- or τ -terms e1, . . . , en, then there

are ετ -free terms tji such that

L ⊢ A(t1i , . . . , t
1
n) ∨ · · · ∨A(tki , . . . , t

k
n).

We obtain a first negative result: if Lετ has the extended first epsilon theorem,
then an instance of Bm, i.e.,

(A1 →A2) ∨ . . . ∨ (Am →Am+1)

for some m ≥ 2 is provable already in the propositional fragment L.6 This rules
out an extended first ετ -theorem for, e.g., ετ -calculi for intuitionistic logic and
infinite-valued Gödel-Dummett logic.

Theorem 6.2. Suppose Lετ has the extended first ετ -theorem. Then L ⊢ Bm

for some m ≥ 2.

Proof. Consider Let A(z) ≡ (P (f(z))→P (z)) and ∃z A(z), i.e., ∃z(P (f(z))→
P (z)). Let e ≡ εz (P (f(z))→P (z)). The ετ -translation of ∃z A(z) is is P (f(e))→
P (e), i.e.,

V ≡ P (f(εz (P (f(z)) → P (z)))) → P (εz (P (f(z)) → P (z)))

Let U ≡ A(εx P (x)) ≡ P (f(εx P (x))) → P (εx P (x)). Note that U is of the form
P (t) → P (εx P (x)), so it is a critical formula. Also note that U → V is of the
form A(t) →A(e), and so U → V is also a critical formula.

5Bell provides another proof of M in intuitionistic ε-calculus which explicitly requires, in
addition to D, the assumption a ̸= b. DeVidi [1995] shows that in the intuitionistic ετ -
calculus, D ∧ a ̸= b derives Lin. (Note that also LC ⊢ M .) However, since the shadow
of a ̸= b is ¬⊤, these proofs do not conflict with our Lemma 5.2. Bell’s other examples of

intuitionistically invalid propositional formulas provable in ετ -calculi all require assumptions

of the form a ̸= b and also the axiom of ε-extensionality. The examples of derivations of M
and Lin in intuitionistic ετ -calculus given by Mulvihill [2015] avoid identity but require the

assumptions ∀x((P (x)→ P (a)) ∨ ¬(P (x)→ P (a))) and ¬(P (a)→ P (b)).
6For m = 2, this schema is equivalent to A ∨ ¬A: take ⊤ for A1, A for A2, ⊥ for A3.
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Since L ⊢ (U→V )→(U→V ), and U→V and U are critical formulas, Lετ ⊢ V .
By assumption, Lετ has the extended first ετ -theorem, so L proves a disjunction
of the form

(P (f(t1)) → P (t1)) ∨ · · · ∨ (P (f(tk)) → P (tk))

for some terms t1, . . . , tk. (This is a Herbrand disjunction of ∃z A(z).) Each
term ti is of the form f i(s) for some i ≥ 0 and a term s which does not start
with f . By rearranging the disjuncts to group disjuncts with the same innermost
term s together (using commutativity of ∨) and by adding additional disjuncts
as needed (using weakening), from this we obtain a formula

(P (f j1+1(s1)) → P (f j1(s1))) ∨ · · · ∨ (P (f(s1)) → P (s1)) ∨
...

(P (f jl+1(sl)) → P (f jl(sl))) ∨ · · · ∨ (P (f(sl)) → P (sl))

Let j be the largest among j1, . . . , jl. By uniformly replacing P (f i(sj)) by
Aj+2−i in the proof of the last formula and contracting identical disjuncts, we
obtain a proof in L of (A1→A2)∨· · ·∨(Aj+1→Aj+2). This is Bm for m = j+1,
and since j ≥ 1, m ≥ 2. ⊣

A formula of the form Bm is provable in L iff L is a finite-valued Gödel
logic LCn (Proposition 6.5). By contrast, no Bm is provable in intuitionistic
logic H, Jankov logic KC, or in infinite-valued Gödel logic LC (Proposition 6.3).

Proposition 6.3. 1. LCm ⊢ Bm

2. L ̸⊢ Bn for L any of LCm with m > n, LC, KC, H.

Proof. (1) Follows by definition, since LCm = LC + Bm.
(2) Let v(Ai) = 1/i if i < n and v(An+1) = 0. This is a valuation in a truth

value set with m elements if m > n (i.e., a valuation in the Gödel semantics
for LCm). It is also a valuation in the infinite truth value set [0, 1] of LC. For
all i ≤ n, v(Ai) > v(Ai+1) and hence v(Bn) < 1. So Bn is not a tautology of
LCm or LC. Since H ⊊ KC ⊊ LC, the result also follows for KC and H. ⊣

Proposition 6.4. H + Bm ⊢ Lin

Proof. Simultaneously substitute A for Ai if i is odd, and B for Ai if i is
even in Bm. The result is one of

(A→B) ∨ (B →A) ∨ · · · ∨ (A→B)

(A→B) ∨ (B →A) ∨ · · · ∨ (B →A)

Both are equivalent in H to (A→B) ∨ (B →A). ⊣

Proposition 6.5. If L ⊢ Bn, then L = LCm for some m.

Proof. Hosoi [1966] showed that the n-valued Gödel logic is axiomatized by
H + Rn−1, where Rn is

A1 ∨ (A1 →A2) ∨ · · · ∨ (An−1 →An) ∨ ¬An.
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By simultaneously substituting ⊤ for A1, and ⊥ for An+1, and Ai−1 for Ai (i = 2,
. . . , n) in Bn, we obtain

(⊤→A1) ∨ (A1 →A2) ∨ · · · ∨ (An−2 →An−1) ∨ (An−1 →⊥),

which is equivalent to Rn−1 in H. Hence, since L ⊢ Bn, LCn ⊆ L.
Furthermore, Hosoi [1967, Lemma 4.1] showed that if L ⊢ Lin then L = LCm

for some m or L = LC. Since L ⊢ Bn, L ⊢ Lin by Proposition 6.4. The result
follows as LC ⊬ Bn and so L ̸= LC.7 ⊣

Corollary 6.6. No intermediate logic except LCm has the extended first ετ -
theorem. In particular, intuitionistic logic H, Jankov logic KC, and infinite-
valued Gödel logic LC do not have the extended first ετ -theorem.

We have restricted L here to be an intermediate propositional logic. However,
it bears remarking that Theorem 6.2 does not require that L contains H. An
inspection of the proof shows that all that is required is that L ⊢ A → A, and
in L, ∨ is provably commutative, associative, and idempotent, and has weakening
(L ⊢ A→ (A ∨ B)). Thus, Corollary 6.6 applies to any ετ -calculus based on a
logic which has these properties (such as, say,  Lukasiewicz logic.)

The extended first ε-theorem in classical logic shows that if an existential
formula ∃xA(x) is provable, so is a disjunction of instances

∨
i A(ti). Clearly

this is equivalent to: if ∀xA(x) → B is provable so is
∧

A(ti) → B. Without
the interdefinability of ∀ and ∃, the question arises whether the alternative form
of the ε-theorem might hold in an intermediate ετ -calculus even if the standard
form does not. We’ll show that the versions are, in fact, equivalent even in
intermediate logics.

Proposition 6.7. The following are equivalent:

1. If Lετ ⊢ A(e) then L ⊢
∨

i A(t).
2. If B(e′) ⊢Lετ C then

∧
j B(sj) ⊢L C for C ετ -free.

3. If B(e′) ⊢Lετ C(e) then
∧

j B(sj) ⊢L

∨
i C(ti).

Proof. (1) implies (3): Suppose

B(e′) ⊢Lετ C(e).

By the deduction theorem,

⊢Lετ B(e′) → C(e).

By (1) we have terms si, ti so that

⊢
∨
i

(B(si) → C(ti))

7In Hosoi’s nomenclature, LCn is Sn−1 and LC is Sω .
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By intuitionistic logic,

⊢
∧
i

B(si) →
∨
i

C(ti) and so∧
i

B(si) ⊢
∨
i

C(ti)

by the deduction theorem.
(3) clearly implies (1) and (2).
(2) implies (1): Let X be a propositional variable. A ⊢H (A→X) →X. So if

Lετ ⊢ A(e) then by the deduction theorem,

A(e) →X ⊢Lετ X and by (2),∧
i

(A(si) →X) ⊢L X.

Now substitute
∨

i A(si) for X:∧
i

(A(si) →
∨
i

A(si)) ⊢L

∨
i

A(si).

The formula on the left is provable intuitionistically. ⊣

§7. Elimination Sets and Excluded Middle. The basic idea of Hilbert’s
proof of the extended first ε-theorem is this: Suppose we have a proof of E ≡
D(e) from critical formulas Γ,Λ(e), where e is a critical ε-term and Λ(e) is
a set of critical formulas belonging to e. Now we find terms t1, . . . , tk such
that replacing e by ti allows us to remove the critical formulas Λ(e), while at

the same time replacing the end-formula D(e) by
∨k

i=1 D(ti) and the remaining
critical formulas by Γ[t1/e], . . . , Γ[tk/e]. We repeat this procedure in such a
way that eventually all critical formulas are removed and we are left with a
disjunction of instances of E, as required by the first ε-theorem. The difficulty
of making this work lies in three challenges. The first is to find a suitable way of
selecting ε-terms e and corresponding critical formulas Λ(e) so that the Λ(e) can
be removed. The second is to ensure that in passing from Γ to Γ[ti/e] we again
obtain critical formulas.8 The third challenge is to guarantee that the process
eventually terminates with no critical formulas remaining.

In this section we address the first challenge by considering the condition that
suffices to overcome it: the existence of complete e-elimination sets (defined be-
low) for every ετ -term e. We then show why this condition is satisfied in classical
logic, so we can clarify the role of excluded middle in the proof for the classi-
cal case, as well as how the proof for classical logic and those for intermediate
logics given later correspond to one another. We will discuss the condition for
intermediate logics in Section 8 and the remaining challenges in Section 9.

8Replacing an ε-term in a critical formula by another term does in general not result in a
critical formula. E.g., let A(y) ≡ B(εx C(x, y), y) and e ≡ εx C(x, t) then A(t)[s/e] is B(s, t)

but A(εyA(y))[s/e] is just A(εyA(y)).
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Definition 7.1. Suppose Γ ⊢π
Lετ D with critical formulas Γ, and e is an ε-

term εx A(x) (τ -term τx A(x)). If C ≡ A(t)→A(εx A(x)) ∈ Γ (C ≡ A(τx A(x))→
A(t) ∈ Γ) we say e is the critical ετ -term of C, that e belongs to C, and that e
is a critical ετ -term of π.

Definition 7.2. Suppose Γ,Λ(e),Λ′(e) ⊢π
Lετ D(e) where Λ(e) ∪ Λ(e)′ are all

critical formulas belonging to e. A set of terms s1, . . . , sk is an e-elimination
set for π and Λ(e) if

Γ[s1/e], . . . ,Γ[sk/e],Λ
′(e) ⊢L D(s1) ∨ · · · ∨D(sk).

If Λ(e) is the set of all critical formulas belonging to e (i.e., Λ′(e) = ∅) then an
e-elimination set for Λ(e) is called a complete e-elimination set.

Here, Γ[si/e] means the result of replacing, in each formula in Γ, every occur-
rence of e by si. If T = {s1, . . . , sk} we write Γ[T ] for Γ[s1], . . . , Γ[sk]. Note
that we do not require in the definition of e-elimination sets that the formulas
in Γ[si/e] are actually critical formulas.

Lemma 7.3. If C ≡ A(t) → A(e) or C ≡ A(e) → A(t) is a critical formula
with critical ετ -term e, then C[s/e] is A(t[s/e]) → A(s) or A(s) → A(t[s/e]),
respectively.

Proof. Since e is the critical ε-term of C, e ≡ εx A(x) or e ≡ τx A(x).
Hence, e cannot occur in A(x), since otherwise it would be a proper subbterm
of itself. ⊣

Lemma 7.4. If Γ ⊢L D then Γ[t/e] ⊢L D[t/e]

Proof. Any proof of D from Γ using modus ponens and axioms of L remains
correct if terms in it are uniformly replaced by other terms. ⊣

Lemma 7.5. In any intermediate logic L:

1. If Γ, A ⊢ C and Γ′, B ⊢L D then Γ,Γ′, A ∨B ⊢ C ∨D.
2. If Γ, A ⊢L C and B ⊢ A, then Γ, B ⊢ C.

We are now in a position to apply the preceding lemmas and the concept
of elimination sets to the case of classical logic. This elucidates how the first
challenge is solved in the proof of the extended first ετ -theorem for classical
logic where τ -terms and corresponding critical formulas may also be present.
(For Hilbert’s original proof for the ε-calculus without τ -terms, see Hilbert and
Bernays [1939] or Moser and Zach [2006].)

Proposition 7.6. In Cετ , every critical formula C(e) has an e-elimination
set.

Proof. Suppose first that e is an ε-term; then C(e) is A(s)→A(e). Let Λ′(e)
be the critical formulas belonging to e other than C(e), and Γ the remaining
critical formulas for which e is not critical. So we have:

Γ,Λ′(e), A(s) →A(e) ⊢C D(e)
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On the one hand, by replacing e everywhere by s we get

Γ[s/e],Λ′(s), A(s[s/e]) →A(s) ⊢C D(s)

and by Lemma 7.5(2), since A(s) ⊢ A(t[s/e]) →A(s) ∈ Λ′(s) and A(s) ⊢ C(s),

Γ[s/e], A(s) ⊢C D(s)

On the other hand, since ¬A(s) ⊢ A(s) →A(e),

Γ,¬A(s) ⊢C D(e) and so,

Γ,Γ[s/e], A(s) ∨ ¬A(s) ⊢C D(e) ∨D(s).

by Lemma 7.5(1). Since C ⊢ A(s) ∨ ¬A(s) we have

Γ,Γ[s/e] ⊢C D(e) ∨D(s)

Thus, {e, s} is an e-elimination set for the critical formula C(e).
Similarly, if e is a τ -term and C(e) is A(e) →A(s) we get

Γ[s/e],Λ′(s), C(s) ⊢C D(s)

and by Lemma 7.5(2), since ¬A(s) ⊢ C ′ ∈ Λ′(e) and ¬A(s) ⊢ C(s),

Γ[s/e],¬A(s) ⊢C D(s)

On the other hand, A(s) ⊢ C(e), so

Γ, A(s) ⊢C D(e) and

Γ,Γ[s/e],¬A(s) ∨A(s) ⊢C D(e) ∨D(s).

by Lemma 7.5(1). ⊣
More generally, the set of all critical formulas belonging to e has a (complete)

e-elimination set in C:

Proposition 7.7. In Cετ , every critical ετ -term has a complete e-elimination
set.

Proof. Let C1 ≡ A(s1) → A(e), . . . , Ck ≡ A(sk) → A(e) be the critical
formulas belonging to e if e is an ε-term. Since

Γ, C1(e), . . . , Ck(e) ⊢C D(e), also

Γ[si/e], C1(si), . . . , Ck(si) ⊢C D(si)

(writing Cj(si) for Cj [si/e]). Since A(si) ⊢ A(sj(si)) →A(si) ≡ Cj(si),

Γ[si/e], A(si) ⊢C D(si)

by Lemma 7.5(2). By applying Lemma 7.5(1),

Γ[s1/e], . . . ,Γ[sk/e], A(s1) ∨ · · · ∨A(sk) ⊢C D(s1) ∨ · · · ∨D(sk).
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On the other hand, since ¬A(si) ⊢ A(si) →A(e), we get ¬A(s1) ∧ . . . ∧A(sk) ⊢
Cj(e) for each j = 1, . . . , k, so we also have, from the first line by Lemma 7.5(2),

Γ,¬A(s1) ∧ . . . ∧ ¬A(sk) ⊢C D(e).

Since
∨

i A(si) ∨ (
∧

i ¬A(si)) is an instance of excluded middle, we have

Γ,Γ[s1/e], . . . ,Γ[sk/e] ⊢C D(e) ∨D(s1) ∨ · · · ∨D(sk).

If e is a τ -term, then the critical formulas are of the form Cj(e) ≡ A(e) →
A(sj(e)) and consequently Cj(si) is A(si)→A(sj(si)). Each is implied by ¬A(si),
so we have

Γ[s1/e], . . . ,Γ[sk, e],¬A(s1) ∨ · · · ∨ ¬A(sk) ⊢C D(s1) ∨ · · · ∨D(sk)

On the other hand, A(s1) ∧ · · · ∧A(sk) ⊢ A(e) →A(sj), so

Γ, A(s1) ∧ · · · ∧A(sk) ⊢C D(e)

and consequently

Γ,Γ[s1/e], . . . ,Γ[sk/e] ⊢C D(e) ∨D(s1) ∨ · · · ∨D(sk),

since
∧

i A(si) ∨
∨

i ¬A(si) is a tautology.
In each case, {e, s1, . . . , sk} is an e-elimination set. ⊣

Remark 7.8. Of course, the fact that in C we have complete e-elimination sets
can also be obtained by applying Proposition 7.6 k-many times. Applying it to
C1(e) results in T1 = {e, s1(e)}, applying it to C2(e) in T2 = {e, s1(e), s2(e), s1(s2(e))},
to C3 in T3 = {e, s1(e), s2(e), s1(s2(e)), s3(e), s1(s3(e)), s2(s3(e)), s1(s2(s3(e)))},
etc., i.e., the resulting disjunction has 2k+1 disjuncts, whereas the disjunction
resulting from Proposition 7.7 only has k+1 disjuncts. However, see Remark 9.7.

We know that intermediate logics other than LCm do not have the extended
first ετ -theorem and so not every ετ -term will have complete e-elimination sets.
However, if the starting formula E is of a special form, they sometimes do. In
the proof for the classical case above, this required excluded middle. But it need
not. For instance, if E is negated, then weak excluded middle (¬A ∨ ¬¬A) is
enough.

Proposition 7.9. If L ⊢ J , then every ετ -term in an Lετ -proof of
∨

j ¬Dj

has a complete e-elimination set.

Proof. Let C1 ≡ A(s1) → A(e), . . . , Ck ≡ A(sk) → A(e) be the critical
formulas belonging to e if e is an ε-term. As before, we have

Γ[si/e], A(si) ⊢L

∨
j

¬Dj(si)

In KC, B → (¬C1 ∨ ¬C2) ⊢ ¬¬B → (¬C1 ∨ ¬C2), so

Γ[si/e],¬¬A(si) ⊢L

∨
j

¬Dj(si)
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We obtain

Γ[s1/e], . . . ,Γ[sk/e],

¬¬A(s1) ∨ · · · ∨ ¬¬A(sk) ⊢L

∨
j

¬Dj(s1) ∨ · · · ∨
∨
j

¬Dj(sk)

Again as before, we have

Γ,¬A(s1) ∧ . . . ∧ ¬A(sk) ⊢L

∨
j

¬Dj(e),

and together

Γ[s1/e], . . . ,Γ[sk/e],Γ,

(¬A(s1) ∧ . . . ∧ ¬A(sk)) ∨

¬¬A(s1) ∨ · · · ∨ ¬¬A(sk) ⊢L

∨
j

¬Dj(e) ∨
∨
j

¬Dj(s1) ∨ · · · ∨
∨
j

¬Dj(sk)

Since

(¬A(s1) ∧ . . . ∧ ¬A(sk)) ∨ ¬¬A(s1) ∨ · · · ∨ ¬¬A(sk)

is provable from weak excluded middle, the claim is proved. ⊣

§8. Elimination Sets using Bm and Lin. We’ve showed in Theorem 6.2
that the provability of Bm for some m ≥ 2 is a necessary condition for an
intermediate logic to have the extended first ετ -theorem. In this section, we
show that it is also sufficient: if L ⊢ Bm for some m, then every critical ετ -term
has a complete e-elimination set.

We use the notion of e-elimination sets developed in Section 7: the existence of
an e-elimination set for a set of critical formulas Λ guarantees that these critical
formulas can be removed from a proof, while the end-formula is replaced by a
disjunction of instances of the original end-formula. The proofs of the existence
of e-elimination sets proceed by replacing an ετ -term e in such a way that the
disjunction of formulas Λ′ resulting from such replacements become (provable
from) tautologies in the underlying propositional logic. In Proposition 7.6, we
showed how to do this for a single critical formula A(s)→A(e) in classical logic:
We replace e first by s resulting in A(s[s/e]) → A(s) ⊢ D(s), and then by itself
(i.e., no replacement), resulting in A(s) →A(e) ⊢ D(e). This gives

(A(s[s/e]) →A(s)) ∨ (A(s) →A(e)) ⊢ D(s) ∨D(e),

but the formula on the left is a classical tautology. When eliminating multiple
critical formulas at the same time (e.g., all critical formulas belonging to a single
ετ -term), the resulting tautologies are more complicated. In the original proof,
they are all equivalent to excluded middle, and so the proofs do not apply to
intermediate propositional logics. Below, we show how this can nevertheless be
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done as long as the underlying propositional logic contains Bm. We have to
distinguish two kinds of critical formulas:

Definition 8.1. A critical formula A(s) → A(e) (or A(e) → A(s) if e is a τ -
term) is called predicative if e does not occur in s, and impredicative otherwise.9

If all critical formulas are predicative, L ⊢ Lin suffices (Lemma 8.5). If L ⊢ Bm

for some m, we can eliminate the impredicative critical formulas for some ετ -
term e in a similar way: by successively replacing e by suitable terms, we obtain a
proof of a disjunction of instances of D(e) from a formula provable from Bm. The
number m determines the number of necessary replacements. Once impredicative
critical formulas are removed, we can use Lemma 8.5 to remove the remaining
predicative critical formulas.

We prove the result for impredicative critical formulas first (Lemma 8.3). In
preparation for the proof we first consider an example to illustrate the basic idea.
Suppose LC3ετ ⊢ D(e) with the set of critical formulas

Cs(e) ≡ A(s(e)) →A(e)

Ct(e) ≡ A(t(e)) →A(e)

Cu(e) ≡ A(u) →A(e)

Cv(e) ≡ A(v) →A(e)

where terms u and v do not contain e. Let C(e) be the conjunction of these
critical formulas. We have Cs(e), Ct(e), Cu(e), Cv(e) ⊢LC3

D(e).
We’ll consider sets of terms Xi where X0 = {e} and Xi+1 = {s(x), t(x) : x ∈

Xi}. For the sake of readability we will leave out parentheses then writing these
terms, e.g., s(t(e)) is abbreviated as ste.

For every w ∈ X1 we have C(w) ⊢ D(w). So, by applying Lemma 7.5(1) twice,
we get:

C(se) ∨ Cs(e),

C(te) ∨ Ct(e),

Cu(e), Cv(e) ⊢LC3 D(e) ∨D(se) ∨D(te)

By distributivity, C(se) ∨ Cs(e) is equivalent to

(Cs(se) ∨ Cs(e)) ∧ (Ct(se) ∨ Cs(e)) ∧
(Cu(se) ∨ Cs(e)) ∧ (Cv(se) ∨ Cs(e))

9The terminology is chosen in analogy to the notion of predicative definition, in which the

definiens does not itself involve (quantification over) the thing being defined. Likewise here,
the “definition” A(s) of the ε-term e does not mention the ε-term e it defines if the critical
formula is predicative. Such restrictions of definitions (and instances of comprehension) are
the basis of predicative mathematics, which goes back to Weyl and Russell. There is, however,

no deeper connection between our choice of terminology and predicative mathematics.
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Thus we get

Cs(se) ∨ Cs(e), Ct(se) ∨ Cs(e),

Cu(se) ∨ Cs(e), Cv(se) ∨ Cs(e),

C(te) ∨ Ct(e),

Cu(e), Cv(e) ⊢LC3
D(e) ∨D(se) ∨D(te).

We have

Cu(e) ≡ A(u) →A(e) ⊢LC3 (A(u) →A(se)) ∨ (A(se) →A(e)) ≡ Cu(se) ∨ Cs(e)

using Lin. Similarly, Cv(e) ⊢LC3
Cv(se) ∨ Cs(e), so we have by Lemma 7.5(2):

Cs(se) ∨ Cs(e), Ct(se) ∨ Cs(e),

C(te) ∨ Ct(e),

Cu(e), Cv(e) ⊢LC3 D(e) ∨D(se) ∨D(te)

Repeating this consideration with C(te) ∨ Ct(e) yields

Cs(se) ∨ Cs(e), Ct(se) ∨ Cs(e),

Cs(te) ∨ Ct(e), Ct(te) ∨ Ct(e),

Cu(e), Cv(e) ⊢LC3
D(e) ∨D(se) ∨D(te)

Note that each of the four resulting disjunctions has as first disjunct a substi-
tution instance of a critical formula of the form Cs(w) or Ct(w) where w ∈
X1. X2 are the terms of the form s(w) and t(w). So we can repeat the
process, pairing C(s(w)) with Cs(w) and C(t(w)) with Ct(w), i.e., obtaining
C(sse) ∨ Cs(se) ∨ Cs(e), C(tse) ∨ Ct(se) ∨ Cs(e), etc. In each case, after dis-
tributing and removing conjuncts of the form Cu(w) ∨ . . . we are left with now
eight disjunctions:

Cs(sse) ∨ Cs(se) ∨ Cs(e),

Ct(sse) ∨ Cs(se) ∨ Cs(e),

...

Ct(tte) ∨ Ct(te) ∨ Ct(e),

Cu(e), Cv(e) ⊢LC3
D(e) ∨D(se) ∨D(te) ∨D(sse) ∨ · · · ∨D(tte)

It remains to show that the formulas on the right of the turnstile are provable
in LC3. First, consider a formula of the form Ci(w) ∨ · · · ∨ Cj(e), e.g.,

Cs(tse) ∨ Ct(se) ∨ Cs(e), i.e.,

(A(stse)) →A(tse)) ∨ (A(tse) →A(se)) ∨ (A(se) →A(e))

In each disjunct, the consequent equals the antecedent of the disjunct immedi-
ately to the right, i.e., it is a substitution instance of

(A1 →A2) ∨ (A2 →A3) ∨ (A3 →A4)
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i.e., of B3. Since LC3 ⊢ B3, these are all provable.
If we take D′(e) to be the disjunction obtained on the right, we have

Cu(e), Cv(e) ⊢LC3
D′(e) and thus also

Cu(u), Cv(u) ⊢LC3
D′(u) and

Cu(v), Cv(u) ⊢LC3 D′(v).

As Cu(u) and Cv(v) are of the form A→A this reduces to

Cu(v) ⊢LC3 D′(u) and

Cv(u) ⊢LC3
D′(v) and therefore:

Cu(v) ∨ Cv(u) ⊢LC3
D′(u) ∨D′(v).

But Cu(v) ∨ Cv(u) is an instance of Lin.

Lemma 8.2. If L ⊢ Lin, then for all m,

A1 →Am+1 ⊢L (A1 →A2) ∨ · · · ∨ (Am →Am+1).

Proof. By induction on m. If m = 1, this amounts to the claim: A1→A2 ⊢L

A1 →A2, which is trivial. Now suppose the claim holds for m. Then

A1 →Am+2 ⊢L (A1 →Am+1) ∨ (Am+1 →Am+2)

from the instance (A1→Am+1)∨ (Am+1→A1) of Lin. By induction hypothesis,

A1 →Am+1 ⊢L (A1 →A2) ∨ · · · ∨ (Am →Am+1)

and the claim follows by H. ⊣

Lemma 8.3. Suppose L ⊢ Bm. If ∆(e) are the impredicative critical formulas
belonging to the ετ -term e, then ∆(e) has an e-elimination set.

Proof. Suppose Γ,∆(e),Π(e) ⊢L D(e), where Π(e) is the set of predicative
critical formulas belonging to e.

Suppose Π(e) and ∆(e) consist of, respectively, the critical formulas

Cui
(e) ≡ A(ui) →A(e)

Csi(e) ≡ A(si(e)) →A(e).

The proof generalizes the preceding example: we successively substitute terms
for e in such a way that a disjunction of instances of D is implied by substitution
instances of the critical formulas in Γ together with a disjunction of the form Bm

plus the predicative critical formulas Π(e). Once k = m, the disjunction becomes
provable from Bm.

Let T0 = {e} and Ti+1 = {sj(t) : t ∈ Ti, j ≤ r}. Let Γ(T ) = {C[t/e] : C ∈
Γ, t ∈ T}. If w is a word over {s1, . . . , sr}, i.e., w = si1 . . . sik then we write
wj(t) for sij (sij+1(. . . sik(t) . . . )). So e.g., if w = sst then w1(e) is s(s(t(e))),
w3(e) = t(e) and w4(e) = e. Let W (m) be the set of all length m words over s1,
. . . , sr.
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We show by induction on m that

Γ,Γ(T1), . . . ,Γ(Tm−1),Λm,Π(e) ⊢L

m∨
i=1

∨
t∈Ti−1

D(t)

where

Λi = {
m∨
i=1

C(w, i) : w ∈ W (m)} and

C(w, i) ≡ A(wi(e)) →A(wi+1(e)).

The induction basis is m = 1. Then

T1 = {s1(e), . . . , sr(e)},
W (1) = {s1, . . . , sr},

C(sj , 1) ≡ A(sj(e)) →A(e)

and so each disjunction in Λi is just one of the impredicative critical formulas
A(sj(e)) → A(e)), i.e., Λ1 = ∆(e). Likewise, the disjunction on the right is
just D(e). So the claim holds by the assumption that Γ,∆(e),Π(e) ⊢ D(e).

Now let v = si1 . . . sim be a length m word, and

Λm(v) = {
m∨
i=1

(A(wi(e)) →A(wi+1(e)) : w ∈ W (m) \ {v}}

C(v) ≡
m∨
i=1

(A(vi(e)) →A(vi+1(e))

In other words, Λm = Λm(v) ∪ {C(v)}. We’ll abbreviate Γ(T1), . . . , Γ(Tm−1)
as Γ′, and

∨m
i=1

∨
t∈Ti−1

D(t) as D′. The induction hypothesis can then be writ-
ten as:

Γ,Γ′, C(v),Λm(v),Π(e) ⊢L D′

Take t = v1(e) i.e., si1(. . . sim(e)). By replacing e by t in π, we have

Γ(t),Λ(t),Π(t) ⊢L D(t) and so also

Γ(t),
∧

Λ(t) ∧
∧

Π(t) ⊢L D(t)

Combining this with the induction hypothesis using Lemma 7.5(1) we have

Γ,Γ′,Γ(t),

(
∧

Λ(t) ∧
∧

Π(t)) ∨ C(v),

Λm(v),Π(e) ⊢L D′ ∨D(t)
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If we write Ξ ∨G for {F ∨G : F ∈ Ξ}, by distributivity,

Γ,Γ′,Γ(t),

Λ(t) ∨ C(v),

Π(t) ∨ C(v),

Λm(v),Π(e) ⊢L D′ ∨D(t)

Recall that t ≡ v1(e) where v is a word of length m. The formulas in Π(t) are of
the form A(ui) →A(v1(e)), so a formula in Π(t) ∨ C(v) is of the form

(A(ui) →A(v1(e))) ∨ (A(v1(e)) →A(v2(e))) ∨ · · · ∨ (A(vm(e)) →A(e)).

Every such formula is implied by A(ui)→A(e) by Lemma 8.2, since H+Bm ⊢ Lin
by Proposition 6.4. Since A(ui) →A(e) is in Π(e), we get:

Γ,Γ′,Γ(t),Λ(t) ∨ C(v),Λm(v),Π(e) ⊢L D′ ∨D(t)

Every formula in Λ(t) ∨ C(v) is of the form Bm, specifically,

(A(si(v1(e))) →A(v1(e))) ∨ (A(v1(e)) →A(v2(e))) ∨ · · · ∨ (A(vm(e)) →A(e)).

Since for each i ≤ r, A(si(v1(e)))→A(v1(e)) ∈ Λ(t), Λ(t)∨C(v) is the set of all
disjunctions

m+1∨
i=1

(A(wi(e)) →A(wi+1(e))

where w = siv for some i ≤ r. As every length m + 1 word is of this form for
some length m word v, repeating this process for all length m words v thus yields

Γ,Γ′,Γ(Tm),Λm+1,Π(e) ⊢L D′ ∨
∨

t∈Tm

D(t)

As we’ve seen, a formula in Λm is of the form Bm, so in L + Bm, we have

Γ,Γ(T1), . . . ,Γ(Tm−1),Π(e) ⊢L

m∨
i=1

∨
t∈Ti−1

D(t)

Thus, the claim follows by taking T = {e} ∪ Tm−1.
If e is a τ -term, the proof proceeds analogously. The resulting formulas in Λ(e)

are then of the form (Am→Am+1)∨· · ·∨(A1→A2) which is equivalent to Bm. ⊣

Lemma 8.4. If L ⊢ Lin,

1. L ⊢
∨m

j=1

∧m
i=1(Ai →Aj)

2. L ⊢
∨m

j=1

∧m
i=1(Aj →Ai)

Proof. As propositional infinite-valued Gödel logic GR is axiomatized by
H + Lin, it suffices to show that the formulas are valid in the Gödel logic based
on the truth value set [0, 1]. For (1), in any given valuation, one of the Aj must
be maximal, i.e., Ai →Aj has value 1 in it for all i. For (2), one of the Aj must
be minimal. ⊣
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Lemma 8.5. Suppose L ⊢ Lin and Γ,Π(e) ⊢L D(e), where Π(e) are the pred-
icative critical formulas A(uj) →A(e) belonging to e, there are no impredicative
critical formulas belonging to e, and Γ are critical formulas for which e is not
critical. Then Π(e) has a complete e-elimination set.

Proof. First suppose e is an ε-term. Replacing e by uj results in a proof
showing

Γ[uj/e],

p∧
i=1

(A(ui) →A(uj)) ⊢L D(uj)

By applying Lemma 7.5(1), we get

⋃
j

Γ[uj/e],

p∨
j=1

p∧
i=1

(A(ui) →A(uj)) ⊢L

∨
j

D(uj)

The disjunction of conjunctions on the left is provable in L+Lin by Lemma 8.4(1).
If e is a τ -term, we get⋃

j

Γ[uj/e],

p∨
j=1

p∧
i=1

(A(uj) →A(ui)) ⊢L

∨
j

D(uj)

and the claim follows by Lemma 8.4(2). ⊣

Theorem 8.6. If L ⊢ Bm for some m, then Lετ has complete e-elimination
sets.

Proof. Suppose Γ,Π(e),∆(e) ⊢L D(e), where Π(e) are the predicative criti-
cal formulas belonging to e, ∆(e) the impredicative formulas belonging to e, and
Γ are critical formulas for which e is not critical. By Lemma 8.3, Γ[T ],Π(e) ⊢L∨

t∈T D(t) where T = {e} ∪ Tm−1. Since L + Bm ⊢ Lin by Proposition 6.4,
Lemma 8.5 applies and so

⋃
j T [uj/e] is a complete e-elimination set. ⊣

Remark 8.7. The proof of Proposition 7.7 provides essentially Hilbert’s way
of computing e-elimination sets using excluded middle. However, instead of
excluded middle A ∨ ¬A, classical logic can also be axiomatized over H by B2,
i.e., (A → B) ∨ (B → C). The method of computing e-elimination sets using
Lemmas 8.3 and 8.5 applied to LC2 = C provides a method for computing e-
elimination sets (and hence of Herbrand disjunctions) different from Hilbert’s
method.

§9. The Hilbert-Bernays Elimination Procedure. Recall that the chal-
lenges in the proof of the extended first ετ -theorem include, in addition to the
existence of complete elimination sets, guarantees that the new sets Γ[si/e] are
in fact critical formulas (so eliminating a set Λ(e) of critical formulas yields a
correct Lετ -proof), and that the process eventually terminates. In Hilbert and
Bernays’s original proof of the first ε-theorem, this was ensured by processing
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sets of critical formulas in a specific order. We briefly review this proof, concen-
trating on its structure, since we’ll apply the same method to critical formulas
in ετ -proofs for intermediate logics.

Definition 9.1. Suppose ⊢π1

Lετ D1. A sequence ⟨Λ1(e1), T1⟩, . . . , ⟨Λk(ek), Tk⟩
is an ετ -elimination sequence iff, for each i,

1. Λi(ei) is a set of critical formulas belonging to ei,
2. Γi,Λ

′(e),Λi(ei) ⊢πi

Lετ Di, where Λ′(e) are the critical formulas for ei not in
Λi(ei), and Γi the remaining critical formulas in πi,

3. Ti is an ei-elimination set for πi and Λi(ei)
4. Γi+1 = Γi[Ti/ei] and Di+1 =

∨
t∈Ti

Di[t/ei],
5. Γi+1 ⊢Lετ Di+1,

and Γk+1 = ∅, that is, L ⊢πk+1 Dk+1. If all Λ′(ei) = ∅ (i.e., Ti is a complete
elimination set for ei), we say the sequence is a complete elimination sequence.

An ετ -elimination sequence is a sequence of ετ -terms ei and sets of critical
formulas Λ(ei) belonging to it, such that eliminating Λi(ei) from proof πi results
in a new proof πi+1 of a disjunction of instances of D(ei). This new proof
proceeds from instances of the critical formulas for which ei is not critical and
the remaining critical formulas belonging to ei. Since the definition requires πi

to be an ετ -proof, the formulas in Γ[Ti] must actually be critical formulas.
If an ετ -elimination sequence exists for a formula E and its ετ -proof π0, then

the extended first ετ -theorem holds for E:

Proposition 9.2. Suppose π is an Lετ proof of E(u1, . . . , un) where E(x1, . . . , xn)
is ετ -free. Suppose furthermore that an ετ -elimination sequence exists for π.

Then there are tuples of terms ti1, . . . , tin such that L ⊢
∨l

i=1 E(ti1, . . . , tin).

Proof. Since E(x1, . . . , xn) is ετ -free, E(ti1, . . . , tin)[s/e] ≡ E(ti1[s/e], . . . , tin[s/e]).
The result follows by induction on k, the length of the ετ -elimination sequence
for π. ⊣

For the proof of the extended first ετ -theorem, then, it is sufficient to show
that suitable e-elimination sets always exist, and that ετ -terms e and sets of
associated critical formulas can be successively chosen in such a way as to yield
an ετ -elimination sequence for π1. Hilbert and Bernays did this by defining a
well-ordering of ετ -terms with the property that eliminating maximal ετ -terms
according to this ordering guarantees that the Γ[Ti] are again critical formulas,
and that in each step no critical ετ -terms are newly introduced which are larger
(in the ordering).

The ordering used is the lexicographic order on two complexity measures of
ετ -terms e. We say that e is nested in an ετ -term e′ if e is a proper subterm
of e, i.e., if every occurrence of a variable which is free in e is also free in e′. An
ετ -term e is subordinate to e′ ≡ εx A(x) or ≡ τx A(x) if e occurs in e′ and x is
free in e. The degree deg(e) of e is the maximal level of nesting of subterms of e;
the rank rk(e) the maximal level of subordination. When C is a critical formula
belonging to e, we let deg(C) = deg(e) and rk(C) = rk(e).
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The Hilbert-Bernays elimination order proceeds by always picking a critical
formula of maximal degree among the critical formulas of maximal rank. Its
success relies on the following two lemmas, which establish that (a) replacement
of maximal ετ -terms in a critical formula results in a critical formula, and (b) if
new critical formulas are generated, they are of lower rank, or of the same rank
but of lower degree.

Lemma 9.3. Suppose e is an ετ -term, t any term, C is a critical formula for
which e is not critical, and rk(C) ≤ rk(e). Then C[t/e] is also a critical formula.

Lemma 9.4. Suppose e is an ετ -term, t any term, C is a critical formula for
which e is not critical, rk(C) ≤ rk(e), and if rk(C) = rk(e) then deg(C) ≤ deg(e).
Then rk(C[t/e]) ≤ rk(e), and if rk(C[t/e]) = rk(e), then deg(C[t/e]) ≤ deg(e)

The proofs of the preceding lemmas are as in Hilbert and Bernays [1939]; see
also Moser and Zach [2006, §5] and Zach [2017, §4.1].

Proposition 9.5. Suppose π is an Lετ proof of E(u1, . . . , un) where E(x1, . . . , xn)
is ετ -free. Suppose furthermore that for every Lετ proof and critical ετ -term e
there is a complete e-elimination set. Then there is a complete ετ -elimination
sequence for π.

Proof. Take π0 = π. Suppose πi has been defined. Let ei be a critical
ετ -term of πi of maximal degree among the critical terms of maximal rank.
Let Λi(ei) be all critical formulas belonging to ei, and Γi the remaining critical
formulas. We have

Γi,Λi(ei) ⊢Lετ Di

By assumption, there is a complete e-elimination set Ti for Λi(ei) and so we have
πi+1 showing that

Γi[Ti] ⊢Lετ

∨
t∈Ti

Di[t/ei]

Each critical formula C in Γi is not of higher rank than ei, and if it is of equal
rank it is not of higher degree. So by Lemma 9.3, C[t/ei] is a critical formula.
Hence πi+1 is a correct Lετ -proof. Let Γi+1 = Γi[Ti] and Di+1 ≡

∨
t∈Ti

Di[t/ei].

Eventually, Γi = ∅, since in each step, by Lemma 9.4, the maximal rank
of critical ετ -terms in Γi does not increase, the maximal degree of critical ετ -
terms of maximal rank does not increase, and the number of critical ετ -terms of
maximal degree among those of maximal rank decreases. ⊣

Corollary 9.6. The extended first ετ -theorem holds for C.

Proof. By Proposition 7.7, every critical ετ -term has complete elimination
sets. So by Proposition 9.5, there always is an elimination sequence. The ex-
tended first ετ -theorem follows by Proposition 9.2. ⊣
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Remark 9.7. The traditional procedure following the Hilbert-Bernays order,
which eliminates all critical formulas belonging to a maximal ετ -term together,
is not the only possible procedure that guarantees termination. We pointed out
in Remark 7.8 that using Proposition 7.6 for all critical formulas belonging to
a single ετ -term results in a larger disjunction than Proposition 7.7. Despite
this, the ability in the classical case to eliminate single critical formulas provides
flexibility that can be exploited to produce smaller overall Herbrand disjunctions.
As Baaz, Leitsch, and Lolic [2018, Theorem 3] show, there are sequences of ετ -
proofs where the original procedure produces Herbrand disjunctions that are
non-elementarily larger than a more efficient elimination order.

Theorem 9.8. The extended first ετ -theorem holds for negated formulas in
any Lετ such that L ⊢ J , e.g., KCετ and LCετ .

Proof. L has complete e-elimination sets for end-formulas that are disjunc-
tions of negated formulas, by Proposition 7.9. Note that J , i.e., ¬A ∨ ¬¬A,
follows intuitionistically from (A→¬A)∨ (¬A→A), which is an instance of Lin.
So LC ⊢ J . ⊣

Theorem 9.9. The extended first ετ -theorem holds for LCmετ .

Proof. By Theorem 8.6, every critical ετ -term has complete elimination sets.
The extended first ετ -theorem follows by Propositions 9.5 and 9.2. ⊣

Theorem 9.10. The first ετ -theorem holds in LCετ , i.e., if LCετ ⊢ D for
an ετ -free formula D, then LC ⊢ D.

Proof. If LCετ ⊢ D then also LCmετ ⊢ D. Since D is ετ -free, LCm ⊢ D by
Theorem 9.9. In general LC ⊢ D iff LCm ⊢ D for all m, so the claim follows. ⊣

We are indebted to the referee for the Journal for the following observation:

Proposition 9.11. The first ετ -theorem holds for negated formulas in Lετ for
any intermediate logic L, including H: if Lετ ⊢ ¬D for an ετ -free formula D,
then L ⊢ D.

Proof. If Lετ ⊢ ¬D then also Cετ ⊢ ¬D. By the first ε-theorem for C
(Corollary 9.6), C ⊢ ¬D, and by Glivenko’s Theorem, H ⊢ ¬D. ⊣

§10. Herbrand’s Theorem and the Second Epsilon-Theorem. The ex-
tended first ετ -theorem implies Herbrand’s theorem for purely existential formu-
las. If E ≡ ∃x1 . . . ∃xnE

′(x1, . . . , xn) is provable in predicate logic, then so is
Eετ ≡ E′(e1, . . . , en) for some ε-terms e1, . . . , en. From the extended first ε-
theorem we then obtain a proof in propositional logic of a Herbrand disjunction

E′(t11, . . . , t
1
n) ∨ . . . ∨A(tk1 , . . . , t

k
n)

for some terms tji . In predicate logic, we may now successively introduce existen-
tial quantifiers to obtain the original formula E. This holds in any intermediate
predicate logic in which the first ετ -theorem holds, since the only principles used
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in the last step (proving E from its Herbrand disjunction) are A(t)→∃xA(x) and
∃x(A(x)∨B)→(∃xA(x)∨B), (x not free in B) which already hold in intuitionistic
logic. (Despite the failure of the extended first ετ -theorem in LCετ , the Her-
brand theorem for existential formulas does hold in QLC; see Aschieri [2017]).

For classical predicate logic, the Herbrand theorem for existential formulas
implies the Herbrand theorem for prenex formulas. If a prenex formula E has a
proof in first-order logic, so does its (purely existential) Herbrand form H(E) =
∃x1 . . . ∃xnE

′(x1, . . . , xn). In classical predicate logic, we can obtain not just
H(E) from its Herbrand disjunction, but also the original prenex formula E.
This requires that we introduce not just existential quantifiers, but also universal
quantifiers. Consequently, we need not just the generalization rule A(x)/∀xA(x)
but also a principle that allows us to shift universal quantifiers over disjunctions,
viz.,

∀x(A(x) ∨B) → (∀xA(x) ∨B). (CD)

This principle is not intuitionistically valid: it characterizes Kripke frames with
constant domains. Since the implication E→H(E) already holds in intuitionistic
logic, any intermediate predicate logic in which CD holds and which has the
extended first ε-theorem also has Herbrand’s theorem for prenex formulas:

Proposition 10.1. Suppose QL + Ax proves CD and Lετ has the extended
first ετ -theorem. Then QL + Ax has Herbrand’s theorem for prenex formulas.

Although the extended first ε-theorem implies Herbrand’s theorem for prenex
formulas if CD is provable, the converse is not true. As we showed in The-
orem 6.2, the extended first ετ -theorem holds for Lετ only if L ⊢ Bm for
some m. In particular, it does not hold for infinite-valued first-order Gödel
logics GR = QLC + CD . However, Herbrand’s theorem for prenex formulas
does hold for GR; see Baaz, Preining, and Zach [2003, Theorem 5.7] and Baaz,
Preining, and Zach [2007, Theorem 7.8]. (Incidentally, the Herbrand theorem
for prenex formulas also holds in intuitionistic logic despite the invalidity of CD ;
see Bowen [1976]).

In classical logic, the second ε-theorem can be proved using the extended
first ε-theorem as follows: Suppose Cετ ⊢ Aετ . Since A is equivalent to a prenex
formula Ap in classical logic, we have QC ⊢ A→Ap. Prenex formulas imply their
Herbrand forms, i.e., QC ⊢ Ap→H(Ap). Together we have QC ⊢ A→H(Ap) and
by translating into the ετ -calculus, Cετ ⊢ Aετ →H(Ap)ετ , so Cετ ⊢ H(Ap)ετ .
By the extended first ετ -theorem, H(Ap) has a Herbrand disjunction, from which
(in QC) we can prove Ap and hence A.

The steps that may fail in an intermediate prediate logic QL+Ax , other than
the extended first ετ -theorem, are the provability of A↔Ap and proving Ap from
the Herbrand disjunction of H(Ap). These steps do work provided all quantifier
shifts can be can be carried out (i.e., in addition to CD also the formulas Q∀
and Q∃). Thus, if Lετ has the extended first ετ -theorem, any intermediate
predicate logic QL + Ax in which all quantifier shifts are provable also has the
second ετ -theorem:
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Proposition 10.2. Suppose QL + Ax proves CD, Q∃, and Q∀, and Lετ has
the extended first ετ -theorem. Then QL+Ax has the second ετ -theorem, i.e., if
Lετ ⊢ Aετ then QL + Ax ⊢ A.

Proof. Suppose Lετ ⊢ Aετ . The ετ -calculus proves ετ -translations of all
quantifier shifts, so Lετ ⊢ (Ap)ετ , and since QH ⊢ Ap → H(Ap) also Lετ ⊢
(H(Ap))ετ . By the extended first ετ -theorem for Lετ , there is a Herbrand dis-
junction A′ of H(Ap) so that L ⊢ A′. Since QL + Ax ⊢ CD , QL + Ax ⊢ Ap.
Since QL + Ax ⊢ Q∃ and QL + Ax ⊢ Q∀, also QL + Ax ⊢ Ap → A, and so
QL + Ax ⊢ A. ⊣

Infinite-valued first-order Gödel logic GR = QLC+CD is an intermediate pre-
diate logic which proves CD but not Q∀ or Q∃, and the extended first ετ -theorem
does not hold for LCετ . The logics of linear Kripke frames with m worlds (and
varying domains) are QLCm. But QLCm does not prove CD , so it also does
not have the second ετ -theorem:

Proposition 10.3. GR = QLC + CD and QLCm do not have the second
ετ -theorem.

Proof. We have LCετ ⊢ Q∀ but QLC + CD ⊬ Q∀, and LCmετ ⊢ CDετ but
QLCm ⊬ CD . ⊣

However, we have:

Corollary 10.4. The second ετ -theorem holds for finite-valued first-order
Gödel logics Gm = QLCm + CD.

Proof. By Proposition 10.2, as Gm proves CD , Q∃, and Q∀ and has the
extended first ετ -theorem. ⊣

Herbrand’s theorem also yield other results, for instance the following.

Proposition 10.5. Suppose QL+Ax 1 ⊆ QL+Ax 2 are intermediate predicate
logics. If Herbrand’s theorem holds in QL+Ax 2 for existential formulas A, then
QL + Ax 1 ⊢ A iff QL + Ax 2 ⊢ A. The result also holds for prenex formulas A
if QL + Ax 1 ⊢ CD.

Proof. The “only if” direction is trivial since QL + Ax 1 ⊆ QL + Ax 2. For
the “if” direction, assume QL+Ax 2 ⊢ A. Then there is a Herbrand disjunction
A′ of A provable in L and hence in QL + Ax 1. Since QH ⊢ A′ → A, also
QL + Ax 1 ⊢ A.

Now suppose in addition that QL + Ax 1 ⊢ CD and QL + Ax 2 ⊢ A with
A prenex. Then since QH ⊢ A → H(A), QL + Ax 2 ⊢ H(A). By Herbrand’s
theorem there is a Herbrand disjunction A′ and L ⊢ A′. From A′, QL + Ax 1

proves A, using just intuitionistically valid inferences as well as CD . ⊣

Corollary 10.6. The existential fragments of QLC and GR agree.

Proof. Take L = LC, Ax 1 = ∅, and Ax 2 = CD . Infinite-valued Gödel logic
GR = QLC + CD has Herbrand’s theorem. ⊣
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Whenever the extended first ετ -theorem holds for Lετ , Herbrand’s theorem for
existential formulas also holds for any intermediate predicate logic containing L.
So, whenever an intermediate predicate logic QL + Ax 1 ⊆ QL + Ax 2, and Lετ
has the extended first ετ -theorem, the purely existential fragments of QL+Ax 1

and QL + Ax 2 agree. For instance:

Corollary 10.7. The existential fragments of QLCm and Gm = QLCm +
CD agree.

By similar reasoning, the result holds for formulas of the form ∃x⃗¬A(x⃗) for
KC and its extensions, since KC has the extended first ετ -theorem for negated
formulas (Theorem 9.8). By Proposition 6.7, the result can also be extended to
formulas of the form ∀y⃗ B(y⃗) →∃x⃗ A(x⃗).

§11. Elimination of Critical Formulas using Lin. In the classical case,
the first ε-theorem is obtained by successively eliminating critical formulas be-
longing to a single ε-term using excluded middle. In intermediate logics this is
not available, but as we have seen in the proof of Theorem 8.6, critical formulas
can also be eliminated using Bm and Lin. And in fact, if a critical ετ -term e
has only predicative critical formulas then it has a complete e-elimination set
(by Lemma 8.5) already in LC, since only Lin is required to eliminate predica-
tive critical formulas. Thus, the procedure of the first ετ -theorem terminates
for all ετ -proofs in which no impredicative critical formulas occurs during the
successive elimination of critical formulas.

Proposition 11.1. If LCετ ⊢ E(u1, . . . , un) and there is an elimination
sequence ⟨πi,Λi(ei), Ti⟩ in which each formula in Λi(ei) is predicative, then
LC ⊢

∨
E(ti1, . . . , tin).

Proof. By Proposition 9.2, since if in each step of the elimination sequence
the eliminated critical formulas are all predicative, the elimination already works
in LC by Lemma 8.5. ⊣

So if there is a way to select critical ετ -terms ei successively for elimination in
such way that the critical formulas belonging to ei are always predicative, the
extended first ετ -theorem holds in LCετ for a particular proof π. However, it
is hard to determine just by inspecting π if this is possible. For one, it is not
sufficient that the critical formulas in π itself are all predicative: eliminating
the critical formulas belonging to one critical ετ -term may turn a remaining
predicative critical formula into an impredicative one. For instance, consider

E(x, y) ≡ (A(f(y)) →A(x)) ∧ (B(g(x)) →B(y))

eA ≡ εx A(x)

eB ≡ εy B(y)
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Then D(eA, eB) has an LCετ proof, since it is the conjunction of the critical
formulas

A(f(eB)) →A(eA)

B(g(eA)) →B(eB)

which are both predicative. If we first eliminate eA we would replace eA by f(eB)
in the second, resulting in

B(g(f(eB)) →B(eB)

which is impredicative. Similarly, eliminating eB leaves the impredicative

A(f(g(eA)) →A(eA).

So no elimination sequence resulting in only predicative critical formulas at every
step is possible.

Of course, if the term t in a critical formula A(t)→A(e) contains no ετ -term at
all, it is predicative, and replacing some ετ -term e′ in it by a term t′ cannot result
in an impredicative critical formula. Let us call such critical formulas weak.

Definition 11.2. A critical formula A(t)→A(εx A(x)) resp. A(τx A(x))→A(t)
is weak in π if t does not contain any critical ε- or τ -term of π.

If the critical formulas in π are all weak, there is an elimination sequence.

Proposition 11.3. Suppose LCετ ⊢ E(e1, . . . , en) with a proof in which all

critical formulas are weak. Then there are terms tji such that LC ⊢
∨

j E(tj1, . . . , t
j
n).

Proof. Take a critical ετ -term e of maximum degree among those of maximal
rank in π, let Γ(e) be the critical formulas belonging to e, Γ the remaining
critical formulas, and suppose the end-formula is D(e). Since all criticial formulas
A(u) → A(e) (or A(e) → A(u)) are weak, e does not occur in u, i.e., all critical
formulas in Γ(e) are predicative. By Lemma 8.5, e has an e-elimination set T ,
and correspondingly Γ[T ] ⊢LC

∨
t D(t). However, since the critical formulas in Γ

are also weak, they do not contain e, hence Γ[T ] = Γ. The result follows by the
same inductive proof as the first ετ -theorem. ⊣

The extended first ετ -theorem guarantees the existence of Herbrand disjunc-
tions for existential theorems, i.e., if E ≡ ∃x1 . . . xnD(x1, . . . , xn) and ⊢ E then
⊢
∨

i D(t1i, . . . , tni). The existence of a Herbrand disjunction, conversely, guar-
antees the existence of a proof of Eετ for which a predicative elimination sequence
exists.

Proposition 11.4. If ⊢
∨

i D(t1i, . . . , tni) then there is an ετ -derivation of
[∃x1 . . . ∃xn D(x1, . . . , xn)]ετ for which a predicative elimination sequence exists.

Proof. We give an example only. Suppose LC ⊢ D(s1, t1)∨D(s2, t2). First,
consider

e(x) ≡ εy D(x, y)
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Then both

C1(e(s1)) ≡ D(s1, t1) →D(s1, e(s1))

C2(e(s2)) ≡ D(s2, t1) →D(s2, e(s2))

are predicative critical formulas. Since LC ⊢ D(s1, t1) ∨ D(s2, t2) we get from
them D(s1, e(s1)) ∨D(s2, s2). Now let

e′ ≡ εx D(x, e(x)).

C3(e′) ≡ D(s1, e(s1)) →D(e′, e(e′))

C4(e′) ≡ D(s2, e(s2)) →D(e′, e(e′))

are also predicative critical formulas. Together we have a proof of D(e′, e(e′)) ≡
[∃x∃yD(x, y)]ετ . Then

⟨{C3(e′), C4(e′)}, {s1, s2}⟩
⟨{C(1(e(s1)))}, {t1}⟩
⟨{C(2(e(s2)))}, {t2}⟩

is an elimination sequence. In fact it is an elimination sequence following Hilbert’s
ordering, since e′ has higher rank than e(s1) and e(s2). In each step, only
predicative critical formulas are generated. It produces the original Herbrand
disjunction. ⊣

§12. The First ετ-Theorem and Order Induction. In arithmetic, the
usual methods for eliminating critial formulas based on the extended first ε-
theorem do not work; and so consistency proofs for systems based on the ε-
calculus use other methods such as the ε-substitution method (see Ackermann
[1940] and Moser [2006]; the history of the two approaches is discussed in Zach
[2004]). The methods developed for the extended first ετ -theorem to eliminate
predicative critical formulas from proofs in LCετ above can, however, also be
applied in classical theories of order (including arithmetic). Suppose T is a uni-
versal theory involving a relation <, and consider the order induction rule IR<,

∀x(x < y →A(x)) →A(y)
IR<

A(t)

We denote by ⊢< the derivability relation generated by classical logic extended
by IR<. The resulting system is equivalent to adding to classical first-order logic
the order induction principle for <,

∀y((∀x(x < y →A(x)) →A(y)) →∀z A(z). (IP<)

Proposition 12.1. T ⊢< A iff T + IP< ⊢ A
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Proof. The “only if” direction follows by observing that if

T ⊢ ∀x(x < y →A(x)) →A(y) then also

T ⊢ ∀y(∀x(x < y →A(x)) →A(y))

and so A(t) follows from IP< and ∀xA(x) → A(t) by modus ponens. For the
“if” direction, let PA be

∀y(∀x(x < y →A(x)) →A(y))

Then by logic,

⊢ ∀u(u < v →A(u)) → (PA →A(v)) and so

⊢ ∀u(u < v → (PA →A(u))) → (PA →A(v))

⊢< PA →A(z) by IR<, and consequently

⊢< PA →∀z A(z).

Thus, ⊢< IP<. ⊣
Now consider the classical ε-calculus extended by critical formulas of the form

A(t) →¬t < εx A(x)

These critical formulas are obviously equivalent to Hilbert’s “critical formulas
of the second form,” A(t) → εx A(x) ≤ t, over a theory that proves that < is
trichotomous. If A is derivable from T and ordinary critical formulas for ε-terms
and critical formulas of this second kind, we write T ⊢<ε A. The standard
translation Aε of a formula A is defined as in Definition 3.3, except ∀xA(x)ε ≡
Aε(εx ¬Aε(x)). Then we can show:

Proposition 12.2. If T ⊢< A then T ε ⊢<ε A
ε.

Proof. As in the proof of Lemma 3.5. We just have to deal with application
of IR<. Suppose we have a derivation of the ε-translation of the premise of IR<,

(e(y) < y →Aε(e(y)) →Aε(y)

where e(y) ≡ εx ¬(x < y → Aε(x)) is the ε-term used in the translation of
∀x(x < y → A(x)). By substituting e′ ≡ εz ¬Aε(z) for y throughout the proof,
we obtain

(e(e′) < e′ →Aε(e(e′)) →Aε(e′)

Take the critical formula of second kind ¬Aε(t) → ¬t < εz ¬Aε(z) and let t
be e(e′). By contraposition, we have

e(e′) < e′ →Aε(e(e′)) and so

Aε(e′)
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by modus ponens. The conclusion of IR<, Aε(t), now follows from an ordinary
critical formula belonging to ¬Aε(z), viz.,

¬Aε(t) →¬Aε(e′).

⊣
Arithmetic does not have a Herbrand theorem, and thus also no first ε-

theorem. However, Herbrand disjunctions exists for formulas ∃x⃗ E(x⃗) iff the crit-
ical formulas belonging to the ε-terms e1, . . . , en in the standard ε-translation
Eε(e1, . . . , en) of ∃x1 . . . ∃xn E(x1, . . . , xn) can be eliminated by a predicative
elimination sequence. This mirrors the situation in LC discussed in Section 11.
The proof that critical formulas can be eliminated if a predicative elimination
sequence exists is similar. Corresponding to Lemma 8.4 we’ll need the following:

Lemma 12.3. Let V be a finite set of variables and assume that

T ⊢ ∀x¬x < x (Irr)

T ⊢ ∀x∀y∀z((x < y → (y < z → x < z)) (Trans)

Then T ⊢
∨

x∈V

∧
y∈V ¬y < x.

Proof. Suppose not. Then T +
∧

x∈V

∨
y∈V y < x would be satisfiable. Let

M and s be the corresponding structure and variable assignment. Fix x1 ∈ V .
Since M, s |=

∨
y∈V y < x1, for some x2 ∈ V , s(x2) <M s(x1). Continuing, we

obtain x1, . . . , xn ∈ V such that s(xi+1) <M s(xi) for any n. Since V is finite,
eventually xi ≡ xi+k, contradicting the assumption that any model of T makes
< irreflexive and transitive. ⊣

Theorem 12.4. Suppose T is as in Lemma 12.3. Then T ⊢
∨k

i=1 E(t1i, . . . , tni)
for some terms tji iff there is a derivation of Eε(e1, . . . , en) which has a pred-
icative elimination sequence.

Proof. For the “only if” part, proceed as in the procedure outlined in the
proof of Proposition 11.4. For the “if” part, we have to show that if the critical
formulas belonging to an ε-term are predicative, they can be eliminated. Without
loss of generality we may assume that for each term ti, a corresponding critical
formula of first and of second kind are both present. So suppose e is a critical
ε-term and Θ,Γ,Π(e),Π′(e) ⊢<ε D(e) where Π(e) and and Π′(e) consist of,
respectively,

A(t1) →A(e), . . . , A(tm) →A(e)

A(t1) →¬t1 < e, . . . , A(tm) →¬tm < e,

and Θ consists of instances of formulas in T .
Let W = {t1, . . . , tm}. If V ⊆ W , let CV be∧

t∈V

A(t) ∧
∧

t∈W\V

¬A(t)
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and let ΠV (e) be the critical formulas with terms ti ∈ V and ΠW\V (e) = Π(e) \
ΠV (e), and similarly for Π′

V (e) and Π′
T\V (e). Since ¬A(t) ⊢ A(t) →B, we have

CV ⊢ ΠW\V (e) and CV ⊢ Π′
W\V (e), and so

Θ,Γ, CV ,ΠV (e),Π′
V (e) ⊢<ε D(e)

Since the critical formulas in Π(e) are predicative, ti does not contain e and so
CV [ti/e] = CV . Since CV ⊢ A(ti) for every ti ∈ V , CV ⊢ ΠV (ti). So we also
have

Θ[ti/e],Γ[ti/e], CV ,Π
′
V (ti) ⊢<ε D(ti)

for each ti ∈ V and consequently

Θ[V ],Γ[V ], CV ,
∨
t∈V

∧
u∈V

(A(u) →¬u < t) ⊢<ε

∨
t∈V

D(ti)

Since this is true for every V ⊆ W , we get

Θ[V ],Γ[W ],
∨

V⊆W

CV ,Ξ ⊢<ε

∨
t∈W

D(ti)

if we let Ξ = {BV : V ⊆ W} where BV is
∨

t∈V

∧
u∈V (A(u) → ¬u < t). Now∨

V⊆W CV is itself provable in classical logic. So as the result of one elimination
step, we get

Θ[V ],Γ[W ],Ξ ⊢<ε

∨
t∈W

D(ti)

If there is a predicative elimination sequence, we have in the end terms tij such
that

Θ′,Ξ′ ⊢<ε

k∨
i=1

E(t1i, . . . , tni)

where Θ′ are all the instances of formulas of T produced in the elimination, and
Ξ′ are all the formulas of the form BV , possibly with epsilon terms replaced by
other terms. T ⊢ A for each A ∈ Θ′. By Lemma 12.3,

T ⊢
∨
t∈V

∧
u∈V

¬u < t

and so each formula BV ∈ Ξ′ is also provable from T . Together we have,

T ⊢
k∨

i=1

E(t1i, . . . , tni)

⊣
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§13. Open Problems. We have investigated the ετ -calculi for intermediate
logics, with a focus on the extended first ετ -theorem. We showed that the
only intermediate logics with an extended first ετ -theorem are the finite-valued
Gödel logics LCm, but obtained partial results for formulas of specific form or
with specific kinds of proofs for other intermediate logics.

The natural next question to investigate is the second ε-theorem, i.e., to inves-
tigate extended ετ -calculi for intermediate predicate logics and characterize those
logics for which the extended ετ -calculus is conservative. We have shown that
Lετ proves all quantifier shifts, so Lετ is not conservative over any QL where
these are not provable. Note that this question is not automatically settled by
the answer to the question of which logics have the extended first ετ -theorem.
Rather, it is a question orthogonal and requires other proof systems for a proper
investigation, such as sequent calculi for ετ -terms. For instance, Aguilera and
Baaz [2019, Theorem 5.4] show that the standard translation Γ ⇒ Dε of a se-
quent Γ ⇒ D is provable in a sequent calculus LJε for intuitionistic logic iff
Γ ⇒ D is provable in a special version LJ++ of intuitionistic sequent calculus
which is globally sound but allows violation of the eigenvariable condition. LJ++

in turn proves Γ ⇒ D iff LJ + CD + Q∀ + Q∃ ⊢ Γ ⇒ D (Proposition 4.4). In
other words, the second ε-theorem holds for intutionistic predicate logic with all
quantifier shifts.

The methods used here are closely related to the study of the behavior of
Skolem functions in intermediate logics (of which ετ -terms are in many ways
a syntactic variant), see, e.g., Iemhoff [2019]. As mentioned in the introduc-
tion, other approaches to adding ε-operators to intuitionistic logic yield systems
that are conservative over the original logic. Work on Skolemization in intu-
itionistic logic is relevant here, and suggests that conservative ε-calculi can be
obtained by introducing existence predicates. The proof-theoretic approaches in
the literature would benefit also from a complementary model-theoretic study.
A Kripke-style semantics for ετ -terms, with or without existence predicate, is
still lacking (but see DeVidi [1995] for a semantics based on Heyting algebras).

In Section 11 we gave sufficient conditions for when ετ -terms can be eliminated
from a proof π in LCετ . Are there better (weaker) criteria that apply to more
proofs? For instance, there may be certain kinds of orderings such that if the
critical ετ -terms in π and corresponding “witness terms” can be put into such
an ordering, an elimination sequence in which only predicative critical formu-
las exists. The same question applies for the parallel condition in arithmetical
theories in Theorem 12.4.
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