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Abstract We present an approach in which ancient Greek mathematical proofs by Hip-
pocrates of Chios and Euclid are addressed as a form of (guided) intentional reasoning. 
Schematically, in a proof, we start with a sentence that works as a premise; this sentence 
is followed by another, the conclusion of what we might take to be an inferential step. 
That goes on until the last conclusion is reached. Guided by the text, we go through small 
inferential steps; in each one, we go through an autonomous reasoning process linking 
the premise to the conclusion. The reasoning process is accompanied by a metareasoning 
process. Metareasoning gives rise to a feeling-knowing of correctness. In each step/cycle 
of the proof, we have a feeling-knowing of correctness. Overall, we reach a feeling of 
correctness for the whole proof. We suggest that this approach allows us to address the 
issues of how a proof functions, for us, as an enabler to ascertain the correctness of its 
argument and how we ascertain this correctness.  
 
 
1 Introduction 
 
There is no unique definition of mathematical proof. Besides establishing the truth of a 
mathematical statement, a mathematical proof has many functions or roles. For example, 
convincing (that that is the case), explaining (how that is the case), and others (Dutilh 
Novaes 2020, 222-8). Depending on the roles we might want to stress we might adopt 
somewhat different definitions (see, e.g., Tall et al 2021, 15; Krantz 2011, vii-viii; Beck, 
Geoghegan 2010, viii). However, it is still the case that if a mathematical argumentation 
is not correct, strictly speaking, it is not a proof. So, the definitory role of a mathematical 
proof is that it establishes, or enables us to establish, the truth of a certain mathematical 
claim. 
     Depending on the context in which we will address a mathematical proof, different 
definitions might be valuable. For example, we might consider the following “definition”: 
 
A proof is a piece of discourse that puts forward a chain of arguments for public scrutiny, 
whose core function is to establish the truth of a mathematical claim. 
 
Here, we will adopt a somewhat different working definition. The point is that a proof 
does not really establish the truth of a mathematical statement; the proof is an enabler for 
us to ascertain the truth. The reasoning is in us, not in the proof. As Rav called attention 
to: 
 

Mathematical texts abound in terms such as “it follows from … that” […] a mathematical proof in 
general only says that it follows, not why [it follows] […] why the consequent follows from the 
antecedents has to be figured out by the reader of a proof. (Rav 2007, 316-7) 
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So, the proof consists of a sort of scaffolding of antecedents and consequents. And it is us 
that must make the reasoning connecting them and come to the realization that a 
consequent (a conclusion) does follow from an antecedent (a premise).  
     A definition that, in our view, stresses this aspect of a mathematical proof is as follows: 
 
A proof is a piece of discourse that puts forward a chain of arguments for public scrutiny, 
whose core function is to enable the audience to ascertain the correctness of the chain of 
arguments. 
 
Here, we want to address the question of how a proof functions, for us, as an enabler to 
ascertain the correctness of its argument. As we will see, this question relates to the issue 
of how we ascertain this correctness. In the present work, we will answer both of these 
related questions. 
     We will consider the most ancient proofs there are records of. The reason is simple. If 
the approach developed here is to be of general application to informal mathematical 
proofs, it must, for starters, work for the case of extant early proofs. If this is the case, 
then, afterward, we might address how this approach works in the case of different 
mathematical practices through time (which we will not do here).  
     The present work is structured as follows. In section 2, we will look in some detail into 
a mathematical proof by Hippocrates of Chios. In section 3, we will present the 
framework adopted in this work. We will consider a schematic model of intentional 
reasoning, in which metareasoning gives rise to a feeling of correctness associated with 
each reasoning process. We will address Hippocrates’ proof as a form of (guided) 
intentional reasoning. At this point, we will see how a proof functions, for us, as an 
enabler to ascertain the correctness of its argument, and how we ascertain its correctness. 
In section 4, we will address, using this framework, two proofs from Euclid’s Elements 
and see how they can also be conceived as a form of (guided) intentional reasoning. 
 
 
2 Hippocrates of Chios’ proof of the quadrature of a lune 
 
The earliest extant mathematical proofs are those of Hippocrates of Chios about the 
quadrature of lunes, which were made by Hippocrates around 450-430 BCE. We do not 
have Hippocrates’ text, but an account of it in a text by Simplicius from the 6th century 
CE (Høyrup 2019a). Simplicius’ text reports on what Alexender of Aphrodisias wrote 
around 200 CE, and on what Eudemus wrote in the late 4th century BCE (or possibly a 
later version of this text) (Høyrup 2019a). Here, we consider the part of Simplicius’ text 
related to the older Eudemian text. That is made in terms of the reconstruction by Becker 
of the Eudemian text and Netz’s translation of it into English (Netz 2004). 
     It is said that Hippocrates taught geometry and wrote the first collection of elements 
of geometry. This collection, not yet in the axiomatic format of Euclid, “is likely to have 
been connected to Hippocrates’s teaching” (Høyrup 2019b, 36). Most likely, it consisted 
of a loose collection of known results and techniques – which were taken for granted – 
and newer developments obtained using these (Høyrup 2019b). Among the newer 
developments, we might expect to be Hippocrates’ quadrature of lunes.   
     Here, we will consider the proof of the first quadrature as given in the Eudemian 
account of Hippocrates’ text (the numbering is not part of the ancient text; it is included 
by Netz to ease reference). It is as follows: 
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(2) So he made his starting point by assuming, as the first among the things useful to the quadratures, 
that both the similar segments of the circles, and their bases in square, have the same ratio to each 
other [...] [(4)] he first proved by what method a quadrature was possible, of a lunule having a 
semicircle as its outer circumference. (5) He did this after he circumscribed a semicircle about a 
right-angled isosceles triangle and, about the base, <he drew> a segment of a circle, similar to those 
taken away by the joined <lines>. (6) And, the segment about the base being equal to both <segments> 
about the other <sides>, and adding as common the part of the triangle which is above the segment 
about the base, the lunule shall be equal to the triangle. (Netz 2004, 248-9) 

 
In part 2 of the text, it is mentioned the geometric knowledge useful to arrive at the 
intended result: both the similar segments of the circles, and their bases in square, have 
the same ratio to each other. This “similar segments principle” is the only background 
knowledge made explicit in the text. Not mentioned are the related Pythagorean rule or 
the simple arithmetic of areas (additivity and subtractivity of areas).  According to Høyrup, 
this principle, like the Pythagorean rule, and the simple arithmetic of areas, “were known 
since well above a millennium [BCE] in Near Eastern practical and scribal geometry” 
(Høyrup 2019a, 178).  
     Part 4 of the text specifies what quadrature is being considered; that of a lune having 
a semicircle as its outer circumference. Afterward, the text, in part 5, gives indications of 
how to draw that figure – a lune having a semicircle as its outer circumference. We 
circumscribe a semicircle about a previously drawn right-angled isosceles triangle. This 
gives rise to two segments of circle, each having a side of the triangle as its base (see fig. 
1 left). Then we draw about the base of the triangle a segment of a circle similar to the 
segments already drawn, e.g., by completing a square and using its lower corner as the 
center of another circle (see fig. 1 right). 
 
 

                  

            
 
Fig. 1 Semicircle circumscribing a right-angled isosceles triangle (left). Drawing of the lune (right) 
 
What we might call the argumentation proper is given in part 6 of the text. It can be 
divided into two parts. In the first, one uses the above-mentioned principle and concludes 
that the area of the segment of circle about the base is equal to the sum of the areas of the 
segments of circles about the sides. This is presented in the text already as a premise (an 
antecedent) for a subsequent inference: the segment about the base being equal to both 
segments about the other sides. 
     A way to visualize the “similar segments principle” and the related Pythagorean rule 
for our case is depicted in fig. 2 (the area of the larger square is equal to the sum of the 
areas of the smaller squares, and the area of the larger segment of circle is equal to the 
sum of the areas of the smaller segments of circles).  
 



 4 

               
 
Fig. 2 The Pythagorean rule for the case of a right-angled isosceles triangle (left); Pythagorean rule plus 
the “similar segments principle” (right) 
 
In the second part of the proof, the text gives us instructions on how to do simple 
arithmetic of areas: adding as common the part of the triangle which is above the segment 
about the base. Finally, the text presents the conclusion (the consequent): the lune shall 
be equal to the triangle. 
     With the aid of the figure, we “add” the part of the triangle which is above the larger 
segment of circle to the two small segments of circle (fig. 3 left). We also “add” this area 
to that of the larger segment of circle (fig. 3 right). We are adding the same area (that of 
part of the triangle) to areas that are equal according to the “similar segment principle” 
(the area made up of the two smaller segments of circle and the area of the larger segment 
of circle). We then conclude, as stated, that the area of the lune is equal to the area of the 
triangle.  
 

  
 
Fig. 3 Simple arithmetic of areas 
 
The argumentation in the first part of the proof is made on a single level, it is directly 
based on geometric knowledge useful to arrive at the intended result (Høyrup 2019a, 179); 
what we call the “similar segment principle”. The conclusion of the first argument lays 
the ground for the next one which is also based on a direct application of background 
knowledge; in this case the arithmetic of areas.   
 
 
3 Mathematical proofs as a form of (guided) intentional reasoning  
 
Here, we develop a schematic model of intentional reasoning inspired by Frankish’s 
model of intentional reasoning as a cyclical process (Frankish 2018). By intentional 
reasoning, Frankish means “deliberate, intentionally controlled reasoning” (Frankish 
2018, 10), in which we work out an issue in a sequence of steps or “actions”; e.g., a 
mathematical problem (Frankish 2018, 10).    
     Frankish conceives intentional reasoning as a cyclical process (Frankish 2018, 12-4). 
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Let us say that we begin with a written (or spoken) sentence. In Frankish’s model, “we 
start with [the] sentence, interpret it as a step in an argument, form a belief about the next 
step, add that sentence, and so on” (Frankish 2018, 13). Fig. 4 illustrates the cycles. 
Forming a belief and producing a new sentence would be the result of an autonomous 
reasoning process. In that way, while the reasoning cycle is intentional, “the processes 
that guide and support this reasoning will be autonomous” (Frankish 2018, 10). That 
means that “intentional reasoning is not wholly intentional, but guided and mediated by 
autonomous reasoning” (Frankish 2018, 10). 
 
 

 
 
Fig. 4 Frankish’s model of intentional reasoning  
 
An example of an intentional reasoning process is making a long division. According to 
Frankish: 
 

We begin by writing out the figures in a certain format […] and autonomous processes interpret 
them as posing a simpler division problem [...] autonomous processes then generate a belief about 
the solution to this subproblem and a decision to write down further symbols expressing it. (Frankish 
2018, 15) 

 
Notice that the result of an autonomous reasoning process is not so much a “solution” but 
a belief about the solution. Frankish mentions, elsewhere, that “judging that p [is the case] 
results in my forming the belief that p [is the case]” (Frankish 2018, 7). We might say that 
an autonomous reasoning process gives rise not so much to a solution but to a belief that 
a solution is the case. In the model, arriving at a belief that p is the case is followed by 
the decision “to communicate [the] belief” (Frankish 2018, 7). That is, the new sentence 
that is produced at the end of the cycle is not so much the “solution” p but a sentence 
expressing the belief that p is the case.  
     The idea that what is expressed corresponds not to p but to the belief that p is the case 
is a bit awkward. If we consider the long division example, one supposedly writes new 
mathematical symbols for each step of the division. For each step, do the symbols express 
p or the belief that p is the case? The mathematical symbols seem to be expressing the 
output of an autonomous reasoning process, in this case, an arithmetic result, not the belief 
that an arithmetic result is the case.  
     In the model developed here, we do not adopt any notion of belief. Instead, we take 
into account the view that different cognitive processes are accompanied by 
metacognitive processes. Accordingly, “metacognition is ubiquitous because virtually all 
cognitive operations are monitored and controlled, before, during, and after their 
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execution” (Fiedler, Ackerman, Scarampi 2019, 90). A crucial aspect of metacognition is 
that it leads to a “subjective feeling” (Fiedler, Ackerman, Scarampi 2019, 96). 
     Focusing on reasoning, our autonomous reasoning processes are accompanied by 
metareasoning processes, which provide monitoring of the reasoning processes. 
Metareasoning gives rise to what we might call a feeling of rightness or even a feeling of 
error (Ackerman, Thompson 2017).  Like other affects, these “subjective feelings” have 
different degrees or intensities. For example, we can go from a low feeling of rightness 
to a strong feeling of rightness. 
     In Efklides’ view, “‘affect’ is a generic term for emotions and other mental states that 
have the quality of pleasant-unpleasant, such as feelings, mood, motives, or aspects of the 
self, e.g., self-esteem” (Efklides 2006, 3). Also, according to her, metacognitive feelings 
or affects “have a dual character, that is, a cognitive and an affective one” (Efklides 2006, 
3). In simple terms, in the case that interests us, a feeling of rightness can be accompanied 
by a verbal label “I feel it is right”. We might say that metareasoning gives rise to a 
feeling-knowing of rightness (or even “wrongness”, if that is the “output” of the 
metareasoning process). 
     In this way, the output of an autonomous reasoning process is not only what will be 
expressed as a linguistic expression (“after” language production); it is that and a 
metacognitive affect – a weaker or stronger feeling of rightness or correctness (in this 
work, we adopt the term “feeling of correctness” instead of “feeling of rightness”, since 
we are addressing mathematical proofs). 
     Here, we propose a model of intentional reasoning that incorporates the notion of 
metareasoning. In our view, in his model, Frankish conflates two aspects of reasoning 
into one notion. The output of an autonomous reasoning process is not the belief that p is 
the case (something like “I believe that p is the case”); it is “p” plus a feeling of 
correctness (the feeling that the reasoning is correct; or, rephrasing, the feeling that p is 
the case). In this way, our schematic model is as depicted in fig. 5. Notice that in the figure, 
the relative position of the different components is not intended to imply that as neural 
processes their temporal order corresponds exactly to what is depicted (see, e.g., Vaccaro, 
Fleming 2018, Rouault et al. 2018, Bartley et al. 2018). Also, we have a possibly non-
linguistic conclusion of the reasoning and the “intention to express the conclusion”. This 
“intention” is conceived in terms of Levelt’s model of language production (Levelt 1989), 
in which there is an “intention” to express verbally some conceptual structure (in our case, 
the non-linguistic “solution” of an autonomous reasoning process); this is not something 
we need to address here. The key aspects of the model are that the autonomous reasoning 
process is accompanied by a metareasoning process that gives rise to a metacognitive 
feeling of correctness of the reasoning and that metacognitive feelings have a dual aspect 
– a cognitive and an affective one.  
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Fig. 5 Schematic model of intentional reasoning  
 
Let us now address Hippocrates’ proof in terms of this model of intentional reasoning as 
a cyclical process. If we were considering the proof as made by Hippocrates for the first 
time, we would directly apply our schematic model as it is. But we want to address the 
proof as given in a text (in our case, Netz’s translation). In our view, we can address the 
proof as a form of guided intentional reasoning. The written text of the proof guides us 
through cycles, in each of which we face the premise and the conclusion of a reasoning 
process. For each step/cycle of the proof, we are “induced” into producing an autonomous 
reasoning process that “links” the premise with the conclusion. 
     Hippocrates’ proof (part 6 of Netz’s translation) consists, as mentioned, of two parts. 
That means that there are two cycles of guided reasoning. Schematically it is as follows: 
 

 
Cycle 1. 
 
Initial “sentence”: “similar segments principle” + figure 
 
 

        

 
 
 

 

 
Conclusion: “the segment about the base [is] equal to both <segments> about the other <sides>” (Netz 
2004, 249). 
 
Cycle 2. 
 
Initial “sentence”: Previous conclusion + figure 
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We are told to: “[add] as common the part of the triangle which is above the segment about the base” 
(Netz 2004, 249) 
 

 

 

 

 
 

Conclusion: “the lunule shall be equal to the triangle” (Netz 2004, 249). 
 

  
In each of these cycles, there is an autonomous reasoning process that connects the 
premise to the conclusion (in the second cycle we are even given instructions on how to 
reason). The text guides us into producing these reasoning processes. They go hand in 
hand with metareasoning processes that give rise to a strong feeling of correctness for 
each cycle. Having a strong feeling of correctness for each cycle, we have a strong feeling 
of correctness for the whole proof. 
     Hippocrates’ proof works as a form of guided intentional reasoning. This “format” of 
the proof enhances the metareasoning processes that accompany the reasoning processes. 
We have a sequence of “small” reasoning steps, each accompanied by a metareasoning 
process, which gives rise to a feeling-knowing of correctness. The metacognitive “feeling” 
in its dual nature, of a cognitive and an affective one, is what makes us fell-know that the 
inferential step is correct (even if we might be wrong).  
     That is how a proof functions, for us, as an enabler to ascertain the correctness of its 
argument, and how we ascertain this correctness. 
     Notice that having a strong feeling of the correctness of each step, and because of this 
of the whole proof, does not imply that we are right. Our metareasoning depends on 
heuristic cues (Ackerman 2019) and might be defective. We can have a strong feeling of 
correctness associated with a reasoning process and be wrong. In fact, there are biases 
regarding the feelings of rightness generated by our metareasoning processes (see, e.g., 
Fiedler, Ackerman, Scarampi 2019). We must distinguish what each one of us feels-knows 
about a proof’s correctness from how we collectively ascertain “objectively” that a proof 
is correct; here, we only suggest that the “objectivity” of the correctness of a proof could 
be the result of a robust intersubjectivity: a strong feeling of correctness, shared by many, 
e.g., as the result of group discussions. There are, however, issues regarding the 
effectiveness of group discussions (see, e.g., Silver, Mellers, Tetlock 2021; Bang, Frith 
2017); in this way, there is no simple answer. 
     Also, notice that, in this work, we do not address the geometric proofs qua geometric 
proofs, but as early examples of mathematical proofs. In this way, we do not try to address 
the “black boxes” of (geometric) autonomous reasoning and metareasoning. Currently, 
geometric cognition and reasoning are still poorly understood (for some views related to 
the issue, see, e.g., Hohol and Miłkowski (2019), Ferreirós and García-Pérez (2020) and 
Hohol (2020)). However, there are already some relevant results, e.g., regarding the role 
of diagrams and diagrammatic reasoning in proofs (see, e.g., Freksa, Barkowsky, Falomir, 
and van de Ven (2019); Dal Magro and García Pérez (2019); Magnani (2013); Giardino 
(2013); Manders (2008); Giaquinto (2007)). 
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4 Two Euclidian proofs 
 
How mathematical statements were proved changed from the time of Hippocrates to that 
of Euclid, roughly one and a half centuries later (see, e.g., Mueller 2006). As we have 
seen, in the case of Hippocrates general geometric principles were used without being 
proved. That is not the case with Euclid. His assumptions are much simpler than those 
admitted by Hippocrates. In the Elements, there are definitions like those of point, straight 
line, or circle (Heath 1956, 153); also, there are postulates, like the ones that license the 
construction of a straight line, or a circle (Heath 1956, 154); we also have common 
notions that make more precise general principles that were applied intuitively by 
Hippocrates. For example, we can take Hippocrates to use, in his arithmetic of areas, the 
following common notion: “if equals be added to equals, the wholes are equal” (Heath 
1956, 155). 
     Since there are only a few very basic assumptions, even the simplest geometric results 
must be proved. That implies that, generally, proofs have more than a single level, 
contrary to the case of Hippocrates. In this way, a proof may rely on previously proved 
propositions, besides relying on the admitted assumptions. That can give rise to a very 
complex structure.  
     To address Euclidean proofs in terms of (guided) intentional reasoning, we think it is 
simpler if we start by addressing a proposition that does not depend on previously proved 
propositions. The simplest case is that of proposition 1 of book 1 of the Elements (I.1). 
The Euclidean text is as follows: 
 

 
On a given finite straight line to construct an equilateral triangle. 
 

 
 
Let AB be the given finite straight line. 
Thus it is required to construct an equilateral triangle on the straight line AB. 
 
With center A and distance AB let the circle BCD be described; [Post. 3] 
again, with center B and distance BA let the circle ACE be described; [Post. 3] 
and from the point C, in which the circles cut one another, to the points A, B 
let the straight lines CA, CB be joined. [Post. I] 
Now, since the point A is the center of the circle CDB, AC is equal to AB. [Def. I5] 
Again, since the point B is the center of the circle CAE, BC is equal to BA. [Def. I5] 
But CA was also proved equal to AB; therefore each of the straight lines CA, CB is equal to AB. 
And things which are equal to the same thing are also equal to one another; [C. N. 1] 
therefore CA is also equal to CB. 
Therefore the three straight lines CA, AB, BC are equal to one another. 
Therefore the triangle ABC is equilateral; and it has been constructed on the given finite straight 
line AB. 
(Being) what it was required to do. (Heath 1956, pp. 241-242)  
 
[we adopt an English translation of the standard edition of the Elements. On this see, e.g., Vitrac 
(2012)] 
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Analyzing the structure of this proof in terms of the schematic model of intentional 
reasoning as a cyclical process, while following the text of the proof, having, for each 
step/cycle, the verbal premise(s) and the verbal conclusion, the reader goes through 
autonomous reasoning and metareasoning processes. Each metareasoning process gives 
rise to a strong feeling of correctness associated with the conclusion of the corresponding 
step of the proof. Having a strong feeling of correctness for each step, we have a strong 
feeling of correctness of the whole proof. 
     Schematically, in terms of cycles of (guided) intentional reasoning, the proof is as 
follows (we do not include connectors like “since”, “therefore”, “but”, and “and” (see 
Netz 1999, 115-6)): 
 

 
Cycle 1. 
 
Sentence0: “the point A is the center of the circle CDB” ® Conclusion (sentence1): “AC is equal 
to AB” 
 

 
 
Cycle 2.  
 
Sentence2: “the point B is the center of the circle CAE” ® Conclusion (sentence3): “BC is equal 
to BA” 
 
 
Cycle 3. 
 
Sentence3 + Sentence4 (a reframing of sentence1): “CA was also proved equal to AB” ® 
Conclusion (sentence5): “each of the straight lines CA, CB is equal to AB” 
 
 
Cycle 4. 
 
Sentence5 + sentence6 (common notion 1): “things which are equal to the same thing are also 
equal to one another” ® Conclusion (sentence7): “CA is also equal to CB” 
 
 
Cycle 5. 
 
Sentence7 + sentence5 (implicit) ® Conclusion (sentence8): “the three straight lines CA, AB, BC 
are equal to one another” 
 
 
Cycle 6. 
 
Sentence8 ® Conclusion (sentence9): “the triangle ABC is equilateral” 

 
 
The proof of I.1 consists of 6 cycles of intentional reasoning. In each of these cycles, our 
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metareasoning generates a strong feeling of correctness of the autonomous reasoning 
process being made. Overall, we reach a feeling of correctness for the whole proof. 
     The proof of I.1 is a bit more general than our schematic model. As we have just seen, 
in general, the verbal conclusion of a cycle is not, just by itself, taken to be the premise 
of the following cycle. We have one premise only in cycles 1, 2, and 6. In the other cycles, 
there is more than one premise at play. However, even if a bit more complex, we still have 
a form of (guided) intentional reasoning. 
     We will now consider another type of proof that was pervasive in ancient Greek 
mathematics; it is called in Latin “reductio ad absurdum” (see, e.g., Netz 1999, Heath 
1981). We will call it simply a reductio proof. The form of a reductio proof is, 
schematically, as follows: to prove P, assume not P, derive a “contradiction”; i.e., derive 
an obviously false result, like a geometric statement and its opposite (e.g., AB = CD and 
AB ¹ CD). Conclude that P is true (Cunningham 2012, 93). 
     Ancient Greek proofs that adopt a reductio strategy have a very fixed argumentative 
structure, as described by Netz (1999, 140). Simplifying, when we intend to prove a 
geometrical statement P, we use “for if” to introduce the negation of P (i.e., not P) and a 
consequence of not P. A sequence of “arguments” follows (i.e., the verbal expressions 
corresponding to premises and conclusions), leading to some property, “which is 
impossible/absurd” (Netz 1999, 140). Afterward, we find the crucial arguments in the 
reductio proof. First, we have “therefore not (not P)”; second, we have “therefore P”. 
     Here, a pause is necessary. As mentioned by Dutilh Novaes, the step of going from 
reaching an absurd result to concluding that P is the case (which in the Euclidean proof is 
made in two steps, as we have just seen), “strongly relies on a number of assumptions, 
and if these are not in place then the argument does not go through” (Dutilh Novaes 2016, 
2625). These are related to what can be named the culprit problem and the act of faith 
problem. The first problem is described by Dutilh Novaes as follows: 
 

We start with the initial assumption, which we intend to prove to be false, but along the way we avail 
ourselves of auxiliary hypotheses/premises. Now, it is the conjunction of all these premises and 
hypotheses that leads to absurdity, and it is not immediately clear whether we can single out one of 
them as the culprit to be rejected. (Dutilh Novaes 2016, 2614) 

 
To avoid the culprit problem, we must assume that “we can isolate the culprit” (Dutilh 
Novaes 2016, 2615). For that: “what is required is that all auxiliary assumptions/ premises 
used in the argument have a higher degree of certainty to us than the initial assumption 
that is singled out to be rejected” (Dutilh Novaes 2016, 2625). 
     The second problem can the stated as follows: “How does one go from it being a bad 
idea to maintain the hypothesis to it being a good idea to maintain its contradictory?” 
(Dutilh Novaes 2016, 2615). According to Dutilh Novaes, “A reductio ad absurdum also 
starts with the tacit assumption of an exhaustive enumeration of cases: for a given 
proposition A, either A is the case or its contradictory is the case, and not both” (Dutilh 
Novaes 2016, 2615). In this way: 
 

If we can be sure that the enumeration of cases is truly exhaustive (i.e., excluded middle holds in the 
relevant situation), and that we will not end up in a situation of aporia where all options lead to 
absurdity, then we can safely conclude not-p after showing that p leads to absurdity. (Dutilh Novaes 
2016, 2625) 

 
Here, we want to suggest that the culprit problem and the act of faith problem are avoided 
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in Euclidean geometry and are dealt with, each one, one step at a time, in the final stages 
of the argumentative structure of Euclidean reductio proofs. As mentioned, in the 
argumentative structure there is one point in which we reach some property that is 
impossible/absurd. Afterward, we deal with the culprit problem: therefore not (not P). 
There is an autonomous reasoning process that identifies not P as the culprit (and not 
some other assumption or set of assumptions). Then we face the act of faith problem: 
therefore P; i.e., the rejection of not P leads to an autonomous reasoning process that 
enables us to conclude that P is the case. We will consider an example of a reductio proof 
to see how this is done and how a reductio proof can be addressed from the perspective 
of proofs as a form of (guided) intentional reasoning. 
     We will consider the first reductio proof in the Elements; that of proposition 6 of book 
1 (I.6). The text of proposition I.6 is as follows: 
 

 
If in a triangle two angles be equal to one another, the sides which subtend the equal angles will 
also be equal to one another. 
 

 
 
Let ABC be a triangle having the angle ABC equal to the angle ACB; 
I say that the side AB is also equal to the side AC. 
For, if AB is unequal to AC, one of them is greater. [C.N.] 
Let AB be greater; and from AB the greater let DB be cut off equal to AC the less; [I.3] 
let DC be joined. [Post. 1] 
Then, since DB is equal to AC, and BC is common, the two sides DB, BC are equal to the two 
sides AC, CB respectively; and the angle DBC is equal to the angle ACB;  
therefore the base DC is equal to the base AB, and the triangle DBC will be equal to the triangle 
ACB, [I.4] 
the less to the greater: 
which is absurd [C.N. 5]. 
Therefore AB is not unequal to AC; 
it is therefore equal to it. (Heath 1956, 255-6) 
 
Thus, if a triangle has two angles equal to one another then the sides subtending the equal angles 
will also be equal to one another. (Which is) the very thing it was required to show. [These last 
sentences are from the translation by Fitzpatrick (2008, 13) since in Heath’s translation it is left 
incomplete] 
 

 
The demonstration starts with a triangle ABC with two equal angles, ABC and ACB. What 
we want to show is that the corresponding sides are equal; i.e., AB = AC. We start our 
proof by assuming the “opposite” property AB ¹ AC (that they are “opposite” follows 
from the “solution” to the act of faith problem). Schematically, in terms of cycles of 
(guided) intentional reasoning, the proof is as follows: 
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Cycle 1. 
 
Sentence0: “AB is unequal to AC” ® Conclusion (sentence1): “one of them is greater” 
 
[Comment: To reach the conclusion, use is made of the previously unmentioned common notion: 
if two quantities are unequal, then one is greater or lesser than the other (see, e.g., Joyce 1998)] 

 
[Comment: After the first cycle of intentional reasoning that includes an autonomous reasoning 
process, we have what we might call the “insertion” of another construction. That is made in 
sentence2 (by considering sentence1): “Let AB be greater; and from AB the greater let DB be cut 
off equal to AC the less; let DC be joined”. The new figure shows that the triangle DBC is smaller 
than the triangle ACB. That is our (implicit) sentence3. This “property” will be important later 
since it will lead to a contradiction with another property that will be deduced later; on diagrams 
in reductio proofs, see, e.g., Dal Magro and Valente (2021)] 
 
 
Cycle 2. 

 
Sentence4: “DB is equal to AC, and BC is common” ® Conclusion (sentence5): “the two sides 
DB, BC are equal to the two sides AC, CB respectively; and the angle DBC is equal to the angle 
ACB” 
 
[Comment: The (guided) autonomous reasoning process, leading from sentence4 to the 
conclusion (sentence5), uses properties of the triangles as depicted in the figure and given in the 
text] 
 
 
Cycle 3. 
 
Sentence5 ® Conclusion (sentence6): “the base DC is equal to the base AB, and the triangle DBC 
will be equal to the triangle ACB 
 
[Comment: The (guided) autonomous reasoning process is to be made by resort to proposition I.4 
(as indicated by the inclusion in the text of [I.4]] 
 
 
Cycle 4. 
 
Sentence6 + (implicit) Sentence3 ® Conclusion (sentence7): “the less [is equal] to the greater” 
 
 
Cycle 5. 
 
Sentence7 ® Conclusion (sentence8): “[the previous conclusion] is absurd” 
 
 
Cycle 6. 
 
Sentence8 ® Conclusion (sentence9): “AB is not unequal to AC” 
 
[Comment: In this cycle of (guided) intentional reasoning, we reason to the rejection of the initial 
assumption AB ¹ AC. It is here that the culprit problem is faced. Since there are no auxiliary 
assumptions besides the initial assumption (all the other “assumptions” are taken to be “true” 
(definitions, postulates, common notions) or proved to be true (propositions I.3 and I.4)), we use 
this knowledge in the reasoning and conclude that the absurd result that triangle DBC = triangle 
ACB and triangle DBC < triangle ACB follows from the initial assumption. Since there is one 
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reasoning cycle to address the culprit problem, the metareasoning during this cycle generates a 
strong feeling of the correctness of the conclusion. In this way, dispelling any doubts we might 
have in this inferential step concerning the culprit problem] 
 
 
Cycle 7. 
 
Sentence9 ® Conclusion (sentence10): “it is therefore equal to it” 

      
[Comment:  The act of faith problem is faced during this reasoning process. As mentioned by 
Fitzpatrick, here we use a previously unmentioned common notion: if two quantities are not 
unequal then they must be equal (Fitzpatrick 2008, 13). This common notion implies that, for 
quantities, there are no other cases/options that might lead to an act of faith problem. If two 
lengths are not unequal then these lengths must be equal; there is no other option. The reasoning 
process taking into account this evident property of quantities leads to the conclusion: “it is 
therefore equal to it”; i.e., AB = AC. By addressing just the act of faith problem in this last cycle, 
we generate a strong feeling of correctness that dispels any doubts we might have concerning the 
act of faith problem. Notice that we do not face any risk of having a situation of aporia where all 
options lead to absurdity. We have determined that if the triangle had the sides AB and AC 
unequal, there would be an absurd consequence; that of two triangles being at the same time equal 
and different. The only alternative that remains is that the sides AB and AC, of the triangle, are 
equal. If this also leads to absurd consequences, then pure geometry would not be consistent] 

 
 
As we see, reductio proofs fit nicely within a perspective on proofs as a form of guided 
intentional reasoning. In our view, the present approach to mathematical proofs enlightens 
why reductio proofs are a hallmark of mathematics not to be found in other human 
practices, e.g., in legal reasoning. As we have seen, to be able to adopt a reductio proof 
we must face the culprit problem and the act of faith problem. If these are not avoided, 
“the argument does not go through” (Dutilh Novaes 2016, 2625). We see a specific feature 
of geometry (i.e., that these problems can be avoided) at work “directly” at the level of 
the structure of the proof. By being a form of guided intentional reasoning, in a proof, 
these problems are faced in individual and consecutive cycles of reasoning. In each cycle, 
metareasoning generates a strong feeling of the correctness of the conclusion; in this way, 
dispelling these problems.  
     Evidently, there are other approaches that give enlightening perspectives on 
mathematical proofs, in general, and reductio proofs, in particular. We are thinking, in 
particular, of the dialogical conception of mathematical proof (Dutilh Novaes 2018, 2020) 
and the view of mathematical proof as audience-reflective argumentation (Ashton 2021). 
However, it would go beyond the scope of the present work to address the fitting of the 
approach developed here with other approaches. 
 
 
5 Conclusion 
 
As mentioned in the introduction, the purpose of the present work was to determine, for 
ancient Greek proofs, how a proof functions, for us, as an enabler to ascertain the 
correctness of its argument and how we ascertain this correctness. Our answer to the first 
question is that Hippocrates’ and Euclid’s proofs work as a form of guided intentional 
reasoning. Each cycle corresponds to what we usually refer to as an inferential step that 
goes from a premise to a conclusion (the “it follows from … that …”). In each cycle, the 
reader “actively” connects the premise to the conclusion through an autonomous 
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reasoning process. This “format” of the proof – i.e., that of a chain of arguments – 
enhances the metareasoning processes that go hand in hand with the reasoning processes. 
We have a sequence of “small” reasoning steps, each accompanied by a metareasoning 
process. It is metareasoning that produces a feeling-knowing of correctness that is 
associated with the verbal conclusion of an autonomous reasoning process (and that 
answers our second question). Feeling-knowing that the conclusion of each cycle is 
correct, enables us to assess the correctness of the whole mathematical proof.  
 
 
6. Coda: Is an approach in terms of GIRPs really about mathematical proofs?1 
 
Here, we will consider the position of a hypothetical reader, Skeptic. She/he might argue 
that the approach presented in the present work is not really about mathematics since it 
pays no attention to distinctive features of mathematical proof such as the use of notation 
that partially encodes rigor in its syntax, the use of diagrams, and so on. As it is, Skeptic 
might say that the approach to mathematical proofs as a GIRP could have been illustrated 
just as well with, say, legal reasoning or the verbal logic problems from general intelli-
gence tests. 
     The first part of an answer would be that this is quite so. Here, we focus on common-
alities, not specificities; that is, on aspects of mathematical proofs that can be shared with 
human reasoning with/about different human practices, activities, etc.  The “distinctive 
features of mathematical proof” can then be addressed from within this approach in terms 
of GIRPs. 
     What this approach brings to the fore is the role of metacognition also in mathematical 
reasoning and, more specifically, in mathematical proofs. It is a metareasoning process 
related to the mathematical reasoning process that gives rise to a feeling of correctness. 
And yes, this is a common feature of human reasoning: “metacognition is ubiquitous be-
cause virtually all cognitive operations are monitored and controlled, before, during, and 
after their execution” (Fiedler, Ackerman, and Scarampi 2019, 90). Regarding our expe-
riencing of metareasoning as a “subjective feeling” we must notice that this is not an 
“emotional” response. We know that the reasoning is correct because we feel that the 
reasoning is correct.  What we mean is that this “feel” as an affect can be more of a 
cognitive nature and less of an affective one. As mentioned, a particular characteristic of 
metacognitive feelings or affects is that they “have a dual character, that is, a cognitive 
and an affective one” (Efklides 2006, 3). So, we do not have to think of metacognition as 
giving rise to bursts of emotional responses while we follow a proof. If it makes us more 
comfortable, we might think about the “output” of metareasoning as a “purer” strong 
“knowing” that the inferential step is correct: we fell-know its correctness.   
     Now, to the second part of the answer. Mathematical specificities are to be found in 
the reasoning process and accompanying metareasoning process that occurs in each cycle 
of a GIRP. Nowadays, geometric cognition and reasoning are still poorly understood. This 
is not to say that we must wait for science to open the “black boxes” of (geometric) 
autonomous reasoning and metareasoning to see geometric specificity at work in a 
geometric proof as a GIRP. We have seen an example of mathematical specificity in the 
present paper.  Skeptic would have to agree that reductio proofs are a hallmark of 
mathematics not to be found in other human practices (e.g., in legal reasoning). And there 

 
1 Not included in published version. 
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is a good reason for this that is made clear by addressing mathematical proofs as GIRPs. 
As we have seen, to be able to adopt a reductio proof we must face the culprit problem 
and the act of faith problem. If these are not avoided, “the argument does not go through” 
(Dutilh Novaes 2016, 2625). It is a specificity of mathematics (geometry, in this case) 
that we do not have these problems. As we have seen, the culprit problem is faced in one 
of the cycles of the geometric proof as a GIRP. Since there are no auxiliary assumptions 
besides the initial assumption, the problem simply does not arise (as mentioned, since 
there is one reasoning cycle to address the culprit problem, the metareasoning during this 
cycle generates a strong feeling of the correctness of the conclusion). In the same way, 
there is another cycle in which the act of faith problem is “dissipated”. It simply does not 
arise due to the specificity of geometry. That is an example where Skeptic can find a 
distinctive feature of mathematical proof at work “directly” on the mathematical proof as 
a GIRP. 
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