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Abstract

Could the truths of mathematics have been different than they in
fact are? If so, which truths could have been different? Do the contin-
gent mathematical facts supervene on physical facts, or are they free
floating? I investigate these questions within a framework of higher-
order modal logic, drawing sometimes surprising connections between
the necessity of arithmetic and analysis and other theses of modal
metaphysics: the thesis that possibility in the broadest sense is gov-
erned by a logic of S5, that what is possible holds in some maximally
specific possibility, and that every property can be rigidified. The
investigation will distinguish sharply between platonic contingency—
contingency about whether particular abstract “platonic” mathemat-
ical objects are arranged in a certain way (e.g. in a natural number
or real number structure)—from a deeper variety of structural contin-
gency concerning what holds of objects whenever they are arranged
in that way.

Consider the following examples of mathematical claims:

1. If there are four apples and three pears in the bowl, and no apple is a
pear, then there are seven apples or pears in the bowl.

2. The ratio between the diameter and circumference of a circle in Eu-
clidean space is π.

*Thanks to ...
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3. Every positive whole even number can be expressed as the sum of two
primes.

4. Every collection of reals with strong measure 0 is countable.

5. There is no tree of uncountable height such that every anti-chain and
every branch is at most countable.

6. Any two uncountable collections of reals have the same cardinality.

The question with which we are concerned is whether the truths of mathe-
matics could have been different than they in fact are. Moreover, if there are
contingent mathematical truths, which ones?

Is it possible, for instance, that the ratio between the diameter and cir-
cumference of a Euclidean circle be something other than the number π?1

If so, what would it be like to live in a Euclidean world where that ratio is
different — wouldn’t something go horribly wrong? If you think the answer
here is obvious, what about the more abstract mathematical claims, such as
4, 5 and 6 above, which also can have interpretations in Euclidean physical
space, but are independent of our most widely accepted mathematical and
physical theories?

Before I proceed, some clarifications are in order. When I ask whether
the truths of mathematics could have been different, I mean to ask whether
they could have been different with respect to the broadest notion of possibil-
ity; i.e. could they have been different with respect to any genuine modality
whatsoever. What does the qualification to “genuine” modalities amount
to here? This is not the place to give a fully satisfactory answer (I have
attempted to do so elsewhere2); just note that if we are not careful, our
question can be read in a way that makes it trivially true. Some uses of
the word ‘could’ in English are purely epistemic: in this purely epistemic
sense it is obvious that Goldbach’s conjecture could be true, and could be
false, in virtue of the fact that we do not know which it is. A proper ac-
count of modality should not count these purely epistemic uses of ‘could’ as
expressing genuine modalities—that something is up with them is already il-
lustrated by the fact that Leibniz’s law has the appearance of failing in their

1One could certainly imagine that the geometry of physical space were different in such
a way that the corresponding ration of a physical circle be different from π — what we
are envisaging is a world where space is Euclidean and this happens.

2Bacon (2018a), Bacon and Zeng (2022).
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scope3, suggesting that these claims are covertly metalinguistic, or sensitive
to modes of presentations, and are not speaking directly about the mathe-
matical facts.4 A seemingly separate question, that I will leave to one side, is
whether mathematics is metaphysically contingent. Perhaps this is the very
same as the question of its contingency in the broadest sense. However, if
it turned out that broad possibility turned out to be quite permissive, some
may instead be tempted to take the term ‘metaphysical possibility’ to refer to
a more familiar restricted notion of of possibility according to which various
post-Kripkean theses hold, including the necessity of mathematics. This is a
question of philosophical terminology that I consider a side issue.

While we will take the existence of some pretty strange possibilities se-
riously, we will assume that one special class of statements are broadly nec-
essary: those expressed by theorems of classical logic. When higher-order
logic is concerned, people sometimes use the term “logic” in a way that in-
cludes all sorts of non-obvious things, such as higher-order choice principles
or versions of the continuum hypothesis.5 But here I will reserve the term
“classical logic” for logic in a very narrow sense: the statements that can
be derived from the classical introduction and elimination rules for the log-
ical connectives and the quantifiers (subjecting the higher-order quantifiers
to the analogues of the usual rules for first-order quantification), and some
principles for reasoning with complex predicates formed by λ-abstraction.
Thus we take things that are logically inconsistent in the narrow sense to
be impossible. (We might, in the same spirit, extend this status of broad
necessity to certain principles of modal logic as well, and we will do so at

3Consider the following exchange: “Doesn’t it seem as though Clark Kent has the
same build as Superman?”, “No, I think Superman could be taller than Clark Kent”. The
second statement seems true given the second speakers state of knowledge, but a lot of
priming is needed to get into a context where “No, I think Superman could be taller than
Superman” doesn’t sound terrible.

4Higher-order theories of genuine modalities include Bacon and Zeng (2022), Bacon
(2023a) chapter 7. Relevant discussion, especially regarding what counts as a “genuine
modality” can be found in Dorr et al. (2021) §8.2-8.3. The details of these theories are
not so important here – the key distinction for our purposes is (putting it somewhat
imprecisely) that one can infer from a sentence involving a genuine use of a modality
another sentence that existentially generalizes into operator position, whereas that move
is not as straightforward on the standard pictures about opacity (say, if there are intra-
sentential context shifts). Similar accounts can be found in Fritz (MS), Dorr et al. (2021),
Roberts [REF], Goodsell and Yli-Vakkuri (MS).

5Typically the latter happens when one identifies logic with the theory of some partic-
ular class of models.
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some points as well.) This constraint is consequential to our investigation.
For instance, since our first example appears to be one that formalizes to
a theorem of first-order logic, we have a fairly direct route to settling the
question of its contingency negatively.

Establishing that a claim is true (or that it is false) by purely logical
means, as we have done here, let’s us infer that is necessarily true (necessar-
ily false) and so gives us one route to establishing non-contingency. Note,
however, that it is possible to establish the non-contingency of a statement
without first settling whether that statement is true or false. This is crucial:
Gödel’s incompleteness theorem tells us that there are some mathematical
statements our axiomatic system of logic does not decide to be true or false.
However, while the incompleteness theorems preclude us from settling all
mathematical statements via the axiomatic method, they do not preclude
us from settling the contingency of all mathematical statements by the ax-
iomatic method. We will see that broadly logical principles can decide the
contingency of many undecidable statements—we can establish that a claim
is either necessary or impossible without establishing which it is.

A final point. The reader may be wondering why one needs an extended
philosophical discussion of the titular question—after all, the necessity of
mathematics is one of a few philosophical theses that enjoys widespread
agreement among philosophers.

Well, it is not entirely universal.6 But even setting aside the occasional
voice of dissent, it is valuable in its own right to revisit orthodoxy from time
to time. While the necessity of mathematics is an oft repeated claim, it is
rare to see positive arguments in its favor, exposing it to the accusation of
being dogma rather than established orthodoxy.7 What is more, even if we
end up reaffirming orthodoxy we may learn something in the process. In
the same spirit, we will extend an unprejudiced attitude toward many other
key components of conventional modal doctrine—including the thesis that

6Hartry Field has argued that platonic mathematics is contingent with respect to a
broad logical modality (see essays 1 and 3 of Field (1989)), and modality is frequently
employed in the study of indefinitely extensible concepts like ‘set’ and ‘ordinal’ yielding
a limited form of mathematical contingency. The latter sort of view might motivate
contingency about how many inaccessible cardinals there are, but not much else; see
Linnebo (2013), Studd (2013).

7One exception is the result in Leitgeb (2020), although this result is of rather limited
interest for reasons we will return to in section 1. Another is Goodsell (2022), which we
discuss below.
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broad necessity has a logic of S5, the principle that every property can be
rigidified and the Leibnizian idea that if something is possible, it is true at
a maximally specific possibility. One upshot of our discussion will be that
there are non-obvious logical connections between these three ideas. One
moral that can be drawn from the discussion is that the orthodox package of
S5, possible world metaphysics, and the non-contingency of mathematics, is
mutually reinforcing. On the other hand, reasons to doubt some parts of the
package may require, or at least reopen consideration of other parts. Once
one strays outside the standard package, the logical landscape is intricate
and of interest in its own right.

1 Platonic Contingency

The discipline of mathematics is often said to have originated from the general
study of patterns in nature.8 The fact that there are seven goats, that this
stick is longer than that one, that this stake fits in that hole, and so on,
involve notions such as number, magnitude and shape. And there are various
general facts about number, magnitude and shape that do not depend on
the particular objects or properties possessing that number, magnitude or
shape—for instance, the fact that if seven of the goats are small and three of
the goats are not small, then there are ten goats is general, and would hold
if we replaced small and goat with female and sheep, or any other pair of
properties. Thus the discipline of mathematics arose from the the need to
capture these generalizations.

There are various sorts of facts that philosophers have identified with the
“truths of mathematics”. Different accounts may even have modal differences—
what a nominalist puts forward as the content of a given mathematical claim
may not be necessarily equivalent with the content offered by the platonist.
Provided the sorts of facts posited by both sides exist, it follows that there
are potentially different questions to be asked about the contingency of each
sort of fact. The most interesting form of mathematical contingency, in my
view, will also involve contingency about the sorts of generalizations about
the world that mathematics is supposed to represent. Indeed, when a class of
facts comes apart from these generalizations modally, I take this to indicate
that those facts are failing to properly correspond to mathematical reality.

8See, for instance, Boyer (2011) p1.
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I will organize our discussion of mathematical contingency around two
important strands of thought on the subject matter of mathematics: platon-
ism and structuralism. According to the mathematical platonist, the truths
of mathematics are about particular individuals: numbers, vector spaces,
sets and the like—abstract individuals not directly accessible to the senses,
or located in space or time. The mathematical structuralist, by contrast,
maintains that the statements of mathematics are not about particular in-
dividuals. Instead they make make broadly structural claims, which will
imply facts about particular individuals when those individuals instantiate
the relevant structures. On the version of structuralism we will explore, the
mathematical truths just are the generalizations alluded to above.9

Let us for the sake of argument grant that the platonic abstract objects
exist, and that they instantiate mathematical properties and relations, such
as being prime, being the successor of, and so on. Call propositions that
ascribe these mathematical properties and relations to platonic mathemat-
ical objects the platonic propositions. In addition to the platonic proposi-
tions, there will also be general propositions stating that any individuals,
abstract or otherwise, standing in certain structural relationships to one an-
other will have the analogues of these properties relative to the relations in
question: call these the structural propositions. When taking mathematical
contingency seriously we should not assume these two sorts of propositions
are necessarily equivalent. We consequently distinguish two sorts of mathe-
matical contingency: a relatively superficial form of contingency about the
behaviour of some particular objects that happen to be of an abstract nature,
and a more radical sort concerning what is true about individuals of any sort
that are appropriately related to one another.

Let’s begin with the first. For there to be platonic mathematical contin-
gency the platonic abstract objects must have at least some mathematical
properties contingently. Take a platonic truth such as 2 is less than 7. There
are several states of affairs, consistent by logical lights, that one could posit
to witness contingency about this fact.10 Perhaps the particular abstract
object 2 could have been bigger than 7 by switching positions with it in the
number series, in the same way that John could have been taller than Mary,

9See for instance Hellman (1989), or Parsons (1990) section 3 and 6.
10We can witness the consistency by considering a possible worlds model with two worlds,

a constant domain of natural numbers, with the extension of < at the first world the usual
ordering on those numbers, and its extension at the other world the usual ordering except
with 2 and 7 switched (i.e. 1, 7, 3, 4, 5, 6, 2, 8, 9, 10, . . . ).
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even if he in fact isn’t. Or perhaps there are possibilities where the number
2 is a Roman emperor, and doesn’t stand in any of the usual mathematical
relations; and so on.

At this point it is worth noting that both Leitgeb (2020) and Goodsell
(2022) (sections 3 and 4) offer arguments for the non-contingency of platonic
mathematics. But these arguments both take as their starting point the
non-contingency of basic mathematical statements, like 2 < 7, and so do not
bear straightforwardly on the sort of platonic contingency we are considering
here. Leitgeb also takes for granted the Barcan formula which is rejected by
mathematical contingentists such as Parsons (1983), Linnebo (2013), Studd
(2013), Berry (2022). (The result in section 5 of Goodsell (2022) is more
interesting and we will return to it later.11)

It is not necessary, nor is it my goal, to establish that such possibilities
exist. Note, however, that if it was a necessary truth that 2 is less than
7, then it would seem to be a brute unexplained necessary connection be-
tween two distinct individuals. In other branches of science similar posits
are generally regarded with suspicion. Why do we think that velocity is the
same as the derivative of position with respect to time? Well, if they were
different quantities one would be left without an explanation the fact that
they modally vary in tandem (whereas if they are the same property there is
no mystery). If we are convinced that we shouldn’t posit mysterious coinci-
dences like this in physics, we shouldn’t regard necessary connections between
mathematical objects any differently. On any view short of logicism there
will be cases where there is no logical explanation of the connection between
2 and 7.12 Note that adopting this Humean picture of broad, or “logical”

11Another sort of argument for the necessity of mathematics can be found in Yli-Vakkuri
and Hawthorne (2020), who appeal to the use of counterfactuals in mathematical reason-
ing. However this style of argument at most establishes the “counterfactual necessity” of
mathematics—it is necessary in the sense that if mathematics had been false then anything
would be true.

12One way to explain a necessary connection is to show that one sort of individual—
velocities, fusions, shadows, etc— are logical constructions out of another—trajectories,
points, shadowcasters etc. The logicist might take the position that the platonic 7 is
a logical construction out of the platonic 2 (and both ultimately of 0), via logical suc-
cessor operation. However, this goes beyond our usual notion of logical operation; see
the discussion in section 13.1 of Bacon (2023a). There is a different nominalist kind of
logicism which replaces first-order quantification over platonic objects with higher-order
quantification into the position of numerical quantifiers in which this construction is un-
controversially logical—we’ll return to that in section 4.
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necessity, does not preclude us from employing restricted modalities that pre-
serve some given class of connections—perhaps the post-Kripkean notion of
metaphysical necessity is one such notion preserving essentialist connections
and mathematical connections between the platonic objects.13

As I have already said, despite being a natural precisification of “math-
ematical contingency”, platonic contingency strikes me as a rather shallow
and uninteresting thing to mean by it. For once one takes in earnest the
idea that abstract objects can have their mathematical properties contin-
gently, it seems much less clear that the platonic truths really correspond
to, or even modally track, the sorts of mathematical patterns in nature and
elsewhere that we started out with—facts that arguably have a better claim
to being the “real” truths that mathematics aims to capture. To dramatize
this, imagine that there is a possibility in which the number 7 is a Roman
emperor. In this possibility, 7 is not a prime number. Nonetheless, it pre-
sumably would not be possible to take seven different pebbles and arrange
them correctly into a non-trivial rectangle.14 What does it mean to take
seven different pebbles, when the platonic 7 is not even a number? Well,
we can always spell this out using the the vocabulary of first-order quantifi-
cation and identity: there are pebbles x1, ..., x7, such that such that x1 is
different from x2 and x1 is different from x3 and . . .. The claim that seven
pebbles are arranged in a non-trivial rectangle could be expressed with a
more complicated statement involving quantifiers, identity and predicates
expressing spatial relations. This suggests that there is a pattern in nature
associated with a mathematical statement, like ‘7 is prime’, which ought to
have these claims about pebbles, as well as other applications of arithmetic
to the wider world, as logical consequences. To posit strange possibilities
for the platonic number 7 is to allow that the properties of the platonic 7
can become unmoored from these patterns. A more interesting, and radical
form of mathematical contingency, then, would involve contingency in the
patterns themselves.

13Certain puzzles of material constitution may similarly push you to think that any
individuals can occupy any qualitative role—the most pure form of this position would
be formulated as a general claim, without any special exceptions for abstract individuals.
See the discussion in Dorr et al. (2021) chapter 14.

14Here a trivial rectangle is a single row of seven pebbles, or a single column of seven
pebbles.
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2 Structural Contingency

According to the structuralist (or at least the version we are focusing on) the
contents of mathematical statements are higher-order generalizations whose
instances include the sorts of natural patterns we have been interested in.
Consider the days, lying in our future, under the temporal ordering. These
instantiate the same structure as the platonic numbers under their mathe-
matical ordering: they form a “natural number structure”. The day a week
from now plays the same structural role as the number 7 in the platonic nat-
ural number sequence, and is “prime” in a variant sense spelled out in terms
of operations on days analogous to the usual operations on platonic numbers.
Many ordinary relations could in principle form a natural number structure:
imagine, for instance, that nobody loves Herb, and Herb loves only Mary,
and Mary loves only John and, and so on.

Note that in our strange possibility, where the number 7 has become
a Roman emperor, the remaining numbers, assuming they have retained
their relative positions in the ordering of the numbers, still form a natural
number sequence, namely 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, . . .. In this sequence the 8
now satisfies the role the 7 used to play, and is “prime” in a natural variant
sense that is relevant to the new ordering. So even if it can be contingent
whether the particular individual, 7, is prime, it is hard to see how the
corresponding structural claim, about the seventh element of any natural
number structure, could be contingent; structural contingency can not be
obtained on the cheap.

At a first parse the structural content associated with 7 is prime can be
approximated with an infinite list of particular instances of the pattern:

If Herb loves but is not loved, no two people love the same person and
... , then the first seven lovers cannot be divided non-trivially into
equal parts.

If Mary kicks someone but is not kicked, no two people kick the same
person and ... , then the first seven kickers cannot be divided non-
trivially into equal parts.

...

where the first . . . stands for the claim that the loved individuals bears the
“ancestral” of loves to the loved. I.e., for any given loved individual, the
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unloved lover either loves them, or loves somebody who loves them, or loves
somebody who loves somebody who loves them, or . . .. We can capture the
general pattern with a higher-order generalization:

∀R and ∀x if x Rs but is not Red, no two things R the same thing and
x bears the ancestral of R to anything Red, then the first seven Rers
cannot be divided non-trivially into equal parts.

The notion of the ancestral of a relation R used above can also be eliminated
in favour of higher-order quantification using Frege’s definition (Frege (1879)
§79, Frege (1893) Part I §45): x bears any transitive relation extending R to
y.

By universal instantiation, we can instantiate R with any binary predicate
and x with any name to obtain any sentence in our original list—for by in-
stantiating R and x with is followed by and today we obtain our first example.
The general recipe for determining the structural content of a mathematical
claim is then this. Suppose A(0, S) is an arithmetical statement involving
only the constant 0 and the successor relation S, such that all of its first-order
quantifiers are restricted to the field of S.15 We can notate the antecedents
of the above conditionals as Nat(Herb, loves), Nat(Mary, kicks), and so on—
registering that this notation represents a sentence containing a predicate R
(loves, kicks, etc.), not a first-order predicate being applied to a name. Thus

Structural Content The structural content of a platonic arithmetical claim
A(0, S) is defined as

∀R∀x(Nat(x,R) → A(x,R)).

We will notate the structural translation of an arithmetical statement A,
as A∗. There is a similar translation available for arithmetical statements
belonging to richer languages, perhaps with constants for addition, multipli-
cation, and the ordering on the numbers. When a given selection of arith-
metical constants is salient, we will adopt the convention of writing X for a
sequence of variables that match the types of the constants in that language,
and Nat(X) for the appropriate notion of natural number structure for that
signature, i.e. with further conditions for the new constants. The variables

15In the higher-order context any arithmetical statement is equivalent to one stated only
in terms of 0 and successor so this restriction is not really costing us any generality.
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and context will always make clear what notion of natural number struc-
ture is relevant.16 Then the structural content of an arithmetical statement
A(. . .) in those constants is just ∀X(NatX → A(X)) where ∀X stands for a
sequence of quantifiers each binding a single variable in X. (This generaliza-
tion is important because in a first-order context, addition and multiplication
cannot be defined from successor and 0 and so are needed as extra primi-
tives; this notation also allows us hide the signature at play when it is a
distraction.)

It should be clear why structural contents, unlike platonic contents, can
imply functional mathematical claims like those we outlined earlier. Higher-
order generalizations directly imply claims about, say, spatial arrangements
of pebbles by instantiating the first-order generalizations with pebbles, and
the second-order generalizations with the relevant spatial relations. How-
ever, although structural propositions almost play the right mathematical
functional role, there is one wrinkle. Suppose there had only been eight
things: me and seven pebbles. In such a possibility the structural transla-
tion of “7 is the product of two numbers greater than 1” is vacuously true,
because there are no natural number structures, but I still could not arrange
those pebbles in a non-trivial rectangle. We will fix this lacuna shortly, and
give a more general justification that the structural propositions play the
right functional role when there are natural number structures. A more rad-
ical form of mathematical contingency, then, would be contingency in the
structural propositions, of the form A∗—contingency in the mathematical
patterns themselves.

3 Higher-order Generalizations

I have drawn a sharp distinction between higher-order generalizations formed
in the language of pure higher-order logic, and platonic statements formu-
lated in terms of special primitives governing platonic mathematical objects.
Are these really so different? In the literature on structuralism, a negative
answer is often taken for granted. Parsons’, for instance, writes:

‘if the eliminative structuralist uses [higher-order logic], he will

16For instance, for a signature that includes addition, Nat(0, suc, add) would be defined
by conjoining to the statement Nat(0, suc) the statements ∀x. addx0x and∀xyz(addxyz∧
suc yy′ ∧ suc zz′ → addxy′z′), giving the recursive definition of addition from successor
and 0, and the statement that addition is function ∀xyzz′(addxyz ∧ addxyz′ → z = z′).
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not be able to avoid ontological commitments more uncomfort-
able on balance than that to mathematical objects, either to
Fregean concepts or to multiplicities that are not ‘unities’.’17

Similar sentiments are advanced in Field (1989) p7. It is sometimes tempt-
ing to provide English paraphrases of the structural contents defined above
by quantifying over structures, or ω-sequences: the structural content of an
arithmetical sentence A becomes ‘A is true in every natural number struc-
ture’. Indeed, I have lapsed into this way of speaking already. However, if
we were to take this seriously we would have gained nothing. For structures,
sequences, and the like are just more abstract objects. What’s to stop them
having their mathematical features contingently, in a way that disconnects
them from the natural patterns? The higher-order generalizations, by con-
trast, are immediately and logically connected to the particular instances of
a given pattern by universal instantiation.

Of course, if we follow Quine in using higher-order quantification as a
different notation for first-order quantification over sets or properties then
we do not have a genuine alternative. However this is not the interpreta-
tion of higher-order logic employed by many of its contemporary proponents,
who use the higher-order quantifiers as devices for forming generalizations
in various grammatical positions—roughly as a way of capturing, in a sin-
gle generalization, an infinite lists of claims differing only in the predicate
(name, operator, etc) appearing in that claim, as we explained above.18 In
first-order logic an existential, such as ‘∃x x is tall’ bears a logical kinship
with the infinite disjunction ‘John is tall or Mary is tall or . . .’: whatever the
world needs to be like to secure the disjunction, also suffices to secure the
existential. A higher-order existential, such as ‘∃R, Herb Rs Mary’, bears the
same exact same relationship to the disjunction ‘Herb loves Mary or Herb
hates Mary or ...’. But it is clear that the world doesn’t have to contain
relations, structures, or anything like that for this disjunction to be true: it
would still be true if, for instance, Herb loves Mary and there are no abstract
objects.19 Having explained what we mean, however, we will revert to our
non-literal talk of “structures” as though they were individuals, entrusting

17Parsons (1990) p329. §6
18See, for instance, Prior (1971), Williamson (2003), Trueman (2020), Bacon (forthcom-

ing). This way of understanding higher-order logic traces back to Frege himself.
19A generalization is, of course, a little different from a disjunction. An existential gen-

eralization, for instance, is entailed by the disjunction of its instances. But the converse
might fail given certain metaphysical views: for instance if there could have been new in-
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the reader to infer the higher-order statement intended. In particular we will
say “Mary, loves forms a natural number structure” as short for higher-order
statements like Nat(loves, Mary).

To illustrate the power of higher-order generalizations, and contrast them
with their platonic counterparts, let us briefly examine how higher-order
claims connect directly with a certain class of arithmetical patterns in na-
ture (thereby partly addressing a long-standing question about the applica-
bility of arithmetic.20) Plausibly the need for general arithmetical reason-
ing originated with elementary patterns naturally expressed with numerical
quantifiers, such as:

If the bowl contains four apples and three pears and the bag contains
three apples and four pears, then there are just as many fruit in the
bowl as in the bag.

Here the words ‘four’ and ‘three’ are determiners, not names. One does not
need to posit platonic objects to be their referents in order for them to be
meaningful—as we noted earlier, ‘four apples are in the bowl’ is equivalent
to a statement involving first-order quantifiers and identity. The need for
higher-order generalizations becomes apparent when we start to notice gen-
eral patterns. For instance, if we replace ‘four’ with ‘twenty’, and ‘three’
with ‘thirty nine’ in the above, we also get a truth. Indeed, every instance
of the schema

If the bowl contains N apples and K pears and the bag contains K
apples and N pears, then there are just as many fruit in the bowl as
in the bag.

where N andK can be replaced by any numerical determiner phrase. To cap-
ture this general pattern with a single generalization, the platonist posited
special purpose individuals and operations—numbers, addition, and so on—

dividuals that are not F , while all the actual individuals are F , then in that possibility the
disjunction of the existential’s actual instances is true but the existential false. However,
it is only the entailment from the disjunction to the existential we need to justify the on-
tological innocence of the higher-order generalization: if the disjunction doesn’t entail the
existence of abstract objects, nothing the disjunction entails can either, by the transitivity
of entailment.

20cf Hodes (1984). See the introduction of Field (1989) and Goodsell and Yli-Vakkuri
(MS) for some related discussion.
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and subjected them to the law that for any numbers n andm, n+m = m+n.21

But how does the platonic fact explain the original observations? Notice that
we cannot infer from this first-order statement the instances of the above
schema by logical means. They do not even strictly imply them if we are
liberal about what is possible concerning the platonic objects—the claims
about apples and pears would have remained true even if the platonic num-
bers 4 and 3 had gone AWOL from the platonic natural number structure.
By contrast, if it is possible to generalize directly into the grammatical po-
sition that numerical quantifiers occupy, we can infer the instances of this
schema directly by universal instantiation.22

4 The Framework of Higher-order Modal Logic

Since we will be working within the framework of higher-order modal logic,
let’s say a few things about what that is. As indicated earlier our approach
is axiomatic: our basic system will be a neutral system of higher-order modal
logic, which we label H2 and will informally call the Background Logic. We
will also outline possible directions we might strengthen this logic to capture
substantive principles of modal metaphysics that will later be brought to
bear on mathematical contingency.

The Background Logic contains little that can be objected to, and is char-
acterized by four sorts of axioms and rules: (i) the axioms and rules of the
classical propositional calculus, (ii) the axioms and rules for classical quan-
tification (these are the usual axioms and rules the first-order quantifiers,
and their analogues for all higher-order quantifiers), (iii) a pair of principles
governing the λ device, used for turning open formulas into explicit predi-
cates, (iv) the axioms and rules of a normal modal logic—the principle that
what is necessary is closed under modus ponens, and a rule to the effect that
theorems of the Background Logic are also necessary according that logic.
The precise details of the language, and the formulation of these logical prin-
ciples can be found in Appendix A. While the Background Logic does not
contain anything particularly contentious, we can also consider strengthening
the Background Logic by adding substantive principles of modal metaphysics

21This represents a significant change in Frege’s approach from the Grundlagen to the
Grundgesetze.

22Compare Hodes (1984) and Goodsell and Yli-Vakkuri (MS).
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to it.23 In later sections we will consider three possible ways of strengthening
the Background Logic:

1. Strengthening the very minimal modal logic to S4 or S5.

2. Adding “Rigid Comprehension”, RC, a comprehension principle stat-
ing that every property or relation is coextensive with a modally rigid
property or relation.

3. Adding “The Leibniz Biconditionals”, LB, a principle saying that every
possible proposition is settled (i.e. entailed) by a “world” proposition,
and analogues of this principle for properties and relations.

The modal logics S4 and S5 should be familiar to the reader. Rigid Compre-
hension can be motivated indirectly through the logic of plurals (see Boolos
(1984) ). Two key principles governing plurals are: (i) for any property F ,
there are some things, the F s, among which are all and only F individuals,
(ii) the property of being one of these things is a modally rigid property.
(RC itself, however, cuts out the middle man, and can be stated without
reference to plurals.) The Leibniz Biconditionals can be motivated from a
key tenet of possible world semantics: that propositions under the entail-
ment order are isomorphic to the subsets of a collection of “worlds” under
the subset relation. Propositions corresponding to singletons are what we
have above called world propositions, and so any possible proposition will,
via the isomorphism, be entailed by a world proposition.

These principles are all components of the conventional theory of modal-
ity. We will also explore a final modal principle that articulates a view that is
in extreme opposition to the Leibniz biconditionals, implying the existence of
lots of possible propositions that are not entailed by any world propositions
(the reason behind the name will become clear later):

23One substantive issue that the Background Logic takes a stand on the necessi-
tist/contingentist debate (see Williamson (2013)). Necessitism, the thesis that necessarily
everything necessarily is something, is a theorem of the Background Logic and corre-
sponding necessitist theses for propositions, properties and relations can also be derived.
However, I do not think these consequences have to be understood in a way that is partic-
ularly contentious: they are purely devices of generalization pinned down by their logical
role, and need not be tied to words like ‘exists’ or the restricted quantificational idioms
of English. There are ways of introducing such generalizing devices even in a contingen-
tist setting (see, for instance, Fine (1979)). Contingentists may wish to supplement our
system by adding their preferred contingentist quantifiers, and nothing we say precludes
them from doing so. See [ANON].
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4. “Mathematical Possibilism”,MP. A principle stating that to every com-
plete Boolean algebra that’s not “too big”, there is a proposition iso-
morphic to it under the entailment relation.

Precise formulations of these logical principles can be found in Appendix
A, and will be discussed in later sections. We adopt the following naming
convention for higher-order modal logics:

Convention 4.1. We denote by H2 the Background Logic, and the possible
extensions as H2.4, H2.5, H2.RC, H2.LB, H2.MP. If we want to add two
or more principles at once we separate them with further dots: for instance
H2.4.RC.MP.

Within the pure language of higher-order modal logic we can state hy-
potheses about the contingency of particular structural mathematical con-
tents. In some cases we may find that the Background Modal logic will
prove that these contents are not contingent, as for instance, in the case of
the structural content of “7 is prime”. In other cases we may find that struc-
tural mathematical contingency is compatible with this basic higher-order
modal logic, and then we can ask how matters change if we assume one of
our further principles of modal metaphysics. These questions can be settled
using the usual logical methodology of finding axiomatic derivations, and
finding models.

As an example of the Background Logic at work, we can state and derive
an important connection between the structural arithmetical claims (state-
ments of the form A∗) and the quantifier statements we singled out in the
previous section. Following Frege, in the Grundlagen, we can provide logical
definitions of the zero quantifier, what it is for a quantifier to succeed an-
other, and what it means for a quantifier to be a (finite) numerical quantifier.
The zero quantifier, “there are at least 0 F s” holds vacuously of any prop-
erty F , the successor of a quantifiers Q means “there is something which F s
and Q other things that F . A finite numerical quantifier is then something
that possesses any property applying to the zero quantifier and closed un-
der quantifier successors. Consequently, we have another way of translating
platonic arithmetical statements into pure higher-order logic. A given arith-
metical statement, A(0, suc) can be mapped into pure higher-order logic by
shifting the types: mapping 0 to the zero quantifier, mapping the succes-
sor operation to the quantifier operation on quantifiers, replacing first-order
variables with variables of quantifier type, and restricting quantification over
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such variables to a predicate expressing the property of being a numerical
quantifier.24 Call this A†. One can then prove the following theorem in the
Background Logic:25

Theorem 4.1. For any second-order arithmetical statement A, the structural
content of A, A∗, and the functional content of A, A† are provably equiva-
lent in the Background Logic, H2, given the existence of a natural number
structure.

This holds because the structure of any given natural number structure
is deeply tied to the finite numerical quantifiers. Let ‘n’ be a first-order
variable ranging over individuals a given natural number structure and ‘N ’
a variable of determiner type ranging over finite numerical determiners.26

For any number n in the structure there are exactly N numbers less than
n, for some unique finite numerical quantifier N . Conversely, for each fi-
nite numerical quantifier N , there is a unique number n in the structure
such that there are exactly N numbers less than n. Clearly the numerical
quantifier associated with the successor of n is the quantifier successor of
the numerical quantifier associated with n, establishing a pair of mutually
involve isomorphisms between an arbitrary natural number structure and the
finite numerical quantifiers. This means that if there are any natural number
structures, they will all agree with the natural number structure of numerical
quantifiers about any arithmetical claim.27

Note that the finite numerical quantifiers can form a natural number
structure even when there are only finitely many individuals: provided it
is possible that there could be any finite number of things, the numerical
quantifiers will be distinguishable by a modal property, and thus distinct.28

24We might call this the Grundlagen translation since this is essentially the translation
of arithmetical claims found there.

25Note that this theorem doesn’t extend to any higher-order arithmetical statement.
For instance, let M and N be distinct numerical quantifiers. The propositional identity
(N ̸=(e→t)→t M) =t ⊤ is consistent with the existence of a natural number structure
whose Nth and Mth elements, m and n, are such that (m =e n) ̸=t ⊤.

26We use the expression “there are exactly N . . .” to mean “there are N . . ., but there
are not sucN . . .”.

27Note that the existence of a natural number structure is needed to ensure that A∗ is
not vacuously true, and that quantifier successor is injective.

28Even if there couldn’t be more than a certain finite number of individuals, and the
finite numerical quantifiers were finite in number, we would still be able to articulate
using them the sense in which 7 is prime. This does not generalize to more complicated
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We complained earlier that the platonic propositions do not seem to modally
track the functional contents of arithmetical statements. We also saw that
structural propositions fail when there aren’t any natural number structures.
Theorem 4.1 guarantees that this is in a sense the only case, insofar as the
functional contents are captured by statements made in terms of numerical
quantifiers.

Note that some instances of theorem 4.1 are not particularly illuminating.
The functional content of a statement like 3 + 4 = 7 will itself be a theorem
of classical (higher-order) logic, and its immediate implications include only
tautological facts like

If there are three apples in the bowl and four non-apples in the bowl,
there are seven things in the bowl.

The structural content of this arithmetical claim is similarly a theorem of the
Background Logic. The modal equivalence is thus ensured by both sides be-
ing classical theorems, and thus both necessary. However there will be many
cases where neither side are theorems of classical logic — such as Con(H2)∗

and Con(H2)†, the structural and functional translations of the consistency
statement for the Background Logic. If we take the possibility of structural
contingency seriously, then theorem 4.1 ensures there are still substantive
modal correlations between the structural claims and the functional mathe-
matical claims.

5 Arithmetical Contingency

Having finally arrived at an interesting form of mathematical contingency
we return to our principal question of whether mathematics could have been
different? Is structural mathematical contingency coherent, or does it contain
a hidden inconsistency? We will pursue the case of arithmetic in this section;
the next will cover the real numbers.

Any inconsistent statement in our minimal background logic will be im-
possible according to that logic. (This is due to the rule of necessitation: if the
Background Logic proves ¬A, then it also proves 2¬A.) Given that incon-
sistency in this narrow sense suffices for impossibility, there are clearly many

arithmetical statements that we usually take to be true, but one might wonder whether
the usual principles of arithmetic actually should hold when there is a finite upper bound
on how many things there could possibly be.
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necessary structural claims. As we noted previously, the dagger translation
of the claim ‘3+4=7’ is a classical theorem, and is therefore not contingent.
On the other hand some structural arithmetical statements—the structural
content of a suitably chosen Gödel sentence, for instance—are logically inde-
pendent of the Background Logic. Is there any incoherence in assuming that
statements like these are contingent? The schema asserting that there is no
such structural contingency in a given arithmetical language may be stated
as follows:

The Necessity of Arithmetic

2∀X(Nat(X) → A(X)) ∨2∀X(Nat(X) → ¬A(X))

Where A can be any arithmetical statement in that language, and A(X) is the
result of replacing all the constants in that language with the variables in X.
Structural arithmetical contingency, then, is an example of an arithmetical
sentence, A, which makes this schema false. Pay special note to the fact that
the schema is language dependent, and we can consider different versions of
it depending on what we count as “arithmetic”; we can vary whether we are
talking about the contingency of first or second-order order arithmetic.29

An important constraint in the vicinity is a famous result of Dedekind
(1888) that any two natural number structures are isomorphic.30 Dedekind’s
theorem may be stated and derived in the non-modal fragment of the minimal
background logic; i.e. using only the classical quantifier laws, propositional
logic, and laws governing λ. Thus its statement and proof belong to pure
logic, and do not make reference to any distinctively mathematical notions.31

Dedekind’s Categoricity Theorem

∀XY(Nat(X) ∧ Nat(Y) → X ∼= Y)

29To be explicit, by first-order arithmetic we mean formulas in the signature 0, suc, <
,mult, add containing only first-order quantifiers, and second-order arithmetic allows
second-order quantifiers—the constants <,mult, add can be dropped from the signature
in this case without loss of expressive power.

30Strictly speaking, there are different versions of Dedekind’s theorem depending on the
signature, and notion of natural number structure for that signature. Dedekind’s original
result involved the signature 0, suc.

31This higher-order statement of Dedekind’s theorem, and its proof, is a natural way of
rendering Dedekind’s original argument. At any rate, Dedekind was certainly not working
in a background theory of sets.
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where X ∼= Y is short for a higher-order sentence stating that X and Y are
isomorphic. Since Dedekind’s theorem is a theorem of the Background Logic,
it is also necessarily true according to the Background Logic. We will thus
take it to be necessarily true, mathematical contingency notwithstanding.

A straightforward consequence of Dedekind’s theorem is that second-
order arithmetical claims must have the same truth value in different natural
number structures.32 That is, for any second-order arithmetical sentence A:
∀XY(Nat(X) ∧ Nat(Y) → (A(X) ↔ A(Y)). Since this statement is thus
also derivable from classical principles, it is also necessary in the Background
Logic. So we can also put a 2 in front of the consequence above.

2∀XY(Nat(X) ∧ Nat(Y) → (A(X) ↔ A(X)))

It is initially tempting to think that Dedekind’s theorem automatically
rules out arithmetical contingency. For if no two actual natural number
structures can disagree about the first-order arithmetical truths how could a
possible natural number structure disagree with an actual one either? This
line of thought might perhaps be persuasive for anyone inclined towards the
Lewisian view of modal reality. Lewis (1986) maintains that whatever is pos-
sible is in fact instantiated somewhere in the Lewisian plurality of concrete
worlds. On this picture any two possible natural number structures are both
in fact simultaneously instantiated somewhere in the Lewisian pluriverse.
One can sensibly talk about relations between individuals belonging to dif-
ferent worlds—just as we can make sense of relations between individuals on
different planets, say—and so Dedekind’s theorem can be applied.

But if we do not adopt this fundamentally amodal worldview, it is hard
to emulate this sort of reasoning—it involves making comparisons across log-
ical space that do not seem to be legitimate once we take modality seriously.
Dedekind’s theorem tells us that, necessarily, no second-order arithmetical
claim can differ between two natural number structures. We cannot com-
pare, say, an actual natural number structure with a merely possible one
that doesn’t exist yet, for then the isomorphism needed to make the compar-
ison may not exist yet either. Helping ourselves, temporarily, to a possible
worlds way of talking we might say that Dedekind’s theorem is an intra-world
constraint: the relations are being compared, and are natural number struc-
tures relative to a single world. What we would need to rule out arithmetical

32Curiously, this does not extend to arbitrary higher-order arithmetical statements. It
is fairly easy to construct models there are two natural numbers structures, R and S, such
that ∀xy(x ̸= y → x ̸= y =t ⊤)S ↔ ∀xy(x ̸= y → x ̸= y =t ⊤)R fails.
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contingency, by contrast, would be an inter -world version of Dedekind’s the-
orem, letting us compare natural number structures taken from different
worlds. One strategy for getting around this is to strengthen Dedekind’s
theorem, and the above consequence, by interlacing the universal quantifiers
with an extra modal operator:

2∀X(Nat(X) → 2∀Y(Nat(Y) → X ∼= Y))

2∀X(Nat(X) → 2∀Y(Nat(Y) → (A(X) ↔ A(Y))))

However, these stronger claims stand little chance of being true, let alone
derivable. Suppose that people are arranged, under the loving relation, in a
natural number sequence (i.e. Nat(John, loves)). Had people been arranged
under the kicking relation in a natural number sequence, we have absolutely
no guarantee that the lovers and kickers can be correlated in a one-to-one
fashion in a way that preserves successors, because we have no guarantee
that the lovers would be still arranged in the same way. We can bring the
difficulties of establishing The Necessity of Arithmetic without making any
substantive modal assumptions into sharper relief by demonstrating once and
for all that no such derivation is possible: structural arithmetical contingency
is consistent in our Background Logic. Indeed, it is consistent with H2.4 and
the thesis of Intensionalism, according to which propositions, properties and
relations are individuated by necessary equivalence (this system is equivalent,
modulo definitions, to the system “Classicism”.33)

Theorem 5.1. There is a first-order arithmetical sentence, A(0, suc, <, add,mult),
namely the Gödel sentence for Classicism (H2.4 and Intensionalism), and a
model of Classicism in which the former is structurally contingent. I.e. the
model makes

3∃X(Nat(X) ∧ A(X)) ∧3∃X(Nat(X) ∧ ¬A(X))

true.

Recall that, given Theorem 4.1, the contingency of these structural claims
patterns with contingency about the corresponding claims about finite nu-
merical quantifiers. So if there is structural arithmetical contingency the
notion of finiteness itself, as encoded by quantifier phrases of the form “there

33See Bacon and Dorr (forthcoming), Bacon (2023a) chapters 6-8
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are N things”, must be modally flexible. In particular, it will turn out that it
must be possible that there are more finite numerical quantifiers than there
in fact are, using the definition of being a finite numerical quantifier from
the previous section. This means that, for some higher-order property F ,
there could have been a finite numerical quantifier that is F despite there
being no finite numerical quantifier that is possibly F . It might be tempt-
ing to gloss this as saying that it is possible that there are “non-standard”
numerical quantifiers, by analogy with non-standard models of arithmetic
that contain non-standard numbers above the standard numbers. However
this gloss is misleading—there is no non-trivial distinction between standard
and non-standard finite quantifiers, in actuality or at the possibilities where
arithmetic is different. The numerical quantifiers at the possibility in ques-
tion are standard finite quantifiers in the exact same sense as the actual finite
numerical quantifiers are: they satisfy a principle of induction, apply to a
property only if it is Dedekind finite, and so on. Yet we can also say things
that capture the idea that the finite numerical quantifiers could have been
different than the actual finite numerical quantifiers, such as statements of
the form:

It’s possible that there is a finite numerical quantifier that . . ., but no
finite numerical quantifier possibly . . ..

Here . . . can be filled in by some property that only merely possible finite
quantifiers can satisfy — perhaps, the property of coding a proof of the
inconsistency of ZFC.34

The above line of thought establishes that the property being a finite
numerical quantifier is not modally rigid—there could have been more of
them than there in fact are. Indeed, if this fails to be rigid in this way,
then there cannot be any other way to rigidly single out the finite numerical
quantifiers either. For if there were a property, X, rigidly picking out the
actual numerical quantifiers, then it is not only true, but necessary that
X applies to the 0 quantifier and is closed under quantifier successor. So,
necessarily, if Q is a finite numerical quantifier—i.e. it possesses any property

34There is a way to say that the new finite numerical quantifiers are greater than any
actual finite numerical quantifier. That is, we have that for any finite numerical quantifier,
N , it is necessary that every quantifier that . . . is greater than N . But any given claim
of this form is consistent with the new quantifiers simply being a normal finite numerical
quantifier greater than N . We have no direct way to say that all the finite quantifiers that
. . . are greater than all the actual finite numerical quantifiers at once.
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that applies to the 0 quantifier and is closed under quantifier successor—
then it possesses X, establishing that the finite numerical quantifiers cannot
outstrip the actual finite numerical quantifiers after all.

These informal remarks can be turned into a proof that there is no struc-
tural arithmetical contingency from a substantive principle of modal meta-
physics:35

Rigid Comprehension Every property (relation, etc.) is coextensive with
a rigid property (relation, etc.)

Here we officially understand F to be rigid when there is no modal difference
between the possible existence of F s that are G and the actual existence of
F s that are possibly G. (Incidentally, Rigid Comprehension plays a rather
critical role in this paper. While S5 and possible world assumptions are
often given center stage in extant discussions of modal metaphysics, my own
sense is that these principles are further toward the periphery of the web of
modal doctrines, and can easily be revised without doing too much violence
elsewhere. The revisions that would be necessary to accommodate failures
of Rigid Comprehension, however, strike me as much more thorough going.)

We thus have the following theorem, slightly generalizing a result from
(Goodsell (2022), Corollary 14).36

Theorem 5.2 (Goodsell). In H2.RC, one can prove

2∀X(Nat(X) → A(X)) ∨2∀X(Nat(X) → ¬A(X))

Whenever A(0, suc,mult, add, <) is a sentence of first-order arithmetic in the
signature 0, suc,mult, add, <.

35There are some subtleties involving the notion of rigidity employed here, but they
necessary for the wider point. They are relevant only if we take seriously the idea that
distinct individuals could have been identical. See Bacon and Dorr (forthcoming), of
rigidity and a statement of Rigid Comprehension in the context of H2. This notion of
rigidity is found in Parsons (1983).

36Goodsell’s result is about first-order arithmetic in the signature <, 0. Hardly any
interesting arithmetical claims can actually be expressed in this language, due to the
fact that one cannot define addition and multiplication from 0 and < in first-order logic.
One way to patch this up is to use the richer notion of a natural number structure that
includes among its data operations representing addition and multiplication (Goodsell has
communicated to me other ways to patch up the argument here). Theorem 5.2 below
slightly generalizes Goodsell’s argument in using a weaker background higher-order logic
(Goodsell uses Classicism); but in detail it is the same argument.
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The idea, informally, is to use Dedekind’s theorem to show that every
natural number structure is isomorphic to a “modally inflexible” natural
number structure in which arithmetical statements are necessarily true if
true at all, and then use the necessity of Dedekind’s theorem to establish
that, necessarily, any natural number structure agrees with with the inflexible
natural number structure about what is true. I say, here, that a structure is
“modally inflexible” iff it is defining properties and relations are rigid, and
the individuals in the fields of these relations are necessarily distinct (the
latter clause is needed because H2.RC is weak enough to be neutral about
the necessity of distinctness).

The extent to which this result rules out arithmetical contingency will
depend on what we count as “arithmetic”. Goodsell’s result tells us that
the first-order arithmetical truths are not contingent, but it does not extend
to sentences of second-order arithmetic—a curious break from Dedekind’s
“intra-world” theorem, which applies to both. The model construction in
appendix B.1 can be modified to show the compatibility of the contingency of
a second-order arithmetical statement (the existence of 0#) with a strength-
ening of H2.5.RC.37

What reasons do we have to believe that Rigid Comprehension is true?
One route to Rigid Comprehension appeals to the behaviour of plural terms
in English—expressions like ‘the horses in the stable’, ‘those things’ and
the like. On the one hand, it seem as though plural expressions have rigid
membership conditions. Suppose we encounter some people, and John is one
of them—then it seems that he couldn’t have failed to be one of those people,
and similarly, there couldn’t have been more of those particular people than
there in fact are. That is to say, if tt is a plural term, then the property is
one of the tt is rigid.38 On the other hand, it seems that for any predicate,
F , we can form a plural expression, ‘the F s’, which is coextensive with F in
the sense that something is one of the F s if and only if it is F . Thus Rigid
Comprehension is ensured: if F is any property whatsoever, being one of the
F s is the rigid property coextensive with it.

37In this model 2RC fails. But if conjecture 6.1 is true, then we would expect this sort
of contingency to also be consistent with 2RC.

38The rigidity of plural membership is one of the axioms in Linnebo’s modal plural
logic (Linnebo (2013)). Dummett (Dummett (1991), p.93) suggests we reduce plural
quantification to second-order quantification which, outside of a Fregean/extensionalist
context, would seem to require some sort of restriction to rigidity. See also Dorr et al.
(2021) §1.5 for some related discussion.
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Might we resist this argument? Recently Salvatore Florio and Øystein
Linnebo have argued that some concepts—like the notion of set, ordinal and
even the notion of a thing—are “extensionally indefinite”, in the sense that
they do not have a definite extension captured by something like a plural term
or a set.39 They therefore deny the plural comprehension principle, that for
any F there are some things, the xx, such that something is one of the xx if
and only if it is F . So, for instance, the property being a set, is extensionally
indefinite, and so we must deny that there are some things which are all and
only the sets. This blocks the argument for Rigid Comprehension from plural
logic.

Furthermore, their picture may also give us positive reasons to doubt
Rigid Comprehension. As we have already noticed, it looks as though plurals
and rigid properties are in one-to-one correspondence—being one of . . . and
the . . . s are mutual inverses when the latter is restricted to rigid properties—
so we can faithfully paraphrase plurals in terms of quantification over rigid
properties provided both Plural and Rigid Comprehension hold. However,
it’s tempting to think that this correspondence persists even in contexts
where both can fail—i.e. Plural and Rigid Comprehension must fail in the
same way. We can also take their picture as a starting point for developing
a theory of rigid properties that falls short of Rigid Comprehension but is
still powerful enough for many other purposes. It is extremely natural to
identify Florio and Linnebo’s notion of extensional definiteness with rigidity
(or perhaps, a variant of rigidity expressed with a definiteness operator).40

We may also enrich this with a logic of definiteness allowing us to recover
some of the principles of “Critical Plural Logic” that Linnebo and Florio
take to be valid, such as that the disjunction of two extensionally definite
properties is also extensionally definite.41

39Florio and Linnebo (2021).
40See the discussion of rigidity in chapter 10 of Florio and Linnebo (2021). This is not

the only possibility for analysing extensional definiteness: Linnebo (2013) gives a modal
Cantorian analysis in terms of the possibility of those things existing together, and Linnebo
(2018) explores a Dummettian analysis instead exploits intuitionist logic.

41See §12.5 of Florio and Linnebo (2021). Note that if we do not assume the necessity
(or at least definiteness) of distinctness the conjunction of two rigid properties may not
be rigid. If a and b are distinct but possibly identical, λx(x = a ∧ x = b) is empty but
might not have been, and so is not rigid. Yet λx.x = a and λx.x = b are rigid. Some of
the principles of critical plural logic require special further assumptions about definiteness
beyond the definiteness of distinctness. For instance, their principle of union corresponds,
in the present context, to the principle that any (possibly indefinite) second-order property
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Florio and Linnebo target mathematical notions like being a set, or being
an ordinal. They do not, by contrast, question the notion of a finite number.
Yet the instances of Rigid Comprehension needed to prove Theorem 5.2 in-
volve only natural number structures. Might the notion of natural number be
extensionally indefinite? Cantor and Aristotle famously had diverging views
on this question. Cantor thought not, maintaining that any sequence of or-
dinals can be completed.42 In the Physics Aristotle maintains that there are
arbitrarily large finite quantities, but not any infinite quantities encompass-
ing them. Aristotle primarily applied his views to natural number structures
found in nature—such as days ordered chronologically, or sequences of phys-
ical magnitudes ordered by their size (Aristotle (350 B.C.E) 203b15)—so a
certain sort of Aristotelian may have independent reason to deny all the in-
stances of Rigid Comprehension needed to get this argument going.43 We
may substantiate this by coming up with an Aristotelian model of arith-
metical contingency—indeed, we already have as Theorem 5.1 provides us a
model of exactly this sort.

We know, given Goodsell’s result, that Rigid Comprehension must fail in
this model. The model is also Aristotelian in the following way: the first-
order domain consists of numbers 0, 1, 2, . . ., and for any finite collection of
those numbers, there is a rigid property of being one of them, but there is
no rigid property coextensive with all the numbers.44 Indeed, the model can

circumscribing some definite properties has a definite union. While any definite property of
definite properties can be shown to have a definite union in a minimal logic of definiteness,
their stronger principle needs to added by hand; similar points apply to their principle of
separation.

42See Cantor (1883). Cantor required that completable sequences of ordinals had to be
indexable by an already existing ordinal, or else we encounter the Burali-Forti Paradox.
Cantor’s original theory of ordinals was a bit unclear about this point — he originally pre-
sented it as a pair of of inconsistent “Principles of Generation”, letting you take successors
and arbitrary limits of ordinals— and then added to that a further “Principle of Limi-
tation” that might more charitably be taken to be a qualification of the limit principle,
rather than a separate claim.

43See Linnebo and Shapiro (2017) for an explicitly modal articulation of Aristotle’s
position (although see Rosen (2021), Bacon (2023b) for a non-modal alternative).

44There is a sense of ‘finite’ in which the existence of finite rigid properties is guaranteed
just by logical considerations. To be finite is to be a property G which possesses every
property of properties which (i) applies to all empty properties, and (ii) applies to λx.Fx∨
x = y whenever y is not F and F is a property it applies to. The argument is essentially
an induction, using the fact that if F is rigid then so is λx.Fx ∨ y. Further principles
may be needed to extend this argument to other notions of finiteness, such as Dedekind
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also be viewed as a model of Linnebo and Florio’s Critical Plural Logic minus
their principle of infinity, by interpreting the plural quantifiers in terms of
quantification over rigid properties.

Might there be another route to the conclusion that there isn’t structural
arithmetical contingency? One that doesn’t go through the Rigid Compre-
hension principle. Goodsell’s result is fairly neutral about the modal logic
of 2—on his interpretation 2 represents a determinacy operator. Perhaps
stronger assumptions about the logic of broad necessity could close the gap.
Several modal principles seem to fall straight out of the notion of broad ne-
cessity. First, in virtue of being the strongest necessity, 2 should be at least
as strong as aletheic necessity, it is true that . . . (λp.p): so 2 should be fac-
tive, ∀p(2p → p), and necessarily so: 2∀p(2p → p). Similarly, in virtue of
being the strongest necessity, it should be as strong as the composite neces-
sity of being broadly necessarily broadly necessary (λp.22p). So 2 should
necessarily satisfy the S4 axiom: 2∀p(2p → 22p). This suffices to establish
that all theorems of S4 are true of broad necessity. We call this system H2.4.

These further modal principles do not rule out structural arithmetical
contingency, for we saw by theorem 5.1 that there is a model of Classicism
which contains all the theorems of S4 and arithmetical contingency.

The S5 principle, unlike the two principles discussed above, does not
fall directly out of the concept of necessity in the highest degree. There
is a tempting argument that it does, but this argument relies on a subtly
fallacious use of possible world model theory. The thought rests on the
Leibnizian idea that the broadest necessity must correspond to quantification
over all possible worlds. Now, in a certain model theory that treats 2 like a
universal quantifier, the corresponding condition secures the validity of S5.
However the validity of the object language principle that broad necessity
is truth in all possible worlds does not straightforwardly correspond to the
claimed model theoretic condition (that in a given model, 2A is true at a
world iff it A is true at every world in the model). It is perfectly consistent
to keep this principle as stated while admitting failures of S5 if there is
contingency about which things are worlds (indeed, the models of theorem
5.1 above validates the “Leibniz biconditionals”, which we’ll discuss further
in section 6, while also invalidating S5).45

With that all said, we might simply take S5 as a substantive metaphysical

finiteness (being injectible into property whose extension you property contain).
45See also the discussion in Bacon (2018a) §5.4.
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posit and see where it leads.46 We can obtain the modal higher-order logic
H2.5 from H2.4 by adding the following axiom

Brouwer’s principle 2∀p(p → 23p)

Now, without Rigid Comprehension, it is very hard to compare the extensions
of relations across possibilities, even in the context of a modal logic of S5.
For all we’ve said, it could be that relations witness one class of extensions
in one world, but those same relations “miss out” some extensions at other
possibilities, allowing for contingency in the structural arithmetical proposi-
tions.47 In fact it’s possible to come up with a model of second-order modal
logic in which S5 is true, and there is structural arithmetical contingency. I
do not describe this in the appendix but the construction is relatively simple,
and given in outline in the footnote.48

Theorem 5.3. There is a model of second-order logic with a S5 modal oper-
ator in which there is contingency about some first-order arithmetical state-
ment.

It is rather striking, then, that this situation does not hold in full higher-
order logic. Recall that, given certain existence assumptions, structural con-
tingency is equivalent to contingency in the structure of the numerical quan-
tifiers. However, it is possible to show, in a logic of S5, that there cannot
be contingency about the structure of the finite numerical quantifiers. An
easy induction establishes that every finite numerical quantifier is necessarily

46Alternatively, we might make other substantive posits that imply that broad necessity
satisfies S5. For instance, Williamson (2016) suggests the principle that every modality
has a converse, in analogy with the tense operations corresponding ‘will’ and ‘was’. This
principle can be formalized in a higher-order framework (see Bacon and Zeng (2022).

47Of course, this talk of “missing out” isn’t really legitimate without Rigid Comprehen-
sion.

48Start with two extensional Henkin models of second-order logic with the same infinite
domain of individuals which disagree about some structural arithmetical truth (some sen-
tence of the form A∗). This is possible due to the combination of Gödel’s incompleteness
theorem and Henkin’s completeness theorem (see Gödel (1931), Henkin (1950)); the latter
rests on the fact that in these models the second-order quantifiers needn’t range over arbi-
trary subsets of the domain of individuals. The modal model of second-order logic is then
obtained by having two mutually accessible worlds. Properties are modeled as functions
from worlds to extensions, but we only allow functions that take the first world to an
extension in the first model, and the second world to an extension in the second model.
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a finite numerical quantifier.49 In S5, it also follows that if N is not a finite
numerical quantifier, it is necessarily not one. For suppose N was possibly
a finite numerical quantifier. Then it is possibly necessarily one, by the pre-
vious argument and normality, and by Brouwer’s principle it follows that N
is a finite numerical quantifier after all. So there is no contingency about
which things are finite numerical quantifiers. By a similar argument, it is
possible to show that the numerical ordering of the numerical quantifiers is
non-contingent allowing us to establish the non-contingency of arithmetic
according to the numerical quantifiers. This in turn precludes contingency
in any natural number structure, given the isomorphism described above (or
alternatively obtained by Dedekind’s theorem). Thus we obtain the following
complement to theorem 5.2:

Theorem 5.4. In H2.5 (H2.4+ B), one can derive

2∀X(Nat(X) → A(X)) ∨2∀X(Nat(X) → ¬A(X))

Whenever A(0, suc, <, add,mult) is a sentence of first-order arithmetic in the
signature 0, suc, <, add,mult.

Thus far we have focused on statements of first-order arithmetic. When
we move to the setting of second-order arithmetic the situation is slightly
different. There are statements of second-order arithmetic whose contingency
is consistent with C5, and given a certain conjecture the contingency of this
statement is consistent with C.RC. However, since second-order arithmetic is
in a sense equivalent to first-order analysis with a notion of natural number
we leave these facts for the next section.

49It is sufficient to show that the property of being necessarily a finite numerical quan-
tifier applies to the 0 quantifier and is closed under quantifier successor. It then follows
that if N is a finite numerical quantifier—i.e. it has any property applying to 0 and closed
under successor—then it in particular has being necessarily a finite numerical quantifier.
Necessitation tells us that it is necessary that the 0 quantifier has any property applying
to the 0 quantifier and closed under quantifier successor, since this can be established by
logic alone. Suppose N is necessarily a finite numerical quantifier. Then, by definition of a
finite numerical quantifier, it is necessary that any property applying to 0 and closed under
successor applies to N ; and thus, necessarily, any such property applies to the successor
of N . Thus the successor of N is also necessarily a finite numerical quantifier.
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6 Analytical Contingency

We now turn to analytic contingency—contingency about the real numbers.
As before, we are less interested in contingency about the nature of the
platonic real numbers, but rather about contingency about what holds of
things that are arranged in the same structure that platonists take their
real numbers to be in fact arranged. Namely, the structure of a complete
ordered field. This means that the platonic reals are equipped with notions of
addition, multiplication, 1, 0, and a relation< that behave nicely with respect
to each other: they satisfies the axioms of an “ordered field”.50 Moreover,
they satisfy a completeness property, that can be specified by a higher-order
generalization:

For any F , applying to real numbers, if there exist a real no greater
than every F , there exists a largest such real.

The platonic reals are not the only structure that instantiates the proper-
ties of a complete ordered field. Plausibly, the structure of times under the
chronological ordering, with 0AD and 1AD playing the role of the additive
and multiplicative units also satisfies these conditions.

Following our previous conventions, we will say that a real number struc-
ture consists of data X, consisting of entities of appropriate types represent-
ing 0, 1, <, multiplication, and addition. It will also be useful to include
in our notion of a real number structure a property singling out the natural
numbers as a special kind of real number. We will write Real(X) for the
claim that all but the last component of X form a complete ordered field,
and that the last component, the naturals, is the smallest subproperty con-
taining 0 and closed under adding 1. Now the necessity of analysis may be
formulated as a schema

The Necessity of Analysis

2∀X(RealX → A(X)) ∨2∀X(RealX → ¬A(X))

Where A is any sentence of analysis. As before this schema is language de-
pendent; we can consider the instances of the schema where A is a first-order
sentence in the signature described above, or we can extend it to second-order

50These axioms include principles like (a + b).c = a.c + b.c, a < b → a + c < b + c and
so on.
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sentences in that signature. (Curiously, every instance of the no contingency
schema with respect to first-order language in the signature that omits the
natural number predicate—the signature with 0, 1, <, multiplication, and
addition—can be derived in the non-modal fragment of H2. Tarski (1949) has
shown that all the truths in that language are derivable from the condition
that they form a real number structure.)

We have an analogue of of Dedekind’s theorem for complete ordered fields,
due to E.V. Huntington.51 He showed that the condition of being a complete
ordered field characterize the real number structure up to isomorphism:

Huntington’s Categoricity Theorem

∀X∀Y(Real(X) ∧ Real(Y) → X ∼= Y)

For reasons we have covered in the arithmetical context, Huntington’s theo-
rem does not directly rule out analytic contingency. Without further posits,
we have no way to compare merely possible real number structures with
actual ones. Indeed, given theorem 5.1, we cannot rule out arithmetical
contingency using H2alone, and since we are counting claims about the nat-
ural numbers as special cases of claims about the reals we cannot rule out
first-order analytic contingency.

One might expect analytic contingency to disappear in the presence of
Rigid Comprehension or Brouwer’s principle, as it did in the arithmetical
case. Let us begin by examining the situation with Rigid Comprehension.
For any actual real number structure, we can find a modally inflexible real
number structure isomorphic to it, using Huntington’s theorem and Rigid
Comprehension. We can compare this structure with any real number struc-
ture at any other possibility. And due to its rigidity this comparison is tan-
tamount to a comparison with the actual real number structure we started
with. It is tempting to think that we can then conclude that actual and
possible real number structures cannot disagree.

However, here lies a key disanalogy between the arithmetical and ana-
lytic cases. In the former case, we can show that any modally inflexible
natural number structure is necessarily a natural number structure, for the
only way it could fail to have the inductive property is if its extension could
have expanded, which cannot happen in inflexible structures. By contrast,
we cannot show that an inflexible real number structure is necessarily a

51References Huntington (1903).
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real number structure. The sticking point is the completeness property. A
modally inflexible real number structure may be complete, but fail to be
complete if there could have been properties whose extensions pick out col-
lections of reals that no property in fact picks out—in particular these new
extensions may pick out bounded segments of the structure that have no
least upper-bound. This could happen in a couple of ways. Perhaps there
could have been new properties—properties that don’t in fact exist, an idea
that has been explored thoroughly in the higher-order contingentism litera-
ture.52 But this is overkill—it could just be that actually existing properties
could have had new extensions, different from the extension of any actual
property, which could have caused failures of completeness, even in inflexible
real number structures.

What sorts of analytic claims can consistently be claimed to be contingent
in a background logic with Rigid Comprehension? Clearly certain analytic
statements, such as the arithmetical statements, are not candidates for con-
tingency. However, there are many analytic statements that have proved
especially elusive to mathematicians leading some to suspect that they have
no determinate truth value.53 The most famous example of this is Cantor’s
continuum problem, which asks whether there is an uncountable collection of
reals that cannot be put in one-to-one correspondence with the real numbers.
These notions can all be spelled out in second-order logic, so the structural
content of the continuum hypothesis says that every real number structure
makes CH true, and is a prime candidate for structural analytic contingency.
Indeed, there is a more general division of mathematical statements. Some
mathematical statements, like those of arithmetic, when suitably formal-
ized in the language of set-theory cannot have their truth values changed
by Cohen’s method of forcing.54 Other mathematical statements, when so
formalized, can, like the continuum hypothesis. I conjecture that for any
analytic statement that can be changed by forcing, it is consistent in H2.RC
that its structural content is contingent. In the case of CH this means:

Conjecture 6.1. There is a model of C.2RC (Classicism and 2Rigid Com-
prehension) in which there are failures of The Necessity of Analysis in the

52Fine (1977), Stalnaker (2012), Fritz and Goodman (2016), Fritz (2023).
53If they are indeterminate—i.e. contingent with respect to the determinacy modality–

they will, of course, also be contingent with respect to the broadest modality, whatever
that is.

54Cohen (1966).
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language of second-order analysis. Specifically, there can be structural con-
tingency about the continuum hypothesis:

3∃X(Real(X) ∧ CH(X)) ∧3∃X(Real(X) ∧ ¬CH(X))

What about the situation if, instead of Rigid Comprehension, we assume
S5? In the arithmetical case we showed that a particular natural number
structure comprised of the numerical quantifiers was rigid, providing us with
a fixed meter stick to compare natural number structures across logical space.
In the case of the real numbers we do not seem to have anything analogous
to that. One can certainly construct real number structures at higher-types
from the numerical quantifiers but we have no way to show that these struc-
tures are rigid. Indeed, here we have a consistency result:

Theorem 6.1. There is a model of C5.RC (Classicism with S5 and Rigid
Comprehension) in which there are failures of The Necessity of Analysis in
the language of second-order language of analysis. Specifically, one can con-
struct models in which there is structural contingency about the continuum
hypothesis:

3∃X(Real(X) ∧ CH(X)) ∧3∃X(Real(X) ∧ ¬CH(X))

The model here is a model of Rigid Comprehension, but not 2Rigid
Comprehension.55 Finally, one can ask if the combination of S5 and 2Rigid
Comprehension together could rule out structural analytic contingency. We
will return to this question at the end of this section.

(Note that our running example, the continuum hypothesis, is a second-
order statement about the real numbers. It’s natural to wonder if there are
any contingent first-order statements about the reals. Here matters are a bit
more delicate, and will depend on which statements we count as analytic.
As mentioned already, if we restrict ourselves to statements formulated using
the predicates of an ordered field (<, add, mult, 0, 1) then we are quite ex-
pressively limited, and there is no contingency. But if we include a predicate
singling out the naturals of a real number structure then a variant of the

55Note that he model here can easily be augmented to validate a contingency schema,
positing structural contingency about all second-order statements of analysis that can be
changed by forcing.
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model of theorem 6.1 establishes the consistency in C5 of the contingency of
a statement of first-order analysis.56)

Thus analytic contingency is more resilient—it is harder to rule out con-
tingency about the continuum hypothesis than any first-order statement
about natural numbers. However, there may be further substantive prin-
ciples of modal metaphysics that we could add to Rigid Comprehension (or
to Brouwer’s principle) to rule out even analytic contingency. Here I’ll focus
on the following principle, inspired by a Leibnizian metaphysics which ties
possibility to the existence of complete possibilities—possible states of affairs
that settle the truth values of all propositions. Variant principles exist for
properties and relations.

The Leibniz Biconditionals

A proposition is broadly possible if and only if it is strictly implied by a
world proposition.

A property is broadly possible (i.e. possibly instantiated) if and only if it
is strictly implied by a world property.

...

Here we say that a proposition is a world proposition if it is broadly possible
and, for any other proposition, it strictly implies that proposition or its nega-
tion. A world property is defined similarly, understanding strict implication
between properties F , G to mean 2∀x(Fx → Gx), and the possibility of a
property F to mean 3∃x.Fx. Analogous notions for relations are introduced
in a similar manner.

The Leibniz Biconditionals, along with the necessitation of Rigid Com-
prehension, 2RC, rule out analytic contingency. We essentially fix the failed

56Recall that by Tarski (1949) all truths about the real numbers stateable in the smaller
signature are derivable, using logic alone, from the axioms of a complete ordered field, so
there obviously cannot be any structural contingency in that case. However, once you have
a predicate for the natural numbers you can encode second order quantification over natu-
ral numbers using first-order quantification over real numbers. While this isn’t enough to
state the continuum hypothesis (that would need third-order quantification over naturals),
there are statements whose truth values can be changed through forcing in second-order
arithmetic (such as the existence of a non-constructible set of natural numbers, if we as-
sume V = L). I am indebted here to Noah Schweber’s response to a question I asked on
math.stackexchange: (https://math.stackexchange.com/users/28111/noah schweber).
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argument above by using the Leibniz Biconditionals to show that any in-
flexible real number structure is necessarily complete (and thus necessarily
a real number structure), allowing us to proceed as in the arithmetical case.
For if it is possible that there is some failure of completeness (a bounded
property with no least upperbound) in an inflexible real number structure, a
Leibnizian metaphysician will say that there is a maximally specific property,
singling out a specific possible failure of completeness. That is, a third-order
world property W that applies to only one property characterizing a possible
failure of completeness in our inflexible real number structure. But now we
can ask what elements of our inflexible real number structure would have
fallen under the unique W property, if there had been any W properties,
and it may be shown that these constitute an actual failure of completeness,
contradicting the assumption that we started with a real number structure.
A full proof may be found in appendix C.2.

Theorem 6.2. In H2.2RC.LB one can derive all instances of The Necessity
of Analysis in the language of second-order analysis:

2∀X(RealX → A(X)) ∨2∀X(RealX → ¬A(X))

What reasons do we have to accept the Leibnizian picture? One reason
is that it is an entrenched principle of modal metaphysics, instated after the
advent of possible world semantics. However, Humberstone (1981) has laid
the foundations for an alternative to possible world semantics which does
not assume the Leibnizian metaphysics, and it is not obvious that possible
world semantics has any distinctive advantage over it.57 Moreover, since
we are already in the business of questioning orthodox positions in modal
metaphysics, such as the necessity of mathematics, it would be nice to see a
more thorough defense of the principle.

One such defence might appeal to the principle that there ought to be a
conjunction of all true propositions—which we might identify with a great-
est lowest bound of the truths under the entailment order—thus committing
us to at least one world proposition. And if it is necessary that there is a
conjunction of all the truths, it seems there ought to be a world proposition
witnessing any broadly possible proposition. However this argument contains
some subtle gaps that need to be fixed. For all its obviousness, we will need
some extra posit to ensure that, necessarily, a greatest lower bound of truths

57See Holliday (forthcoming) for an overview of recent work on this.
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is itself true. 2Rigid Comprehension is one posit that would ensure this.58

Even granting this, the move from “necessarily there is a true world proposi-
tion” to “for any possible proposition, there is a world proposition entailing
it” is not straightforward in a context where we allow Brouwer’s principle
to fail and there could have been new propositions that don’t in fact exist.
However, by putting these ideas together one can show that H2.5.2RC con-
tains the Leibniz biconditionals.59 This provides us with an alternative way
to motivate the Leibniz biconditionals—rather than reaching straight away
for heavy duty theoretical posits, like possible worlds, one can directly appeal
to a principle of modal logic, S5, and the necessity of Rigid Comprehension.
(Of course, if one already had any reason to doubt the S5 principle for broad
necessity, or 2Rigid Comprehension, this argument for a Leibnizian modal
metaphysics holds no sway.)

Since the combination of S5 and2Rigid Comprehension imply the Leibniz
Biconditionals, this combination also implies The Necessity of Second-order
Analysis, by theorem 6.2:

Corollary 6.1. H2.5.2RC entails all instances of The Necessity of Analysis
in the language of second-order analysis.

2∀X(RealX → A(X)) ∨2∀X(RealX → ¬A(X))

This answers the question we raised earlier in the affirmative: the combi-
nation of a S5 modal logic and 2Rigid Comprehension does rule out analytic
contingency.

[

58One can show that any greatest lower bound of the truths is necessarily equivalent to
the claim that every truth∗ is true, where truth∗ is the rigidification of truth. It is easy
to see the latter is true.

59This is a strengthening of a result in Bacon and Dorr (forthcoming). It is the left-
to-right direction of LB that is the tricky case. First, RC implies that there’s a true
world proposition, namely the proposition that every truth∗ is true, where truth∗ is the
rigidification of truth; 2RC thus implies that this consequence is necessary. Suppose that
p is possible. Then it is possible that p and there is a true world proposition w. By
the Barcan formula, there is a w such that it’s possible that p and w is a true world
proposition. But in S5 w must in fact be a world proposition. For if w doesn’t entail q,
it necessarily doesn’t entail q by S5. Since w is possibly a world proposition this means it
must possibly entail ¬q, and thus, by S5, it actually entails ¬q; so w is a world as required.
So we have a world proposition such that possible w and p, which means there is a world
proposition that entails p, because a world proposition is compossible with a proposition
only if it entails it.
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The combination of the Leibniz Biconditionals and 2Rigid Comprehen-
sion is thus a substantive hypothesis of modal metaphysics which ensures that
mathematical contingency is very limited. How limited? For all way have
said this package, LB+2RC, is compatible with some sort of mathematical
contingency from some mathematical domain richer than analysis.60 Might
the package allow for set-theoretic contingency, for example, or contingency
in some yet richer mathematical language?

My suspicion is that this package is just as inhospitable to other forms
of mathematical contingency as it is to analytic contingency. My reason for
thinking this is that most mathematical theories admit an interpretation—
not necessarily the intended interpretation, but this doesn’t matter—where
its primitives are defined from a “small ZFC relation”—a relation satisfy-
ing the conjunction of the axioms of second-order ZFC in which there are
no inaccessibles—and its axioms are true under those definitions.61 If there
could be structural contingency about some statement of the mathematical
theory T in a way that was compatible with the existence of small ZFC re-
lations, then there would also have to be structural contingency what holds
in all small ZFC relations. However, we have an analogue of Dedekind and
Huntington’s theorem for set-theory: Zermelo’s theorem, a special case of
which tells us that any two small ZFC relations are isomorphic.62 The situa-
tion with respect to structural set-theoretic contingency is analogous to the
case of analytic contingency: in the presence of 2Rigid Comprehension and
the Leibniz Biconditionals one can show that inflexible small ZFC relations
are necessarily small ZFC relations, and that there cannot be contingency
about what is true in a small ZFC relation in the set-theoretic signature.63

60A sufficient condition for an interpreted mathematical language to be richer than the
language of analysis is if it cannot be interpreted in the language of analysis, in the sense
that there is a meaning preserving translation from one language to the other. For if there
were such a translation, any sentence of the mathematical language would express the
same proposition as a sentence of analysis. And given LB+2RC no such proposition will
be contingent. (NB: interpretability in the sense just defined is not to be confused with
the proof-theoretic notion of interpretability).

61If the theory T concerns very large mathematical objects this interpretation might
not be possible, but usually there is a specific kind of inaccessible that would suffice to
interpret the theory, and a similar argument can be run.

62Unlike Dedekind and Huntington’s theorems, Zermelo’s theorem does not pin down
ZFC relations down up to isomorphism, but it does pin them down up to a given “height”
of the set-theoretic hierarchy.

63There are some related results in Bacon (2024), although the setting there is a modal
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7 Mathematical Possibilism

We have explored a Leibnizian modal metaphysics in which there is no math-
ematical contingency. Might there be an equally powerful, but opposing ax-
iom of modal metaphysics that implies that there is as much mathematical
contingency as possible? According to this picture, any remotely plausible
theory of a given mathematical structure (naturals, reals, etc.) that math-
ematicians could cook up, should be possible in the broadest sense. Here
we will introduce an axiom, Mathematical Possibilism, meeting this descrip-
tion.64

First, note that the idea that mathematics is contingent could be seen as
a special case of a much more general idea: that broad possibility is as liberal
as logical consistency (cf. Bacon (2023a) §8.3).65 There are different ways
one might spell this out. If our standard of consistency is just consistency in
the Background Logic, or indeed any recursively axiomatizable theory, then
any structural arithmetical statement independent of that theory—such as
its consistency statement—will be contingent.66 However, given Goodsell’s
result about the Necessity of Arithmetic (theorem 5.2), this ultra liberal
conception of logical possibility is incompatible with 2Rigid Comprehension,
and so I am tempted to look elsewhere.

Other liberal theories of possibility can be formulated that are compati-
ble with 2RC.67 Here I will focus on a principle that, in some sense, is the

higher-order set-theory, and so is slightly different.
64What follows in this section is a summary of technical work that will be published in

a more appropriate venue; various important details and proofs cannot be presented here
for reasons of space.

65There are some issues that need to be clarified: consistency is language relative prop-
erty. We would want to restrict attention to logically perfect languages, in the sense of
Russell (1940), to rule out counterexamples involving logically impossible propositions
expressed using terms that hide the true logical structure. The proposition that some
female foxes are not female foxes can be expressed in a non-logically-perfect language by
a logically consistent sentence ‘some vixens are not female foxes’, where the contradictory
form is hidden by using a simple term ‘vixen’ for a logically complex property.

66Bacon (2020), Bacon (2023a) §8.3, §13.2, §18.5-6, Bacon and Dorr (forthcoming),
Bacon and Fine (manuscript) discuss theories of logical necessity in the higher-order setting
with different standards of consistency being sufficient for possibility.

67Several theories of logical possibility are discussed in Bacon (2023a) section 8.3. One
theory of logical possibility that is compatible with 2RC is explored in Bacon (2020),
however that theory implies that there isn’t any contingency in statements of pure logic,
and so needs to be modified for our purposes.

38



antithesis of the Leibniz Biconditionals. It tells us that there are broadly
possible propositions whose truth is incompatible with things being a max-
imally specific way: there are propositions that are “atomless” under the
entailment relation. However there are different ways that a proposition
could be atomless, corresponding to the mathematical fact that there are
lots of non-isomorphic complete atomless Boolean algebras. Our principle
says that there are propositions corresponding to every complete atomless
Boolean algebra.

Mathematical Possibilism For any small complete Boolean algebra at
type σ, B, there exists a proposition P which, under the entailment
relation, is isomorphic to B.

This is a schema, with one instance for each type σ.68 A complete Boolean
algebra consists of a property of type σ things, the elements, equipped with
operations on the elements representing the Boolean operations, satisfying
the axioms of a complete Boolean algebra. A complete Boolean algebra is
small if it has fewer elements than there are propositions. The qualification
involving smallness in Mathematical Possibilism is, of course, necessary to
avoid Cantorian paradoxes.

A straightforward consequence of Mathematical Possibilism is that it en-
tails the axiom of infinity. In particular, it implies that the finite numerical
quantifiers over propositions form a natural number structure, and conse-
quently that there exist real number structures (for instance, one constructed
from Dedekind cuts) at a sufficiently high type, ρ. Thus in the presence of
Mathematical Possibilism one can raise, without vacuity, the question of the
contingency of the continuum hypothesis.

What is more, in the presence of 2Rigid Comprehension and a modal
version of the axiom of choice, Mathematical Possibilism implies there is all
the mathematical contingency we could hope for in the presence of 2Rigid
Comprehension. As a proof of concept, this package of principles implies the
contingency of CH

Theorem 7.1. 2Rigid Comprehension, Intensional Choice and Mathemati-
cal Possibilism entail structural contingency about the continuum hypothesis:

3∃X(Real(X)∧CH(X))

∧3∃X(Real(X) ∧ ¬CH(X)).
68The full strength of the schema can in fact be obtained from the instance where σ is

t → t.
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A proof of this theorem is to presented elsewhere.
It remains, then, to explain, and briefly motivate, the modal version of

choice. The standard version of higher-order choice is intraworld: it says
you can select one thing from the extension of each instantiated property.
By contrast, an interworld version of choice says that, at any world, you can
select one thing from the extension of a property that is instantiated at every
world. But we can generalize this latter principle by replacing quantification
over worlds with modal operators. This yields a stronger principle that is
applicable even in the absence of world propositions:

Intensional Choice If F is necessarily instantiated, then there exists a G
entailing F that is necessarily uniquely instantiated.

Finally, in order for this current vision of widespread mathematical con-
tingency to be interesting, we need some guarantee that the principles ap-
pealed to in theorem 7.1 are jointly consistent.

Conjecture 7.1. 2Rigid Comprehension, Intensional Choice and Mathe-
matical Possibilism are consistent (in the Background Logic).

While I believe this conjecture to be true, I have not been able to verify
it.

8 Platonic Contingency Revisited

We have, now, a clearer picture of what sorts of modal metaphysics per-
mit mathematical contingency. To admit structural contingency, either you
must think that certain properties and relations can’t be rigidified, reject S5
or you must reject the existence of world properties allowing you to single
out particular merely possible entities. (This is an inclusive disjunction—
depending on what sort of contingency you want, you may have to accept
multiple disjuncts.)

Let us, then, briefly apply what we have learned to the matter of pla-
tonic mathematical contingency. We have noted already that there is a rela-
tively cheap sort of platonic contingency in which platonic objects have their
defining mathematical features contingently: the natural numbers could have
failed to form a natural number structure by becoming physical objects, for
instance. One could rule out this cheap sort of platonic contingency by in-
troducing a further posit to the effect that mathematical objects have their
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basic mathematical properties necessarily. Thus, for instance, we might in-
sist that the the platonic natural numbers necessarily form a natural number
structure under the usual relations on platonic numbers—successorhood, and
so on—and that these basic properties and relations are necessary features
of the platonic numbers; we might make a similar posit about the platonic
reals.

As we have seen, however, such stipulations cannot rule out platonic
contingency on their own. For if there is structural contingency—contingency
about what is true in natural number structures or real number structures
in general—there will be contingency too in the platonic natural number
structure and the platonic real number structure.

9 The Supervenience of Mathematics

In this final section we turn to the question of supervenience. Do the
mathematical facts—structural, platonic, or otherwise—supervene on non-
mathematical facts, such as facts about the physical world? Or can they, in
some sense, float free from the physical world? Of course, if mathematics is
necessary, then it is clear that the mathematical facts trivially supervene on
any collection of facts. But if there is mathematical contingency, the issue is
not trivial.

Some preliminary points. There are some variants of the supervenience
question that are also clearly of interest. Here I will treat supervenience on
the physical, but it should be clear that a wide variety of non-mathematical
facts could be be substituted for that in our discussion without greatly chang-
ing the wider points.Without loss of generality we might, for instance, add
the mental facts to the supervenience base (if they are not already physical
facts). Views that reduce the mathematical to the practices of mathemati-
cians, or to ideal thinkers, may regard this as an important addition (Brouwer
(1981)). One can also vary the sort of mathematical propositions that are
supervenient—structural, platonic, or otherwise. I will continue to focus on
the structural and the platonic mathematical propositions, but we will also
pay attention to the other sorts as well. We may also wish to distinguish
different varieties of supervenience depending on what sort of necessity is
operative—the mathematical might supervene on other facts with respect to
nomic necessity, say, but fail to so supervene with respect to broad necessity.
Finally, for these questions to be well-posed we need to have a distinction
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between mathematical and non-mathematical facts, or mathematical and
physical facts, to work with. We may yet encounter reasons to doubt this
distinction is as sharp as it might at first seem, but we will run with it for
now and see where it leads.

Certain positions in the philosophy of mathematics are naturally paired
with the supervenience thesis. An obvious candidate would be certain brands
of reductive nominalism, which simply identify mathematical truths with
facts about the physical world in some fashion—be it the practices of math-
ematicians, the structure of physical quantities, physical inscriptions of sen-
tences and numerals, or what have you. For this sort of nominalist there
couldn’t be a change in the mathematical without a change in the physi-
cal. However, the supervenience thesis is not only attractive to nominalists.
Certain stripes of platonism seem also closely aligned with supervenience.
Consider someone who is willing to quantify over platonic mathematical ob-
jects, but treats them as, in some sense, “metaphysically lightweight”. It is
commonly thought that certain individuals—holes, directions, the game of
chess, and so on—exist and have properties in a derivative way, in virtue
of the existence and properties of more basic objects. Just as a perforated
lump of cheese is metaphysically prior to the holes in the cheese, physical
arrangements or structures may similarly be prior to the abstract objects
that those physical structures instantiate. According to one way of cashing
out priority talk, the platonic mathematical facts are grounded in the physi-
cal propositions, or, according to another, they are metaphysically definable
from the physical individuals, properties and relations.69 In either case, we
should expect the derivative objects and properties to supervene on the more
basic ones; in this case it is the platonic mathematical facts that supervene
on the physical.

Apart from its attractiveness, the supervenience thesis also has applica-
tions: for instance, one could use it to ensure the determinateness of math-
ematics with respect to a suitable modality expressing determinacy. For
if the physical facts are determinate, and the mathematical supervenes on
the physical with respect to the broadest modality (which, by definition,
subsumes any determinacy modalities) then the mathematical must also be

69One limiting case of the latter variant is that the platonic objects are logical objects,
à la Frege (1893), and are metaphysically definable from nothing (making them “pure” in
a sense I have employed elsewhere). This makes the platonic objects vacuously definable
from any class of properties and relations.
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determinate.70

Supervenience also has its detractors. Hartry Field has argued that puta-
tive platonic mathematical facts are both contingently false, and conservative
over the physical facts in a modal sense. Thus they will fail to supervene
on the physical in a fairly radical way—while many platonic propositions re-
garded as true by platonists are actually false, they are nonetheless compat-
ible with the actual physical facts, with respect to a broad logical modality,
or else the actual physical facts would entail everything by conservativity.71

If mathematics does supervene on the physical, how exactly do changes in
the mathematical track changes in the physical? One proposal, suggested by
remarks in Field (1998) (in the context of indeterminacy rather than broad
contingency), grounds the mathematical in the properties of particular phys-
ical structures. An undecidable arithmetical statement, for instance, can be
given a physical interpretation in terms of the sequence of days, starting from
today, on certain cosmological assumptions—such as the infinitude of days.72

To evaluate this strategy, we should distinguish two ways in which there could
be contingency about what is true in the structure of physical days. The first
way is if the structure of time was contingent—for instance, the sequence of
days could have been finite, or it could have been “non-standard” under
the chronological ordering. This means that the days do not form a natural
number structure.73 Another way for there to be contingency in this physical
structure, compatible with it being a natural number structure, is if there

70I am here supposing that determinacy is a kind of modality, rather than a metalin-
guistic feature of words (compare Bacon (2018b), Schiffer (2010)). Field (1998) explores
a similar mode of argumentation, grounding the determinacy of arithmetical claims in
physical structures, but is primarily concerned with securing the determinacy of reference
for words, like ‘finite’, in terms of the determinacy of physical predicates like ‘days’; than
of the properties themselves.

71Field (1989), p139
72We can also extend this idea to analytic statements: the continuum hypothesis may

be interpreted as about instants of time under the assumption that they form a complete
ordered field, and so on. The continuum hypothesis is a second-order statement about
the reals, but there are first-order statements about the reals that are undecidable–such
as a sentence of first-order real analysis coding up the statement that there exists a non-
constructible set of natural numbers.

73Note that if the sequence of days were non-standard this means that there are some
‘standard’ days, with the following properties: (a) the day representing 0 is standard, (b)
the successor of a standard day is standard, but (c) not every future day is standard.
We can see that the days no longer form a natural number structure, since standardness
witnesses a failure of the induction property.
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were structural arithmetical contingency. For a given arithmetical sentence
A, it could be contingent whether A is true in the structure of days while they
form a natural number structure, if there was structural contingency about
whether A held in natural number structures.

The former sorts of possibility illustrate that the structural mathematical
claims (at least) do not supervene, with respect to the broadest modality, on
the physical in anything like the way that the recipe above suggests. We
cannot pin the arithmetical, say, to any particular physical structure, for
presumably any given physical objects could, in the broad sense of ‘could’,
have failed to be structured in that way. One might have thought that there
are still some broadly mathematical claims that are tied to the physical
structure of time. For instance, if the days formed a non-standard structure
then one could create a physical “Turing machine” that could tell whether an
arbitrary Turing machine would halt within a standard number of days, an
impossibility if time was standard. However on reflection such possibilities
do not really represent a difference in mathematics—Turing’s theorem about
abstract Turing machines, mathematical entities, still holds. It is only in the
presence of a mathematical-to-physical bridge principle, the Church-Turing
thesis (what is physically computable is exactly what is computable on an
abstract Turing machine), that the mathematics would have to change to
accommodate these physical possibilities, and it is the Church-Turing thesis
that is clearly failing here.

That said, our discussion so far does suggest that the supervenience thesis
may be hard to avoid with respect to more restricted modalities. Let’s con-
sider the idea that the structural mathematical claims nomically supervene
on the physical (i.e. supervenes with the force of physical necessity). We
will assume that it is physically necessary that the sequence of days, starting
from today, is ordered in a natural number structure. Let A(suc, 0) be any
arithmetical claim, with structural content ∀Sy(Nat(S, y) → A(S, y)). Now,
whenever R is a physical relation, later than, and x a physical object, today,
then A(R, x) is also a physical statement, since it is expressed entirely in
terms of physical predicates, physical names and logical expressions. More-
over, A(R, x) strictly implies ∀Sy(Nat(S, y) → A(S, y)), since later than, to-
day is physically necessarily a natural number structure, and by Dedekind’s
theorem it’s necessary that any two natural number structures agree about
A. The converse implication is trivial, so that every structural arithmetical
claim is physically necessarily equivalent to a physical proposition, securing
nomic supervenience.
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2Phys(∀Sy(Nat(S, y) → A(S, y)) ↔ A(later than, today))

We have argued that the structural mathematical claims do not super-
vene, with respect to broad necessity, on particular physical structures, like
the structure of days, in the way described. But this does not preclude
them from supervening on the physical in some other way. As we noted ini-
tially, it’s not entirely clear how to draw the line between the physical and
the mathematical—there are different versions of the supervenience ques-
tion depending on how we precisify the notion of a ‘physical proposition’.
Given the interpretation of higher-order logic we offered in section 3 the
most natural thing to mean by ‘physical proposition’, in my view, counts the
structural mathematical propositions as physical propositions; to my mind,
this secures the most salient precisification of the supervenience thesis. It’s
common for philosophers to introduce the idea of a physical proposition in
terms of the language it can be expressed in: a proposition that can be
expressed in the language of physics, using only physical non-logical con-
stants and logical expressions. This was essentially the line of reasoning
we used to establish that A(later than, today) expressed a physical propo-
sition. Since structural mathematical propositions—statements of the form
∀Xy(Nat(X, y) → A(X, y))—are stated in purely logical terms they clearly
meet this criteria. But the thought doesn’t need to be expressed in met-
alinguistic terms. If you start with some physical individuals, properties
and relations, then anything metaphysically definable from them—i.e. any-
thing you can make from them by applying logical operations—is also phys-
ical.74Many philosophers have posited a distinctive project of metaphysical
analysis (as distinct from linguistic analysis), in which metaphysical reduc-
tion takes the form of metaphysical definition of one sort of entity in terms of
another. This opens the way for an attractive form of reductive nominalism.
For in the absence of any platonic mathematical objects, it’s quite natural to
identify all mathematical propositions with structural mathematical propo-
sitions (see Hellman (1989)), which in turn just are physical propositions on
this precisification of ‘physical’.
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Noûs, 54(3):549–577, 2020. doi: 10.1111/nous.12268.

50



A Preliminaries

A.1 Language

We work in a simply typed higher-order modal language: there are two base
types, e and t, and given any types σ and τ there is a functional type (σ → τ).
We omit type brackets when they are associated to the right, and will write
‘M : σ’ as short for ‘M is a term of type σ’ or ‘M , of type σ,’.

The terms of language are defined as follows. For each type σ, there
will be infinitely many variables of that type. We typically represent these
with upper and lower case letters towards the end of the latin alphabet, like
X, Y, Z and x, y, z. Occasionally we will use more suggestive names like ‘suc’
and ‘add’ for variables depending on their function. Whenever M is a term
of type σ → τ and N a term of type σ, (MN) is a term of type τ and
whenever M is a term of type τ and x a variable of type σ, (λx.M) is a term
of type σ → τ . Finally we have primitive terms for the logical constants:
∀σ : (σ → t) → t, →: t → t → t, and 2 : t → t. We may introduce
∃σ,⊥,∧,∨,↔,=σ as abbreviations in any of the standard ways. For instance,
⊥ may be identified with ∀(t→t)→t∀t, =σ with λxy∀σX(Xx → Xy).

I will adopt some further conventions.75 We adopt infix notation for the
binary logical connectives and identity. λs immediately following a quantifier
are omitted. Given a term P : σ → t we write ∀P

σ for λX∀σx(Px → Xx),
and ∃P

σ for λX∃σx(Px ∧ Xx). We use x⃗ for sequences x1...xn. λx⃗, ∀x⃗ etc.
stand for strings of λs or quantifiers — e.g. the first amounts to λx1λx2 . . .
— and Rx⃗ stands for Rx1 . . . xn. σ⃗ → τ stands for σ1 → σ2 → . . . → τ .
M [N/x] is the result of replacing every free occurrence of v in M with N
provided no free variable in N becomes bound.

The languages we consider may contain further non-logical constants. As
usual logics and theories will be identified with sets of terms of type t.

A.2 Formalizing mathematical notions in higher-order
logic

In this section we show how to formalize various familiar mathematical no-
tions in higher-order logic. For the sake of readibility definitions will be
given in ordinary English, and we will only provide explicit definitions in the

75I am following the conventions of Bacon (2023a).
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3z⃗ := λRλz⃗.¬2¬Rz⃗ ⊆σ⃗:= λXY ∀σ⃗ z⃗(Xz⃗ → Y z⃗)
∼σ⃗:= λXY.(X ⊆σ⃗ Y ∧ Y ⊆σ⃗ X) ≤σ⃗:= λXY.2X ⊆σ⃗ Y
Rigσ⃗ := λX2∀σ⃗→tY (2∀Xσ⃗ z⃗.Y z⃗ ↔ ∀Xσ⃗ z⃗.2Y z⃗) Worldσ⃗ := λR(3σ⃗R ∧ ∀S(R ≤σ⃗ S ∨R ≤σ⃗ ¬σ⃗S)

Ub⪯ := λXy.∀z(Xz → z ⪯ y) Lub⪯ := λXy. ubXy ∧ ∀z(ubXz → y ⪯ z)
Domσ := λRx.∃σy.(Rxy ∨Ryx) Transσ := λR∀σxyz(Rxy ∧Ryz → Rxz)
Ancestσ := λSxy∀R(TransR ∧ S ⊆σ R → Rxy) Funσ := λS∀σxyy′(Sxy ∧ Sxy′ → y =σ y′)

F : X → Y := ∀Xx∃Y !y.Fxy F : X
1−1−−→ Y := ∀Xxx′y.(Fxy ∧ Fx′y → x = x′)

PO := λPR.PR is a partial order Lattice := λPR.P,R is a lattice
Compl := λPR.PR is a complemented lattice Dist := λPR.PR is a distributive lattice
BAσ := λPR.PR is a Boolean algebra CBAσ := λPR.PR is a complete Boolean algebra

Table 1: Abbreviations

language of higher-order logic when the required definition is not obvious.
We begin with some order-theoretic notions. A partial order at type σ

consists of a property, P : σ → t, and a relation ⪯: σ → σ → t which is
transitive, reflexive and antisymmetric with respect to the type σ entities
satisfying P . P entities are called elements in the partial order. A partial
order P,⪯ has meets and joins when any two elements have a greatest lower
bound and a least upper bound in the partial order, in which case we call
P,⪯ a lattice. A lattice is complete when for any property F there is a
greatest greatest lower bound and least upper bound of the F s in P . We will
sometimes write a ⊓ b and a ⊔ b for the (unique) meet and join of a and b:
note that in using this notation we are not treating ⊓ itself as a σ → σ → σ
term—rather a ⊓ b is a syntactically simple term introduced by existential
instantiation. A lattice is distributive when a ⊓ (b ⊔ c) and (a ⊓ b) ⊔ (a ⊓ c)
are the same. A Boolean algebra P,⪯ is a complemented distributive lattice:
for every element, a, there is another element b such that a⊔ b is the greatest
element of the lattice and a⊓ is the least element. A well-order at type σ
is total partial order such for every property F : σ → t, if there are any F
elements, there is a ⪯-least F element. The ancestral of a relation R holds
between x and y when every transitive relation extending R holds between
x and y (Ancestral := λSxy∀R(TransR ∧ S ⊆σ R → Rxy)).

Given terms F : σ → τ → t, and X : σ → t, Y : τ → t, we write
F : X → Y to mean that F is a functional relation between X and Y : every

X bears F to a unique Y . F : X
1−1−−→ Y means that this relation is one-one:

no two Xs bear F to the same Y , and F : X
onto−−→ Y means that it is onto:

for any Y there is some X that bears F to that Y , and F : X
bij−→ Y if it

is both one-one and onto. We use ‘P’ to stand for a sequence of variables
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‘P : σ → t,⪯P : σ → σ → t’ and ‘Q’ for ‘Q : τ → t,⪯Q: τ → τ → t’. If
P and Q are partial orders, then we write P ∼= Q iff the partial orders are

isomorphic: there exists F : P
bij−→ Q such that for any whenever Fxx′ and

Fyy′, x ⪯P y if and only if x′ ⪯Q y′.
A natural number structure at type σ consists of an entity 0 : σ, and a

functional one-one relation suc : σ → σ → t such that: nothing bears suc to
0, and moreover, any relation with 0 in its field that relates x toy y when x
is in its field and sucxy, contains suc: ∀R(DomRz ∧∀x(DomRx∧ sucxy →
Rxy) → ∀xy(sucxy → Rxy)). A first-order natural number structure con-
sists of the above, and additionally relations +,×, < such that .

+ := λnmk.∀R(Rn0n ∧ ∀ii′jj′(suc ii′ ∧ suc jj′ ∧Rnij → Rni′j′) → Rnmk)

× := λnmk.∀R(Rn00∧ ∀ii′jj′(suc ii′ ∧ addnjj′ ∧Rnij → Rni′j′) → Rnmk)

<:= λnm.∀R(∀ij(suc ij → Rij) ∧ ∀ijk(Rij ∧Rjk → Rik) → Rnm)

The domain of a natural number structure is the field of <. We will write
N to abbreviate a sequence of variables z : σ, S : σ → σ → t and we write
Natσ N for the statement that z and S together form a natural number
structure at type σ; the same notation will be adopted for first-order natural
number structures.

A real number structure at a type σ consists of a total partial order
property R : σ → t,⪯, elements 0, 1 : σ and ternary relations +,× : σ →
σ → σ → t that are functional with domain R representing addition and
multiplication. We will write x+y as short for the description for the unique
z such that +xyz, and similarly for ×. Addition and multiplication are
commutative and associative and distributive in the sense that x× (y+ z) =
(x × y) + (x × z). 0 and 1 are the units of + and × respectively (e.g.
∀σx(+x0y → x = y), and every element of R has an additive inverse and
every element apart from 0 has a multiplicative inverse—i.e. for each x there
is a y such that x+y = 0 and for each x ̸= 0 there is a y such that x×y = 1.
Moreover if x ⪯ y then x+z ⪯ y+z and if 0 ≤ x and 0 ≤ y, 0 ≤ x×y. Finally
it is complete: for any property of elements F that has an upperbound in R
has a least upperbound. A first-order real number structure consists of the
preceding along with a predicate N such that

N := λx.∀F (F0 ∧ ∀y(Fy ∧ ∀z(+x1z → Fz) → Fx)

We will write R for a sequence of variables R,N,+,×, 0, 1, < of the appropri-
ate types. We write Realσ R to say that they form a real number structure.
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Next some modal notions. A proposition, property or relation P of type
σ⃗ → t is possibleσ⃗ when it is possible that there exist entities x⃗ that in-
stantiate P ; P is necessary in the dual case. We say that P entails Q,
when λz⃗(Rz⃗ → Sz⃗) is necessaryσ⃗. A world proposition (property, relation)
is something that is possible, and such that, for any other proposition (prop-
erty, relation), it entails it or its negation. A property (relation) X is rigid
iff the X restricted quantifiers necessarily satisfy the Barcan formula and its
converse: Rigσ⃗ := λX2∀σ⃗→tY (2∀X

σ⃗ z⃗.Y z⃗ ↔ ∀X
σ⃗ z⃗.2Y z⃗).

Quantification over “natural number structures” is strictly speaking a
sequence of universal quantifiers, one for each element of the signature of a
natural number structure. Thus we will need some notation for representing
such sequences.

� We useN for a sequence of variables with the following types 0 : σ, suc :
σ → σ → t.

� We use R for a sequence of variables with the following variables R,N :
σ → t,+,× : σ → σ → σ → t, 0, 1 : σ,<: σ → σ → t,.

� We use N for the canonical natural number structure: the sequence of
terms NumQuant, 0Q, sucQ, <Q,+Q,×Q defined above.

� We use R for the canonical real number structure: sequence of terms
given in theorem A.2 below.

A.3 Logical systems

Here we state some logics of interest. The minimal system H2 is presented in
figure 1. We adopt the usual notation from modal logic for modal principles:
T := 2∀tp(2p → p), 4 := 2∀tp(2p → 22p) and B := 2∀tp(p → 23p).

To H2 we can add further principles, listed in figure 2, which we denote
by appending their names separated by a dot—e.g. H2.5 for adding T, 4 and
B, H2.5.RC including RC, etc.

In the statement ofMP, B stands for a pair of variablesB : σ,⪯: σ → σ →
t and P for P : t,≤, recalling that ≤ is defined as λpq.p ∧ q = p. SmallCBA
is the property of being a complete Boolean algebra whose cardinality is no
bigger than the number of propositions.

Throughout we will appeal to couple of facts that may be derived in these
systems about the existence of natural and real number structures. First we
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PC ⊢ A whenever A is a tautology.

UI ⊢ ∀σF → Fa.

β A[(λx.M)N ] ↔ A[M [N/x]].

η A[λx.(Fx)] ↔ A[F ], where x is not free in F .

K 2(A → B) → 2A → 2B

MP If ⊢ P and ⊢ P → Q, then ⊢ Q.

Gen If ⊢ P → Q, and v is not free in P , ⊢ P → ∀vQ.

Nec If ⊢ A then ⊢ 2A

Figure 1: The Background Logic, H2

RC ∀σ⃗→tR∃σ⃗→tX.(RigX ∧R ∼σ⃗ X)

B 2∀tp(p → 23p)

LB ∀σ⃗→tP (3σ⃗P ↔ ∃σ⃗→tW.(Worldσ⃗ W ∧W ≤σ⃗ P ))

MP ∀B(SmallCBAσ B → ∃tP.(B ∼= P ∧ P ̸=t ⊤))

Figure 2: Key Modal Principles
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define what we will call the canonical natural number structure, consisting of
the cardinality quantifiers:

0Q := λX.⊤
sucQ := λQλX.∃y.(Xy ∧Qλz(Xz ∧ z ̸= y)

NumQuant := λQ∀Z((Z0 ∧ ∀P (ZP → Z(sucP )) → ZQ)

<Q := λPQ∀Z(Z0(suc 0)∧
∀P ′Q′(ZP ′Q′ → (ZP ′ sucQ′ ∧ Z sucP ′ sucQ′)) → ZPQ)

+Q := λxyz.∀R(∀w(Rw0w ∧ ∀uv(Rwuv → Rw(sucu)(suc v))) → Rxyz)

×Q := λxyz.∀R(∀w(Rw00 ∧ ∀uv(Rwuv → Rw(sucu)(add vw))) → Rxyz)

Let the axiom of potential infinity be the following principle:76

Potential Infinity ∀Q(NumQuantQ → 3Q(λx.⊤))

Theorem A.1. Given the axiom of Potential Infinity (in H2), the canonical
natural number structure is indeed a natural number structure.

Second we will appeal to the fact that, given the axiom of Potential In-
finity, and one of several auxiliary assumptions, there exists a real number
structure that can be constructed from the canonical natural number struc-
ture, and consists of properties of finite numerical quantifiers. We call this
the canonical real number structure. The definition of this structure, and
the proof that it is a real number structure is rather involved. It exploits
the non-obvious, but well-known, fact that you can define operations on the
powerset of natural numbers that turns it into a into a complete ordered
field.

There is a slight wrinkle with transposing the set-theoretic construction
to the higher-order framework: sets, unlike properties, are individuated ex-
tensionally. We cannot, then, straightforwardly identify reals with properties
of naturals since there would be many coextensive properties corresponding
to any given real. There are several work arounds. If we have Rigid Compre-
hension, we can identify reals with rigid properties of naturals, since these
are individuated extensionally. Without Rigid Comprehension we don’t have
any guarantee that there are enough rigid properties to play the role of all
the reals. However, if we have the well-ordering principle or some similar
choice principle we can instead pick a particular property from in a given

76cf. Hodes (1990), Goodsell and Yli-Vakkuri (MS).
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equivalence class of coextensive properties to be a representative of a given
real.

The Well-ordering Principle ∃R.WOR ∧DomR ∼ λx.⊤
Thus we have:

Theorem A.2. Given the axiom of Potential Infinity, and either Rigid Com-
prehension or the Well-Ordering Principle (in H2), it is possible to construct
a real number structure at the type σ → t, where σ = (e → t) → t the type of
quantifiers. Moreover, it is possible to do so in such a way that every prop-
erty of canonical natural numbers is coextensive with exactly one element of
the real number structure.

There is one final work around that requires no additional assumptions
beyond Potential Infinity. We can define a quasi-real number structure as
consisting of the same data as a real number structure with the addition
of an equivalence relation ≈ to represent identity: so that we have R,N :
σ → t, +,× : σ → σ → σ → t, 0, 1 : σ, <,≈: σ → σ → t. We then
require the operations +, <,×, R,N to respect the notion of identity in the
sense that, e.g., if +abc and a ≈ a′, b ≈ b′, c ≈ c′ then +a′b′c′. We also
modify the conditions for being a complete ordered field by substituting
all occurrences of = with ≈, so that, for instance, the commutativity law
becomes +abc ∧ +bac′ → c ≈ c′. The notion of an isomorphism between
quasi-real number structure is now a (possibly non-functional) relation which
preserves ≈ and the other field operations. Quasi-real number structures can
be constructed, without additional assumptions, from properties of canonical
natural numbers using coextensiveness as the notion of identity. Note that
every real number structure is automatically a quasi-real number structure
with ≈:==σ. Appeals to theorem A.2 can be substituted to appeals to the
existence of quasi-real number structures in this paper, but in the contexts
we need canonical real number structures we will always either have Rigid
Comprehension or a well-ordering available.

B Consistency proofs

B.1 Model of Classicism with first-order arithmetical
contingency

Here we prove
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Theorem B.1. There is a first-order arithmetical sentence, A(0, suc, <, add,mult)
and a model of Classicism (H with S4 and Intensionalism) which is struc-
turally contingent. I.e. the model makes

3∃X(Nat(X) ∧ A(X)) ∧3∃X(Nat(X) ∧ ¬A(X))

true.

The proof uses methods described in Bacon (2023a). There is described
a class of “modal models” which is sound and complete with respect to
Classicism. Among these are models are “extensionally full” models, which
have, for every subset of their domain, a property that has that subset as
its extension, and satisfies similar conditions for relations (see Dorr (2016)
definition 4.5). Extensionally full models with an infinite type e domain are
arithmetically standard in the following sense.

Definition B.1. M is arithmetically standard iff M |= ∀X(NatX → A(X))
if and only if A(0, suc,+,×, <) is an arithmetical truth.

Here we use the expression M |= A to mean that the sentence A is true
in the model M . We have, by Proposition 18.7 and Corollary 18.4 Bacon
(2023a) the following fact:

Theorem B.2. Given any set of modal models, C, there is an arithmetically
standard modal model M such that, whenever N ∈ C, N |= A where A is
closed, M |= 3A.

We may construct a model of first-order arithmetical contingency as fol-
lows. Let us first find an arithmetical truth, A, whose structural translation,
∀X(NatX → A(X)), cannot be derived in Classicism. The consistency state-
ment for Classicism would do. By the completeness theorem there is a modal
model N of ∃X(NatX∧¬A(X)). Let C = {N}: by theorem B.2 above there
is an arithmetically standard modelM such thatM |= 3∃X(NatX∧¬A(X)).
Moreover M |= ∃X(NatX ∧ A(X)). For an arithmetically standard model
must make ∃XNatX—⊥ is not an arithmetical truth, so M ̸|= ∀X(NatX →
⊥)—and ∀X(NatX → A(X)) since A is an arithmetical truth. M is a model
of 3∃X(Nat(X) ∧ A(X)) ∧3∃X(Nat(X) ∧ ¬A(X)) as required.
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B.2 Model of Classicism, S5, RC and first-order ana-
lytic contingency

We would like to construct a model of the following two claims:

3∃R(RealR ∧ CHR)

3∃R(RealR ∧ ¬CHR)

where CH is:

λR(∀X ⊆ R(∃F : R
1−1−−→ X ∨ ∃F : X

1−1−−→ N))

Here R is short for the sequence of variables R,N, 0, 1, add,mult, <, with R
a unary predicate representing the reals of the structure and N representing
the naturals.

Below we construct a set-theoretic model, in a background of ZFC+CH,
and offer a sketch of proof that it satisfies the desired properties. Create a
full functional model as follows.

� P := the disjoint sum of the partial order ({p | p is a finite partial
function from ω2 × ω to 2},⊇) and ({@}, {(@,@)}).

� B := RO(P), the regular open subsets of P.

� Dt = B× 2.

� De = ω

� Dσ→τ = DτDσ

� ∀σ given by meet in the Boolean algebra, similarly for the logical con-
nectives.

B is a complete Boolean algebra. Intuitively it consists of a solitary atom,
{@}—which will serve as our actual world—and then a large atomless false
proposition P := P \ {@}. We will show that according to this model “there
exists a real structure in which CH true” is true at the actual world, but
false throughout the atomless portion of logical space. We will use

d
and⊔

to denote the meets and joins of elements in this algebra, and pc for the
complement of p. Observe that B has the countable chain condition: every
set of consistent pairwise incompatible elements in B is countable.

The meanings of terms are computed relative to variable assignments g,
which map each variable of type σ to an element of Dσ:
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� JxKg = g(x)

� JMNKg = JMKg(JNKg)

� Jλx.MKg = a 7→ JMKg[a/x]

� J∀σK = f 7→
d

a∈Dσ f(a)

� J→K = p 7→ q 7→ (pc ⊔ q)

A formula A is satisfied by g iff @ ∈ JAKg.
We assume, for simplicity, we are working in a language with a constant

of type σ for every element of Dσ. If we also play loose with use and mention
(or let the elements of Dσ be their own names), this eliminates various bits
of fussing involving variable assignments—we can write JA(a1, ..., an)K where
ai ∈ Dσi instead of JA(x1, ..., xn)Kg where g is a variable assignment mapping
xi to ai.

Next we appeal to theorem A.2 which guarantees that, given the well-
ordering principle, we can construct a canonical real number structure whose
elements are properties of natural numbers, and which includes at least one
such property with any given extension on the natural numbers. In the
present setting we get the following.

Lemma B.1. Suppose Jr is a well-orderingK = ⊤, and let σ = e → t. Then
there exists terms, R := R,N : σ → t, 0, 1 : σ,+,× : σ → σ → σ → t, <:
σ → σ → t each in a single parameter r, corresponding to reals, naturals,
operations of addition and multiplication, 0, 1 such that JRealRK = ⊤ and
J∀e→tX∃e→tY (RY ∧X ∼ Y )K = ⊤.

In order for this construction to work we need to check that such an r
exists:

Lemma B.2. The Well-Ordering Principle, WOσ, is necessarily true in M .
Indeed, there is a particular element of the model, r ∈ Dσ→σ→t, such that Jr
is a well-orderK = ⊤.

Proof. It is sufficient to find a relation, r ∈ Dσ→σ→t, such that the semantic
value of “r totally orders type σ and is well-founded” in M is ⊤.

Let < be some well-order on Dσ, we may define r as

r(a)(b) =

{
⊤ if a < b

⊥ otherwise
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It is easily seen that Jr is a total orderK = ⊤. It remains to show that
Jr is well-foundedK = ⊤. It suffices to show J∃y.fyK ≤ J∃y.y is f and r-minimalK
for every f ∈ Dσ→t.

Let f ∈ Dσ→t. If J∃y.fyK = ⊥ we are done. If J∃y.fyK ̸= ⊥, it suf-
fices to show that for every b ≤ J∃y.fyK there is some a ∈ Dσ such that
Ja is f and r-minimalK ⊓ b ̸= ⊥.

Since J∃y.fyK ̸= ⊥, there exists a d ∈ Dσ with JfdK ⊓ b ̸= ⊥. Let a be
a <-minimal element with this feature. Suppose ⊥ < b′ ≤ f(a) ⊓ b, and
d ∈ Dσ with b′ ≤ JfdK. Then JfdK ⊓ b ̸= ⊥ so r(a)(d) = ⊤ or a = d by the
minimality of a, so Jrad∨a = dK = ⊤. Since d ∈ Dσ was arbitrary, f(a)⊓b ≤
J∀σy(fy → ray∨a = y)K. This means f(a)⊓b ≤ Ja f and r-minimalK⊓b ̸= ⊥
as required.

First we show that 3∃R(RealR ∧ CHR) is true in the model. Indeed
∃R(RealR ∧ CHR) is true in the model (i.e. holds at @) for we know from
lemma B.1 that there are elements of the model, R, such that JRealRK = ⊤.
But it can also be shown that that the truth of CH is “absolute” in the
model.

Lemma B.3. ∃R(RealR∧CHR) is true in M if and only if the continuum
hypothesis is true.

M is extensionally full in the sense of Dorr (2016) appendix A4: for any
subset X ⊆ Dσ there is an element f ∈ Dσ→t such that for all a ∈ Dσ,
@ ∈ JfaK if and only if a ∈ X. Thus in extensional contexts quantifica-
tion over properties in the model is equivalent to quantification over sets in
the metalanguage. This can be used to show that counterexamples to the
higher-order version of CH in the model would be counterexamples to the
set-theoretic continuum hypothesis and conversely.

Next we show that 3∃R(RealR ∧ ¬CHR) is true in the model. In fact
P ≤ J∃R(RealR∧¬CHR)K where P is the atomless portion of logical space,
P \ {@}.

Lemma B.4. The the semantic value of “there is a real number structure
R, . . . at type e → t and an uncountable property of those reals which the
reals cannot inject into” is the worldless portion of logical space P .

Proof. Our strategy is to use lemma B.1 to find a real number structure
R = R,N, . . . made of properties of natural numbers, and then show that P
entails that it does not satisfy CH.
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For each α < ω2 we define we define some special properties of natural
numbers, aα ∈ De→t, as follows

aα(x) = {p ∈ P | p(α, x) = 1}

Intuitively the aα are highly contingent properties of natural numbers that
are nonetheless necessarily coextensive with some R property, and necessarily
no pair of them are coextensive.

Now to define the counterexample to the continuum hypothesis, G. In
the worldless regions of logical space, G is uncountable and R cannot be
injected into G. G : De→t → Dt

G(a) =

{
⊤ if a = aβ for some β < ω1

⊥ otherwise

Now, let c′ ∈ D(e→t)→(e→t)→t be the relation necessarily relates each property
(element of Dσ→t) to the minimal such element coextensive with it, obtained
from lemma B.1 (i.e. c′ with Jc′ is a choice relation for ∼K = ⊤). We can
define c(a)(b) = Ja ∼ bK when b = aα for some α and = c′ab otherwise— it is
easily seen that Jc is a choice relation for ∼K ≥ P . By lemma B.1 we have a
real structure R, in the parameter c such that J∀X∃Y (X ∼ Y ∧ RY )K = ⊤
and JRaαK = ⊤ for every α < ω2.

We first show that for any g ∈ D(e→t)→(e→t)→t, Jg : R
1−1−−→ GK ⊆ {@}—i.e.

g is not injective from R to G at the worldless portion of space. Suppose

otherwise, for contradiction. So b := Jg : R
1−1−−→ GK) ⊓ P > ⊥ (we add the

conjunct so that we can effectively ignore what g is like at the only world in
the algebra). Using the axiom of choice, we may define a function f : ω2 → ω1

that maps each α < ω2 to a β which might enumerate a real number that is
G.

f(α) = β where JgaαaβK ⊓ b > ⊥

We first show that f : ω2 → ω1, as claimed. Since b ≤ Jgaαaβ → GaβK (i.e. b
contains the claim that g has codomain G), and since Gaβ = ⊥ when β ≥ ω1,
b ≤ J¬gaαaβK when β ≥ ω1, i.e. JgaαaβK ⊓ b = ⊥ and so no β ≥ ω1 is in the
range of f . Thus f : ω2 → ω1.

Now pick some γ < ω1 such that f−1(γ) is uncountable. There must be
such a γ since ω2 > ω1. Now consider the following set:

{JgaαaγK ⊓ b | f(α) = γ}
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The elements of this set are all non-zero (by the definition of f), pairwise
incompatible (by the fact that b ≤ Jg is injectiveK), and uncountable by our
choice of γ. We then have an uncountable anti-chain in B which is not
possible.

To show that JG is uncountableK we use a similar strategy, this time
finding an injective f : ω1 → ω for the contradiction.

C Derivations

C.1 Proof that there is no first-order arithmetical con-
tingency in H2.5

Proposition C.1 (Prior). The necessity of distinctness, and the Barcan and
converse Barcan formulas at any type are derivable in H2.5.

The first is proved in Prior (1955) pp.206-207. Essentially if 3x = y
then, by 2(the Necessity of Identity) we can infer 32x = y from which we
obtain x = y. The necessity of distinctness follows from the contrapositive
of 3x = y → x = y. The second result is also due to Prior–see Prior (1956).

Under the assumption that there is a natural number structure of individ-
uals, the finite numerical quantifiers form a natural number structure with
respect to the following definitions

Proposition C.2. In H2.5 we can derive the following

1. Being a numerical quantifier, NumQuant, is rigid.

2. The relations <Q,+Q,×Q on the numerical quantifiers are rigid.

Proof. In S5, rigidity of a relation R is equivalent to showing (i) ∀x⃗(Rx⃗ →
2Rx⃗). For (i) implies (ii) ∀x⃗(¬Rx⃗ → 2¬Rx⃗), and we can establish rigidity as
follows. For any relation Z, we have by the Barcan and converse Barcan for-
mulas 2∀x⃗(Rx⃗ → Zx⃗) ↔ ∀x⃗2(Rx⃗ → Zx⃗). But given (i), and the K axiom,
the right-hand-side implies ∀x⃗(Rx⃗ → 2Zx⃗). And given (ii), ∀x⃗(Rx⃗ → 2Zx⃗)
implies the right-hand-side. Thus 2∀x⃗(Rx⃗ → Zx⃗) ↔ ∀x⃗(Rx⃗ → 2Zx⃗). We
can then apply universal generalization and necessitation to this argument,
to obtain the statement that R is rigid.
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So now we prove that every numerical quantifier is necessarily a numer-
ical quantifier by induction. Let Z be the property of necessarily being a
numerical quantifier: λQ.2NumQuantQ. We will show that Z applies to 0
and is closed under suc. From the definition of a numerical quantifier that
every numerical quantifier has Z.

For the base case note that it is a trivial logical truth that every property
that applies to 0 and is closed under suc applies to 0, so this logical truth is
necessary. Thus we have 2Quant 0.

For the inductive step, assume that ZQ, i.e. Q is necessarily a numerical
quantifier. It follows that it’s necessary any property that applies to 0 and is
closed under suc applies to sucQ; i.e. it’s necessary that sucQ is a numerical
quantifier.

The proof of the rigidity of <Q,+Q and ×Q are similar. For the case of
<, the base case consists in showing 20 < suc 0 and the inductive step, that
if 2Q < P then also 2 sucQ < sucP and 2Q < sucP .

Lemma C.1. In H2.5, we can prove ∀Q⃗(NumQuant Q⃗ ∧ A† → 2A†) and

∀Q⃗(NumQuant Q⃗ ∧ ¬A† → 2¬A†) for any first-order arithmetical sentence
A.

Proof. We prove this by induction on first-order arithmetical sentences. The
base cases Q = P and Q < P follow by propositions C.2 and C.1.

The inductive cases for the truth functional connectives are straightfor-
ward. The quantificational case follows from the rigidity of NumQuant.

Lemma C.2. In H2.5 if there is a natural number structure of individu-
als, then, necessarily, 0, < is a natural number structure on the numerical
quantifiers.

Theorem C.1. In H2.5, there is no structural arithmetical contingency:

∀N(Nat(N) ∧ A(N) → 2∀Ry(Nat(N) → A(N)))

where A(<, 0) is an arithmetical sentence.

Proof. Suppose that N is a natural number structure and A(N). Since there
is a natural number structure, the axiom of Potential Infinity holds, so we
know that the canonical number structure N, consisting of numerical quan-
tifiers, forms a natural number structure. Since A(N), A†(N) by Dedekind’s
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theorem. So by Lemma C.1 2A†(N). Since, given S5, the axiom of poten-
tial infinity is necessarily true if true at all, N is necessarily natural number
structure. So we know that necessarily any natural number structure N at
type e will be isomorphic to N and also make A(N) true.

C.2 Proof of no second-order analytic contingency given
2RC and LB

Recall that we use R as short for a sequence of variables R,N : σ → t,+,× :
σ → σ → σ → t, 0 : σ, 1 : σ. We will write ‘x is an element of the structure
R’ in the exposition to mean Rx.

Here will prove the following theorem.

Theorem C.2. In H2.2RC.LB one can derive all instances of The Neces-
sity of Analysis in the language of second-order analysis. Whenever A is a
sentence of second-order analysis:

2∀X(RealX → A(X)) ∨2∀X(RealX → ¬A(X))

The formulas of second-order logic (relative to type σ) are defined as
follows

� The formulasXy1 . . . yn are second-order analytical formulas when x, y, z :
σ and X : σ → . . . → σ → t.

� If A and B are second-order then A ∧B and ¬A are too.

� If A is second-order, then ∀x(Rx → A) is too.

� If A is second-order, then ∀X(∀x⃗(Xx⃗ →
∧

i Rxi) ∧ RigX → A) is to.

Note that there is a copy of second-order logic for any choice of σ, although
it is typically assumed that σ = e. Given a choice of variables R = R,N :
σ → t,+,× : σ → σ → σ → t, 0 : σ, 1 : σ, we say that a formula is a formula
of second-order analysis iff it is second-order and R appear free, and is a
sentence of second-order analysis iff its free variables are exactly R.

Observe that the second-order quantifiers are restricted to rigid prop-
erties. This is in line with standard mathematical practice, which treats
second-order logic as extensional. However, in the presence of Rigid Com-
prehension, one could drop the restriction to rigid properties without making
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a difference to the truth of any formula of second-order analysis. A straight-
forward induction shows that formulas of second-order analysis cannot dis-
tinguish between coextensive properties:

Proposition C.3 (Analytic Extensionality). In H2 one can derive ∀z⃗(Xz⃗ ↔
Y z⃗) → A → A[Y/X] for any second-order analytical formula A

This fact does not extend to arbitrary formulas of higher-orderese, since
in the full language one can formulate intensional notions, such as property
identity, which are not part of the language of second-order analysis.

First, a few remarks on the proof strategy. A more straightforward version
of the proof to follow is possible if we make the assumption of the necessity
of distinctness. First show that the rigidification, R, of any real number
structure, obtained by rigidifying R, N , +, × and <, is necessarily a real
number structure. Then we can show, using the Leibniz Biconditionals, that
any sentence about the reals that is true in a rigid real number structure is
necessarily true in that structure. It follows by Huntington’s theorem that,
necessarily, any real number structure is isomorphic to R, and so makes true
anything that R actually makes true.

In the absence of the necessity of distinctness, a rigid real number struc-
ture could fail to be a real number structure (if, say, everything in its domain
became identical). It will be convenient to use a restricted notion of necessity
in this argument defined as

2N := λp.2(3∃N.NatN → p)

Using ‘necessary’, ‘possible’, ‘rigid’, ‘inflexible’ and so on in this new sense,
the rigidification of the canonical real number structure will be inflexible
due to the fact that it is built out of numerical quantifiers which are 2N-
necessarily distinct. Now we can show that any given real number structure
is isomorphic to an inflexible real number structure (the canonical reals), and
then proceed as above. We will call a structureR rigid whenR,N,+,×, < are
rigid, and inflexible when additionally, ∀xy(Rx → 2Nx ̸= y), here defining
these modal concepts in terms of 2N. Note, also, that if R is rigid with
respect to 2 it is also rigid with respect to 2N, so that Rigid Comprehension
implies the variant of that principle involving 2N.

Once we have shown that the rigidification of the canonical real number
structure is inflexible, we show that inflexible real number structures are
necessarily complete, and consequently that they are necessarily real number
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structures (it is of course necessarily an ordered field). This will involve the
Leibniz biconditionals.

First, we will need a consequence of Huntington’s theorem, that no two
real number structures (potentially at different types) can disagree about the
truth of second-order analytic statements.

Lemma C.3. For any second-order analytic statement, A, 2∀σR∀τS(Real
σ(R)∧

Realτ (S) → (Aσ(R) ↔ Aτ (S))

Here Aσ and Aτ are obtained by shifting which type is playing the role of
“first-order” variables to σ. We omit the proof. Note that, like Analytic Ex-
tensionality, this theorem does not extend to arbitrary formulas, such as those
involving intensional notions, second-order identity or third-order quantifi-
cation. For instance, one real number structure may consist of necessarily
distinct elements, while an isomorphic one might not; second-order identity
and third-order quantification allow one to construct similar examples.

Next we need to construct an inflexible real number structure—note that
we require only inflexibility with respect to 2N. We will use the canonical
real number structure obtained from theorem A.2, where we identify reals
with rigid properties of the canonical natural number structure (using Rigid
Comprehension). The result of rigidifying this structure we will call R =
R,N,+R,×R, 0R, 1R, <R.

While this structure is clearly rigid, it needs to be shown that it is inflex-
ible and 2N-necessarily a real number structure. (Note that the canonical
real number structure itself is 2N-necessarily a real number structure, by
applying theorem A.2 and the fact that the axiom of Potential Infinity is
2N-necessary, but we don’t know that the canonical real number structure
is rigid.) Why is it inflexible? Because the numerical quantifiers are nec-
essarily distinct with respect to 2N the reals—rigid properties of numerical
quantifiers—will also be necessarily distinct in the same sense. Of course,
without the assumption of Potential Infinity, the numerical quantifiers may
not in fact form a natural number structure, and R may not be a real number
structure. Thus we should have:

Lemma C.4. If the axiom of Potential Infinity holds, then R is an inflexible
real number structure.

Note that if there could have been a real number structure then the axiom
of Potential Infinity is true, and if there couldn’t have been a real number
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structure the necessity of analysis holds vacuously. While the above lemma
doesn’t use Rigid Comprehension, we needed it in our definition of R. Next
we show that R is necessarily a real number structure.

Lemma C.5 (Leibniz Biconditionals). If the axiom of Potential Infinity
holds, then R is 2N-necessarily a real number structure.

Proof. We first show that if R is a rigid property of necessarily distinct
individuals, ∀xy(Rx ∧ Ry ∧ x ̸= y → 2Nx ̸= y), then for any element z
or R, λx.z < x and λx.x < z are rigid. Suppose 3N∃x(z′ < x ∧ Fx). So
3N∃xz′(x < z′∧ z = z′∧Fx), which by rigidity implies ∃xz′.x < z′∧3N(z =
z′∧Fx). Finally, by the necessity of distinctness, z′ = z, so ∃x.x < z∧3NFx.
For the other direction, we know that if for some x, z < x ∧3NFx then it’s
necessary that z < x by rigidity, so 3N(z < x ∧ Fx), and so also 3N∃x(z <
x∧Fx) applying existential generalization under 3N. This reasoning is easily
necessitated establishing the rigidity of λx.z < x. The other case is shown
similarly.

Let P be the higher-order property of being a collection or reals that has
no least upperbound:

P := λX.(X ⊆ R ∧ ¬∃y. lub yX)

Suppose, for contradiction, thatR is possibly not complete, that is: 3N∃e→tX.PX.
By the Leibniz biconditionals there is a world property W , that entails P .
Now we may consider the property of being a real x such that W entails
applying to x—informally, x would have fallen into the unique W collection
of properties if W had been instantiated.

Y := λx.2N∀X(WX → Xx)

By the rigidity of ≤, Y consists of only reals (if Y x, W entails λX(Xx∧PX),
to so x is possibly an ≤-real—i.e. stands in ≤ to something—and so by
rigidity there is something it ≤s). By the actual completeness of R, Y has
a least upperbound, z. We will show that necessarily, z is the least upper
bound of the unique property of reals X that has W , if it exists.

First, we establish that z necessarily an upperbound any X that is W .
2N∀X(WX → z ≥ X) writing z ≥ X for ∀x(Xx → z ≥ x). Suppose
otherwise, for contradiction: 3N∃X(WX ∧∃x(Xx∧x > z)). Applying some
logic inside 3N, 3N∃x > z(∃X(WX∧Xx). Applying the rigidity of λx.x > z
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we get ∃z > x3N∃X(Wx ∧Xx). Since W is a world property, it cannot be
consistent with Xx unless it entails it: so 2N∀X(WX → Xx) which means
Y x by definition of Y . The fact that x > z contradicts the assumption that
z is an upperbound of Y .

Next we establish that necessarily z is the least upperbound of the X
that is W , when such an X exists. 2N∀X(WX → lub zX). Suppose for
contradiction that 3N∃X(WX ∧ ∃x ≥ X.x < z)). Applying logic under
3N, 3N∃x > z∃X(WX ∧ x ≥ X). By the rigidity of λx.x < z, we have
∃x < z3N∃X(WX ∧ x ≥ X). To complete the contradiction it is sufficient
to show that x ≥ Y , contradicting the assumption that z was the least
upperbound. So suppose Y y, which means 2N∀X(WX → Xy). It follows,
using the normality of 2N, that 3Nx ≥ y. Given the necessity of distinctness,
we can infer that in fact x ≥ y (for otherwise x ≤ y and x ̸= y, and these
must be necessary given the rigidity of ≤ and the necessity of distinctness,
which is incompatible with 3Nx ≤ y). Thus x ≥ Y .

Lemma C.6 (Rigid Comprehension). Let W be a world property of type
(σ → t) → t, and Z : σ → t a rigid property. Then if it possible that W is
instantiated by a rigid property ⊆ Z, then there is an actual rigid property
that could have been identical to the W property:

2N∀Y (WY → (Rig Y ∧Y ⊆ Z)) → ∃X(RigX∧X ⊆ Z∧2N∀Y (WY → Y = X)

Proof. Suppose that 2N∀Y (WY → (Rig Y ∧ Y ⊆ Z)), and Z is the rigid
property given by the assumption. Let X be the rigid property coextensive
with λx.(Zx ∧ 2N∀Y (WY → Y x). Clearly X is necessarily rigid, and X ⊆
Z. It suffices to show that W entails being coextensive with X, since W
entails rigidity and coextensive rigid properties are identical. There are two
inclusions to show.

In order to show that 2N∀Y (WY → X ⊆ Y ) it suffices to show

∀x(Xx → 2N∀Y (WY → Y x))

since by the rigidity of X, we can conclude 2N∀Y (WY → ∀x(Xx → Y x)).
So let x be an arbitrary X. By the definition of X it follows that that
2N∀Y (WY → Y x), so the claim follows.

In order to show that 2N∀Y (WY → Y ⊆ X) it suffices to show

∀x(Zx → 2N∀Y (WY → Y x → Xx)
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since by the rigidity of Z, we can conclude 2N∀Y (WY → ∀x(Zx → Y x →
Xx)), which is equivalent to the desired claim, since 2N∀Y (WY → ∀x(Y x →
Zx)). So let x be an arbitrary Z. In the case that x is X, we also have 2NXx
by rigidity of X, delivering the desired result, 2N∀Y (WY → Y x → Xx).
In the case that x is not X, that means ¬2N∀Y (WY → Y x) or ¬Zx. In
fact, the first disjunct must be true, for if 2N∀Y (WY → Y x) but ¬Zx we
have have 3NZx since 2N∀Y (WY → Y ⊆ Z), which contradicts the rigidity
of Z. In the former case, the worldliness of W implies 2N∀Y (WY → ¬Y x)
yielding the desired result.

Now we can establish:

Lemma C.7 (Rigid Comprehension, Leibniz Biconditionals). Let R be any
inflexible real number structure (e.g. as constructed above). For every second-
order analytic statement, A(R), with free first-order variables x⃗ = x1, . . . , xn

and free second-order variables X⃗ = X1, ..., Xk:

∀X⃗∀x⃗((Rx⃗ ∧ X⃗ ⊆ R ∧ Rig X⃗) → A → 2NA)

where above we write Rx⃗ for Rx1 ∧ . . . ∧ Rxn, and X⃗ ⊆ R to mean X1 ⊆
R ∧ . . . Xn ⊆ R

Proof. We prove by induction on the structure of second-order analytic sen-
tences, A that both A and its negation satisfy the theorem. Below .

1. ∀X⃗∀x⃗((Rx⃗ ∧ X⃗ ⊆ R ∧ Rig X⃗) → A → 2NA)

2. ∀X⃗∀x⃗((Rx⃗ ∧ X⃗ ⊆ R ∧ Rig X⃗) → ¬A → 2N¬A)

Let X⃗ and x⃗ be arbitrary entities satisfying (Rx⃗ ∧ X⃗ ⊆ R ∧ Rig X⃗).
Atomic sentences have the form x ≤ y, x = y, x+ y = z, Xy1...yn, etc. 1

follows from the rigidity of the structure, in the former cases, or the rigidity
of X in the last case. 2 follows from rigidity and the necessity of distinctness
of x, y, z, y1...yn.

For conjunctions, suppose A∧B. We know from the inductive hypothesis
that 2NA and 2NB, so 2N(A∧B). This establish 1. in the case of 2, we have
either ¬A or ¬B, so by the inductive hypothesis one of these two claims is
necessary, and thus so is ¬(A∧B). For the negation case 1 is trivial from the
IH, and 2 follows trivially from the IH and the equivalence of A and ¬¬A.

For first-order generalizations. These have the form of a restricted quan-
tification over the domain of ≤: ∀x(Rx → A). For 1, By the IH, for an
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arbitrary x in the domain, 2NA, i.e. ∀x(Rx → 2NA), so by the rigidity of
R, we have 2N∀x(Rx → A). For 2, assume that universal is false: for some
x, Rx and ¬A. We know that 2N¬A by the inductive hypothesis, and we
have 2NRx by rigidity, so 2N¬∀x(Rx → A), as required.

For second-order quantification we need Lemma C.6.
For 2, we will show the contrapositive. Suppose 3N∃X(X ⊆ R∧RigX ∧

A). We wish to show ∃X(X ⊆ R∧RigX ∧A). Given the inductive hypoth-
esis, it suffices to show ∃X(X ⊆ R ∧ RigX ∧ 3NA). Applying the Leibniz
biconditionals to our assumption we get the existence of a world proposi-
tion, 2N∀Y (WY → (Y ⊆ R ∧ Rig Y ∧ A[Y/X]). By Lemma C.6, there is
actually a rigid property, X ⊆ R such that 2N∀Y (WY → X = Y ), thus
3N(X ⊆ R ∧ Rig x ∧ A).

Theorem C.3 (Rigid Comprehension, Leibniz Biconditionals). For any sen-
tence of second-order analysis, A, with free variables S, we can prove 2∀S(RealS →
A) ∨2∀S(RealS → ¬A).

Proof. The proof can be given as follows.
Suppose for contradiction that 3∃S(RealS∧A(S))∧3∃S(RealS∧¬A(S).

Since there could have been a real number structure, the axiom of Poten-
tial Infinity is true, so R is an inflexible real number structure by Lemma
C.4. Either A(R) or ¬A(R)—without loss of generality, assume the for-
mer. Then we have that it’s 2N-necessary that R is a real number struc-
ture, by Lemma C.5, 2N-necessary that A(R) by Lemma C.7, and 2N-
necessary that ∀S(RealS ∧RealR → (A(R) ↔ A(S)) by Lemma C.3. Thus
2N∀S(RealS → A(S)). But 3∃S(RealS∧¬A(S)) entails 3N∃S.¬A(S), con-
tradiction. In the case that ¬A(R) the argument is similar.
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