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Research on neural correlates of consciousness has been conducted and carried out mostly
from within two relatively autonomous paradigmatic traditions – studying the specific
contents of conscious experience and their brain-process correlates and studying the
level of consciousness. In the present paper we offer a theoretical integration suggesting
that an emphasis has to be put on understanding the mechanisms of consciousness
(and not a mere correlates) and in doing this, the two paradigmatic traditions must
be combined. We argue that consciousness emerges as a result of interaction of brain
mechanisms specialized for representing the specific contents of perception/cognition –
the data – and mechanisms specialized for regulating the level of activity of whatever data
the content-carrying specific mechanisms happen to represent. Each of these mechanisms
are necessary because without the contents there is no conscious experience and without
the required level of activity the processed contents remain unconscious.Together the two
mechanisms, when activated up to a necessary degree each, provide conditions sufficient
for conscious experience to emerge. This proposal is related to pertinent experimental
evidence.
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INTRODUCTION
Scientific research on consciousness has made a major leap for-
ward after influential papers by Bernard Baars, Francis Crick, and
Christof Koch outlining the logic and perspective directions of
the contrastive analysis (Baars, 1989; Crick and Koch, 1990, 2003).
To discover the neural correlates of consciousness (NCC), they
suggested to compare brain-process recordings collected in the
conditions when subject is conscious (C) with those when that
subject is not conscious (U). The difference between these two
conditions was operationalized as the NCC, the minimal necessary
neural correlates expressed by specific signatures of brain processes
differentiating these two conditions as NCC = C − U. There
are two main traditions of research using this methodological
approach: (1) studying the general states of consciousness versus
unconsciousness for revealing NCC (Tradition-1) and (2) study-
ing the correlates of the contents of consciousness in a conscious
subject who in some of the experimental trials (or subconditions
of trials) has subjective experience of the target stimulus and in
some other conditions does not (Tradition-2). (See articles by
Steriade, 1996; Laureys, 2005; Massimini et al., 2005; Seth et al.,
2006; Rosanova et al., 2012; Sarasso et al., 2014 for an overview
of typical tradition-1 studies and Del Cul et al., 2007; Aru and
Bachmann, 2009a,b; Lamy et al., 2009; Hesselmann et al., 2011;
Pitts and Britz, 2011; Aru et al., 2012a; Sekar et al., 2013 for typ-
ical tradition-2 studies.) Tradition (1) has made some progress
in finding NCC for the state of consciousness while tradition (2)
has found a lot of data on NCC in terms of its specific content.
Ironically, an observer cannot infer the state of consciousness with
certainty without testing the presence of some subjective content

in consciousness. In other words, there is no empty or contentless
consciousness and even though a highly skillful meditation may
perhaps reduce the contents to a minimal extreme (Hohwy, 2009),
an experience of some unchanging “empty” state of mind will still
have a felt emptiness or oneness as a content. Thus, states and con-
tents seem to be unseparable in that as soon as the unconscious
state changes to a conscious state, some content of conscious-
ness inevitably appears. Nevertheless, the above mentioned two
traditions of research have been developing in relative mutual
isolation.

Recently, a methodological crisis in studying the NCC was spot-
ted (Aru et al., 2012b; de Graaf et al., 2012). It appears that with
standard contrastive analysis not only the NCC of the conscious-
ness itself are extracted from brain recordings, but the observed
neural signatures may also pertain to processes necessarily preced-
ing those directly responsible for consciousness itself (correlates
of the prerequisites of consciousness or NCCpr) and processes
that are aftereffects or consequences of consciousness (NCCae).
It appears that it is not at all easy to distinguish the NCCpr and
NCCae from the processes directly equivalent to the neural pro-
cesses minimally sufficient for the conscious experience itself (i.e.,
the NCC proper, or constituents of consciousness, to use the dis-
tinction made by Miller, 2001, 2007). We believe – together with
Hohwy, 2009 – that the theoretical picture used to explain and
understand the results of research on NCC is confused partly
because the above mentioned two traditions, the study of con-
scious state vs. content, have progressed separately. “It seems then
that neither the content nor the state-based approach taken in iso-
lation from one another will help us discover the NCC” (Hohwy,

www.frontiersin.org August 2014 | Volume 5 | Article 940 | 1

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Journal/10.3389/fpsyg.2014.00940/abstract
http://community.frontiersin.org/people/u/23896
http://community.frontiersin.org/people/u/59156
mailto:talis.bachmann@ut.ee
http://www.frontiersin.org/
http://www.frontiersin.org/Consciousness_Research/archive


Bachmann and Hudetz Consciousness equals level times data

2009, p. 435). Thus, we argue that Tradition-1, by concentrat-
ing on the brain mechanisms necessary for the general state of
consciousness, has been neglectful with regard to the systematic
experimentation in the domain of finding the NCC for subjective
contents and because of this, it has had difficulties in properly
specifying the NCC. Neither the difference in the exact contents
nor the difference in the exact timing of the subjective experience
of these contents along the subsecond timescale have been stud-
ied. We also argue that Tradition-2, by concentrating on the brain
processes that correlate with subjective awareness of specific target
stimuli has tended to overlook the data and regularities obtained
in the research on NCC of conscious states. In observing and ana-
lyzing brain-process signatures as candidates for NCC, no attempt
has been made to clearly distinguish the contributions of the state
and content systems to these signatures.

Aside from the issue of the exact timing of emergence of
conscious contents and their NCC in terms of brain-imaging sig-
natures, an attempt to bridge to state-content interrelationship is
the former study by Owen, Laureys and colleagues capitalizing on
the contrastive analysis of fMRI signals between vegetative state
(VS) patients and normal alert controls (Owen et al., 2006). VS
patients who were clinically defined as being unconscious were
asked to imagine playing tennis while their pattern of fMRI acti-
vation was compared to that obtained in healthy control subjects
reporting the corresponding phenomenal content. The two brain
activation patterns were quite similar, which the authors used to
suggest that VS patients have conscious contents. Hohwy (2009)
criticizes this approach based on the grounds that what the investi-
gators tested really was volition rather than qualia. In our opinion
this critique is insufficient for several reasons: (1) the subjective
experience of volition is also a kind of consciousness with its con-
tent, although possibly different in form from sensory experience
fo qualia, (2) in order to express volition, patients had to first
semantically process the command and be able to differentiate
between the requested choices. Thus it seems that either we really
have some residual form of consciousness in VS patients or the
brains of VS patients are capable of surprisingly intricate and pre-
cise information processing without the concomitant subjective
experience simply executing automatisms of processing sensory
input up to cognitive and semantic stages (supporting the zombie
mode of complex information processing). On the other hand,
the so-called zombie modules seem to exist indeed if we accept
data by Kotchubey (2005) and Owen et al. (2006) as evidence for
complex perceptual-cognitive processing of stimulation contents
by the unconscious brains. The serious shortcoming of this type
of research consists in the lack of reliable independent measures
clearly associated with phenomenal subjectivity. We do not know
whether the specific contents processed by the brain in a specific
state (e.g., VS or a locked-in state) are also reflected phenome-
nally in the first person perspective. Because verbal reports from
subjects in states for which we cannot definitely say whether these
are conscious or unconscious cannot be reliably obtained, we are
left with the option to study the effect of experimental manipu-
lations of the brain’s state systems only when these manipulations
are applied when the human subject is in a state allowing subjective
report. When this type of research has developed well enough and
the corresponding mechanisms of consciousness will have become

more precisely specified, experiments with animal models can be
then carried out in a more meaningful way with regard to the
problem of NCC.

Although many of the clinical criteria for qualifying a state
as a conscious, minimally conscious or unconscious state and
as a state of sleep or behavioral arousal are objectively physi-
ological (e.g., EEG) and behavioral (e.g., reflexes), at present
we can rely on subjective reports and evaluations of the con-
tents of mind as the only available method to assess presence
of consciousness reliably. An important dimension which allows
measurement of variable states from the point of view of sub-
jectivity is the scale of the levels of consciousness expressed in
terms of the clarity, vividness and fullness of subjective con-
scious experiences. Vague, barely noticeable, fragmented, poorly
differentiated experiences stand at the one end of the scale and
clear, vivid, differentiated and stable experiences at the other
end. Sedated patients typically describe their experiences in terms
of this kind of qualia continuum where the quality of contents
changes along with the change of state from unconsciousness to
hypnagogic experiences to vague experiences up to the full blown
clear and vivid perception of the world and private thoughts (New-
ton et al., 1990; Andrade et al., 1994; Zacny et al., 1994; Hudetz
and Pearce, 2010). Consciousness contents have different levels
of expression that can vary vith invariant environmental stim-
uli input as a function of the varying state of the brain. Thus,
operationally the effects of the state system on the content sys-
tem should be possible to measure as the variations in the level
of subjective experience as measured by the contents typical for
the gradations of the level (Bachmann, 2012). Importantly, there
are scalable attributes of the level common to different modali-
ties and within-modality contents which makes these attributes
universal.

We believe that by combining the two approaches within a
theoretical synthesis some – but not all – of the controversies in
NCC research can be solved. We suggest a theoretical synthesis
where the activity of the mechanisms examined in each of the
two traditions are the prerequisites (NCCpr) of consciousness,
but together they form the combination jointly sufficient for con-
sciousness (i.e., NCC proper). In a highly simplified form, we
propose an expression for consciousness: C = L × D, where C
stands for consciousness, L stands for the critical level of activity
of neuromodulatory systems regulating the state of the brain, and
D stands for the data, i.e., the contents of consciousness provided
by the specific representational systems of the brain. In order to
ease the abstractness of the concept, we give a few examples on
what we mean here. In an experiment aimed to manipulate the
state level L, for example, with an incremental dosing of anes-
thetics, a suitable task-response can be studied simultaneously at
matched performance levels (accompanied with subject’s scaling
of the level and/or contents of his/her subjective experience) while
doing fMRI, MEG, EEG or something else. In doing this, matching
the task performance may be important to minimize the contri-
bution of NCCae on the recorded neuronal signatures. One could
also look at other changes in the brain, e.g., functional connectiv-
ity as candidates of NCC proper or its reliable signature. Similarly,
EEG/ERP recordings can be used for comparing subjective reports
under varying degrees and means of sedation by anesthetics,
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including measurements of possible NCCae (e.g., Veselis et al.,
2009). Some additional examples will be given later on in this
article. Obviously, in order to follow the strategy of the combined
use of the L-system and D-system based approach, these systems
should be known sufficiently well in terms of neuroanatomy and
ways of functioning.

Before elaborating this concept further, let us have a closer
look at the putative brain mechanisms and processes that have
been proposed as necessary for consciousness both in terms of its
content and state, and after having done so, we will return to the
problem of NCC.

TWO MUTUALLY INTERACTING BRAIN SYSTEMS RELATED
TO CONSCIOUSNESS
To experience something subjectively, the brain has to be in the
state of consciousness, but also capable of processing sensory data
which constitute the contents of experience. In other words, the
presence of specific sensory contents in conscious awareness is
not automatically granted, but requires involvement of cerebral
interactive mechanisms that aid the explication of preconsciously
processed information. Neurobiological experimental data, deep
brain stimulation data, and anesthesiological data converge in
showing that modulations mediated by the thalamocortical “non-
specific” system targeted at the specific system of encoding the
sensory-perceptual information are necessary for subjective con-
tentful experience to emerge (Brooks and Jung, 1973; Bachmann,
1994; Purpura and Schiff, 1997; Llinás and Ribary, 2001; Ribary,
2005; John, 2005; Hudetz, 2006; Alkire et al., 2008; Hudetz and
Alkire, 2011; Giacino et al., 2012; Liu et al., 2013). An impor-
tant aspect of this dual functional architecture consists in the
way these two systems interact at the cellular level. There is mas-
sive presynaptic targeting of the apical dendrites of the layer-5
pyramidal neurons in cortex originating from the non-specific
system while the layer-5 pyramidal neurons are the prime part
of the specific afferent system at the cortical level serving the
function of encoding specific stimulation content. This specific
afference arrives presynaptically at the more somatic parts of
these nerve cells. It is suggested that this is the cellular level
mechanism where nonspecific and contextual top-down mod-
ulatory influences interact with primary specific afferent input
and that the extent or pattern of this interaction highly corre-
lates with subjective states of consciousness (Brooks and Jung,
1973; Purpura and Schiff, 1997; Llinás and Ribary, 2001; Ribary,
2005; Alkire et al., 2008; Pillay et al., 2014). The layer-5 pyramidal
neurons are naturally suitable to be a mechanism where percep-
tual contents are modulated up to consciousness, but at the same
time this mechanism allows both pre-conscious and unconscious
information processing. Although inputs to cell soma and den-
drite tuft can perform their own functions autonomously (Berger
et al., 2001; Larkum et al., 2004), these inputs are also capable
of intense integrative interaction. Therefore, the same system
can perform information processing in either the preconsious
(non-interacting) or the conscious (interacting) domain. Mem-
brane activity caused by somatically targeted sensory input is
“available” for effective (i.e., hypothetically awareness-providing)
modulation if it has sufficient frequency (Larkum et al., 1999a)
and optimal timing with respect to the apical dendrite targeted

input (Larkum et al., 1999b; Larkum, 2013). The autonomous
function of the two neuron compartments is possible also due
to the fact that the level of membrane depolarization is pro-
gressively attenuated distally from soma, and also from the tuft,
as well as for the very fact that an absence of temporal coin-
cidence of somatic and distal-dendritic input dissociates the
two subcellular activities and thus the potential to act as an
integrative device remains unused (Berger et al., 2001; Larkum,
2013).

For conscious perception, it is necessary that both systems be
active in concert – (i) the bottom-up, specific content-signaling
data system D receiving afferents by the layer-5 pyramidal neu-
rons’ basal compartment, and (ii) the modulation system sending
intracortical top-down associative signals and/or non-specific
thalamo-cortical signals leading to up-states necessary for a suf-
ficient consciousness level L (Bachmann, 1994; Ribary, 2005;
Larkum, 2013). When only one of the two principal input streams
to pyramidal neurons – somatic specific afferents and dendritic
presynaptic nonspecific afferents – is active without the “partner-
ing” effect of the other system, consciousness is expected to fade
away. Formally: D(0) × L(z) = C(0); D(x) × L(0) = C(0). Only
D(x) × L(z) = C(x), with x being the contents of the experienced
subjective state.

It is likely that for the hypothetical dual-input consciousness
mechanism to become ignited, both neuron compartments –
somatic and apical dendritic – must receive enough presynaptic
input in order to generate the wide excitatory postsynaptic poten-
tial (EPSP) plateau-waves carrying a burst of spikes representing
an up-state. One good candidate for being the core cellular level
mechanism in this system is the backpropagation activated cal-
cium spike firing (BAC firing) mechanism described by Matthew
Larkum and colleagues. For the layer-5 pyramidal neurons to
generate plateau-wave-based spiking, the temporal coincidence of
somatic sodium channel-related presynaptic input (i.e., data for
the subsystem D) and calcium channel-related presynaptic input
targeted at the apical compartment of the cell dendrite (i.e., mod-
ulation by the subsystem L) is necessary (Larkum et al., 1999b;
Larkum, 2013). It is important to acknowledge that dendritic cal-
cium spikes are a direct target of anesthetics (Potez and Larkum,
2008) and after release from the anesthetic effects, calcium elec-
trogenesis in layer-5 pyramidal neurons dramatically increases
(Murayama and Larkum, 2009). This supports the notion of
the principal importance of the BAC firing mechanism for con-
sciousness. Importantly, suprathreshold input to the neuron’s
body (responsible for the bottom-up inflow of sensory signals
by D) produces fewer action potentials of the cell than trigger-
ing of the dendritic Ca2+ spikes. This once more substantiates
the importance of modulatory brain processes in addition to the
straightforward sensory afference and provides a convincing argu-
ment for the common effects of biased perception being under
the contextual and arousal systems control. [See also works by E.
Roy John (e.g., John, 2005) and Rodolfo Llinás (e.g., Llinás et al.,
1998) on the putative significance of coincidence detection for the
effectively working consciousness mechanism.]

In addition (or alternatively to) the thalamocortical resonance
or interaction theory, the role of cortico-cortical interactions in
the NCC should not be excluded or overlooked. For example,
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Mashour and coworkers (Lee et al., 2013) demonstrated the selec-
tive alterations in fronto-parietal interactions during general
anesthesia with three different anesthetic agents. The use of dif-
ferent drugs in the same investigational setting is important in
order to be able to identify an anesthetic-invariant mechanism
of loss and return of state consciousness (John, 2001), remov-
ing agent-specific effects, and by the same token, at least some
of the NCCpr or NCCae. A particularly interesting aspect of the
work of Lee et al. (2013) is that fronto-parietal communication
was preferentially suppressed by all three anesthetics in the feed-
back (top-down) direction. This important finding is consistent
with what was proposed by Del Cul et al. (2007) and predicted by
prior preclinical anesthesia studies by Imas et al. (2005a), suggest-
ing that cortical long range connectivity, especially in its top-down
aspect, may be critical for consciousness. On the other hand, based
on the general knowledge that non-specific thalamocortical effects
target more frontal and central than posterior areas it is possible
that the typical effect on the top-down aspect of cortical effective
connectivity reflects also (or first of all) the effect of the extended
thalamo-cortical modulation system. Further, indirect support for
the nonspecific brain systems regulating conscious thresholds for
visual stimuli comes from a recent study by Park et al. (2014) who
showed that the threshold varied with the phase of heartbeats. It is
difficult to assume that heartbeats are directly associated with pro-
cessing specific visual input, but it is easy to understand that and
how heartbeats reflect activation levels of the non-specific systems
involving the autonomic system contribution to arousal.

In some situations, specific input is processed by the brain
and/or stored in its long term memory system but there is insuffi-
cient L-system modulation for conscious awareness of the sensory
input or stored memory-information. Examples include subjects
having fallen asleep, undergone fainting, or brought into anes-
thetic states. Brains of sleeping or anesthetized subjects receive
localized specific input that comes from sensory receptors, but
associative input and modulating arousal input from the reticulo-
thalamic activation system is insufficient (Magoun, 1958; Hassler,
1978; Purpura and Schiff, 1997; John, 2005; Ribary, 2005; Hudetz
et al., 2009; Hudetz and Alkire, 2011; Zhou et al., 2011). Informa-
tion integration to consciousness is absent (Alkire et al., 2008).
On the other hand, when the L-system is artificially stimu-
lated, arousal and consciousness accompanied by sensing the
contents of ambient stimulation can be brought about, cortical
information-integration can be augmented, release from visual
masking produced, or artificial sensations evoked (Smirnov et al.,
1978; Tasker et al., 1980; Bachmann, 1994; Giacino et al., 2012;
Pillay et al., 2014). Artificial stimulation of the intralaminar thala-
mic sites that are part of the nonspecific system augments visual
evoked potentials in response to grating stimuli (Hunsperger and
Roman, 1976). Visual, auditory and somatosensory research using
recording of brain potentials has repeatedly shown that the level
of expression and timing of the negative-polarity potential N1
(with post-stimulus latency equal to about 50–200 ms depending
on the modality and stimulation characteristics) strongly corre-
lates with conscious perception (Uttal and Cook, 1964; Wagman
and Battersby, 1964; Hassler, 1979; Alter et al., 1990; Cauller
and Kulics, 1991; Bachmann, 1994; Imas et al., 2006; Schu-
bert et al., 2006; Schoenfeld et al., 2011; Auksztulewicz et al., 2012;

Auksztulewicz and Blankenburg, 2013; Sinke et al., 2014; Pitts
et al., submitted). For example, while early post-stimulus potential
components are more or less invariant between sleep or sedation
on the one hand and awake conditions on the other hand (or
even increased in sedation – Imas et al., 2006), N1 is consider-
ably suppressed in the unconscious state. Similarly, visual cortical
neurons in anesthetized animals show early activity in response to
light flashes similar to the unanesthtized state, but long-latency
responses significantly decrease under sedation (Hudetz et al.,
2009). Also, in the crowding effect when target information is left
out of awareness, N1 is suppressed although P1 ERP component
still reflects basic stimulus characteristics regardless of crowding
(Chicherov et al., 2014). When similar monocular textures fuse
into subjectively visible images, conspicuous occipitally recorded
negative component is present, but absent when fusion into visi-
bility is not achieved (Fahrenfort et al., 2012). Moreover, recently
it was shown that whether subjective experience of a visual stim-
ulus in hysterical blindness is present or not is reflected in the
amplitude of N1 (Schoenfeld et al., 2011). Importantly, while N1
appeared as an authentic NCC, fMRI recording data could not
differentiate between consciously seen vs unseen stimuli. For our
purposes it is essential that the electrogenesis of negativity of the
surface-recorded brain potentials considerably owes to the api-
cal dendritic activity in the upper layers of the cortex (Larkum,
2013). The stimulus-evoked negativity can be easily explained as
resulting from the excitatory synaptic input to the distal com-
partment of the apical dendrites of layer-5 pyramidal neurons.
The fact that consciousness of a stimulus emerges with a rela-
tively long delay after 100 ms (Bachmann, 1994, 2000) is strongly
consistent with the fact that N1 is relatively slow compared to
the timing of the early arrival of stimulus signals to cortex as
indexed by the faster ERP components. This is despite the fact
that the early ERP components with latencies under 100 ms can
vary depending on whether the target stimulus presented in invari-
ant physical conditions becomes consciously experienced or not
(Aru and Bachmann, 2009b) suggesting that they are signatures of
the NCCpr and not NCC proper. Furthermore, an ERP signature
termed visual awareness negativity (VAN) most conspicuously
present as recorded by lateral occipital electrodes also correlates
with stimulus awareness (Railo et al., 2011). (However, see Bach-
mann, 2009, concerning the problem that VAN duration is too
short compared to the duration of subjective experience when
subjects hold target-stimulus in explicit immediate memory. This
problem appears to find a solution in the correlation of slow neg-
ative potentials with conscious awareness as discussed later in this
article.)

Thus, taking into account the experimental regularities
reviewed above, let us operationally regard EEG potential
negativity as a signature of the involvement of the L-system in
modulating the neural activity of the D-system. This notion does
not mean that modulation by the L-system always leads to con-
scious experience of the stimuli; it is likely that a certain level
of the L-activity modulating D-activity is necessary. This in turn
implies the existence of a threshold level and/or threshold dura-
tion of the processes producing ERP negativity, with sub-threshold
levels of the measured negative cortical potential measurable in
principle. Consistent with this, Intaité et al. (2014), demonstrated
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pre-reversal negativity as a signature of the change in conscious
perceptual contents. Several hundred ms before subjective rever-
sal of the perceptual contents of an invariant ambiguous stimulus,
ERP negativity was enhanced when subsequently the conscious
contents were changed.

Not only brief transient ERPs with negative polarity corre-
late with stimulus awareness timing, but also the slower negative
deflections of the brain potentials such as, the contingent nega-
tive variation, slow cortical potential waves, or contralateral delay
activity appear to be good candidates of a reliable and robust cor-
relate of consciousness, especially as related to expectancy states
and application of general-purpose brain-process resources for
a specific task involving focused attention (Rösler et al., 1997;
Birbaumer, 1999; Devrim et al., 1999; He and Raichle, 2009;
Murayama and Larkum, 2009; Fischer et al., 2010; Murd et al.,
2010; Stamm et al., 2011; Birbaumer et al., 2012; Pun et al., 2012;
Jo et al., 2014; Li et al., 2014). Basically, the slow potential dynam-
ics reflects changes in cortical excitability (He and Raichle, 2009;
Raichle, 2011). This notion is substantiated by the known intimate
relationship between the slow cortical potential and the thalamo-
cortical neuromodulatory system (i.e., the system controlling L,
according to our notation). This conceptualization is consistent
with observations that trans-cranial magnetic stimulation (TMS)
of the occipital cortex elicits state-dependent effects when per-
formed in a state of increased arousal (brought about by caffeine
administration) as compared to quiet wakefulness (placebo con-
dition; Murd et al., 2010), or during NREM sleep compared to
awake state (Stamm et al., 2011). When caffeine was applied or
wakeful state was tested, TMS evoked a stronger early negative
component (N1) and enhanced slow negativity in remote cor-
tical areas compared to the placebo condition or NREM sleep
condition. Because TMS is a task-irrelevant, nonspecific signal in
terms of the contents of consciousness, these results speak in favor
of the stance that (slow) negativity reflects nonspecific effects on
cortical excitability. Provided that slow negativity correlates with
(readiness for) long range effective connectivity, TMS is expected
to facilitate cortical communication in conscious states in order
to allow sufficient information integration. Studies by Tononi,
Massimini and associates indeed show this (e.g., Massimini et al.,
2009; Ferrarelli et al., 2010). They tested the state-dependence of
the cortical propagation of a TMS-induced EEG signal and found
that in the unconscious condition, either in slow wave sleep or
anesthesia, long-range cortical communication was suppressed,
and restricted to a local region surrounding the stimulation site.
In terms of temporal dynamics, the late (sustained) component
of TMS-evoked signal was also suppressed, in agreement with
results obtained previously with the direct measurement of flash-
evoked unit activity in the visual cortex of rats (Hudetz et al.,
2009).

In accordance with the conceptualization presented above,
Yasuda et al. (2011) showed that with the loss of consciousness
at sleep onset, N1 decreased, P2 increased (!), and CNV was
increasingly more positive. In sleep the CNV was absent.

We believe that a step forward in revealing the NCC would be
achieved by the use of a combined strategy consisting in three
key requirements: (i) causal mechanistic effects are used and
studied instead of correlational ones in the objective domain of

research so that microelectrode stimulation, optical stimulation,
TMS, psychopharmacological intervention, or other methods of
purposeful manipulation of neural tissue in selected brain areas
allow to study the resulting effects on brain processes by brain-
imaging or similar methods; (ii) the relative involvement of the
D- and L-systems is specifically examined in the context of objec-
tive causal manipulations and measurements; (iii) psychophysical
procedures are used in combination with (i) and (ii) allowing the
precise measurement of subjective contents of consciousness as they
emerge, unfold, and decay along the objective time axis. Corre-
spondences between precise timing of the neural signatures and
psychophysical phenomena pertaining to the domains of (i), (ii),
and (iii) will hopefully make it possible to find causal relation-
ships that are more likely to be indicative of the real constituents
of consciousness in terms of the underlying neural processes. An
important accompanying research agenda should be to use animal
models with mammalian species, executing studies (i) and (ii) and
by analogy, invoking and postulating the corresponding variability
of the experienced contents (iii). In what follows, we will provide
a few ad hoc interpretations of the published research suitable for
differentiating the D- and L-system effects in the context of the
problem of NCC. Thereafter, we will conclude by envisaging pos-
sible experimental approaches for future research in service of the
view that C = L × D.

EMPIRICAL FACTS CONSISTENT WITH C = L × D
There are surprisingly few research data on the NCC as based
on experiments explicitly relating content- and state-related sys-
tem effects within the same study that utlize the methodology
of contrastive analysis. Measurements and discussions have been
evolving around the specific D-system contributions with rarely –
if at all – mentioning the L-system contribution. This conclusion
is especially valid with regard to the real-time examination of the
NCC as they unfold along the fine timescales of psychophysical
experimental paradigms. Although a lot of psychophysical and
cognitive neuroscience research has been published with results
that can be interpreted according to our C = L × D “formula,” this
kind of research lacks the power of direct evidence. Nevertheless,
here we discuss both – studies with experimental protocols and
designs more directly combining the L-system and D-system vari-
ables as well as studies allowing indirect interpretations of their
data in terms of L- and D-system interactive contributions. We
do this, being well aware of the methodological weaknesses of the
ad hoc type of argumentation about the second sub-variety of the
pertinent research as mentioned above.

Alert patients regularly treated by chronically implanted micro-
electrodes in order to relieve the suffering from Parkinson’s disease
were used as volunteer subjects in a visual mutual masking
experiment (Bachmann, 1994). They were asked to discrimi-
nate spatially overlapping brief stimuli presented successively with
stimulus onset asynchrony (SOA, values less than 100 ms) lead-
ing to masking. Compared to the control condition without
the pre-test microelectrode stimulation, awareness of the visual
targets improved considerably in the main condition with a pre-
liminary activating stimulation targeted at the thalamic nuclei
which were the known part of the L-system (including the central
medial intralaminar nucleus). Artificially activating the L-system
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produced improvement of perception of the specific contents
represented by the D-system. The effect was obtained also with
invariant physical conditions of the independent variables.

A very brief near-threshold Gabor patch was presented for ori-
entation discrimination in the study by Li et al. (2014). MEG
responses as an equivalent of slow cortical potential (SCP) were
recorded in the conditions allowing comparison of trials with
(i) strong and marginal awareness and unawareness, (ii) correct
and incorrect behavioral responses, and (iii) subjective confidence
in the correctness of response, all with invariant values of the
principal independent variables. After the effects of objective per-
formance and confidence were both removed from data, the SCPs
were found to be a strong and reliable correlate of conscious-
ness while the neural signatures correlating with veridicality of
response and confidence were mostly related to transient brain
activity. Because long-lasting EPSPs at the apical dendrites of the
(mostly layer-5) pyramidal neurons are considered as the main
contributors of surface-recorded SCPs and as the equivalent MEG
contrasts between aware/unaware conditions stood for the expres-
sion of SCPs, we can conclude that modulation of the D-system
(carrying the contents of Gabors) by the L-system (modulating
the EPSPs of the content-carrying neurons of the D-system) may
be an instance of the NCC. In light of these results, it is invit-
ing to speculate about the possible reasons why LFP responses
indicative of correct stimulus perception in the slower theta band
preceded the single-neuron gamma band response by about 50-
100 ms in the experiment reported by Rey et al. (2014). It is possible
that the slower LFP activity in the theta band range represents
the L-system activity and the gamma band single-cell responses
correspond to the D-system activity. If so, the contextual and/or
expectancy-related or arousal-related L-system activity may pre-
cede the bottom-up afferent signaling from the specific modal
stimulus so that it enhances EPSPs by presynaptic signals target-
ing the apical dendrites, but not much the high-frequency firing
which needs also a sufficient input to the somatic compartment of
the D-system nerve cells in the temporal cortex. Only as soon as
there is enough coincidence of the L-system and D-system input,
firing commences and explicit recognition results. This conjecture
is consistent with that of Larkum (2013) with respect to the BAC
firing mechanism.

Thus, in spite of suggestions by several authors (Llinás, for
example) it seems that a change in thalamocortical 40Hz gamma
oscillations, at least in the local sense, may not be the critical
factor in the involvement of the L-system for the NCC. Various
data support this. In anesthesia with various select agents, the
power of both spontaneous and sensory evoked gamma oscilla-
tions is enhanced (Imas et al., 2005b; Sellers et al., 2013), although
preliminary findings suggest that high-frequency gamma (70-
140 Hz) may be suppressed (Hudetz et al., 2011). Nevertheless,
the long-range cortical interactions at 40–50 Hz gamma frequen-
cies do seem to be selectively altered in an opposite direction
to what should have been expected from the traditional gamma
band hypothesis (Imas et al., 2005a,b). All this is consistent with
recent findings by Aru et al. (2012a) and Hermes et al. (2014) with
respect to the lack of a band-specific gamma correlate of con-
scious perception. As suggested by several authors (e.g., He and
Raichle, 2009; He, 2014; Miller et al., 2014), broadband and/or

scale-fee activity of neuronal populations seems to be associated
with surface potentials, dendritic integration and very likely with
awareness. It appears that BAC firing as a potential mechanism
subserving the NCC are unlikely to be tightly coupled with the
gamma band responses in implementing the C = L × D type of
interaction.

The BAC firing mechanism as related to behavior of alert ani-
mals was involved also in the findings of Palmer et al. (2012a,b).
They showed how contralateral sensory stimulation inhibited the
firing of layer-5 pyramidal neurons in response to a sensory stim-
ulus in vivo and that this inhibition acted on the apical dendrites.
Somatic input to pyramidal neurons generates predominantly
short-lived EPSPs and fragmented cortical neural activity but not
a sustained “field of consciousness,” unless substantial additional
modulatory input to the apical parts of the dendrites arrives.
On the other hand, only or predominantly non-specific modu-
lation by the L-system targeting the superficial cortical layers in
the absence of sufficient afferentation from sensory signals by the
D-system (targeting the perisomatic compartment) should lead
to fading or “contentless” conscious experience. For example, this
happens with fading of retinally stabilized images (due to massive
adaptation of the same sensory units), Ganzfeld effects featuring
feelings of sensory emptiness (e.g., the coloring of the Ganzfeld
disappears from subjective phenomenal experience), falling asleep
in sensory isolation experiments, and with hypnotic effects of
mononotonous and predictable stimuli (the responses to which
are diminished by adaptation effects).

Whatever the normally functioning consciousness mechanism
is, it must not represent mainly unreal or hallucinatory content in
the awake state but perform adaptively sound reality monitoring
(communicating actual environmental input to the subject by the
D-system). This is obvious. Indeed, integrative computation by
the BAC firing mechanism works mostly when the real presynap-
tic input via the D-system to the neuron’s basal compartment is
present (Larkum, 2013). Only when the cell is caused to fire by
feedforward presynaptic D-input to the soma it becomes highly
sensitive to the apical-dendritic modulation (Larkum, 2013). This
means that the mechanism that brings contents to conscious-
ness has its strong effect insofar as the actual input is present,
meaning that in consciousness we clearly experience actual sen-
sory input. Conversely, when subjects experience dreams or are
engaged in daydreaming, the conscious contents that are hypo-
thetically ignited by the presynaptic input to the dendrite tufts
originating from more rostral, higher level cortical areas respon-
sible for top-down effects (ignited by the L-system) cannot be as
detailed and vivid as they are in the actual conscious perception of
the real environment.

In the absence of top-down facilitation or selection by the
L-system (which may be contolled by the brainstem-nonspecific
thamocortical axis) the conscious contents are blurred or nonex-
istent. The necessary integration is missing. It can be presumed,
that with increasing depth of anesthesia, from shallow sedation to
deeper levels, the L-system and the D-system neural processes
are changed in parallel: reduced state means reduced level of
data input to the integrative system and vice versa. Even though
strong inputs by the D-system may break through in the state of
suboptimal L-system activity, they produce strong and focused
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sensory activation but in a limited, modality-specific local area
(e.g., Laureys et al., 2002; Liu et al., 2013). However, integration
with context from higher, supramodal associative processing cen-
ters, that are now silent, does not take place. Moreover, there are
specific conditions, for example under the influence of hallucino-
gens, when the normal interaction of the L and D systems can be
clearly dissociated.

Many subjective psychophysical phenomena of perception have
temporal resolution with time constants varying around 30–
300 ms (see Bachmann et al., 2011, for listing and characterizing
the many pertinent phenomena.) Thus, for example metacontrast
masking maxima occur typically at the target/mask delays of 30–
60 ms; apparent motion in the form of beta motion integrating
two static inputs for perception is optimized with SOA set at about
40–100 ms; iconic (visual sensory) memory (i.e., visible persis-
tence) spans about 100–200 ms; critical flicker fusion temporal
values are also specified in the range of dozens of ms; atten-
tional blink is maximized at about 250–350 ms; target stimulus
that is backward-masked by a pattern mask or by an other, com-
peting, subsequently presented target becomes fully consciously
available when the mask-free time approaches about 150 ms, but
is replaced by mask in visual awareness with shorter target/mask
time intervals. This suggests that the neural processes fitting to
allow effective inter-stimuli interactivity (caused by presynaptic
input arriving from different sources in response to briefly inset
stimuli) and also for sustained activity enabling inter-stimuli inter-
action should be unfolding in the range of intervals of about
30–350 ms. In the traditional integrate-and-fire neuronal mod-
els, the EPSP decay is usually too short for this. However, in
the BAC firing model the plateau-wave time-course corresponds
well to this temporal scale. Most significantly, the BAC firing
model nicely corroborates the distinction between the L-system
effects and D-system effects related, respectively, to the presynap-
tic input to the tuft dendrite compartment and the basal somatic
compartment of the post-synaptic membrane of layer-5 pyra-
mids. Several psychophysical phenomena can be explained by
the hypothetical action of the BAC firing mechanism allowing
to combine the L-system and D-system effects by a single cellular
level mechanism of integration. We believe that this is exactly the
locus where the two traditions of NCC research can be mutually
harmonized.

In the visual backward masking by pattern, a brief target stim-
ulus (e.g., with 40 ms duration) is immediately followed by a
masking pattern and as a result, target is not consciously perceived
while the masking pattern is explicitly experienced (Bachmann,
1994; Breitmeyer and Öğmen, 2006). Recall that the theoreti-
cally necessary condition for sensory input to be integrated up
to the level of conscious experience requires that input from feed-
forward D-channels targeted at the somatic compartment of the
neurons that represent the stimulus content and associative (mod-
ulating) input targeted at the distal dendritic compartment that
modulate content-specific activity up to the necessary level for
consciousness must simultaneously coincide in time. Target sig-
nals feed synaptic receiving membrane compartment close to cell
soma with a short delay (say, 30–50 ms) generating few somatic
Na+ spikes. However, because this delay is too short for any
associative input to arrive to the tuft region of the dendrite in

response to the target-evoked perturbation, initially there is no
target experience. Processing is pre-conscious. After some more
time has lapsed, this associative, tuft-area directed presynaptic
input arrives (say, with about 100 ms post-target delay), but it
coincides with the mask-stimulus evoked Na+ spikes produced by
the neurons that encode mask features. Because certain features
of target and mask are shared by the target-responsive and mask-
responsive cells (e.g., spatial location, some blob- or line-defining
features, etc.), mask-responsive cells receive also the associative
presynaptic Ca2+activity initiating input to the dendrite’s upper
compartment (this was evoked by the preceding target) and as
this input is coincident with Na+ spikes, a plateau wave is pro-
duced primarily for the neurons representing the mask features
instead of the neurons representing exclusively the target features.
We must remember here that the modulating input through the
L-system in response to a perturbation by a stimulus has a longer
delay to reach the apical compartments of the dendrites of the
neurons compared to the delay it takes for the initial basal input
throught the D-system to arrive to the cell. This basic fact is the
crucial precondition for BAC firing based binding of the later
presented stimulus with conscious representation instead of the
first presented, briefly offset stimulus. Thus, the target-evoked
dendritic Ca2+ mediated EPSP appears after a delay, is spread
also to the dendrites of other cells (e.g., mask-related neurons),
and coincides with the fast Na+ based somatic EPSP/spiking pro-
cess of the mask-related cells. It is exatly then and there when
and where the coincidence detection device sets in, but as a
result, masking stimulus is emphasized for awareness. Bachmann
(1994, 1997) in his model of modulated EPSPs as the explanatory
mechanism of masking contends that temporal dynamics of the
target-evoked N1 may be a signature of the L-system effects as
they unfold in real time and are applied onto the D-system neural
nodes.

In the mutual masking of the spatially overlapping two succes-
sive targets subjects are asked to report both successive stimuli, S1
and S2 (Bachmann and Allik, 1976; Bachmann, 1994). With very
short SOAs (e.g., 0–20 ms) the results typically show neither the
perfect identification of both the S1 and S2 nor the perfect mask-
ing of S1 and S2. The BAC firing mechanism based explanation
is as follows. Because the SOA is so short, the L-system presynap-
tic input to the dendrites tuft-region compartment arrives with
a considerable delay and “finds” S1 and S2 related neurons pro-
ducing some residual somatically ignited Na+ spikes in response
to the presynaptic D-system afferents. As a result, a plateau wave
with enhanced spiking in the form of a burst is produced and both
stimuli become bound together as an integrated pseudo-object in
visual awareness. With intermediate SOAs (e.g., 40–90 ms) usually
the following stimulus (S2) is well perceived, but the preceding
stimulus (S1) is not perceived or not so well perceived. BAC fir-
ing mechanism based explanation of this psychophysical result
is essentially the same as was used for explaining pattern mask-
ing above. When the time interval between onsets of S1 and S2
(SOA) exceeds about 100–150 ms, S1 becomes well visible also.
The strongest dominance of S2 over S1 is typically found with
SOAs around 40–60 ms. The BAC-based scenario for explaining
this is as follows. Somatic presynaptic inputs from S1 carrying
the contents of S1 arrive at the layer-5 neurons that represent S1
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features, creating Na+ EPSPs’spiking response, but because there
is no dendritic calcium response as yet (this response cannot be
produced unless more time-consuming L-system mediated signal-
ing originating from the nonspecific reticulo-thalamic influence
on apical dendrites is present), plateau/burst wave is not pro-
duced for the neurons carrying S1 sensory contents in this early
time window. When this delayed presynaptic input arrives at the
distal parts of the apical dendrites, EPSPs of the S1-neurons are
somewhat decayed, firing frequency is decreased, and probability
of the conspicuos plateau-wave is low. S1 is not explicitly per-
ceived so well as the following S2 which altogether suppresses S1
in conscious perception. This is because the somatic-compartment
response of the following stimulus related neuron (S2 neuron) is
maximized at the moment temporally coinciding with the slower
(S1-induced) calcium wave and because due to the spatial-location
and some partial featural similarity between S1 and S2, apical den-
drites of the S2 neurons are also targeted and the plateau wave is
distinctive and strong for the S2-related neurons. As a result, S2
is consciously perceived and S1 perception suppressed. (It is likely
that some additional assumptions with regard to the mechanisms
involved are needed. For example, the role of NMDA receptors and
finely localized sub-cellular membrane mechanisms of competi-
tive inhibition could be postulated to explain why S2 so robustly
overpowers S1. See Larkum et al. (2009), for premises of this kind
of mechanisms. Also, more precise understanding of the workings
of GABAa and GABAb mediated inhibitory mechanisms may be
needed in order to precisely describe the ways the L-system and
D-system interact on the basis of the layer-5 pyramidal neurons.)

Metacontrast masking can be explained similarly by the
L-system and D-system interaction taking place at the basal and
apical-dendritic membrane of the cortical neurons representing
the contents of stimulation. In this phenomenon, S1 (the target
stimulus) is spatially non-overlapping with S2 (the masking stim-
ulus), but is closely spatially adjacent. Typically, when contrasts
and durations of S1 and S2 are compatible, with very short SOAs
S1 and S2 are both perceived as if they form a single, compos-
ite object. The BAC firing based L/D interaction explanation is
similar to what was used for mutual masking with shortest SOAs
as described above. Simply because in metacontrast S1 and S2
are not spatially superimposed, the common formed perceptual
image allows good discrimination of mask and target features spa-
tially. It is easy to envisage a small neural network where the
distinct spatial location cues dictate that modulations executed
by the associative presynaptic input to the apical dendritic com-
partment is bifurcated to different neurons in parallel due to the
difference in the receptive fields which is an important feature
of stimulation. With intermediate SOAs (e.g., 40–70 ms) S1 is
again strongly masked while S2 is well perceived – metacontrast
masking is effective. The theoretical explanation is similar to the
one presented when explaining pattern- and mutual masking.
Moreover, as the shapes of S1 perimeter and S2 internal part
surrounding S1 shape are identical or very similar in most of
the metacontrast stimuli setups, surface quality of S2 (i.e., the
metacontrast mask such as a ring for example) becomes pre-
ceptually represented combined with S1 shape which lacks its
surface quality and therefore is shown as being“emptied”from this
quale.

Explaining masking based on L-system and D-system interac-
tion is not a recent “invention.” For example, Bachmann (1984,
1997) in his perceptual retouch theory interpreted masking as
a result of L-system-mediated modulation of mask-specific sig-
nals up to the level of conscious experience by simultaneously
depriving the target-specific signals of a sufficient level of this
kind of modulation. Because L-system effecs at the cortical level
of the D-system nodes are delayed compared to the initial D-
system effects, the boost of L-system modulation ignited by
target presentation is maximized exactly when the freshly ariving
D-system signals carrying mask content arrive cortical neurons
dedicated to encode contents. As the signal-to-noise ratio of the
mask-related specific afferent activity is higher than the specific
target-related activity when the boost of L-modulation arrives,
mask-related net activity combining the presynaptic D-input and
L-input effects wins over the target-related net activity (target-
related neural activity has decayed already when L-input arrives,
but mask-related activity is maximized at that moment). Mod-
ulated post-synaptic EPSPs (Bachmann, 1994, 1997) and N1
components of ERPs (Bachmann, 1984) were used to illustrate
the hypothetical D-system and L-system interactive effects pro-
ducing psychophysical effects of visual awareness. Results of more
recent studies with directly measuring ERPs and spectral EEG per-
turbations and using contrastive analysis with invariant physical
stimulation conditions also show that NCC in masking includes a
relatively late brain activity (Aru and Bachmann, 2009a,b).

A psychophysical paradigm called perceptual latency priming
(PLP) has helped to demonstrate that there is a relative latency
advantage (i.e., earlier perception) of a visual stimulus that is pre-
ceded by another, masked stimulus at its location (Bachmann,
1989; Neumann and Scharlau, 2007; Scharlau, 2007). The first
stimulus accelerates perception of the second stimulus even if the
first stimulus is backward-masked by the second one up to a total
invisibility for direct awareness. In the control condition S2 is
presented alone and the temporal delay of its perception is mea-
sured psychophysically (e.g., temporal order judgment against a
reference stimulus). In the main condition, S2 is preceded by a
priming stimulus S1 (spatially adjacent or overlapping with S2).
As a result of priming, subjective delay is shortened compared to
the control condition without priming. (The effect is obtained
also when the prime remains unconscious and is masked.) L- and
D-systems interaction-based explanation capitalizing on BAC fir-
ing neuronal mechanism assumes that S1 induces the processes
consisting in presynaptic somatic input to the neurons encoding
its features and a temporally delayed associative (collateral and/or
cortico-thalamic) presynaptic input to apical tufts of the neurons
that represent attributes of the stimuli associated with the prime
in an associative network (including S2 related neurons). Spatial
location and approximate size are among the important attributes
shared by the prime (S1) and the target (S2). This delayed apical
presynaptic input sent via the L-system appears to be temporally
coincident with S2 related early somatic-compartment activity in
the neurons representing S2 (this being brought about via the D-
system). As a result, a plateau wave with a burst of spiking will be an
associative medium for temporal binding of S1-evoked late activ-
ity and S2-evoked early activity. Because the apical-compartment
input for the S2-representing neurons is unusually early (due to
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the preceding S1-evoked associative activity), already the very first
somatic presynaptic input to the S2 neurons finds unusually early
coincidence with the apical calcium spikes, which means that S2
is consciously perceived unusually fast.

Object substitution masking (OSM) can be explained in a simi-
lar vein. In OSM, if a backward mask does not cover the target
in space and is spatially and form-wise sparse (e.g., four dots
surrounding a target image such as a landolt C), the masking
effect is absent. However, when the same target and mask are
presented among the spatially distributed distractor objects (with
the subject not knowing beforehand where the target is located),
with the mask specifying which object is the target and when
mask offset is considerably delayed after target offset (a simulta-
neous onset, asynchronous offset display), strong masking occurs
(Enns and Di Lollo, 1997; Di Lollo et al., 2000). In OSM, tra-
ditionally weak masks have strong effects when attention is not
focused on the target before its presentation. The BAC firing
mechanism could be used to suggest a similar explanation to
what was presented for backward masking and mutual mask-
ing. However, it is necessary to explain why masking is absent
in the condition without distractors and occurs when distractors
are presented. It is natural to expect that the temporally delayed
associative top-down modulation targeting presynaptically the
layer-5 neurons’ dendrites and igniting the BAC firing mecha-
nism is susceptible to the lateral inhibitory influences mediated
by the inhibitory synaptic effects in the dendrites’ tuft compart-
ment. If the early-onset OSM display contains many competing
stimuli presented simultaneously from the several spatially sep-
arated locations, the subsequent delayed associative modulation
of the target-related neurons will be inhibited by the lateral affer-
ents from the formerly activated neurons representing the spatially
remote competing stimuli. Basically, OSM results from the main
share of the L-system-mediated modulation being used by the
mask D-system representation instead of the target D-system
representation.

In the motion-induced blindness displays a few static yellow disks
otherwise clearly perceptible become extinguished from awareness
from time to time, provided that they are viewed on the back-
ground of a moving texture or a set of moving random dots
(Bonneh et al., 2001). The BAC firing mechanism-based explana-
tion: two higher level representations – static disks versus moving
set of small items – compete for being “serviced” by the top-down
modulation by the L-system targeted at the tuft compartment of
their respective neurons. Although somatic D-system responses to
presynaptic input are preserved all the time for both types of stim-
uli, dendritic apical compartment afference through the L-system
is unstable and fails at times. As a result, discs temporarily fade out
of awareness. Competition at the higher level between two classes
of neurons representing two different actual perceptual events (one
showing static objects and the other a dynamic background) does
not allow to send sufficiently steady and efficient top-down sig-
nals simultaneously to the dendrites of the lower level neurons
that represent local cues of these two types of events.

Ganzfeld effects. When a subject stares at an empty field with
homogeneous coloring (no brightness gradients and contours
in it) for a long time, sooner or later an experience of “fad-
ing out” or “emptiness” of the visual sense occurs (Avant, 1965;
Wackermann et al., 2008). Colorful visual experience disappears.
The explanation founded on the L/D systems’ interaction imple-
mented by the BAC firing mechanism assumes this: without almost
any specific input that would “recruit” layer-5 pyramidal neu-
rons by somatic-compartment presynaptic input (there is simply
not enough sensory input) being available, apical-compartment
directed modulation by the L-system becomes without its nec-
essary somatic counterpart of presynaptic input and as a result,
any sufficient amount of the plateau-waves is absent. Awareness
“gets visually empty.” This interpretation invites another assump-
tion. The top-down modulating signals from the higher level are
generated insofar as there is a certain minumum amount of object-
and feature-specific variability in the perceived environment.

FIGURE 1 |Three possible variants of L- and D-system presynaptic

input to layer-5 pyramidal neurons that may determine contentful

conscious experience. Variant (A) shows lack of sufficient acitivity for
long-range integration and consciousness because D-system specific input
to the perisomatic compartment of pyramidal neurons is weak or
asynchronous with L-system presynaptic inputs to the neuron’s apical
compartment. Variant (B) illustrates the opposite situation where the

D-system presynaptic input is present but the L-system contribution is
weak or incoincident. Both (A) and (B) represent scenarios lacking
consciousness with its contents. In contrast, variant (C) illustrates
sufficiently strong and synchronous presynaptic input from the D- and
L-systems that leads to plateau-wave of activity and integration of the
neuron’s contentful contribution to the phenomenal field of
consciousness.
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(Hypnotic states resulting from sensory input monotony and lack
of variability are also a common reality. Conversely, hallucina-
tory experiences so common to Ganzfeld experiments suggest a
dominance of the top-down or associative input mediated by the
dendritic calcium sub-mechanism in predetermining the contents
of consciousness in comparison with the input from the actual
sensory environment.) How exactly this principle is implemented
in the brain remains only a matter of speculation for now.

The possible combinations of the D-system and L-system
neurons’ post-synaptic activity in response to the strength and
synchronicity of their presynaptic inputs are schematically illus-
trated in Figure 1. The psychophysical phenomena of variable
consciousness can be explained on the basis of the variants of D/L
interaction. Variant (i) characterizes conditions for an absence
of contentful conscious experience when the D-system input is
insufficient or asynchronous with the L-system despite a strong
contribution from the latter. Variant (ii) shows how conscious
experience is absent when the L-system contribution is sub-par
and/or asynchronous despite the normal contribution of the D-
system. Variant (iii) illustrates the emergence of the interactivity
between D- and L systems sufficient for conscious awareness as a
result of strong enough and synchronized input.

CONCLUSION
In this article, we presented a theoretical perspective, supported
by variable empirical data, integrating the two traditions of
NCC research which have been developing in relative mutual
isolation. Tradition-1 has been examining consciousness state
systems with their central role in regulating the level of con-
sciousness, but largely ignoring or overlooking, or being unable
to study in detail the functioning and expression of the sys-
tem of specific contents. Tradition-2, on the other hand, has
produced a vast amount of information about the system of
processing contents of consciousness and its activity signatures,
but has largely ignored the involvement of the state/level sys-
tem. Importantly, there is enough scientific knowledge about the
build and expression of function of the neural mechanisms sub-
servig each of these two functions but unfortunately, there has
been insufficient research simultaneously investigating the con-
tributions of the mechanisms serving the two functions within
the same experiment in the context of contrastive analysis. We
suggest an integration of these two paradigmatic perspectives
whereby the objective measurements of the processes of the
two neural systems – the state/level system and the contents
system – are carried out in experiments where the confounds
from stimulus variability are avoided and the problems emerg-
ing from the need to distinguish NCCpr, NCC, and NCCae are
minimized.

We describe the two neural systems – the data-representng
D-system and the level-modulating L-system – and characterize
their working parameters and regularities. We suggest a heuris-
tic “formula” C = L × D enabling to combine the two necessary
subsystems for consciousness jointly sufficient for producing the
subjectve experience with its specific content and varyig in the
level of expression of this content, spanning from unconscious
to fully conscious and stable phenomenal representation. Impor-
tantly, several measurable neurobiological, temporal, and spatial

parameters of functioning of the two systems allow us to explain
many experimental facts as a result of interaction of the L-
and D-systems in real time. Our conceptualization is consistent
with several well known approaches and accepted principles in
consciousness studes such as the importance of top-down, back-
propagating information flow in the brain for consciousness, the
temporally delayed nature of phenomenal experience compared to
unconscious specific information processing and the importance
of the long-range connectivity and global integration of infor-
mation for consciousness. Among other aspects of the present
theoretical view, it must be emphasized that because the L-system-
based modulation targets superficial cortical layers and thus largely
contributes to negativity and because long-range connectivity
which is principally significant for the information integration
theory of Tononi and associates also implies apical presynap-
tic input, the SCP/negativity hypothesis, info-integration theory,
and Larkum’s BAC firing mechanism seem highly mutually con-
sistent. We also think that our approach has merit because the
neural subcellular level, cellular-level, local field potential level,
local-circuit level and global-connectivity level aspects seem to
be harmonized within the same conceptual framework, which
at the same time, does not necessarily remain merely specu-
lative but can be tested and falsified by specific experiments
combining brain imaging and psychophysical experiments. We
believe that C = L × D helps better specify the NCC, espe-
cially by objectively measuring and differentiating the relative
contribution of the mechanistically distinguishable subcompo-
nents of the brain involved in producing the astonishingly rich
and often hearthbreakingly beautiful phenomenal view of the
world.
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