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Non-classical logics have been applied to a number of problems in philosophy.
Notable applicatons include the Sorites and the Liar paradoxes, although the
list extends far beyond these. It is usual in such applications to specify the logic
in question by the means of a classical metatheory: a classical description of
a class of models, typically involving multiple truth values, which characterises
the logic we are interested in.

A number of authors have found this discrepancy between the logic espoused
and the logic used to reason about the logic espoused to be an embarrassment.
For example, in his influential criticism of non-classical approaches to the Sorites
paradox, Timothy Williamson writes:

There is a problem. The many-valued semantics invalidates classi-
cal logic. Thus if the metalanguage is to be given a many-valued
semantics, classical reasoning is not unrestrictedly valid in the met-
alanguage. [23], p128

Hartry Field, in a similar context, writes:

If we are to take seriously the idea that vagueness or indeterminacy
is a quite widespread phenomenon, then we should consider the pos-
sibility that the language in which we discuss the semantics of vague
and indeterminate language will itself be vague or indeterminate;
and then if classical logic can’t be used with vague or indeterminate
language, we won’t even be able to use classical logic in metatheo-
retic reasoning about the logic of vague or indeterminate language.
[3], p10

The phenomenon of higher order vagueness, however, is just a case in point; it
has been noted, concerning non-classical approaches to the semantic paradoxes,
that a classical semantic theory provides the resources to form a revenge liar
sentence (see, for example, Field [4] and Leitgeb [11].) Similarly, Gödel and
Kreisel have shown certain metatheoretic results about intuitionistic logic can
only be proved using non-constructive reasoning (see Kreisel [9].) The general
moral seems to be that the very phenomena responsible for non-classicality occur
just as frequently in the field of semantics as elsewhere.

∗I would like to thank Cian Dorr, Timothy Williamson, Bernhard Salow and two anony-
mous reviewers for their many helpful comments on this paper.
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In [4] Field proposes that we separate the project of giving a model theory
for a logical language from the project of giving it a semantics. A model theory
is supposed to characterise what follows logically from what. Semantics, on the
other hand, is the study of the intended meanings of the language’s words, and
is only concerned with the language’s intended model. The primary objections
to classical metalogic discussed in the last paragraph stem from non-classicality
arising in the semantic theory, and not in the model theory. Field argues that we
can characterise the extension of his preferred non-classical consequence relation
in a classical model theory, provided that one keeps in mind that this model
theory does not contain the intended model.1

As far as semantics is concerned, Field’s non-classical object theory contains
certain semantic notions such as a truth predicate or a satisfaction relation.
However one might object that this is far from enough to do any serious se-
mantics. For instance, one does not have the resources to theorise about the
intended interpretation at the subsentential level: to reason about the semantic
values of predicates, predicate modifiers, quantifiers, and so on, one must appeal
to resources that go beyond satisfaction and truth.

Field’s approach notwithstanding it seems that it ought to be possible to
formulate the metatheory of a non-classical logic non-classically. This project
has been gestured at by Tye [20] and, more recently, by Leitgeb [11] in the
context of Field’s theory of truth. However, except in the case of intuitionistic
logic, which is too strong to deal with the applications of interest such as the liar
and the Sorites paradox, little has been done to make plausible the idea that a
non-classical logic can formulate substantial metatheoretic results about itself.
The purpose of this paper is to make this claim seem plausible for a very simple
language - the propositional calculus - for a large class of weak non-classical
logics. The class includes fuzzy logics such  Lukasiewicz, Gödel and product
logic [7], BCK [6], intuitionistic logics, quantum logic [8], among others. The
list does not include logics which do not allow you to infer φ → ψ from ψ or
logics without a reasonable conditional.2 The logics under consideration also
contain rules that one would normally take for granted in a classical setting,
such as the ‘rule of proof’: either you can infer φ from Γ or you can’t.

While the current paper is restricted to propositional languages, it is natural
to think that some variation on these ideas may survive in the extension to
the predicate calculus. Perhaps this is true for at least some applications of

1There is a puzzle for Field in explaining why and how his models end up validating the
correct logic. Welch shows in [21] that the logic of Field’s model theory is highly non-recursive.
Given Field’s instrumentalism about this model theory and the impossibility of surveying
everything it validates, we are left with no other way to evaluate its claim to correctness.
Perhaps a better interpretation of Field’s construction would be as a consistency proof of
some suitably chosen recursive subsystem. Another possible interpretation that would not
require choosing a particular subsystem would be to treat the truth values in Field’s models as
credential states in a non-standard representation of rational degrees of belief. Insofar as logic
is just whatever plays a certain normative role with respect to our beliefs, this interpretation
allows us to formulate an argument that his logic is correct. I leave the interpretive issues to
one side for now; the solution presented here is available to Field’s theory as much as it is
elsewhere.

2I take it that the law φ→ φ and modus ponens must hold for any reasonable conditional.
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interest, however it is worth mentioning in this regard the results of McCarty
[12] to the effect that intuitionistic predicate logic is provably incomplete, within
intuitionistic metamathematics, with respect to models of broadly the same kind
considered here.3

In §1 I sketch in outline the approach. Classical bivalent model theory, in the
style of Tarski, can be carried out in a non-classical metatheory with a suitable
amount of set theory. It is explained how it is possible, even in a bivalent model
theory, to invalidate classical laws provided that matters of set membership
needn’t abide by classical logic.

In §2 a bivalent model theory for the propositional calculus is presented in
which logical truth can be defined. It is shown that for a large class of logics,
L, if the logic of the metatheory is L, then every L theorem will be classified a
logical truth according to the metatheoretic definition.

In the final sections some puzzling features concerning non-classicality in
statements about validity are addressed. As noted, classical logic holds for
all provability statements in the logics we consider. However it is shown that
validity statements need not be classical. I draw and defend one surprising
conclusion for the application of non-classical logic to vagueness: no axiomatic,
and therefore precise, system can be determinately sound and complete.

1 Taking model theory seriously

Say that a class of models is ‘faithful’ just in case (i) each model represents a
possible way of interpreting the language in question, and (ii) every possible
way of interpreting the language is represented by some model. In order to
understand this, one needs to have some antecedent understanding of what it
means to interpret a language. While detractors may deny that there is any
clear notion in the ballpark, there is at least one clear cut difference between
a faithful model theory and a Field-style instrumentalist conception of model
theory: a faithful model theory must represent the intended intperpretation
(by requirement (ii).) The strategy for this paper is to demonstrate that many
non-classical logics can be given a faithful model theory by construing relatively
standard definitions of truth-in-a-model and validity inside a non-classical set
theory.

The project of giving a logic a faithful model theory dates back to Tarski’s
influential account of logical consequence [19] and has the benefit of allowing
straightforward explanations of the normative role, necessity and formality of
logic that Field-style instrumentalism about model theory lacks.

It is not at all clear, however, whether the modern set theoretic model theory
for first order logic is faithful. While it is arguably ‘semi-faithful’ in the sense
that it satisfies condition (i), it is often pointed out that it is not fully faith-

3Although it should noted that these results are distinctly intuitionistic and rely on mathe-
matical principles that contradict classical mathematics – McCarty relies on this fact, by show-
ing that classical arithmetic is semantically inconsistent in the sense that it has no Tarskian
models.
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ful because it fails to represent the intended interpretation and other possible
interpretations of a first order language which are too large to form a set.

I think there are two points that ought to be made at this juncture. Firstly,
the choice to formulate one’s model theory in terms of sets is a rather superficial
one. The metatheory of Tarski’s original definition of logical consequence, for
example, wasn’t ZFC but a type theory in which the existence of an intended
model follows immediately from an instance of universal instantiation (see [19]
and [15].) More recently definitions of logical truth and consequence for first
and second order logic have been given using a metalanguage containing plural
or second order quantifiers ([17], [18].)

Secondly, while the classical set-theoretic model theory for first order logic
is not faithful, we can in this instance prove that the restriction to set sized
models does not affect the extension of the logical consequence relation.4 This
argument, due to Kreisel [10], relies on an antecedent conception of validity –
perhaps something closer to Tarski’s initial conception – and appeals to property
(i) of the set-theoretic models. In the non-classical case, however, the issue for
the instrumental algebraic model theory is precisely that (i) fails: no classically
described algebraic model represents a possible interpretation of the language.
Those models are just mathematical objects which happen to be useful for
showing when a theory is consistent, or that something doesn’t follow from
something else.

It’s unclear whether it’s possible to justify the use of a particular instrumen-
talist algebraic model theory unless one has some independent grasp of what
is valid to compare it too. If we had an independent definition of validity it
may be possible to run something analogous to the Kreiselian justification of
the set theoretic model theory for the classical predicate calculus. However the
logic validated by an algebraic model theory can be highly non-recursive; in
these cases our only access to the logic is through the supposedly instrumental
model theory. This is true with Field’s algebraic model theory for example – our
grasp of validity in this case is dependent on his model construction. Another
approach would be to specify a logic independently by an axiomatisation. We
could justify the soundness of an instrumental model theory by proving its com-
pleteness for the axiomatic logic, and then we could argue that the axiomatic
logic was intuitively sound. But the axiomatic way of specifying a logic leaves no
guarantee that the logic contains all the principles it intuitively ought to have.
Of course, it is debatable whether, say, an axiomatic paracomplete logic is com-
plete in the absolute sense, because it is debatable whether the law of excluded
middle is a valid sentence. The kind of incompleteness I am worried about does
not turn on debatable principles: sometimes it is a non-trivial matter whether

4Suppose that Γ ` φ where ` represents provability in standard axiomatisation of first
order logic. Since the axioms and rules of inference are evidently logically true and logically
truth preserving respectively it follows that φ is a logical consequence of Γ. That is to say
any possible interpretation of L making Γ true makes φ true. Since any set sized model is a
possible interpretation of L it follows that Γ |= φ. Thus logical consequence is sandwiched
between ` and |=; i.e. it contains ` and is contained in |=. However, since `=|= by Gödel’s
completeness theorem, it follows that logical consequence is just the same as |=.
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something which is uncontroversially valid is provable in a given system. For
example the early axiomatisations of free and quantified modal logic did not
prove the principle ∀x∀yφ→ ∀y∀xφ [5]. Even though there was no consensus at
that time about which exact modal logic was the right one, substantial questions
could still be raised about the completeness of an axiomatic system.

1.1 Vague sets

Tarski provided for classical logic an explicit definition of validity in a faithful
model theory.5 Classical logic therefore meets the challenge raised in the pre-
vious section; one can formulate an intuitively correct definition of validity to
which classical logic is provably sound and complete by its own lights. In order
to meet the challenge in a non-classical setting, I propose that we investigate
the prospects of a faithful model theory for the non-classical logic. One require-
ment a faithful model theory must meet is to be able to describe the intended
model. However, since we are taking the considerations of higher order vague-
ness, revenge, and so on, to show that one cannot describe the intended model
classically, a classical metatheory would be ill equipped to formulate a faithful
model theory. Let us now elaborate on this point.

As a metalanguage in which to formulate a faithful model theory, classical
set theory has two limitations. We have noted already that it is limited to
interpretations in which the domain and the interpretation of the predicates
are set sized. However, once one has admitted the existence of predicates that
invalidate the principles of classical logic, classical set theory may fail to provide
interpretations for these predicates as well.

A paracomplete logician working in a standard axiomatisation of set theory
must assume a restricted form of the law of excluded middle, x ∈ y∨¬x ∈ y, as
a non-logical axiom, in order to recover the full strength of classical set theory.
In so restricting our theory of sets we restrict the possible ways of interpreting
a predicate to crisp, classical sets. We therefore will miss out on the intended
interpretation, not just because the intended interpretation of some predicates
are too large to form a set, but because the intended interpretation of ‘bald’,
i.e. the set of bald things, is not a classical set. Such a set is not in the range
of the quantifiers of a classical set theory, since we have stipulated that every
set in its remit are such that statements about its members obey the law of
excluded middle. If we relax the axiom x ∈ y ∨ ¬x ∈ y, and permit vague
and indeterminately specified sets, however, it is no longer clear that every
classical theorem will be true on every interpretation constructed from such
indeterminate sets.

To make this more concrete, let us suppose we are working in ZFCU (ZFC
with urelemente) with an open ended formulation of the axiom of separation:

∀x∃y∀z(z ∈ y ↔ (φ ∧ z ∈ x)) (1)

5I am here referring to Tarski’s original definition of consequence, [19], and not the later
set theoretic version.
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Here x and y are not free in φ. To say that this schema is understood ‘open
endedly’ is to say that we should continue to accept its instances no matter
how we extend the vocabulary of our language (see [14].) Unlike the standard
formulation of separation, we should accept (1) even when φ is not stated in
the language of set theory. For second order logic one can make a similar
point about the comprehension schema: in both cases the intention is to force
there to be as many collections of objects as the logic permits. For otherwise
one could augment the language with a logically coherent predicate that is not
determinately coextensive with any set or collection.

Having relaxed this restriction on separation it is natural to ask if we can
infer the existence of more sets than we otherwise could have. The answer
to this question will depend on the background logic. For a thorough going
classical logician the answer is ‘no’. For example, the instance of (1) obtained
by substituting φ for the predicate ‘x is small’ (as applied to natural numbers)
will allow us to directly infer the existence of the set of small natural numbers.
However, under the assumption that 100000 isn’t small, and the assumption
that if x is small and y ≤ x then y is small, the classical logician can already
infer this fact without the extended separation scheme. She can already prove,
by classical logic, that for some N , every number less then N is small and every
number greater than or equal isn’t. On the other hand, from the restricted
separation theorem we can prove ∀n∃x∀y(y ∈ x↔ y < n), since < is definable
from ∈. So in particular you can prove ∃x∀y(y ∈ x ↔ y < N), and therefore
∃x∀y(y ∈ x↔ y is small).

For someone who denies that vague predicates obey the laws of classical logic
this reasoning cannot always be carried out.6 Therefore in some cases the open
ended separation schema is a genuine strengthening of the version restricted to
set theoretic vocabulary.

Let’s now look at a toy example. These ideas will be developed more thor-
oughly in the next section. The idea is to give a completely standard semantics
for our language with the proviso that we relax the assumption that the sets we
are working with are all classical sets. With this in place we can see how, even
on standard classical semantics, classical laws can fail.

Let’s take the propositional calculus, with a countable set of propositional
letters {Pn | n ∈ N}. A model is, as usual, a function v : N → 2 - or, a set
of ordered pairs. v may or may not be a vague set. I shall assume, deferring
a rigorous account until later, that we can understand what it means for v to
satisfy a formula even when v is a vague set. We shall talk about a sentence, φ,
of the propositional calculus, being valid - which is to be short for the assertion
that every model, v, satisfies φ.

6For example any classical model of set theory is also a degenerate example of a  Lukasiewicz
model, in which every sentence of set theory receives value 1 or 0. It is easy to expand this to
model the language with ‘small’ in a way that ∃x∀y(y ∈ x↔ y is small) has an intermediate
value by letting ‘x is small’ receive intermediate values. On the other hand, the reasoning
used to prove this formula in the classical case is also intuitionistically acceptable. We must
decide on a case by case basis whether a given set will exist in a logic with the restricted
separation scheme.
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Suppose that, in a given context, it is vague whether k is small. By open
ended separation on N× 2 we get a function v:

v(Pi) :=

{
1 if i is small
0 otherwise

v here is ‘bivalent’ in the sense that the codomain of v consists of two truth
values: {0, 1}.7

We can now see how on certain paracomplete accounts of vagueness this
model theory fails to validate excluded middle, despite being bivalent. If ex-
cluded middle were valid, then the instance (Pk ∨ ¬Pk) would be satisfied by
every model. In particular (Pk ∨ ¬Pk) would be satisfied by v, which happens
precisely if k is small, or k is not small. Since, we may assume, this latter claim
is at best vague, it is at best vague whether (Pk ∨¬Pk) is true on v and thus it
is at best vague whether excluded middle is true in every such model.

This informal reasoning could be made precise in a suitable paracomplete
logic such as  Lukasiewicz logic. However this example is deficient in several
respects. For a start not every non-classical logic is paracomplete so the impact
of this example is rather limited. More importantly, though, we don’t have a
general argument that the classical laws that fail in our logic, whatever they
may be, will always be laws that fail to be validated in the corresponding non-
classical model theory. To ensure this one needs to make sure there are enough
sets, and hence enough models, to invalidate any possible law that is not logically
valid: that there are as many collections over the domain as the logic in question
permits. In this section we have shown this conception of set or collection can be
fixed by understanding the separation schema open endedly (similar points apply
to the second order quantifiers and the comprehension schema.) In the next
section we show how to interpret second order quantification or quantification
over sets in a way that ensures the separation/comprehension schema hold open
endedly.

2 A non-classical metatheory for the proposi-
tional calculus

In our discussion so far I have suggested that models constructed from non-
classical sets can invalidate classical laws. But this is clearly not enough to
deflect the objection raised against classical metatheories for non-classical log-
ics: that it validates a different logic in the object-language than the logic of
the metalanguage. What would a satisfactory response to this look like? In
his discussion of degree-theoretic logics for vagueness, Williamson suggests the
following constraint:

7To say that D is the codomain of a function f is to say that ∀x(∃yf(y) = x→ x ∈ D). In
the logics considered the codomain of v being {0, 1} does not entail that v(x) = 1 ∨ v(x) = 0
for any x.
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On the degree theoretic account, what is an appropriate logic for a
vague language? It should have at least this feature: when combined
in the metalanguage with an appropriate degree-theoretic semantics
for the object-language, it should permit one to prove its validity as
a logic for the object-language. [23], p130

Although we shall be suggesting that all non-classical theorists adopt a bivalent
semantics for the object language, even if their logic can be classically charac-
terised by, say, degree theoretic semantics, we agree that our logic should have
the property Williamson suggests. Whatever the logic of the metalanguage, it
should permit one to prove its own validity as a logic for the object-language.

Williamson continues:

[This] constraint is not vacuous either, for classical logic clearly fails
it. If one combines a classical logic in the metalanguage with a
continuum-valued semantics for the object-language, one can prove
that classical logic is not valid for the object language. Unfortu-
nately, it is not clear what logics do meet the consraint. One could
devise an ad hoc logic to meet it, with a resticted version of the law
of excluded middle corresponding to the assumption that all vague-
ness is first order, but such an assumption has just been seen to be
unmotivated. [23], p130

In answer to Williamson’s challenge, we shall show for a general class of
logics, L, how to develop a model theory for the propositional fragment of L
in a weak non-standard set theory. The model theory is both faithful, and one
can prove in the metatheory, using L, the soundness of the model theory for the
propositional fragment of L.

We begin by outlining a general class of non-classical first order logics, which
I name C-logics. For each such logic we shall show how to naturally extend
it to accommodate second order quantification in a way that ensures that its
comprehension schema can be understood open endedly. In other words: we
develop a very simple theory of vague sets for that logic. Within the second order
theory it is possible to provide a (bivalent) model theory for the propositional
calculus that (a) entails, in a certain sense, soundness and completeness of that
logic with respect to the model theory (b) validates the logic we are interested
in and (c) has the resources to describe the intended model of the propositional
calculus.

We shall show that for any C-logic, L, one can formulate a metatheory TL
for the propositional calculus with the following conditions

• One can define formulae V alid(x) and Prov(x) that express L-validity
and L-theoremhood of propositional formulae.

• TL proves, in L, Prov(pφq) from V alid(pφq).

• TL proves, in L, V alid(pφq) from Prov(pφq).
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A couple of remarks are in order. It should be noted that, because we are
presenting these results for a general class of logics without knowing which
principles each has, these results are not constructive – no specific proofs in the
metatheory are given. Secondly, the class of logics to which these results apply
includes some that have no recursive axiomatic basis. Therefore ‘provable’ here
may not be taken to mean ‘provable in some recursively specified axiomatic
system’, and may sometimes have to be taken to mean ‘provable in a non-
recursive system’.

2.1 C-logics

The results that follow apply to a class of second order logics which I shall call
C-logics. C-logics are rich enough to formulate a model theory for their own
propositional fragment. In this section we shall define C-logics.

Definition 2.0.1. A C-algebra is an ordered quadruple 〈V,≤,∗ ,⇒〉 where

• 〈V,≤〉 is a complete lattice. i.e.

– ≤ is a partial order.

– Every subset of V has suprema and infima under ≤.

• ∗ and ⇒ are unary and binary functions respectively on V to itself.

• x⇒ y = 1 if and only if x ≤ y.

For S and {x, y} ⊆ V write
d
S,
⊔
S, x u y and x t y for the infimum and

supremum of S and {x, y} respectively. We write 0 and 1 for
d
V and

⊔
V.

Notice that the constraints above ensure that for any x, y in a C-algebra,
(x ⇒ y) u (y ⇒ x) = 1 iff x = y. Note also that ∗ (which will eventually
function as the interpretation of negation) is completely unconstrained. Say
that a C-algebra has a reasonable negation just in case x∗ = 1 only when x = 0.
This condition holds automatically when x∗ is defined as x⇒ 0.

A C-logic is a logic whose consequence relation is characterised by some C-
algebra, in a way to be defined below. C-algebras provide classical algebraic
model theory for the logics we are interested in and therefore cannot form the
basis of a non-classical metatheory of the kind we have argued for. Among
the class of possible logics, some are characterised by C-algebras and some are
not; the fact that some logics can be characterised by a classical model theory,
however, does not mean they can’t be given a non-classical model theory as well.
The use of classical model theory should be seen only as a way to distinguish
logics to which the results in this paper apply from those to which these results
do not.

Let’s now give a more precise definition of when a logic is ‘characterised’ by
a C-algbra. The languages we are concerned with are monadic second order
languages with mixed relation symbols. A relation symbol, Pni , is mixed when
its arguments contain both first order terms and second order terms. I shall use
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V ar1 and V ar2 to denote the denumberable set of first order and second order
variables respectively.

Definition 2.0.2. An assignment over a set D and a C-algebra, 〈V,≤, ∗,⇒〉,
is a function v such that v : V ar1 → D and v : V ar2 → VD. Two assignments,
v and u are equivalent w.r.t. a variable xi, written v[xi]u, iff v(xj) = u(xj)
for every j 6= i.

Definition 2.0.3. A model for a monadic second order language (with mixed
relations) is an ordered triple 〈D, ‖ · ‖, V 〉·. V is a C-algebra 〈V,≤, ∗,⇒〉. The
function ‖ · ‖v, with respect to the assignment v, over D, obeys the following
conditions:

• ‖Pni ‖v :
∏
k≤nDk → V where Dk := D or Dk := VD depending on whether

the kth argument of Pni takes a first or second order term.

• ‖Xi‖v = v(Xi)

• ‖xi‖v = v(xi)

• ‖ci‖v ∈ D

• ‖Pni t1, . . . , tn‖v = ‖Pni ‖(‖t1‖v, . . . , ‖tn‖v)

• ‖⊥‖v = 0

• ‖φ ∧ ψ‖v = ‖φ‖v u ‖ψ‖v

• ‖φ ∨ ψ‖v = ‖φ‖v t ‖ψ‖v

• ‖φ→ ψ‖v = ‖φ‖v ⇒ ‖ψ‖v

• ‖¬φ‖v = ‖φ‖∗v

• ‖∀xiφ‖v =
d
{‖φ‖u | u[xi]v}

• ‖∃xiφ‖v =
⊔
{‖φ‖u | u[xi]v}

• ‖∀Xiφ‖v =
d
{‖φ‖u | u[Xi]v}

• ‖∃Xiφ‖v =
⊔
{‖φ‖u | u[Xi]v}

Definition 2.0.4. A formula, φ, is a logical truth with respect to a C-algebra,
V , iff, for every model 〈D, ‖ · ‖, V 〉 and assignment v, over D, ‖φ‖v = 1.

A formula, φ, is a logical consequence of a set of formulae, Γ, with
respect to V iff for every model 〈D, ‖ ·‖, V 〉 and assignment v, over D, such that
‖γ‖v = 1 for every γ ∈ Γ, ‖φ‖v = 1.

A logic, L, is characterised by a C-algebra, V , iff L’s consequence relation
is the same as logical consequence with respect to V .

Definition 2.0.5. A logic, L, is a C-logic if and only if L is characterised by
a C-algebra.
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When no ambiguity is present, I shall also refer to the propositional or first-
order fragment of a C-logic as a C-logic as well.

The fuzzy logics commonly used in the study of vagueness form a familiar
kind of C-logic. The standard fuzzly logics are C-logics: basic fuzzy logic,
 Lukasiewicz logic, Gödel logic and product logic (characterisation theorems can
be found in [7].) However, many other familiar logics are C-logics: classical
logic, intuitionistic logics, BCK and quantum logic to name a few.8

It should be noted, however, that these results do not apply to logics lacking
a sufficiently strong conditional, such as the strong and weak Kleene logics
(which lack the theorem φ → φ), and their paraconsistent duals (which lack
modus ponens.) Any logic characterised by a C-algebra will also validate the
inference ψ ` φ → ψ, therefore logics lacking this rule are excluded as well.9

However many logics of interest, including those for reasoning about vagueness
and the semantic paradoxes, are included.

Finally, every C-logic has the ‘rule of proof’: either Γ ` φ or it’s not the
case that Γ ` φ.10 In practice this is not much of a restriction, since rules of
proof of this form are had by all non-classical logics that, to my knowledge,
have been studied. Even if a logic rejects classical logic generally, it is usually
upheld in the proof theory. In the applications involving vagueness and the
semantic paradoxes this assumption is justified by the preciseness and non-
paradoxicality of the theory of syntax respectively. It is, however, conceivable
that an intuitionist might object to this assumption on the grounds that some
systems of intuitionistic logic are not decidable. It is up to such an intuitionist
to tell us what does count as intuitionistically acceptable reasoning. If this
undecidability result is provable in the classically described intuitionistic proof
theory, we must reject the classically described proof theory on intuitionistic
grounds: the proof theory entails instances of excluded middle it shouldn’t.11

We therefore have no reason to think that intuitionistically correct reasoning is
undecidable. We have at best shown, using incorrect reasoning, that an incorrect
system is undecidable. I shall therefore leave this kind intuitionist to one side
in what follows.

2.2 A metatheory for propositional C-logics

In this section we present and axiomatise, for a fixed C-logic, L, a very simple
metatheory for the propositional calculus. The most important aspect of this
metatheory is that the logic in which we reason is L, and not full classical logic.

The metatheory below is by and large what you would expect to get if you
tried to formulate the standard classical model theory for the propositional

8The conditional in quantum logic is discussed in detail in [8].
9The axiom, φ→ (ψ → φ), on the other hand fails in any C-algebra in which V = {0, 1

2
, 1}

and in which a⇒ b = 1 if a ≤ b and a⇒ b = 0 otherwise.
10More generally, every C-logic has every rule of proof that follows from classical logic. This

is a consequence of our defining these logics in classical set theory.
11If the undecidability result is only classically provable, then the intuitionist has no reason

to accept it anyway.
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calculus in the weak set theory we have chosen to reason in. Since we are not
working in a full-blown set theory, a few immaterial changes have made. Firstly,
instead of treating a model of the propositional calculus as a function from
propositional letters to {0, 1}, we have taken a model to be a set of propositional
letters. Nonetheless, each such set has a characteristic function, which is a model
in the former sense. Secondly, we have taken the relation stating that a sentence
is true in a model, |=, as a primitive relation symbol and we have axiomatised
it. This makes the over all argument easier to follow. In principle, however, the
implicit definition of |= could be turned into an explicit one using the second
order quantifiers in the usual way.

We shall distinguish sharply between the object language, L (a propositional
language) and the second order metalanguage, L′, by using by using ⊗,⊕,∼,⊃
and ≡ for conjunction, disjunction, negation, implication, and biconditional in
L. The metalanguage, L′, on the other hand, consists of the following vocabu-
lary

• The logical connectives: ∧,∨,¬,→ and ↔

• The logical symbols for first and second order quantification: ∀,∃

• Two non-logical unary predicates: A(x), Prov(x)

• A non-logical binary mixed relation: X |= y

• Denumerably many names, pφq, one for each formula φ of L

• Denumerably many first and monadic second order variables, V ar1 and
V ar2.

Let L be any C-logic. We now state, in L, the metatheory for the proposi-
tional fragment of L. Call this TL.

1. A(ppnq) for each n ∈ N

2. Prov(pφq) for each theorem and Prov(pφq)→ ⊥ for each non-theorem of
the propositional fragment of L.

3. X |= ppnq↔ Xppnq

4. X |= pφ⊕ ψq↔ (X |= pφq ∨X |= pψq)

5. X |= pφ⊗ ψq↔ (X |= pφq ∧X |= pψq)

6. X |= p∼ φq↔ ¬(X |= pφq)

7. X |= pφ ⊃ ψq↔ (X |= pφq→ X |= pψq)

8. X |= pφ ≡ ψq↔ (X |= pφq↔ X |= pψq)

This system allows for simple reasoning about the atomic sentences, provability
in L, and truth in a model. Axiom 1 ensures that A applies to every atomic
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letter in L. Axiom 2. axiomatises the notion of provability in the propositional
fragment of L. Here this done by brute force – a thorough metatheorist might
wish to set up a classical theory of syntax and provide an axiomatic account of
provability.12 This approach would only be possible if the logic in question was
recursively axiomatisable, and we have made no such assumption here. Fixing
the extension of Prov by brute force, as we have done above, allows us more
generality. Notice also that we have stated the unprovability of φ using the
conditional instead of negation. If the C-logic in question has a reasonable
negation, in the sense defined in §2.1, we may replace ‘→ ⊥’ with ‘¬’. Finally
the axiom schemata 3. to 8. ensure that |= respects the familiar truth clauses
for the propositional calculus relative to a model, X.

As we have already mentioned, a model in this setting is just a set of atomic
sentences. Thus the notion of a model is defined:

Mod(X) := ∀x(Xx→ A(x))

Presumably there are many interesting metatheoretic definitions and distinc-
tions that can be made in this language, however we shall be particularly inter-
ested in the notion of a sentence being valid, or true in all models. This can be
stated as follows:

V alid(pφq) := ∀X(Mod(X)→ X |= pφq)

2.3 Soundness and completeness

Say that the model theory described by TL is weakly sound for L iff V alid(pφq)
entails (in TL) Prov(pφq), and say that it is weakly complete for L iff Prov(pφq)
entails V alid(pφq). TL proves strong soundness and strong completeness for L
just in case TL entails Prov(pφq)→ V alid(pφq) and V alid(pφq)→ Prov(pφq)
respectively.

In this section we show that the weak soundness and weak completeness of
the specified propositional C-logic, L, holds for the metatheory, TL. We shall
also show that the metatheory entails the strong soundness theorem.

Since L is a C-logic, it’s consequence relation is characterised by a C-algebra,
V . It is therefore sufficient to show that every V model of V alid(pφq) is a model
of Prov(pφq) and vice versa.

Given a model, 〈D, ‖ · ‖, V 〉, associate formulae of L with members of D
in the obvious way: for d ∈ D, associate d with φ if ‖pφq‖ = d. In what
follows we shan’t distinguish formulae from their associated members of D. Let
v : ‖A‖ → V be a valuation of sentence letters, SL, in L. Then we define v+ to be
the valuation extended to arbitrary formulae of L using the algebraic operations
as in definition 2.0.3. We first want to show that ‖X |= pφq‖ = ‖X‖+(φ).

Proposition 2.1. Suppose 〈D, ‖·‖, V 〉 satisfies TL w.r.t v. Then ‖X |= pφq‖v =
‖X‖+v (φ)

12I am assuming that the theory of syntax would be free of kind of phenomena responsible for
non-classicality, allowing one to assume classical logic as non-logical principles about syntax.
I continue to set aside the intuitionist described in the previous footnote.
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Proof. The proof proceeds by induction.
Base case: ‖X |= pφq‖v = ‖Xpφq‖v by axiom 3. But this = ‖X‖v(‖pφq‖v) =

‖X‖+v (φ).
Inductive step: We shall show the case of conjunction by applying axiom

5., the clause for evaluating the semantic value of a conjunction and the inductive
hypothesis (in that order) as follows: ‖X |= pφ ⊗ ψq‖v = ‖X |= pφq ∧ X |=
pψq‖v = ‖X |= pφq‖v u ‖X |= pψq‖v = ‖X‖+v (φ) u ‖X‖+v (ψ) = ‖X‖+v (φ⊗ ψ).

The other cases are similar.

Then we get

Proposition 2.2. ‖V alid(pφq)‖ = 1 iff for every f : N→ V, f+(φ) = 1, where
‖ · ‖ is as above.

Proof. ‖V alid(pφq)‖ = 1 iff ‖Mod(X)‖v ⇒ ‖X |= pφq‖ = 1 for each v such that
v(X) : D → V by the clause for the second order quantifier and the properties
of infima. This happens iff ‖Mod(X)‖v ≤ v(X)+(pφq) for each such v by
proposition 2.1 and definition 2.0.2.

Right to left direction: Suppose that for every f : N → V, f+(φ) = 1. In
particular this means that v(X)+(φ) = 1 for every valuation v so it trivially
follows that ‖Mod(X)‖v ≤ v(X)+(φ).

Left to right direction: note that ‖Mod(X)‖v = 1 if v(X)(d) > 0 only for
d representing propositional letters (i.e. d such that ‖A(x)‖x 7→d = 1.) So take
any f : N → V and let u(X)(‖ppnq‖) = f(n) for each n and u(X)(d) = 0 for
the remaining d. Clearly, then, ‖Mod(X)‖u = 1.

If we are supposing that ‖Mod(X)‖v ≤ v(X)+(pφq) for every valuation v
this means that 1 ≤ u(X)+(‖pφq‖) and thus that f+(φ) = 1 as required.

Corollary 2.3 (Weak soundness and completeness). Prov(pφq) follows in L
from TL ∪ {V alid(pφq)} and V alid(pφq) follows in L from TL ∪ {Prov(pφq)} .

Proof. We’ll show that ‖V alid(pφq)‖ = 1 iff ‖Prov(pφq)‖ = 1 for arbitrary
models of TL.

By proposition 2.2 ‖V alid(pφq)‖ = 1 iff φ is true in every propositional
model based on VL. By definition of VL, this happens iff φ is a theorem of L.
Iff φ is a theorem of L then Prov(pφq) is an axiom so ‖Prov(pφq)‖ = 1 as
required.

Corollary 2.4 (Strong soundness). Prov(pφq)→ V alid(pφq) follows in L from
TL

Proof. If ‖Prov(pφq)‖ = 1 then the result follows from corollary 2.3. If ‖Prov(pφq)‖ 6=
1 then φ is not provable in L, and so ‖Prov(pφq) → ⊥‖ = 1 by axiom 2 if the
metatheory is formulated without a reasonable negation. If the logic has a rea-
sonable negation, then by the ¬ version of axiom 2, ‖¬Prov(pφq)‖ = 1. In
either case ‖Prov(pφq)‖ = 0, so the conditional has value 1.
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2.4 Failures of strong completeness

Let us take stock. We have shown that for each C-logic, L, one can formulate a
model theory for the propositional calculus in which the propositional fragment
of L is sound according to the model theory. In other words, one can prove the
formalisation of the statement ‘if φ is provable, then φ is true in all models’
from the model theory in L. One can also prove weak completeness: that the
theoremhood of φ follows (in L) from our metatheory plus the claim that φ is
true in all models. However we can’t in general show the stronger conditional
form of completeness

V alid(pφq)→ Prov(pφq) (2)

which formalises the statement ‘if φ is true in all models, φ is provable.’
If L admits the deduction theorem, which allows one to move from the fact

that Γ∪ {φ} entails ψ to the claim that Γ entails φ→ ψ, (5) would follow from
the weak completeness theorem. Thus C-logics admitting the deduction theo-
rem, such as intuitionist logic, will automatically be both strongly sound and
strongly complete. However, for logics without the deduction theorem strong
completeness may fail.

To give a concrete example of such a logic consider  Lukasiewicz’s continuum
valued logic. A calculation shows that the statement ‘((p→ ¬p)→ ¬p) is true
in all models’ comes out vague, while it is an entirely sharp matter whether
there exists a proof of this formula – there isn’t one. In every model of T L,
we have ‖V alid(p((p → ¬p) → ¬p)q)‖ = 1

2 and ‖Prov((p → ¬p) → ¬p)‖ = 0.
So there is instance of strong completeness, namely V alid((p → ¬p) → ¬p) →
Prov((p→ ¬p)→ ¬p), which is vague, since it receives value 1

2 (= 1− 1
2 + 0) in

every model of T L.
(Digression: note that this counterexample only demonstrates that one can-

not prove strong completeness in  Lukasiewicz logic from the metatheory, T L.13

However, if we have indeed demonstrated that the notion of provability and the
notion of logical consequence are distinct, the fact that strong completeness is
not provable from the metatheory does not mean that it is not a consequence of
it. The following possibility is still open: that the strong completeness theorem
is definitely not provable from the metatheory, even though it is not definitely
not a logical consequence of it. Whether or not strong completeness is validly
entailed by the metatheory may be a vague matter in the same way that the
validity of ((p→ ¬p)→ ¬p) is vague.)

In the metatheory for  Lukasiewicz logic, the principle V alid(pφq)∨¬V alid(pφq)
does not hold unrestrictedly. On the other hand, the notion of provability is
precise, which is manifested by the principle Prov(pφq) ∨ ¬Prov(pφq). This
property is perhaps an advantage of this account of validity. In at least two
applications one might expect the source of non-classicality to infect the notion

13The fact that this notion of ‘provability’ is most likely not recursively axiomatisable is
not the issue here. I assume that ‘provable’ just means ‘provable by some logically omniscient
person’, much as in the classical case we still count classical theorems as provable even if they
are so long and complicated no human could carry out the proof.
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of validity but not the notion of provability in L. On the one hand, considera-
tions of higher order vagueness lead us to think that the very notions we used
to define validity are vague, but the same cannot be said of the notion of prov-
ability. On the other hand, considerations very similar to those responsible for
the semantic paradoxes can lead one to think that there are similar paradoxes
for a validity predicate (see [16]), or a consequence relation (see [1], [22].) Since
in this case we should expect classical laws involving the validity predicate and
consequence relation, to fail, we shouldn’t expect to be able to give it a sound
and complete axiomatisation – at least, not if we are using a classical theory of
syntax.

In both cases we have reason to think that validity is a vague or indetermi-
nate notion, while provability is not. In these cases we should not expect both
strong soundness and completeness to hold, since no vague or indeterminate
notion can be determinately equivalent to a determinate one.14

2.4.1 Conditional assertions

Although I have argued that the failures of strong completeness are desirable for
some applications, the problem with the notion of weak completeness is that it is
not stateable in the metatheory as it stands. We said that TL provides a weakly
complete model theory for L when V alid(pφq) entails in TL Prov(pφq), and this
is metametatheoretic statement – a statement about what follows from what in
the metatheory. In this section and the next I shall briefly consider two ways
of stating weakened versions of soundness and completeness for  Lukasiewicz’s
continuum valued logic in the metatheory.

In [2] Field argues, among other things, that non-classical logicians should
make a distinction between the assertion of a conditional and the corresponding
conditional assertion. Since paracomplete theorists typically reject the deduc-
tion theorem, (a) φ ` ψ and (b) ` (φ → ψ) come apart. Field identifies as-
sertions about valid inferences, such as (a), with the validity of the conditional
assertion of ψ on φ, whereas (b) is to be associated with the validity of the
ordinary assertion of the conditional (φ→ ψ).

Think of making the conditional assertion of ψ on φ as being equivalent to
making the ordinary assertion that ψ, if φ obtains, and to making a vacuous
assertion otherwise. Making sense of this distinction on the instrumental con-
tinuum valued semantics is simple. The conditional assertion of ψ on φ gets
the value of ψ if φ gets value 1, and otherwise gets value 1. The conditional
assertion of ψ on φ is vacuously true if φ fails to be anything less than fully
true. It is important to note, however, that conditional assertion is not like
some connective in the language. In particular, it is not embeddable as the or-
dinary conditional is. What sense can be made of the conjunction of a sentence
with a conditional assertion, or any kind assertion for that matter? Speech acts
just aren’t the kinds of things we can conjoin with sentences.

14In other cases, such as intuitionistic logic, the notion of provability may fail to be classical
when the when the proof theory is not decidable. For the intuitionist who buys the results of
section 2, at any rate, strong completeness is immediate from 2.3 by the deduction theorem.
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The distinction is idle unless the antecedent is vague. For the purposes of
stating strong completeness, however, we are in exactly such a situation, and,
indeed, it is a straightforward consequence of Corollary 2.3 that the condi-
tional assertion of Prov(pφq) on V alid(pφq) receives value 1 on every model of
T . (The converse conditional assertion, as well as assertion of the conditional
(Prov(pφq) → V alid(pφq)) are also valid.) Thus a version of soundness and
completeness can be given by a schema of conditional assertions. If we want a
statement of soundness and completeness that has the more familiar bicondi-
tional form we’ll have to move to a more expressive language.

2.4.2 Degrees of provability

Rational Pavelka logic (RPL) is the the addition to  Lukasiewicz logic of all the
rational truth constants γ̄ for γ ∈ [0, 1] ∩ Q, and corresponding axioms (see
Hajek [7].) In this extended language there is a natural notion of the ‘degree
of provability’ of φ, namely, sup{γ |`RPL (γ̄ → φ)} - write this as |φ|. Letting
〈φ〉 := inf{‖φ‖ | ‖ · ‖ a model} there a version of completeness for RPL:

|φ| = 〈φ〉 (3)

Let γφ := |φ|. It is easy to verify that ‖V alid(pφq)‖ = 〈φ〉 for every second order
model 〈D, ‖ · ‖, V 〉 of TL. We are then in a position to state that soundness and
completeness, given by the following schema, is a logical consequence of TL:

T |= V alid(pφq)↔ γ̄φ (4)

One worry you might have with this method, is that it seems to be parasitic
on the continuum valued model theory. The continuum valued model theory
was supposed to be nothing more than a ladder, a neat way to understand the
consequence relation, which, ultimately, was to be thrown away once climbed.
On this approach it seems to serve a more important role - we cannot throw
away the ladder, since we permanently have the constants γ̄, γ ∈ [0, 1] ∩ Q in
our language. Our understanding of these constants seems to be completely
dependent on our understanding of the continuum valued semantics.

Although I am not yet entirely sure whether we can understand the γ̄ without
the continuum valued semantics, I conjecture that one only needs to add 1̄

2 to

 Lukasiewicz logic to have all the necessary instances of (7). 1̄
2 ’s meaning is

completely determined by it’s axiomatisation:

• ((p ∧ ¬p)→ 1̄
2 )

• ( 1̄
2 → (p ∨ ¬p))

Since these axioms are all one needs to understand 1̄
2 , its use is not parasitic on

the continuum valued semantics.15 We can think of it as a statement which is
determinately vague, i.e. vague but not higher order vague.

15Indeed, it is already definable in second order  L: ∃x∀X(Xx ∨ ¬Xx).
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2.5 Final remarks

We have shown that one can carry out classical model theory in a non-classical
setting. What of classically described non-bivalent model theory? To continue
with our pet example: what about the continuum valued semantics for  L? The
results presented here can be used to give a Kreisel-style argument that the
classical metatheory of continuum valued semantics gives an extensionally ade-
quate characterisation of logical consequence understood as truth in all possible
bivalent interpretations (modulo the issues to do with the deduction theorem
and strong completeness.) The extension of Prov(·) in T L was simply stipu-
lated to be truth on every classically described continuum valued model, or in
the general case, truth on every V valued model, and V alid(·) was designed to
express the notion of truth on every non-classically described bivalent model:
the results of §2.1 demonstrate that these two notions coincide.

This argument assumes that bivalent models play the same role with respect
to the continuum valued models as the class models do to the set sized models in
Kreisel’s argument. In other words, that they are the intensionally correct way
to characterise consequence. What of the view that takes the continuum valued
degree semantics seriously, and does not recognise bivalent consequence as the
antecedent notion of logical consequence. This is perhaps the clearest target
in Williamsons’ criticism in the passage cited. Williamson points out that this
view seems to be unstable, for according to the degree semantics conditional
excluded middle, (p → q) ∨ ¬(p → q), comes out as valid (since truth values
are linearly ordered) while the more general law of excluded middle does not.16

But, he argues, it is the general law of excluded middle, not conditional excluded
middle, that is required in the metalanguage to show that (p → q) ∨ ¬(p → q)
is valid. The natural argument for the validity of CEM begins ‘either the truth
value of p is less than or equal to the truth value of q or it isn’t’ and this is an
instance of excluded middle and not conditional excluded middle.

This objection, however, is not as clear cut as it might at first seem. One
might just take this to mean that conditional excluded middle doesn’t hold
on this degree semantics after all, provided you consider all truth assignments,
including vague ones. So truth values, despite appearances, aren’t linearly or-
dered. (Certainly [0, 1] is linearly ordered, but it doesn’t follow that all func-
tions, v, into [0, 1], including vague functions, are linearly ordered in the sense
that either v(p) ≤ v(q) or v(q) ≤ v(p) for any p and q.17) Alternatively one
could add further constraints on acceptable truth value assignments that would
be vacuous in a classical setting. For example we could stipulate that we only
consider truth value assignments, v, to [0, 1] in which v(p) ≤ v(q) or v(p) 6≤ v(q)
for any p and q. This does not entail there is no higher order vagueness as there
can still be failures of excluded middle elsewhere in the metalanguage. For a

16Actually Williamson is considering a slightly different, intuitionistic, continuum valued se-
mantics in which CEM comes out true. Essentially the same point can be made for  Lukasiewicz
logic for the law (p→ q) ∨ (q → p).

17This is demonstrated by the function v on the linearly ordered set {0, 1} constructed in
§1.
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contrived example take the function v defined in §1 as mapping pi to 1 if i is
small and to 0 otherwise. Then it’s determinate that v(pi) ≤ v(pj) whenever
j ≤ i, which stated more carefully says ∀xy((〈pi, x〉 ∈ v ∧ 〈pj , y〉 ∈ v)→ x ≤ y),
and thus v(pi) ≤ v(pj) ∨ v(pi) 6≤ v(pj) holds for any i and j, but claims like
v(pi) = 1 ∨ v(pi) 6= 1 are not in general true.

The philosophical issues involved in combining non-classical semantics with
non-classical logic are complex and clearly are not done justice by the few re-
marks I make here. I shall have to leave the full investigation of these matters
to a future project. However, I take it I have shown there is a clear sense in
which non-classical logicians can carry out important metatheoretic reasoning
in their own logic in a bivalent model theory.
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