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Abstract

The lowest order processes described within quantum electrodynamics are free from the problem 
with  infinities  in  the  theory,  and  can  be  dealt  with  disregarding  the  need  for  charge  and  mass 
renormalization.  This  might  indicate  that  the  space-time  description  of  these  processes  is  not  only 
consistent but also could give a privileged insight to the functioning of models provided by the theory. 
The Møller scattering is as R. P. Feynman considered, a prototype for the development of his rules of 
quantum electrodynamics and his overall space-time approach. The study of Møller scattering might then 
provide the most straightforward way to the understanding of the space-time description of interactions 
provide by quantum electrodynamics. This method is much less powerful than might be expected at first, 
pointing to the intrinsic limitations of the theory in what regards  the modelling of the temporality in 
interaction processes.

1. Introduction

It is well known that during the development of quantum electrodynamics during 
the  1930s  and  most  of  the  1940s,  the  calculations  beyond  the  lowest  order  of 
perturbation theory gave infinite corrections to the results, up until the renormalization 
program succeeded in “sweeping the dirt under the rug” (Feynman, 1962, p. 137).

P. Dirac,  who was not convinced with the success of the renormalized quantum 
electrodynamics commented that “what we need and shall strive after is a change in the 
fundamental concepts, analogous to the change in 1925 from Bohr to Heisenberg and 
Schrödinger, which will sweep away the present difficulties automatically” (quoted in 
Kragh, 1990, p. 183).

Considering  the  way the  infinities  were  dealt  with  in  quantum electrodynamics, 
speculation arose about possible improvements over this situation, taking physicists like 
S.  Tomonaga  to  consider  that  “the  progress  we  would  have  attained  is  only  a 
transitionary one, and the real solution still lies far ahead. This solution might involve a 
fundamental change in our concepts of nature, such as the discontinuous structure of 
time and space, or it might require a radical modification of our concepts of elementary 
particles and their mutual interaction” (quoted in Aramaki, 1989, p. 94).

It might seem that the lowest order applications of the theory, where there are no 
infinities to battle with, are free from problems, and that in particular Feynman's space-
time  approach  to  quantum  electrodynamics  might  provide  a  consistent  means  of 
representation  and  visualization  of  the  lowest  order  processes  in  quantum 
electrodynamics. Things are not quite that simple. 

In  section  2  it  considered  the  derivation  of  Møller's  semi-classical  formula  for 
electron-electron scattering by a full quantum electrodynamic treatment using the so-
called Feynman's fundamental formula directly related with the second-order term of 
the  S-matrix  expansion.  It  is  defended  that  we  do  not  have  to  see  Feynman's 
fundamental formula as simply related to part of an infinite power series expansion of 
the S-matrix and that a model developed from this formula is valuable on its own and 
we can use it in the exploration of the space-time description of process within quantum 
electrodynamics. In section 3 the quantum model for the lowest order calculation of the 
electron-electron scattering that permits the derivation of the Møller formula is used to 
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analyse the type of description of interaction provided by quantum electrodynamics and 
its limitations, in particular at the level of a temporal description of the interaction as a 
process occurring in time. To better understand this intrinsic limitation in relation to the 
classical description a quantum model for the interaction of two atoms is considered.

2. Møller scattering and Feynman's fundamental equation

In the early 1930s, the relativistic electron-electron scattering was treated using a 
semi-classical approach in the lowest order of perturbation theory.  C. Møller used in 
Maxwell equations the charge and current densities associated with the state transition 
of an electron from an initial to a final free state as described by the Dirac equation. The 
retarded potentials determined in this way interacted with a second electron resulting in 
a  state  transition  of  the  electron.  With  this  scheme  Møller  obtained  a  symmetrical 
expression for the matrix elements for the scattering of two electrons interacting via 
classical retarded potentials (Heitler, 1954, p. 233). Around the years 32-33, the use of 
correspondence methods by Møller lost part  of its appeal,  due to Bethe and Fermi's 
demonstration that the formula could be derived within quantum electrodynamics and 
Bohr's confidence on the logical consistency of the theory (Kragh, 1992, p. 324), even if 
in the aftermath due to the divergence problems in the theory,  Bohr considered that 
physics  was  “confronted  with  the  necessity  of  still  more  radical  departure  from 
accustomed modes of description of natural phenomena” (quoted in Schweber, 1994, p. 
84).

Møller's  scattering formula did not attract  much attention during the thirties and 
forties, until it revealed itself as an almost immediate application of the new formulation 
of quantum electrodynamics (Roqué, 1992, p. 256).
Following  J.  A.  Wheeler  view,  based  on  his  scattering  theory,  that  all  physical 
phenomena could be seen as scattering processes (Schweber, 1994, p. 379), Feynman 
considered  the  mutual  interaction  of  two  electrons  as  a  fundamental  interaction 
described by his fundamental equation for quantum electrodynamics (Feynman, 1949b, 
p. 772). It is true that Feynman made reference to the use of perturbation theory in the 
determination of corrections to the Møller scattering involving two virtual quanta (a 
higher-order correction); also in a footnote to one of his articles he related his overall 
space-time approach to the Heisenberg S-matrix theory (Feynman, 1949b, p. 771). But, 
his fundamental equation ‘shines’ almost on its own, much because this is the simplest 
description of electron-electron interaction – and according to Wheeler-Feynman “any 
physical problem can be defined in terms of scattering processes” (Feynman, 1949b, p. 
771) –,   but  also because this  equation  set  the example  for  the Feynman  rules  and 
presented Feynman's  guessing for  the extension of the expression for  the  amplitude 
from the case of a Coulomb interaction between particles without spin to the relativistic 
case  of  delayed  interaction  between  electrons  as  described  by  the  Dirac  equation 
(Mehra,  1994, p.  285).  The Møller  scattering  formula  is  obtained directly from this 
equation  when Pauli  exclusion  principle  is  taken  into  account  (Feynman,  1949b,  p. 
773).

Feynman's approach was given a more formal structure by F. Dyson. Considering 
the perturbative solution of the Tomonaga-Schwinger equation in terms of a unitary 
operator, Dyson realized that when taking the limits for an initial state in the infinite 
past and a final state in the infinite future, Schwinger's unitary operator was identical to 
the Heisenberg S-matrix. Following Feynman's symmetrical approach between past and 
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future, Dyson used a chronological operator P() that enabled him to present the S-matrix 
in the form

∫ ∫∑
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where HI(x) is the interaction term of the Hamiltonian for the Maxwell and Dirac fields 
system (Dyson, 1949, p. 492). In the case of the electron-electron scattering, the second-
order  term  of  this  expansion  is  related  to  what  Feynman  called  his  fundamental 
equation.

The S-matrix program was originally developed by W. Heisenberg as an alternative 
to  quantum  field  theory.  His  idea  was  to  sidestep  the  problem  of  divergences  in 
quantum field theory – in his view due to the point-like interaction between fields – by 
considering  only  what  he  saw  as  measurable  quantities  (Miller,  1994,  p.  97). 
Heisenberg's idea was to retain only basic elements of the quantum field theory like the 
conservation  laws,  relativistic  invariance,  unitarity,  and  others,  and  to  make  the  S-
matrix the central  element of a new theory (Pais,  1986, p. 498). This was not done 
because in practise it was not possible to define an S-matrix without a specific use of 
the theory it was intended to avoid (Cushing, 1986, p. 118). The S-matrix reappeared 
now in mainstream physics with Dyson's use of it as a calculational tool. In Dyson's 
view the “Feynman theory will provide a complete fulfilment of Heisenberg's S-matrix 
program. The Feynman theory is essentially nothing more than a method of calculating 
the  S-matrix  for  any physical  system from the  usual  equations  of  electrodynamics” 
(quoted in Cushing, 1986, p. 122). 

The fact that the Feynman fundamental equation is related to an individual term of 
the S-matrix expansion might mean that it is not relevant on its own (Rohrlich, 1999, p. 
363).  The  point  here  is  that  there  are  strong  arguments  against  the  possibility  of 
convergence of the power series expansion of the S-matrix (Aramaki, 1989, pp. 91-93). 
This led Dyson,  who considered that  quantum electrodynamics  was the perturbative 
expansion itself, to conclude that “you didn’t really have a theory” (quoted in Schweber, 
1994, p. 565). It is possible to avoid this drastic conclusion and at the same time give 
relevance directly to a particular term of the S-matrix, and so to Feynman's fundamental 
equation, maintaining a view near Dyson's initial one. Considering the mathematical ill-
definition  of  quantum electrodynamics  as  a  ‘fingerprint’  for  a  physically  motivated 
intrinsic  approximative  characteristic  of  quantum electrodynamics  (Bacelar  Valente, 
2008a), it provides nevertheless under a few-order perturbative treatment the possibility 
of developing more or less direct applications from the basic theoretical framework that 
give good adjustment to experimental results. In this sense we have a ‘working’ theory, 
and the fundamental equation can be considered as having a meaning on its own, and 
not  as  simply  related  to  a  term of  an non-realizable  infinite   expansion of  an non-
existing  non-perturbatively  determine  S-matrix.  A  direct  application  of  quantum 
electrodynamics through the fundamental equation is the derivation of Møller's formula 
for  an  electron-electron  scattering.  This  is  a  simple  model  for  an  electron-electron 
interaction  based  on  the  exchange  of  one  quanta  between  two  electrons.  We  can 
consider  improved  calculations  using  higher-order  corrections  (Feynman,  1949b,  p. 
787). Simply – under the physically motivated mathematical ill-definition of the theory 
–, we are not obliged to use more complicated models that can be developed using the 
physical-mathematical  framework of the theory,  and the simplest  option is  probably 
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more  elucidative  regarding  the  physics  hidden in  the  mathematics  of  the  theory,  in 
particular in this case where what is intended is the study of the temporal description of 
processes within quantum electrodynamics avoiding the problems of divergent integrals 
that appear in higher-order calculations (this question is addressed in Bacelar Valente, 
2008b). 

3. The description of interactions as space-time processes

In second-order expansion of the S-matrix the electron-electron interaction results 
from a photon  interchange.  In  the  overall  space-time  approach of  Feynman  we are 
considering virtual photon propagation between all the Minkowski space-time points. 
The Feynman photon propagator is given by

  { } )x'(xcDi0(x)(x)AAT0 μν
F

νμ −=    (Mandl & Shaw, 1984, p. 86).

This expression means we are considering a photon ‘created’ at one space-time location 
and ‘annihilated’ at another. The use of the time-ordered product T{} means that in this 
covariant  expression  we  are  already  considering,  depending  on  the  time  order,  a 
propagation  from one  electron  to  the  other  or  the  opposite,  since  T{Aµ(x)Aν(x’)}= 
Aµ(x)Aν(x’) if t   t’, and T{Aµ(x)Aν(x’)}= Aν(x’)Aµ(x) if t’   t. Loosely speaking we 
have contributions in which the ‘emitter’ and ‘receiver’ change roles.

The transition amplitude for the Møller scattering in second-order expansion of the 
S-matrix  (the  simplest  for  this  process)  results  from  a  contribution  of  all  possible 
localized interactions of Dirac and Maxwell fields ‘connected’ by a photon propagator 
(Mandl & Shaw, 1984, p. 113):
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This means that the overall process we call ‘interaction’ results from the contribution of 
photon  propagation  from one  electron  to  the  other  and  vice  versa:  it  is  a  two-way 
process in all space-time. 
The ‘virtual’ label attached to the photon is related to two things. One is that in the 
space-time points where the photon is created or annihilated we have conservation of 
energy  and  momentum  between  the  photon  and  the  electrons.  But  the  energy-
momentum relation for the virtual photon is not k2 = (k0)2 – k2 = 0 corresponding to a 
zero mass of the photon, but is different from zero due to the fact that in the expression 
for the propagator, k and k0 are independent of each other (Mandl & Shaw, 1984, p. 86). 
In a certain sense it is like the ‘dynamics’ of the virtual photon (the same occurs with 
the electron when it is in the role of a virtual quanta) are all messed up, because it is like 
it has a mass during the virtual process. At the same time the ‘kinematics’ come out 
wrong also, because the propagator is non-vanishing at space-like separations (Björken 
& Drell, 1965, pp. 388-389). The other point is that this virtual quanta is supposed not 
to be observable by definition – it is part of the internal machinery of the model. In the 
case of the photon in the electron-electron scattering it  seems difficult  to avoid this 
situation, as implicit in the theory is the idea that this is the most elemental  process 
possible. But as Feynman remarked “in a closed system all quanta can be considered as 
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virtual (i.e., they have a known source and are eventually absorbed)” (Feynman, 1949b, 
p. 182). This means that the label of ‘virtual’ or ‘real’ might depend on how we decide 
to separate what we consider to be the physical system and the measurement apparatus. 
Feynman stated this quite clearly:

That this possibility exists can be seen from the consideration that what looks like a real 
process from one point of view may appear as a virtual process occurring over a more extended 
time. For example, if we wish to study a given real process, such as the scattering of light, we 
can, if we wish, include in principle the source, scatterer, and eventual absorber of the scattered 
light in our analysis. We may imagine that no photon is present initially, and that the source then 
emits light […] The light is then scattered and eventually absorbed […] that is, we start with no 
photons and end with none. Thus we can analyse the process  by means of our formula for 
virtual process, and obtain the formulas for real processes by attempting to break the analysis 
into parts corresponding to emission, scattering and absorption (Feynman, 1950, p. 455).

That this possibility should be expected as a basic characteristic of any quantum theory 
is easily perceived if we recall Heisenberg's presentation of the physical principles of 
the quantum theory. When analysing the appearance of tracks of α-particles in a Wilson 
cloud chamber, Heisenberg remarked that “it appears purely as a matter of expediency 
whether the molecules to be ionized are regarded as belonging to the observed system 
or to the observing apparatus” (Heisenberg, 1930, p. 66). Even if this possibility is not 
applicable for the elemental process, it seems that there are processes where the change 
from '‘virtual’ to '‘real’  can be done. In this case, the virtual photon expressions can be 
translated into the ‘correct’  relations for real quanta, and are more an artifact  of the 
theory than an ‘defect’ of the virtual quanta. In this sense the virtual photon is a more 
general concept than the real one, because “real processes corresponds to poles in the 
formulae for virtual processes. The pole occurs when k2 = 0” (Feynman, 1949b, p. 781). 

Another aspect of the description of scattering in quantum electrodynamics is that 
there really is no temporal description of the interaction in spite of the fact that in the 
formula there are contributions from photon emission and absorption by both electrons. 
This is due to the fact that in the application of the S-matrix method we are always 
considering  the free initial and final states, while disregarding the detailed description 
of the intervening times. In this sense we have an atemporal description of the scattering 
processes. Feynman did not consider this a limitation; on the contrary, his view was that 
“the temporal order of events during the scattering … is irrelevant” (Feynman, 1949a, p. 
749).  In  one  aspect  this  is  expected  if  we consider  the  interaction  as  an  elemental 
process: a quantum theory only describes the probability distribution for the outcome of 
measurements of physical observables in specific experimental setups. And to compare 
quantum predictions with experimental results we need to obtain relative frequencies 
from repeated measurements (Falkenburg, 2007, p. 106). If we imagined we could see 
how  the  interaction  was  going  on,  we  would  be  in  a  different  –  impossible  – 
experimental setup from the actual existing experimental setup that permits the analysis 
of scattering processes. 

When considering the interaction between two electrons, the S-matrix element is 
constructed with an underlying idea of an elapsing time. A (virtual) photon is emitted by 
one  electron,  which  means  that  due  to  the  localized  interaction  of  the  Dirac  and 
Maxwell fields it is created at a specific space-time point. This photon propagates and 
luckily is absorbed by an electron expecting him. We have a sort of  ‘next’ effect: the 
quanta ‘knows’ what is going to happen and behaves accordingly so that we have a 
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smooth adjustment  between the electrons  and the photon.  In reality the sequence of 
creation  and  absorption  of  the  photon  is  adjusted  ‘ab  initio’  in  a  mathematical 
expression the – S-matrix – that provides an atemporal description of what we consider 
to be a temporal phenomena. In a certain sense the problem is not in the adjustment of 
the creation and annihilation of the photon but in the use of temporal language in an 
atemporal  description  of  the  interaction  in  quantum  electrodynamics,  like  when 
Feynman considered a situation where it was supposed that “one electron was created in 
a pair with a positron destined to annihilate the other electron” (Feynman, 1949b, p. 
773).

If we try to maintain a temporal perspective considering, a bit incoherently with the 
usual interpretation of quantum theories, a submicroscopic observer – say Alice –, then 
the  cat  –  our  propagator  –  will  reveal  peculiar  behaviours.  The  case  is  that  the 
propagator does not vanish for a space-like separation. This means we would have an 
interaction between space-time points not connectable with a classical electromagnetic 
wave.  But  in  this  quantum  world  the  photons  and  electrons  (or  positrons)  being 
propagated  between  two  points  are  not  restricted  by  the  usual  energy-momentum 
relations, so we are beyond any classical dynamical description of the ‘propagation’, 
and, as mentioned previously, we refer to these quanta as ‘virtual’ while using the more 
realistic and ontologically charged word ‘real’ for the quanta whose energy-momentum 
relations are k2 = 0 in the case of the photon and p2 = m2 in the case of fermions. For a 
submicroscopic observer located in the space-time point where a quanta is emitted we 
can imagine that an objective notion of present (emission) and future (absorption) exist. 
The problem is that for a space-like separation, a moving observer – Alice – might see 
the absorption before the emission. In the case of an electron propagation this would 
imply seeing a positron. The cat would be changing its form. Considering A. Einstein's 
kinematical interpretation of relativity (Einstein, 1905, p. 48), from the perspective of 
this moving observer – Alice –, that due to relativity can only make her observations 
using an (imaginary)  submicroscopic classical  electromagnetic wave, in the situation 
described above it would appear there is an interchange of the creation an annihilation 
points. In the case of photon propagation,  this makes her think that the direction of 
propagation is the opposite, and in the case of electron propagation it will seem as if the 
unobserved  quanta  is  now  a  positron.  But  even  Alice,  considering  the  kinematical 
interpretation of relativity, can only see the points of interaction between the fields, not 
the propagation process itself. In this way the ‘true’ virtual electron only appears to be a 
positron , but it is ‘really’ an electron.

When considering the overall amplitude, the problem fades away. The fact is that 
the S-matrix is covariant. So different ‘observers’ will obtain the same result for the 
scattering amplitude,  with their  identical  submicroscopic experimental  devices,  when 
considering  the  propagation  between  all  space-time  points  (a  ‘real’  observer  cannot 
make these space-time experiment to determine the scattering amplitude, he can only 
obtain  experimental  cross-sections).  We  can  express  the  covariant  S-matrix  in  two 
alternative forms (Sakurai, 1967, p. 204):

∫∫ ∞−
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To see the content of these formulas let us consider localized ‘observers’ of processes 
that can be described by Sa. In this case we are considering processes where t2 < t1. Now, 
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a passer-by might, in relation to a spacelike propagation, think he is seeing a process 
where t1 < t2 as described in Sb. But he will also think that another process, that for the 
localized ‘observer’ is from Sb, is describe in Sa. The overall result will be the same for 
both observers. The possible time inversion problem does not occur as it is sweeped 
under the covariance of the S-matrix:

{ }∫∫
∞

∞−

∞
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+−= )t-(t)(t)H(tH)t-(t)(t)H(tHdtdti/2)(S 121I2I212I1I21
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where θ(t) = 1 if t    0, and θ(t) = 0 if t <  0 (Sakurai, 1967, p. 204). 
Going back to  real  observers,  the fact  is  that  we do not  have a  submicroscopic 

experimental access to the theoretical point-like interaction between the fields. In the 
case of scattering processes we have experimental access to the cross-section that “as an 
empirical quantity, it is the measured relative frequency of scattering events of a given 
type”  (Falkenburg,  2007,  p.  107).  In  quantum electrodynamics  the  scattering  cross-
section (as a theoretical quantity) is calculated from the transition probability per unit 
space-time volume, which is simply related to the S-matrix (Jauch & Rohrlich, 1976, 
pp. 163-167)

The point is that with the (experimentally accessible) cross-section calculated from 
the S-matrix – the only possible  theoretical  approach to scattering processes within 
quantum electrodynamics – we are not considering time as it goes by, but an atemporal 
calculation  of  the  interaction  process:  all  past  and  future  are  put  in  it.  This  is  the 
problem, or limitation up till now, of the application of quantum electrodynamics to the 
description of interaction: it is basically outside time.

To recover some feeling of temporality we have to build a model of interaction that 
approaches a bit the ones provided by classical electrodynamics. To maintain things in 
quantum electrodynamics let us consider a positronium atom (formed by a positron and 
an electron). If now we consider the interaction of bound electrons, we do not have to 
consider all space. The photon is emitted in a certain region, where we can consider the 
atom to be. For clearly separated atoms we can get a notion of temporality from the sole 
propagation of a photon from one atom to the other. But with this kind of model we 
disregard the  two-way character  of  the  interaction,  and approach the  more  classical 
modelling of radiation emission. 

We consider that the emission from one atom takes place at a certain region Vy of 
space-time, meaning that the atom is in a certain location of space and that a photon 
with energy  ω0 is emitted during a period of time T. This photon is absorbed in the 
region Vx by another atom. We are going to take for granted for the moment that if the 
emission takes a time T then there will be an uncertainty Δω in the energy  ω0 of the 
photon, so that we have TΔω  1. At the same time we will consider only a situation 
where Δω is much smaller that ω0, which means that the sign of the energy is defined, 
and so it is clear that the energy is flowing out of the atom in Vy. We suppose we can 
adjust T so that Δω  ω0. From all this we have that  ω0T  1. With this condition, 
considering “the part of S-matrix which is due to transitions in Vx and Vy” (Pauli, 1973, 
p. 134) and using explicitly the form of the wave functions of the bound electrons, every 
element of time in Vx is greater than every element of time in Vy. In this particular 
model we can from the S-matrix obtain a description of emission and absorption of a 
photon consistent with a notion of temporality associated with the process, but that is 
exterior to the S-matrix calculation. What the calculation provides is a definition of the 
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time relations involved and the spatial separation of the two regions that were from the 
start considered bound and separated in space-time.  The result is that the two bounded 
regions do not overlap, so that we can say that “if the energy of the charged particles in 
Vx increases … and if the energy in Vy decreases, then Vx is later in time than Vy” 
(Pauli, 1973, p. 133). Also, the second region must be on the (diffuse) light cone of the 
first. Due to that, besides an uncertainty ±T resulting from “the uncertainty in the time 
of the emission process” (Thirring, 1958, p. 146), we have only contributions in the S-
matrix from space-time points in regions that can be connected by photons propagating 
at light speed. This means also that for the distance r between the two atoms we have 
rω0  1: the second atom must be in the wave zone of the first (roughly speaking a 
region where  r  is much bigger that the wavelength of the emitted photon: r  λ).

Maybe the most interesting aspect of this model is that in the wave zone we see that 
the contribution from the propagator comes from the poles, corresponding to a process 
with a real photon (Thirring, 1958, p. 146). As Feynman remarked “in a sense every real 
photon is actually virtual if one looks over sufficiently long times scales. It is always 
absorbed somewhere in the universe. What characterizes a real photon is that k   0” 
(Feynman,  1962,  p.  95).  We seen  that  the  separation  between  virtual  and  real  can 
depend not only on the way we choose what we consider to be the system but also on 
other aspects, like in the case of this model where it depends on the separation between 
the atoms: in the near zone (r  λ) the photons are virtual and on the wave zone they 
are real (Thirring, 1958, p. 146).

One point is clear from the previous case. To approach an idea of ‘temporality’ in 
models of interaction, using as a fundamental part quantum electrodynamics, we need 
structures in the models – the atoms – that permit the occurrence of real photons, which 
approach a more classical electrodynamics type of interaction (emission and posterior 
absorption of light). Also for a consistent outcome from this model it is necessary that 
ω0T  1 and this is not provided by the theory directly, because there is no time-energy 
uncertainty relation in quantum theories in the same sense as in non-relativistic quantum 
mechanics where there is an uncertainty relation between the position and momentum 
operators (Hilgevoord, 1996, p. 1451). We have to go and get it.  

In the Maxwell-Lorentz classical theory we have a relation between Δω – the line 
breadth – and the lifetime T of the radiation emission process. Considering “a linear 
harmonic oscillator as a simple model for a light source” (Heitler,  1954, p. 32), and 
taking into account the effect of the field produced by the charge on the charge itself 
(the self-force), the (emission) intensity distribution is given by

/4γ)ν(ν
1

2π
γIνI 22

0
0 +−

=)( (Heitler, 1954, p. 33),

where  ν0 is the frequency of the undamped oscillator, and γ is the breadth at half of the 
maximum intensity and is equal to the reciprocal of the lifetime of the oscillator (due to 
the damping of the self-force the oscillator  radiates  during a period of time until  it 
comes to rest). Considering that the reaction force is small we have that the lifetime is 
long when compared with the period of the oscillator, so that we have γ   ν0, that is, 
ω0T  1. Following the same approach when describing the decay of an excited state of 
an atom in quantum theory, again it is considered that “the lifetime is large compared 
with the frequency of the atom” (Heitler, 1954, p. 183), that is ω0T  1, and we obtain 
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the same expression for the intensity distribution of the emission (now as a probability 
function). In this way, we do not use any ‘uncertainty’ relation to obtain the result ω0T 
 1 that is needed to obtain a model for the interaction between the atoms that appears 
to give a consistent spatial-temporal description of the interaction. But it is important to 
notice that the quantum electrodynamics model is dependent on this previous quantum 
or classical treatment of the emission of radiation by an atom. We need the first atom to 
be in an excited state and the ‘correct’ line breadth as a starting ‘ingredient’, so that we 
are able to present in a plausible way in the S-matrix approach the type of temporal and 
spatial behaviour expected from classical electrodynamics. 

Conclusions 

It is clear that we only have access to a feeling of temporality associated with the 
description of interactions using the S-matrix when developing models that approach 
more classical situations.

The problem is  that  in  a full  quantum electrodynamics  S-matrix  calculations  we 
really do not have a representation of scattering processes in space-time. We have an 
illusion  of  it,  and  from this,  the  incorrect  perception  that  we have  a  description  of 
processes in time. What we really have is a mathematical construction using as a basic 
structure the Minkowski space-time that enables  us to obtain the cross-section for a 
particular  scattering.  But  this  theoretical  cross-section  is  determined  from  the 
contribution of the Feynman diagrams in energy-momentum space, an ultimately it is 
this  energy-momentum  cross-section  that  is  compared  with  experimental  results 
(Falkenburg, 2007, p. 131).

We do have a description of the interaction in terms of quanta exchange between 
our  observed  ‘particles’.  What  we  do  not  have  is  an  in  space  and  through  time 
description of this exchange. We have a quantum electrodynamics model based on a 
computational  devise – the propagator  – and a  calculation  based on a mathematical 
configurational space constituted by the Minkowski space-time points. 

When we talk  about  a  process we are  using  a  temporal  language.  A process  is 
something occurring in time and something that we can ‘see’ during its occurrence. If to 
the  term  process  we  associate  some  mathematical  expression,  like  the  Feynman 
fundamental equation, that would enable an apparent space-time ‘visualization’ of the 
process, we get the impression that we are ‘seeing’ things as they ‘really’ happen in 
space through time when doing calculations with the mathematical expressions. But for 
example when Feynman considers that “the Schrödinger (and Dirac) equation can be 
visualized  as  describing  the  fact  that  planes  waves  are  scattered  successively  by  a 
potential”  (Feynman,  1949a,  p.  751),  he is  using a  language  that  is  appropriate  for 
classical waves in a improper context of a wave that (under the usual interpretation) 
represents the probability amplitude for a determined experimental  outcome. So, this 
use is doubly improper. We have no classical wave, and the quantum wave does not 
describe the time development of the system in the same sense as in classical theory, it 
describes  the  time  development  of  the  probability  distribution  for  a  particular 
experimental outcome.

In the case of scattering experiments we have no ‘insider’ making observations, we 
have the initial state corresponding to a determined preparation of the system and the 
final calculated state that will enable us to make comparisons with the experimental 
results  (Peres,  1984, p.  647).  To have a  path in  space-time we cannot  consider  the 
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elemental  interactions,  because we cannot  observe the internal  configurational  space 
where  the  interaction  ‘occurs’  through  the  mathematical  device  of  the  propagator. 
Going back to Heisenberg and his  α-particle in a Wilson cloud chamber, when each 
successive ionization of molecules of the medium is “accompanied by an observation of 
the position” (Heisenberg, 1930, p. 69), this sequence of observations reveals a path in 
space.  But, in between each ionization the particle is described by a wave function. 
There is no microscopic trajectory. Each observation corresponds to a state preparation 
for the next one. It is the sequence of observations controlled by us that gives the notion 
of a process happening in time. In the case of Møller scattering we do not have that. It is 
a unique and global  process associated with a sole experiment.  It  is  not possible to 
visualize this process as something that is going on as we speak. Minkowski space-time 
has to be seen, when used in the context of S-matrix calculations, as a mathematical 
abstract  space,  where mathematical  objects  like  the  propagators  are  used as  part  of 
calculation  machines.  If  we  consider  the  scattering  process  as  a  ‘black  box’ 
(Falkenburg, 2007, p. 234), it is the space-time itself that is this black box.

When considering  an overall  space-time  approach we put  ourselves  outside  this 
space-time.  And  since  with  any  quantum theory  we  only  have  access  to  statistical 
predictions, there is not much we can say about the temporality of the phenomena as 
described by the theory.
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