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Abstract

In this paper I present a precise version of Stalnaker’s thesis and show
that it is both consistent and predicts our intuitive judgments about the
probabilities of conditionals. The thesis states that someone whose total
evidence is E should have the same credence in the proposition expressed
by ‘if A then B’ in a context where E is salient as they have conditional
credence in the proposition B expresses given the proposition A expresses
in that context. The thesis is formalised rigorously and two models are
provided that demonstrate that the new thesis is indeed tenable within a
standard possible world semantics based on selection functions. Unlike the
Stalnaker-Lewis semantics the selection functions cannot be understood
in terms of similarity. A probabilistic account of selection is defended in
its place.

I end the paper by suggesting that this approach overcomes some of
the objections often levelled at accounts of indicatives based on the notion
of similarity.
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tion of Los Angeles Philosophers and audiences at the University of California, Irvine, the
Eighth Barcelona Workshop in the Theory of Reference on Conditionals and the Formal Epis-
temology Workshop 2014. Thanks also to two anonymous reviewers and the editor Robert
van Rooij for making several helpful suggestions regarding presentation and content.
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A popular form of contextualism concerning indicative conditional state-
ments embraces the following three theses:

Contextualism: (i) Indicative conditionals semantically express (i.e.
can be used to assert the truth of) propositions. (ii) Which proposition is
asserted by an utterance of an indicative conditional sentence sometimes
depends on the context in which it is uttered. Moreover, (iii) which propo-
sition is asserted depends, absent other sources of context sensitivity, on
some piece of evidence or knowledge that is salient in the context of ut-
terance (perhaps the utterer’s evidence or some pooled piece of evidence
being assumed by the participants of the conversation.)

Contextualism holds a distinguished place in recent philosophy, and for good
reason.1 It promises to answer a number of rather puzzling issues in the phi-
losophy of conditionals – the apparent validity of ‘or-to-if’ arguments and the
so-called ‘Gibbardian stand-offs’ to name but a couple of examples (see [29] and
[38].) While it also has its critics2 it is interesting to note that, by contrast,
the context sensitivity of conditionals is all but taken for granted by linguists
working within the framework of Kratzer’s [18]. This work draws on connec-
tions between modals and conditionals, and the context sensitivity of former,
at least, appears to be quite pervasive.

My aim here, however, is not to defend contextualism or its applications but
to show that contextualism can be put to work to shed light on another difficult
issue, namely that of providing a theory that predicts our intuitive judgments
about the probability of conditional statements. As early writers noted, contex-
tualism provides a potential way around the triviality results. However, despite
some limited initial optimism regarding this project (see in particular Harper
[14] and van Fraassen [37]), few philosophers still see this as a viable option.
Most likely this is due to the fact that existing constructions either fall apart
when one considers conditionals embedded within other conditionals or are not
compatible with an orthodox possible worlds semantics such as a selection func-
tion semantics. Finally these constructions invariably require that the locus of
context sensitivity be, not a salient piece of evidence in accordance with the-
sis (iii), but an entire credential state. It is therefore hard to integrate such
approaches into an orthodox contextualist framework of the kind that is now
popular in linguistics and philosophy. In fact the only construction I know of
that overcomes the first limitation, that of accommodating embedded condi-
tionals, is given in van Fraassen’s [37], and this falls afoul of the other two
constraints.

In section 1 of this paper I will present and defend a weakening of a princi-
ple known as ‘Stalnaker’s thesis’. I show that the thesis originally presented by

1See for example Stalnaker [29], van Rooij [38], Nolan [23], Santos [25].
2There is a long tradition rejecting thesis (i) of the contextualist program: see Adams

[1], Edgington [6] and Bennett [4] for representative examples. More recently some theorists
have attempted to accommodate the data keeping (i) but rejecting (ii) by adopting a form of
relativism about the propositions expressed by conditional sentences; see Weatherson [39] for
discussion of this approach.
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Stalnaker, in addition to being fraught with difficulties arising from the trivial-
ity results, is unfriendly to contextualism. I argue that my weakened principle
is both strong enough to predict our intuitive judgments about the probabili-
ties of conditionals and compatible with contextualism while also being weak
enough to avoid the triviality results. In section 2 I give the principle a possible
world semantics that is intended to integrate straightforwardly with contextu-
alist accounts of indicatives. Unlike the Stalnaker-Lewis semantics the selection
functions cannot be understood in terms of similarity. A probabilistic account of
selection is defended in its place. The appendices contain two different tenability
results establishing the consistency of the new principle with the semantics.

1 Contextualism and Stalnaker’s Thesis

Suppose that a card has been picked at random from a standard 52 card deck and
placed face down in front of you. Assuming that you are not more confident
that some card will be selected over any other, how confident should you be
about asserting the following sentences?

1. The selected card is an ace if it’s red.

2. It’s spades if it’s black.

3. It’s diamonds if it’s an eight.

To be clear, when I ask how confident you should be about asserting a sentence
I mean: what degree of belief should you have in the proposition that you would
assert by uttering that sentence. The obvious answers to these questions are, in
order: 1

13 , 1
2 and 1

4 . For example, to calculate 2 I just determine what proportion
of black cards are spades. Since one in two black cards are spades the answer is
1
2 .

An initially attractive theory, known as ‘Stalnaker’s Thesis’3, gives us a
general way to make these calculations. It states:

Stalnaker’s Thesis: The degree of belief one should assign to a con-
ditional sentence, ‘if A then B’, should be identical to one’s conditional
degree of belief in B given A.4

In [32] Stalnaker works with a theory of probability that assigns degrees of belief
and conditional degrees of belief to sentences and not, as is normally done, to
propositions. In what follows I shall read the thesis as saying that, if p, q and
r are the propositions that would be asserted by the sentences A, B and ‘if A
then B’ in a given context, then one’s degree of belief in r must be identical to
one’s conditional degree of belief in q given p.

3Not to be confused with Adams’ Thesis which employs the notion of ‘assertability’. The
assertability of a conditional, according to Adams, need not be identified with the probability
of a proposition.

4If Cr is a function representing your degrees of belief, then your conditional degree of

belief in B given A, Cr(B | A), is defined to be
Cr(A∧B)
Cr(A)

when Cr(A) > 0.
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Stalnaker’s Thesis gets its appeal from its simplicity and its ability to straight-
forwardly explain the probability judgments reported in 1-3. However, enthusi-
asm for the thesis quickly died down as a slew of results trivialising this theory
appeared (see Bennett’s [4], chapter 5, for a good summary of the highlights)
and Stalnaker himself quickly dropped the theory.

While I find this literature to be conclusive with regard to the thesis (at least
as currently interpreted) there is an even more basic reason to be dissatisfied
with Stalnaker’s theory if you are a contextualist of the stripe described in the
opening paragraph. According to the contextualist, there are lots of conditional
propositions that one and the same conditional sentence, ‘if A then B’, can
be used to assert, but only one conditional probability for the probabilities of
those propositions to be identical with (provided neither A nor B are themselves
context sensitive.)

To spell the worry out in full, suppose that neither A nor B are context
sensitive and express p and q respectively in every context. Assume also that
I can assert ‘if A then B’ in one context and thereby assert the proposition r,
and in another context the proposition r′. Since, by assumption, r and r′ are
two different propositions, there is no general reason why one must assign them
equal confidence. Yet according to Stalnaker’s thesis, one’s degree of belief in
both r and r′ must be identical to one’s conditional degree of belief in p given q.
In other words, Stalnaker’s thesis entails that one must be equally confident in
r and r′ after all. For a contextualist this ought to be extremely puzzling. For
after all, people are driven to contextualist theories by cases where one hears two
utterances of the same sentence in which one seems to be true while the other
seems to be false. If Stalnaker’s thesis were true then these seemings would be
utterly irrational – any two utterances of a conditional sentence must express
equally probable propositions, so no rational person could be even somewhat
confident in the truth of one and the falsity of the other.5

What to make of these problems? One radical response, often made in con-
nection to the triviality results, is to take these highly theoretical arguments to
undermine the original probability judgments to 1-3.6 To my mind this response
is excessive: triviality results do not cast doubt on particular probability judg-
ments such as those reported in 1-3. They merely refute a general theory that
predicts those judgments – the judgments themselves do not imply the refuted
theory. Furthermore, if the answers I listed to 1-3 are not correct then those
who make the radical response owe us an answer to the question: what are the
correct answers to these particular questions? If they are not respectively 1

13 , 1
2

and 1
4 then what on earth are they?

The contextualist, in my view, has a better response; one that predicts the
intuitive probability judgments in 1-3, but does not commit us to Stalnaker’s

5Indeed the possibility of having unequal degrees of confidence in r and r′ is essential if
we are to account for the puzzles for which contextualism was introduced to explain (see, in
particular, Gibbard’s puzzle [10].

6I do not mean include those, such as Adams, who rejects probabilities in favour of talk
about ‘assertabilities’. The people who make the radical response disagree about the numerical
values.
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thesis. According to the contextualist the judgments we make about the prob-
abilities of conditional sentences are determined by two pieces of evidence. One
piece of evidence determines which proposition is asserted by the utterance of
the conditional being evaluated, the other is the evidence you actually possess,
which determines what your degrees of belief are if you’re rational (i.e. deter-
mines the probability function with which we make the actual judgments of
probability.) In other words, the former determines which proposition is to be
evaluated, and the latter determines how probable that proposition is. I pro-
pose that when these two pieces of evidence are identical, the probability of
the conditional and the conditional probability coincide – the probability of the
proposition you assert with a conditional when E is salient is the same as the
conditional probability when your total evidence is E.

The revised thesis entails, for example, that when the utterer’s evidence is
identical to the contextually salient evidence she will assert a proposition using
a conditional sentence that she takes to be exactly as probable as the conditional
probability of the proposition expressed by the consequent on the proposition
expressed by the antecedent. This is plausibly what is going on when we make
the judgments reported in 1-3.

Let us write A →E B for the conditional expressed when evidence E is
salient. The informal version of our revised thesis says:

CP Cr(A→E B) = Cr(B | A) provided Cr is a rational credence for an agent
whose total evidence is E at world x.

The above instance of the thesis is silent about the credences of agents whose
total evidence is not E. That said, whatever your evidence is there will be
another conditional corresponding to that evidence and another instance of the
thesis which does apply to you.

In order to make this thesis precise two questions must be addressed. Firstly,
we must say how the contextually salient piece of evidence determines which
proposition is expressed by a conditional sentence. Secondly we must say what
it is for a credence to be rational given a total body of evidence E.

It turns out that the first question can be treated in very different ways; the
models constructed in appendices 4 and 5 provide two such treatments. For the
time being let us just use the notation A →E B to represent the proposition
that would be expressed by the conditional, in a context in which evidence E
(representing an accessibility relation) is salient, whose antecedent expresses A
and consequent expresses B. In order to address the second question I shall
adopt a relatively standard Bayesian picture according to which the epistemic
state of a rational agent at a time and world w is represented by a pair consisting
of a probability function Pr and an accessibility relation E. Pr represents the
agents initial probability function, sometimes called a ‘prior’ or an ‘ur-prior’.7

E represents their evidence at t at each possible world by mapping each world

7Sometimes philosophers use the word ‘prior’ to represent an agent’s credences before they
have undergone some episode but in which they are still informed about some matters. This
is not how I am using it – by an ‘ur-prior’ I mean the credences of a completely uninformed
agent.
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x to the agents total evidence at x, E(x) = {y | Exy}. In order to determine
what that agent’s informed credences are at a time, t and world w, assuming
she is rational, we condition the agent’s ur-prior on her total evidence at t and
w: if Pr is her ur-prior and E(w) her total evidence at w and time t then her
credence at t is Pr(· | E(w)) if she is rational. My conditional credence of B on
A at t is therefore just Pr(B | A ∩ E(w)). The revised thesis says that this is
just identical to my credence in A →E B at t: Pr(A →E B | E(w)). Thus the
precise statement of the thesis is

CP Pr(A →E B | E(w)) = Pr(B | A ∩ E(w)) for every rational ur-prior Pr,
evidence E and world w.

Here E(w) is the agents total evidence at possible world w. Simplifying by
writing CrE for my credences at w with evidence E (i.e. CrE(·) = Pr(· | E(w)))
we get the informal thesis mentioned above.

Of course the appeal to ur-priors is controversial and questions about their
status are important, however I shall not delve into those issues here. I expect
the thesis to be formulable without them, however the presentation of the prin-
ciple CP in terms of them is particularly simple and will be easy to use in what
follows.8

1.1 Evidence

The evidence in favour of CP, I claim, is exactly the evidence usually adduced in
favour of Stalnaker’s thesis. Stalnaker’s thesis, at least as I have precisified it, is
more general: it implies, for example, that if I express a proposition, p, with an
utterance of an indicative conditional relative to my evidence, and you were to
evaluate this proposition by your evidence you would assign it the conditional
probability of the consequent on the antecedent. It is here that the two theories
diverge.

To prize apart the two theses, then, we have to consider a case where the
evaluator’s evidence and the contextually salient evidence are distinct. Thus
we want a probability judgment associated with a conditional utterance made
in a context other than your own. The problem is this: when you hear an
assertive utterance of a conditional your evidence usually changes in such a way
that your evidence matches, in the relevant matters, the person who is making
the utterance. In these cases the evaluator’s evidence and the contextually
salient evidence are not so different after all. Thus getting concrete judgments
of probability about the propositions expressed by people who have different
evidence than you do is a hard task; we shall have to be a bit more indirect than
that. At the same time this point is one of the principal virtues of the theory I
am proposing – Stalnaker’s thesis only seems to be generally true because the
cases that appear to confirm it are the special cases in which it is true. The

8For example, if you can make sense of a credence function being ‘rational to have when
your total evidence is E’ you can just stick to the informal version of CP that does not invoke
ur-priors.

6



contextually salient evidence and the evaluators evidence are almost always the
same, so the cases that disconfirm Stalnaker’s thesis are hard to come by.

I’ll start by showing that the judgments that motivate Stalnaker’s thesis are
really instances of CP. Then I will try and show, indirectly, that probabilities
of conditionals and conditional probabilities come apart when the evaluator’s
evidence and the contextually salient evidence are different.

Let us begin with a typical example of a probability judgment involving an
indicative conditional. Suppose that Alice and Bob know that there was a small
chance a given fair coin was flipped earlier today. Alice asks Bob how probable
he thinks it is that it landed heads if it was flipped, and he answers that it
is a half since all they know is that the coin is fair. Their evidence here is
incomplete: neither of them know whether the coin was flipped or whether it
landed heads or tails if it did. On the other hand, they both know that there
is a coin, that it’s fair and so on. Thus it is this knowledge that determines
both which question is asked when Alice utters the question ‘how probable do
you think it is that the coin landed heads if it was flipped?’, and also how likely
Bob will find the answer to be. Since the contextually salient evidence and the
utterer’s evidence are the same, CP delivers the verdict we predicted.

Matters change somewhat when the questioner knows something the ques-
tionee doesn’t. Let’s suppose that both Alice and Bob know that Alice will be
informed if the coin is flipped and it lands tails and that otherwise she will not
be informed. Then there are two cases to consider. If she is not informed Alice
can reason that, although she doesn’t know whether the coin was flipped, it’s
not the case that it was flipped and landed tails. So she truthfully concludes
that if the coin was flipped it landed heads. Bob can see this and surmises that:

Case 1: The proposition expressed in Alice’s mouth by ‘if the coin was flipped it
landed heads’ is true in cases where she’s not informed.

On the other hand, if she is informed that the coin was flipped and landed tails
the sentence ‘if the coin was flipped it landed heads’ is obviously false in her
context.

Case 2: The proposition expressed in Alice’s mouth by ‘if the coin was flipped it
landed heads’ is false when she is informed.

These are, at least, the truth values these two utterances would have in the
respective scenarios if they had truth values at all.9 Furthermore, according to
the contextualist framework outlined earlier, the proposition expressed by Alice
will be the same in both scenarios. Even though the proposition that constitutes

9There seems to be a straightforward analogy with the Gibbard cases that are sometimes
taken to motivate contextualism. The crucial difference is that these two utterances are
made in different worlds, relative to the same agent’s evidence whereas the Gibbard cases
the utterances are made in the same world relative to different agent’s evidence. Thus unlike
Gibbard cases we have no trouble accounting for the different truth values of these utterances
(they are made in different worlds where the facts are different) and moreover, since it is
Alice’s evidence at the time of utterance, t, that is salient in both scenarios, it is natural to
think that the two utterances express the same proposition.
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her evidence at t is different in the two contexts, the salient accessibility relation,
which tells us what her evidence at t is in each case, is the same. So according
to a popular contextualist theory, which relativises the proposition expressed to
an accessibility relation (sometimes called a modal base), rather than a salient
proposition, Alice will have said the same thing in both cases. This point is
crucial because it means that Bob can know what Alice has said, even if he does
not know what she actually knows – he knows that in the first type of scenario
Alice’s evidence at t will include the fact that she hasn’t been informed, and
that in the second type of scenario the evidence that the coin was flipped and
landed tails.10 Call the proposition expressed in both cases p.

Here it seems as though when Alice outright asserts ‘if the coin was flipped it
landed heads’, she is reporting something about her knowledge, not about what
is common knowledge between them: since Bob doesn’t have this information,
she communicates something useful by uttering this conditional.11 Unfortu-
nately, for this very reason, we cannot get clean intuitions about what Bob’s
prior credence is in the proposition Alice asserted, because what he will report
is his credence after he’s heard the utterance and updated on what’s been said.
However we can still ask him to consider, before he’s heard anything, how prob-
able it is that an utterance of that sentence would be true, were it to be made
by Alice.

Here is how he reasons. Either Alice was informed that the coin was flipped
and landed tails or she wasn’t. If she’s not informed (i.e. case 1 above) then,
p, the proposition she would have asserted if she’d uttered the conditional, is
true. If she was informed that the coin was flipped and landed tails (i.e. case 2)
p is false. Thus he knows that p is true if and only if she was not informed, and
this happens if and only if the coin was not flipped or it was flipped and landed

10It is a common misconception about contextualism that it involves pervasive ignorance
about what the speaker is saying (see Gibbard [10] p232-234, and Stalnaker p110-111 [34] for
example.) There is an alternative contextualist view that is susceptible to this charge. The
alternative view uses a contextually salient proposition, rather than a contextually salient
accessibility relation, to determine what is said. On this view what Alice said in the two
scenarios was distinct. Moreover, a natural contextualist account (a variant of Harper’s
Condition below) implies that when the contextually supplied evidence entails A ⊃ B the
corresponding indicative expresses a necessary proposition, and when it entails A ∧ ¬B the
indicative expresses an impossible proposition. Thus we get the puzzling consequence that in
the first case Alice said something necessarily true, and in the second case she said something
necessarily false.

This alternative view is described, for example, in van Rooij [38], although van Rooij finds
an alternative way to make sense of communication in this setting. The idea, by analogy,
is that if you hear Fred utter the sentence ‘I am hungry’, but you do not see who made the
utterance, you do not know what has been said (that Fred is hungry) but you may still update
your beliefs on a proposition determined by the Kaplanian character and conclude that the
speaker of the context is hungry. Thus even when there is ignorance about what has been
literally said communication is still possible.

11That we use the speaker’s knowledge, and not the mutual knowledge, in these cases is
also crucial for solving the Sly Pete cases in Gibbard’s [10]. Note that there may still be some
cases where two speakers have unequal evidence, yet it is only the mutual knowledge of the
participants that determines what is said. This kind of flexibility regarding what evidence
to use is widely acknowledged (see, for example, the discussion in chapter 4 of Kratzer [19].)
This phenomenon is also present with epistemic modals.
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tails. Thus the probability of what the conditional says in Alice’s context is just
the probability that either it wasn’t flipped or it was flipped and landed tails
(i.e. the material conditional.) Since there was only a small chance that it was
flipped, Bob’s credence in this disjunction is high, and not identical to one half.
Stalnaker’s thesis predicts that Bob’s credence in p should be a half, CP does
not.

The above is an attempt to get a direct probability judgment regarding a
proposition expressed by a conditional relative to a context that has different
information to that of the judger. Such examples are hard to come by, and are
certainly harder to evaluate. Let me now try and show that Stalnaker’s thesis
fails by calculating these probabilities indirectly.

Suppose that both Alice and Bob know that a car, with some unknown
amount of gas, is to be driven in a straight line until it runs out of gas.12 While
they do not know how much gas is in the car, they know that it will run anywhere
between 0 and 100 miles and then stop. Both Alice and Bob begin with evenly
distributed credences regarding how far the car travelled – suppose they in fact
have exactly the same credences, represented by the function Pr. Alice then
goes out and checks the last 30 miles of the road. The car is not there and she
concludes that the car didn’t travel more than 70 miles – her credences are now
represented by the function Pr(· | E≤70), where E≤70 is the proposition that
the car travelled at most 70 miles. Bob does nothing and his credences remain
the same at Pr.

Now Alice and Bob both consider the following conditional in their respective
contexts:

If the car went at least 50 miles it went exactly 60 miles.

Since there is more evidence available in Alice’s context than in Bob’s it follows,
given Contextualism, that the propositions expressed by Alice and Bob are
(at least potentially) different. Call the propositions expressed by Alice and Bob
A and B respectively. If we were to ask Alice and Bob to report their credences
in the above conditional it seems clear that Alice would report her credence in
A and Bob would report his credence in B, and not vice versa. CP predicts
the intuitively correct result that these two verbal reports will match Alice and
Bob’s respective conditional credences: when Alice evaluates A the evaluator’s
evidence and the contextually salient evidence are the same, and similarly when
Bob evaluates B.

Let us run through this idea explicitly for Bob’s judgment. Bob doesn’t
know how far the car went: for him there are 50 possibilities where the car went
at least 50 miles, and in only one of them did the car go 60 miles. Intuitively
he judges the probability of the above conditional to be 1

50 . Since ‘B’ was the
name introduced for whatever proposition Bob is judging in his context, Bob’s
judgment corresponds to:

1. Pr(B) = 1
50

12I take this example from Edgington [8], although she uses it for different purposes.
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Not coincidentally 1
50 is also his conditional credence, and this is exactly what

CP predicts. Analogous things can be said about Alice’s credence in A.
Stalnaker’s thesis also predicts this. However Stalnaker’s thesis, as I’ve pre-

cisified it, predicts much more – it also predicts that Alice’s credence in B (not
just in A) should match her conditional credences, and that Bob’s credence in
A (not just in B) should match his conditional credences. This is not predicted
by CP since when Alice evaluates B the contextually salient evidence is Bob’s
evidence not Alice’s, and similarly for when Bob evaluates A. Neither of these
extra predictions of Stalnaker’s thesis are substantiated by a verbal report, and
moreover, I shall now argue, the predictions are incorrect. I shall argue that if
Bob’s credence in B is his conditional credence of 1

50 , as suggested by his verbal
reports, then Alice’s credence in B isn’t her conditional credence. (A parallel
problem could be raised for the prediction that both Alice and Bob’s credence
in A must be their conditional credences.)

Since Alice knows the car went at most 70 miles, her conditional credence
that the car went 60 given it went at least 50 is 1

20 . Thus if Alice’s credence in
B were her conditional credence then:

2. Pr(B | E≤70) = 1
20 (Alice’s credence in B is her conditional credence.)

Note that 2 is not motivated by an intuitive judgment in the same way that 1
is, since it is A, not B, that Alice would evaluate if she were to consider the
above conditional.

Here is the problem: 2 must be false if 1 is true, for they are jointly in-
consistent. Unluckily, Stalnaker’s thesis predicts both. Note that by 2 Pr(B |
E≤70) = 1

20 . Also since Bob’s credences were uniform his credence that the car
went at most 70 miles is 7

10 , so Pr(E≤70) = 7
10 . Now by probability theory

we have Pr(B) = Pr(B | E≤70)Pr(E≤70) + Pr(B | ¬E≤70)Pr(¬E≤70). Since
the second summand is positive, and the first we have calculated we know that
Pr(B) > 1

20 .
7
10 . Yet 1

20 .
7
10 >

1
50 contradicting 1.

Unfortunately for Stalnaker’s thesis it predicts both 1 and 2 which we have
shown to be jointly inconsistent. Yet it is clear that it is only 1 that corresponds
to our intuitive judgments about probabilities; CP predicts 1 but not 2 and thus
fits the bill perfectly.

1.2 Other Approaches

It is worth noting that despite the impossibility results there has been a number
of attempts to resurrect Stalnaker’s thesis in some limited form (see the two
constructions in van Fraassen [37], McGee [22], Jeffrey [16], Stalnaker and Jeffrey
[27], Kaufmann [17], Bradley [5].)

To simplify discussion, we can divide these attempts into two classes: those
that place some restriction on the kinds of sentences for which a variant of
Stalnaker’s thesis holds, and those that don’t. In fact all but one of the listed
approaches falls into the former class, leaving only the first construction given
in van Fraassen’s [37] providing us with an unrestricted version of Stalnaker’s
thesis.
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One thing to highlight about the present results, that distinguishes them
from the results in the former class, is that CP applies to all propositions A
and B, without any restriction on what kinds of iterations of conditionals are
allowed. A common sticking point for the former proposals is to account for
the probability of nested conditionals, especially conditionals with conditionals
in the antecedent place in a way that is consistent with the connection to con-
ditional probability.13 While iterated conditionals are not as commonplace in
ordinary discourse, it is just as important to account for them. For one thing,
it is not clear that a syntactic restriction can rule out the instances of CP that
these theorists find problematic. Consider (1) and (2):

If it breaks without significant deformation if it is subjected to
stress, it is not a suitable material

(1)

If it is brittle it is not a suitable material (2)

Firstly note that (1), while an iterated conditional, is a perfectly reasonably
thing to say – iterated conditionals are not a mere curiosity but a proper part
of English. Secondly, even if (1) were improper (it is certainly harder to parse)
the antecedents of (1) and (2) plausibly express the same proposition and (2) is
certainly not improper; indeed (2) is a simple conditional. It therefore doesn’t
seem plausible that a purely syntactic distinction, such as the distinction be-
tween nested and simple conditionals, could carve out a significant epistemolog-
ical distinction; after all (1) and (2) fall on different sides of the distinction yet
plausibly they are semantically, and presumably epistemologically, of the same
kind.

A more direct argument can also be given for including iterated conditionals
within the scope of CP. Consider the following scenario:

Suppose you have ten numbered vases, three are shatter-proof and
the remaining seven are fragile enough to break if dropped. You
also you know that two of the fragile vases are priceless, however
you don’t know which of the vases are priceless or fragile. Suppose
also that there has recently been an earthquake and there is a chance
that some of the vases have fallen from their shelves onto the floor.

How confident should you be that vase number eight is priceless if it was one
of the vases that broke if it was dropped? The intuitive answer is calculated as
follows: there are seven vases that will break if dropped. Furthermore, we know

13McGee, Jeffrey, and Jeffrey and Stalnaker allow compounding in the consequent but not
in the antecedent (e.g. Jeffrey writes ‘Like McGee’s treatment, this one allows compounding
in the consequent (‘If A, then if B then C’) but not in the antecedent’, see also Stalnaker and
Jeffrey’s ‘Generalized Adam’s Thesis’ which restricts attention to conditionals with categori-
cal antecedents.) Van Fraassen’s second construction (the ‘Stalnaker-Bernoulli model’ in §4)
allows for conditional antecedents and consequents provided these conditionals do not them-
selves contain conditional antecedents and consequents; this issue is inherited in Kaufman’s
approach. Bradley expresses optimism regarding the prospects of extending his approach to
iterated conditionals, although whether this is possible remains an open question. Such ap-
proaches typically argue that such conditionals aren’t evaluable anyway, or at least, that they
shouldn’t be evaluated by conditional probabilities.
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that out of those only two are priceless, so the proportion of priceless vases out
of those that broke if they were dropped is intuitively 2

7 .
The proposal that comes closest to this one, then, is the first construction

found in van Fraassen’s paper (see §3.) Given a probability measure with cer-
tain nice properties, this construction will produce a model in which Stalnaker’s
thesis holds for arbitrary conditionals, including those with conditionals embed-
ded arbitrarily deep in the consequent and antecedent. Unlike CP, however, this
construction does not explicitly provide an account of the dynamics of condi-
tional belief: if you give it your credence function at time t, the construction
will output a model of the conditional that satisfies Stalnaker’s thesis relative
to this single probability function, but it doesn’t explicitly account for what
happens as you learn new things and your credences change. That said, there is
a natural way to incorporate van Fraassen’s theory into a contextualist theory
resembling CP, and that is to simply rerun the construction on the updated
credence to provide a new interpretation of the conditional. On this construal
the connective that is expressed by an indicative sentence in a context depends
on a probability function supplied by the context (presumably the speakers
credences.)

It is worth comparing this idea to the now prominent version of contextual-
ism in linguistics according to which the proposition expressed by a conditional
sentence depends on a contextually supplied ‘modal base’.14 For our purposes
this can simply be modeled by an accessibility relation, which maps each world
to a set of accessible worlds representing (something like) the total evidence
available in the utterance situation at that world. In one regard, the modal
base contains far less information than a probability function – given a world,
the modal base merely tells you which possibilities are left open by the evi-
dence at that world, and says nothing about how probable those possibilities
are. There does not appear to be an independently motivated reason to think
that two conditional utterances, made when the same epistemic possibilities
are open, could express different propositions due to a small difference in how
probable these possibilities are. This seems like a fairly radical form of context
sensitivity, whereas the dependence on a modal base is much more modest and
independently evidenced.

While CP integrates neatly with this kind of theory, van Fraassen’s construc-
tion doesn’t. Firstly, the modal base has a far reaching conversational role in
those theories that extends well beyond the contribution they make to condi-
tional assertions, and this role is perfectly well captured using a modal base and
not a probability function. Secondly the modal base is sometimes supposed to
represent the pooled evidence of the conversational participants; to apply this to
credences would require solving the problem of credence aggregation (a difficult
problem – see [24].)

There is another way in which van Fraassen’s construction involves accepting
more context sensitivity than contemporary contextualism does. Consider again

14There are, of course, lots of variants and different terminologies, but the basic point I am
making remains unchanged in these variants.
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the example in which Alice is informed at t if a coin was flipped and landed
tails, but is otherwise not informed. Her credences at t in the two cases will
be different, so according to van Fraassen she will end up saying distinct things
by the conditional ‘if the coin was flipped it landed heads’ depending on her
credences. Thus in van Fraassen’s model Bob will not know what Alice has
said with the conditional since he does not know whether she was informed or
not. This point holds even if we assume, implausibly, that Bob knows exactly
what Alice’s credences would have been in two different scenarios. A better
model would treat the locus of context sensitivity as a function from worlds
to probability functions, intuitively mapping each world to Alice’s credences at
that world. On this model Bob would know what Alice had said even if he
didn’t know whether she’d been informed (assuming he knows exactly what her
credences would be like in the two scenarios).

The formalism I have adopted is more like the latter model, except that I
am using something less fine grained that a function from worlds to probability
functions. A modal base is effectively a function mapping each scenario to
a proposition – Alice’s evidence at t in that scenario. In both scenarios the
contextually salient modal base will be the same and Alice will assert the same
proposition by uttering a conditional sentence at t in either scenario – informally
the context sensitivity isn’t due to which proposition actually constitutes her
evidence at t, it’s due to her evidence at t whatever it might be. For Bob to
work out what has been asserted by a conditional utterance at time t all he
needs is the function that maps each world to the utterer’s evidence at t at that
world. Thus, presumably, all he needs to know is who is speaking at what time
in that context – he does not need to know what the speaker’s evidence is.

Other issues are more specific to van Fraassen’s construction. The interpre-
tation of a conditional, on his approach, is generated by assigning conditionals
subsets of the unit interval (or any space that is ‘full’ – see [37] for definitions)
that have the right size as semantic values. Accordingly the semantics is highly
non-standard and it is consequently not consistent with orthodox possible world
accounts of conditionals (it cannot, for example, be represented by a selection
function, as van Fraassen notes.) One puzzling aspect of the semantics is that
conditionals of the form A→ Bi can all be true, for a consistent A and a count-
able collection of propositions Bi, even when the Bi are jointly inconsistent.
This is reminiscent of an objection to Lewis’s semantics for counterfactuals,
which predicts that, for each ε > 0, if I had been taller than 2 meters, I’d have
been strictly between 2 and 2 + ε meters (given that in the actual world I’m less
than 2 meters tall, which I am!) Since it is incoherent to suppose that someone’s
height is strictly between 2 and 2 + ε meters for every ε > 0, one might think
that it is impossible for me to be taller than 2 meters, but this is clearly not
an impossibility (see Herzberger [15], and also Fine [9] who makes this problem
quite vivid.15)

15Another difference between my approach and van Fraassen’s is that his logic, CE, is slightly
weaker than mine. For example, the unary operator defined by the conditional ¬A → A,
expressing a kind of epistemic necessity, cannot be proved to be a normal modal operator
in CE. More importantly, van Fraassen’s construction validates modus ponens in the initial

13



2 The RandomWorlds Semantics for Indicatives

Our first order of business is to be a bit more precise about what counts as a
model for CP. Here I will be concerned with outlining a natural logic of condi-
tionals, and providing a selection function semantics for it. Those interested in
the philosophical interpretation of this semantics can skip to the next subsection.

We want a class of connectives, →E , that not only supports CP but also
has a reasonable conditional logic. Of particular interest is the connective →E

obtained where the relevant evidence is tautologous – i.e. when E relates ev-
ery world to every other world. I’ll call this the ‘ur-conditional’. When E is
tautologous I shall omit the subscript altogether and I’ll simply write A→ B.

We shall work within a modal propositional language, L, consisting of the
usual truth functional connectives, ¬ and ⊃, from which the other truth func-
tional connectives are definable, and a special binary modal connective repre-
senting the ur-conditional, →. I shall adopt the ordinary definitions of ∧,∨,⊥
in terms of ⊃ and ¬. I shall also adopt the following shorthands:

A ≡ B := (A ⊃ B) ∧ (B ⊃ A)

A↔ B := (A→ B) ∧ (B → A)

2A := (¬A→ ⊥)

To increase readability, as is typically done in probability theory, I shall fre-
quently shorten A ∧B to AB.

My focus will be on the theory which I’ll call L. L can be axiomatised by
closing the following axioms under modus ponens (for the material conditional
⊃), the rule of uniform substitution and the rules RCN and RCEA.

RCN if ` B then ` A→ B

RCEA if ` A ≡ B then ` (A→ C) ≡ (B → C)

CK (A→ (B ⊃ C)) ⊃ ((A→ B) ⊃ (A→ C))

ID A→ A

MP (A→ B) ⊃ (A ⊃ B)

CEM (A→ B) ∨ (A→ ¬B)

C1. (A→ B) ⊃ ((B → ⊥) ⊃ (A→ ⊥))

The first three principles correspond to a basic conditional logic, entitled CK
(usually context will distinguish the logic from the principle CK.) This logic
is common to pretty much all possible world approaches to conditionals and
is in this sense analogous to the weakest normal modal logic K (indeed CK
ensures that the unary modal operator A → is normal operator in Kripke’s

context, but when the agent updates her evidence modus ponens can end up failing at some
worlds when the construction is rerun.
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sense.) RCN states that conditionals whose consequents are logical truths are
themselves logical truths. In conjunction with CK this ensures that what’s
true ‘if A’ is closed under classical propositional logic (specifically, CK ensures
it’s closed under modus ponens for the material conditional.) Finally RCEA
ensures that logically equivalent sentences can be substituted in the antecedent
position. From this the intersubstitutivity of logical equivalents in any position
is derivable in CK.

The next two principles should be fairly self explanatory. ID just says that
if A then A. MP, on the other hand, says that indicative conditionals entail the
corresponding material conditional. This is tantamount to saying that→ obeys
modus ponens for the only ways for A→ B to be true while A ⊃ B to be false
would be for A → B and A to be true and B false. Philosophers skeptical of
modus ponens, or indeed any of the other principles, can still take interest in the
tenability results. If CP is consistent with the logic L, it is certainly consistent
with the weakenings of L.

Of particular note are the final two axioms, CEM and C1. The axiom CEM,
short for ‘conditional excluded middle’, is distinctive to Stalnaker’s logic of
conditionals, and constitutes the primary difference between it and a similar
theory due to Lewis [20].

C1 on the other hand governs the behaviour of conditionals that are vacu-
ously true. When we are concerned with indicatives a conditional is vacuously
true when the antecedent is epistemically impossible in the relevant sense. The
only cases in which A → ⊥ is true are cases in which the conditional is vacu-
ously true; in these cases I’ll say that A ‘crashes’. Since we are focusing on the
ur-conditional the only proposition ruled out by your evidence is the contra-
dictory proposition. Thus when → represents the ur-conditional several further
principles are motivated such as C0

C0 (A→ ⊥) ⊃ ((B → C) ≡ (A ∨B → C))

If A crashes, then A is inconsistent so A ∨ B and B ought to be equivalent
and thus ought to conditionally imply the same propositions. (It is not entirely
clear to me whether C0 is valid when the ur-conditional is replaced by →E for
arbitrary evidence E so I leave that open in what follows.) It is worth noting
that the system that results from replacing C1 with C0 in L has C1 as a derived
theorem. C0 is therefore strictly stronger than C1.

Furthermore, if the only proposition that crashes is the inconsistent propo-
sition then we should expect the defined operator 2 (‘¬A crashes’) to iterate in
accordance with the modal logic S5. In particular we want:16

4 (A→ ⊥) ⊃ (B → (A→ ⊥))

B A ⊃ (A→ ⊥)→ ⊥

Neither of these principles are motivated when→ is substituted for conditionals
expressed by agents with evidence. If we were to define a 2E operator as

16The particular formulations of these principles are due to Cian Dorr. Given our definition
of 2 they are provably equivalent to the principles 2A→ 22A and A→ ¬2¬2A respectively.
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¬A→E ⊥, this would express some kind of epistemic necessity which may not
iterate in the way predicted by 4 and B.

Natural analogies between L and Stalnaker’s logic C2 can be drawn. The
most salient difference is that this logic does not have the theorem

CSO (φ↔ ψ) ⊃ ((φ→ χ) ⊃ (ψ → χ))

Indeed adding CSO to L collapses the logic into Stalnaker’s, so in this sense
we can think of L as what you get by removing CSO from C2. In my view
this is a benefit of the present account: CSO has been subjected to a number of
counterexamples (see Tichỳ [35] (and the variant discussed by Stalnaker in [34]),
Maartenson [21], Tooley [36] and Ahmed [2]) and is also responsible for some of
the triviality results (see Stalnaker [30] and Hájek and Hall [11].) However this
is not the venue for a full defence of this feature of the logic so I shall put it to
one side for now.

A frame for a conditional logic is a pair 〈W, f〉 where W is a set of worlds
and f : P(W )×W → P(W ) – f is called the ‘selection function’. A model is a
pair 〈F , J·K〉 where F is a frame and J·K maps propositional letters to subsets of
W . J·K extends to a function from the rest of L to P(W ) as follows:

• J¬φK = W \ JφK

• Jφ ⊃ ψK = (W \ JφK) ∪ JψK

• Jφ→ ψK = {w | f(JφK, w) ⊆ JψK}

A sentence, φ, is true in a model 〈W, f, J·K〉 iff JφK = W , and is valid on a frame
iff it’s true in every model based on that frame, and valid on a class of frames
iff it is valid on every member of that class.

RCEA, RCN and CK are valid on the class of all frames. Combinations of
the remaining principles are validated on the class of frames that additionally
satisfy the corresponding combination of conditions from the below list:

ID f(A, x) ⊆ A

MP x ∈ f(A, x) whenever x ∈ A.

CEM |f(x)| ≤ 1

C1. If f(A, x) ⊆ B and f(B, x) = ∅, f(A, x) = ∅

C0. If f(A, x) = ∅ then f(A ∪B, x) = f(B, x)

In the presence of CEM the selection function always either picks out a singleton
or the empty set. In this case we can modify the semantics to conform with
Stalnaker’s original [28] semantics so that f maps us from a world, w, and a
set of worlds, A, to a single possible world (namely x if f(A,w) = {x} in the
general semantics) or the unique impossible world # (if f(A,w) = ∅) in the
general semantics) at which every sentence is stipulated to be true. In certain
circumstances it will be useful to translate between Stalnaker’s semantics and
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Chellas’s slightly more general semantics which allows for more than one world
to be selected.

If we want to guarantee 4 and B as well, one can stipulate that

f(A, x) = ∅ only if A = ∅.

This of course encodes the principle that A crashes only if it’s the inconsistent
proposition. This condition automatically ensures C0 and (thus) C1.

So much for the ur-conditional. What of the conditionals →E when E rep-
resents substantial evidence? We shall use fE to represent the selection func-
tion for this conditional where E is an accessibility relation corresponding to
some evidence. Finally, given a world x, E(x) will be used to represent the set
{y | Exy} (the function x 7→ E(x) from worlds to propositions is sometimes
called a ‘modal base’.) A very natural thought would be simply to define fE in
terms of E and the ur-selection function as follows:

fE(A, x) = f(A ∩ E(x), x)

This has the effect of guaranteeing that the truth value of an indicative con-
ditional, ‘if A then B’, in a context is a function of the epistemically possible
A-worlds in that context (where the epistemically possible worlds are just those
consistent with the contextually salient evidence E.) It is worth noting that
defining A→E B this way preserves all of the axioms of L except, possibly, for
MP. If we further stipulate that E is reflexive – as indeed it probably should be
given it represents knowledge or mutual knowledge– then MP holds.

As we shall see, only the first of the two models makes the above identifica-
tion. This concludes our discussion of the constraints on the selection function.
The following definition will be useful in what follows:

Definition 2.0.1. Given a frame 〈W, f〉, say that the selection function is reg-
ular if it satisfies the frame conditions for the logic L.

A selection function is normal if it is regular and f(A, x) = ∅ iff A = ∅.
Frames based on normal selection functions validate B, 4 and C0 in addition to
the principles of L.

2.1 Conditional Excluded Middle

How should one understand the above semantics, and in particular, what does
the selection function intuitively represent? The interpretation initially given
to the selection function by Stalnaker in [28] was that f(A, x) picks out (the
singleton of) the closest world to x in which A is true, where closeness is de-
termined by some measure of similarity between worlds. This interpretation
initially attracted a lot of criticism. For one thing, it requires that there be a
unique closest A-world to x when the relevant notion of closeness seems to de-
termine no such thing – any ordinary ordering of similarity would allow for ties
or infinite descending chains of ever closer worlds. Another issue is that it is not
clear what the relevant notion of closeness is when we are trying to evaluate in-
dicative, as opposed to subjunctive, conditionals. Many have the intuition that
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indicative conditionals are in some sense epistemic and conclude that, since the
notion of closeness relevant for evaluating subjunctives is irrelevant here and no
epistemic notion is forthcoming, indicatives should not be analysed in terms of
closeness.

Lewis’s response to the first objection – that there might not be a unique
closest world – in the case of subjunctives, is to relax the constraint that the
selection function pick out a unique world. In terms of the constraints listed
above this means relaxing the constraint that |f(A, x)| ≤ 1. Accordingly, f(A, x)
must be allowed to pick out a set of closest worlds without any assumption that
there must be at most one of these.17 Unfortunately this has the knock on
effect of invalidating CEM.18 Lewis was primarily concerned with subjunctive
conditionals, and subjunctive instances of CEM are often controversial for good
reason. When we are concerned with simple past tense indicative sentences,
however, CEM appears to be much harder to deny. Contrast:

1. Either the coin would land heads if it were flipped or it would land tails.

2. Either the coin landed heads it if was flipped or it landed tails.

While the former is disputable, the latter surely isn’t (assuming we are not
taking seriously the possibility that the coin could do anything other than land
heads or land tails.19) Of course, Lewis himself does not apply his own brand of
‘closest world’ style semantics to indicative conditionals – my point is just that
there are very good reasons not to relax the condition that |f(A, x)| ≤ 1 in the
case of simple past indicatives.

Much has been said on this, and I do not want to adjudicate between the
various responses Stalnaker and others have put forth in favour of this interpre-
tation. I will say one thing, however. One question we have been considering
concerns whether there is always a unique closest A-world, and indeed whether
it is even appropriate to use the notion of ‘closeness’ in the semantics of indica-
tive conditionals. Another very different question asks whether CEM is valid for
past tense indicatives. There is no reason to think that an answer one way or the
other to the first question should determine our answer to the second, especially
if indicative conditionals are not to be analysed in terms of closeness. There
is consequently no reason why indicatives cannot be modeled using a selection
function semantics that validates CEM, provided the selection function is not

17To properly represent Lewis’s semantics we’d have to go beyond the simple selection
function semantics described in this section, since Lewis’s semantics allows for failures of the
limit assumption.

18If f(JAK, x) = {y, z}, y 6= z and JBK = {y} then x belongs to neither JA → BK nor
JA→ ¬BK.

19Some indicatives don’t behave like this: indicatives with ‘will’ in the consequent are known
to behave a lot more like subjunctive conditionals. I don’t want to include habitual indicatives
either – sentences phrased in the simple present such as: ‘if the window is left open, Granny
jumps out’. Even the instance ordinary excluded middle ‘Granny jumps out of the window
or Granny doesn’t jump out of the window’ sounds non-trivial, and this is probably because
we read it as saying that either Granny usually jumps out or she usually doesn’t. Thus
sentences in the simple present can’t straightforwardly be taken to represent counterexamples
to excluded or conditional excluded middle.

18



analysed in terms of closeness. (Indeed, you might take the fact that a similarity
based semantics ties an intuitively correct principle to an implausible principle
about similarity is a powerful argument against this kind of semantics.)

How to interpret the selection function then? Assume, with Stalnaker, that
|f(A, x)| ≤ 1. Then a more neutral way of putting things would be as follows:

There are a bunch of indices which describe the different possible way
things are for all you know, one of which describes the way things actually
are: x. f(A, x) then simply represents the way things are if A.20

Of course, for Stalnaker, the world that would have obtained if A had obtained
just is the closest world at which A obtains (and similarly for indicatives.) But
this identification is not forced on us, and one can still say everything we want
to say about the semantics of conditionals by interpreting the selection function
in the more neutral way.

A potentially illuminating way to think of the selection function is as picking
out an antecedent world at random from the epistemically accessible worlds.21

In Stalnaker’s theory a world is selected from the accessible antecedent worlds
with an overriding preference for more similar worlds. On my understanding,
however, the selection process has no preference for more similar worlds: we can
think of it as having a preference for worlds that are more probable on the evi-
dence, but this preference is not overriding but proportional to the probability.

The idea of randomly selecting a world is clearly a metaphor and not intended
to provide a reductive analysis of conditionality. There are clearly many ways
to select something randomly. You could picturesquely imagine God rolling a
die to determine which world to select. This is not what I mean, the process
of random selection is irreducibly conditional in nature. One way to randomly
select a member of the set {Heads, Tails} would be to take a coin out of your
pocket and flip it or spin it. Another way would be to leave the coin in your
pocket and instead talk about the side that landed face up if it was flipped at t;
this will in some sense pick out one side at random. Here the process of random
selection is partially determined by the antecedent (it’s going to be a flipping
rather than a spinning of the coin, for example) but the conditional morphology
was essential to describing the process.

2.2 The Triviality Results

There are, of course, numerous triviality results affecting variants of Stalnaker’s
thesis. These typically come in two flavours: dynamic and static. Dynamic
triviality results leave it open whether there could be a rational agent whose
credences in conditionals always match their conditional credences. What they
show is that if your credences are matched in this way, this will be disrupted
upon changing your credences to accommodate new evidence. Static results, on

20For subjunctive conditionals we can say that f(A, x) represents the way things would have
gone (at x) had A obtained.

21Moritz Schulz [26] defends something like this interpretation of counterfactuals.
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the other hand, show that no rational agent could be in that kind of state in
the first place.

Note that CP is designed to integrate straightforwardly with a standard
Bayesian theory according to which one always updates one’s beliefs by condi-
tionalisation. The dynamic triviality results, however, fail to get a hold in our
setting. CP predicts that if my total evidence is E my credence in A →E B
must be my conditional credence – however the thesis is simply silent about
my credences in A →E B once my evidence has changed from E to something
stronger such as E+. (Although, of course, there will be another instance of CP
for the conditional A→E+ B.)

More troubling are the static triviality results, for these purport to show that
one cannot ever satisfy the conditional probability equation. One class of static
triviality results rely on principles distinctive to Stalnaker’s logic. For example,
in [11], it is shown that the principle CSO mentioned above causes trouble with
Stalnaker’s thesis if we take it to govern conditionals that contain conditionals
embedded in certain ways within the antecedent.

The validity of CSO corresponds to the following constraint on selection
functions:

CSO If f(A, x) ⊆ B and f(B, x) ⊆ A then f(A, x) = f(B, x)

This validates the principle CSO which would have the effect of collapsing the
logic L into Stalnaker’s logic C2. CSO is guaranteed on a similarity based
semantics: if the closest A-world is a B-world and the closest B-world is an
A-world then the closest A-world is the closest B-world. On the random world
interpretation of the selection function, however, no such constraint exists and
CSO is invalid. The randomly selected A world might be a B world and vice
versa, but there is no guarantee that the very same world will be selected except
in the special case where there is only one accessible world at which both A and
B are true. Thus these static triviality results hold no sway for the present
account of conditionals.

Related principles of conditional logic also give rise to static triviality results.
Indeed all of the principles below can be shown to cause problems analogous
to the one that CSO poses (RCA, for example, is shown to be problematic in
Edgington [7]):

CA ((φ→ χ) ∧ (ψ → χ)) ⊃ (φ ∨ ψ → χ)

RCA (φ ∨ ψ → χ) ⊃ (φ→ χ) ∨ (ψ → χ)

CM (φ→ ψ) ⊃ ((φ→ χ) ⊃ (φ ∧ ψ → χ))

RT (φ→ ψ) ⊃ ((φ ∧ ψ → χ) ⊃ (φ→ χ))

These principles are all closely related to CSO and are validated in the similarity
semantics. Indeed, given my preferred logic L, each of the above principles is
provably equivalent to CSO except for RCA which is equivalent if you assume
C0.22 Unsurprisingly they are all invalid in the random world semantics.

22The proofs of these equivalences are in [3].
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Despite the fact that these principles are strictly speaking invalid, it is worth
pointing out that they enjoy a kind of pragmatic validity. For if an agent’s
evidence is contextually salient when the conditionals are uttered the agent will
find the conclusions probable if the premises are sufficiently probable – a fact
that is a straightforward consequence of CP.23

Before we move on it is also worth noting that there are existing results that
get the above logical principles and a restricted version of Stalnaker’s thesis at
the same time by restricting the thesis to simple conditionals in which certain
iterations of conditionals in the antecedent are banned (see van Fraassen [37].)
If one finds restrictions like this at all attractive (I do not) it is also worth
noting that the results in appendix 4 show a symmetrical result: that one can
have Stalnaker’s thesis in full generality – i.e. with no such restrictions – with
a restricted form of the above inferences instead. That is to say, one can have
CSO and its relatives provided we restrict the sentences occurring in antecedent
position of the above inferences, φ and ψ, to sentences that do not themselves
contain conditionals.

There is another class of static triviality results that I must address. These
results do not rest on principles of conditional logic, but rather show that the
thesis is not satisfiable in models in which there are only finitely many worlds
(Hájek [12]) or even in models in which there are countably many worlds (Hall
[13].) In short, to satisfy CP one needs uncountably many worlds.

Let us begin with Hájek’s result. This can be demonstrated with a fairly
simple example: imagine that we just want to model the roll of a dice whose
outcome we are ignorant about. Intuitively you might think that we could model
this with exactly six equiprobable worlds representing each possible outcome.
The problem with this is that if you want a thesis like CP then you need to find,
for each conditional probability, a proposition with that probability. However in
a finite model there simply won’t be enough propositions to go around. In the
model described above, for example, every proposition has a probability of the
form n

6 , where n is simply the number of worlds in that proposition. However
the probability that the dice lands on a 6 given it doesn’t land on a 1 is 1

5 which
clearly is not of the form n

6 so there is no proposition with that probability.
Note, however, that the assumption that there are only 6 epistemic possibil-

ities in the scenario described above becomes utterly implausible once we take
conditional propositions seriously. Let us consider the world in which, unbe-
knownst to me, the die landed on a 1. I claim that in this scenario I am not
only ignorant about the outcome of the die roll, but also ignorant about some
conditional facts, such as whether the dice landed on a 6 or whether it landed
on a 5 if it landed on one of 5 or 6. Given CEM we know that even at the
world where the die in fact landed on a 1, the die either landed on a 5 if it
landed on a 5 or a 6 or it landed on a 6. Thus strictly speaking the 1 world
should be split into two epistemic possibilities corresponding to the possibility

23That these principles are probabilistically valid was proved in Adams’ [1]. An inference
is valid in this sense if, roughly, however probable you want to make the conclusion you can
find a threshold such that if the agent finds the premises to be at least that probable she will
find the conclusion at least as probable as the amount you wanted.
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that D1 ∧ ((D5 ∨D6) → D5) and the possibility that D1 ∧ ((D5 ∨D6) → D6)
where Dn is the proposition that the die landed on n.

By considering other conditionals with antecedents that are false at the
world where the die lands 1 you can argue that this world should be divided into
further epistemic possibilities. Moreover, once you have recognised the existence
of these further epistemic possibilities, there are new propositions you can plug
in as antecedents corresponding to arbitrary sets of these epistemic possibilities.
Some of these sets of epistemic possibilities do not correspond to categorical (i.e.
non-conditional) propositions, so intuitively this is like considering the epistemic
possibilities generated from conditionals with conditional antecedents. You can
make the argument rigorous if you wish, but it should, I hope, be clear that
the presence of conditional propositions ensures that in the case described the
number of epistemic possibilities is infinite.

Why must the number of epistemic possibilities be uncountable? This fol-
lows from a fairly natural extension of the previous remarks. For if there are
infinitely many epistemic possibilities, then are uncountably many sets of these
possibilities – that is to say, there are uncountably many propositions. Thus
there are uncountably many antecedents to play around with – for each of un-
countably many propositions, A, we are ignorant about what is true if A. Thus
there are uncountably many things we are ignorant about.

Of course, there is another way of understanding what a ‘world’ is: a max-
imally strong categorical proposition – something which tells us the answers
to ordinary questions like how dice land, but are silent about the hypothetical
facts about what happened if this or that. It would be extremely puzzling if
there was some argument that demonstrated that CP could not be satisfied in
a model with finitely or countably many worlds in this sense of ‘world’. For-
tunately there can be no such argument – the construction in appendix 4, for
example, allows you to start off with a set of worlds of any size (representing
maximally strong categorical facts) and will then construct a model of CP in
which these worlds are split into further epistemic possibilities corresponding to
all the unknown conditional facts.

2.3 The Tenability Results

So far we have just been concerned with the interpretation of the conditional.
In order to model CP we also need to talk about probabilities and evidence.
In particular we need to enrich the frames with a class of probability func-
tions representing the ur-priors, and a set of propositions which represent the
propositions that could, in some possible world, be some agent’s total evidence.

The following definition provides us with a precise framework against which
we can evaluate the truth of CP:

Definition 2.0.2. A probability frame is a tuple 〈W,B, f·,Σ, P, w〉 where

• W is a set of worlds, where w ∈W represents the actual world.

• B is a complete Boolean algebra of subsets of W , containing W , represent-
ing the evidence propositions.
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• f· maps accessibility relations to selection functions. Given E with E(w) ∈
B, fE is a regular selection function on E.

• Σ is a σ-algebra (a set of subsets of W containing ∅ and closed under
complements in W and countable unions.)

• P is a non-empty set of countably additive probability measures over Σ
representing the set of rational ur-priors.

Informally a probability frame provides us with a set of probability measures,
over a measure space 〈W,Σ〉, and also a collection of selection functions, fE ,
relative to the same set of worlds, W , indexed by accessibility relations E.
The final ingredient is a Boolean algebra of propositions, B, that represent
the propositions that could be one’s total evidence (we can then impose the
restriction E(w) is a member of B for each world w.) I leave it open that any
proposition could be a persons total evidence; however there are other natural
constraints on evidence one might consider (see appendix A.)

We are looking for a probability frame that satisfies CP; such frames will be
called adequate:

Definition 2.0.3. A probability frame 〈W,B, f·,Σ, P 〉 is adequate if and only
if

Pr(B | A ∩ E(w)) = Pr({x | fE(A, x) ⊆ B} | E(w)) for every Pr ∈ P ,
A,B ∈ Σ and E with E(w) ∈ B ∩ Σ

It will often be useful to write A ⇒E B instead of {x | fE(A, x) ⊆ B}.
We also adopt the convention of dropping the subscript when E is the vacuous
evidence.

However, in all of the results I prove, I restrict attention to accessibility
relations, E, that are introspective at the actual world. This just means that
if Ewx, E(w) = E(x). This condition would be ensured, for example, if E was
an equivalence relation. However this seems like too strong a condition: if your
knowledge, for example, can be represented by an equivalence relation then you
are not only perfectly introspective, but necessarily perfectly introspective.

Our goal, then, is to construct an adequate frame. However there are other
conditions we might also want to explore. For example

Normality: A frame is normal iff the ur-selection function f is a normal
selection function.

This of course shows that a stronger logic than L is compatible with CP. Both
the models we will consider shortly are normal. Another constraint we might
want to implement is:

Fullness: A frame is full iff B = P(W ).
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A principled reason to weaken the fullness condition would be if you thought
that only categorical propositions (i.e. non-conditional propositions) could be
an agents total evidence. In a full frame every proposition, categorical or hy-
pothetical, could in principle be an agent’s total evidence. We shall return to
the question of whether a conditional proposition could be an agent’s total evi-
dence in the next section. For now let me just highlight it as a possible further
constraint in addition to adequacy. Finally we might also want the constraint:

Harper’s Condition: fE(A, x) = f(A ∩ E(x), x) where f is the ur-
selection function.

The condition above is stated in van Rooij [38], who attributes the idea to
Harper in [14].24 The basic thought behind Harper’s condition is this: whether
an utterance of a conditional is true (at a world x) should be a function of the
epistemically possible A worlds at that context (the set of epistemically accessi-
ble A-worlds is just AE.) Harper’s condition is quite strong, and Stalnaker has
suggested the following weaker condition (I have reformulated it from Stalnaker
[33] to match our current conventions.)

Stalnaker’s Condition: fE(A, x) ⊆ E(x).25

Stalnaker’s condition does not require that the truth of a conditional ‘if A then
B’ must depend only on the epistemically possible A-worlds – it is compatible
that there be two distinct contexts providing evidence E and E′ such that the E-
accessible A worlds and the E′ accessible A worlds coincide, but where A→E B
is true and A→E′ B is false.

We are now in a position to state the relevant theorems.

Theorem 2.1. There is an adequate frame that satisfies Normality and
Harper’s Condition (and therefore also Stalnaker’s condition.

Theorem 2.2. There is an adequate frame that satisfies Normality, Full-
ness and Stalnaker’s Condition.

See the appendices for the proofs.26

3 Conclusion

In summary, then, we have proposed a thesis, CP, connecting the probabilities
of conditionals to conditional probabilities that predicts the instances of Stal-

24Actually van Rooij states his theory in terms of a contextually salient proposition rather
than an accessibility relation. He states that fE(A, x) = f∅(AE, x) when AE 6= ∅. When
AE = ∅, however, van Rooij stipulates that fE(A, x) = f∅(A, x). On this interpretation
A →E ⊥ can be false even if A is inconsistent with E: this has the effect of making →E

satisfy MP even at the worlds inconsistent with E.
25Stalnaker also qualifies this with the condition that A and E(x) are consistent. In the

models considered here the stronger thing stated above also holds so I have left out the
qualification.

26One might wonder if it’s possible for an adequate frame to be both full and satisfy
Harper’s condition together. The answer to this is no: see Korzukhin’s ‘Triviality Results’
https://courses.cit.cornell.edu/tk283/Triviality.pdf (unpublished).
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naker’s thesis that seems intuitively right without predicting the instances that
are intuitively incorrect; this thesis extends to account for intuitions about iter-
ated conditionals. Moreover the proposal is specifically designed to address the
dynamics of belief in a way that is consistent with a standard Bayesian theory
of updating via conditionalisation.

It is also worth noting that while the resulting theory admits a possible
worlds semantics based on selection functions, the theory is not compatible with
one prominent interpretation of the selection function based on the idea that
the selected world be an antecedent world which is, in some sense, minimally
different from the actual world. On the similarity interpretation the resulting
logic would be slightly stronger than my own, for it would include the principle
CSO. Let me end the paper by making a few remarks about this.

The reading of the selection function I proposed was that fE(A, x) selects an
epistemically accessible A-world at random in a way that may or may not select
the closest accessible A world to x. The process by which the world is ‘selected
at random’, however, cannot be given an explication in non-conditional terms:
it cannot be understood more informatively that just the (E-accessible) world
that describes how things are if A, which is random only in the sense that we
don’t know which world this is (when what we know is given by E.27)

One might object to this proposal on the grounds that, unlike the similarity
account, we do not get a reductive, or even an informative account of condi-
tionals out of the analysis. Of course this is no objection to someone who never
set out to give a reductive analysis, but more importantly, it is not clear that
the similarity analysis enjoys this apparent advantage either. For Stalnaker ex-
plicitly states ([34] p126-132) that the pretheoretic notion of similarity plays no
role in fixing the truth conditions of conditional statements. Much of the moti-
vation for the abstract analysis in terms of orderings with certain constraints is
to provide rationale for formal properties on the selection function that validate
desirable modes of inference such as CSO. The ordering relevant for evaluating
conditionals is therefore not an antecedently understood notion of similarity,
but one specifically guided by a pre-existing understanding of conditionality.28

Insofar as the similarity analysis is motivated by the desirability of prin-
ciples such as CSO, Stalnaker’s attitude toward this principle is surprisingly
non-committal. He writes, for example, that ‘the arguments for condition (3)
[i.e. CSO] are far from decisive’ (ch7 ft5) and, after considering an apparent
counterexample to it, suggests that ‘the question is one of how to distribute the

27Schulz [26] argues for something like this way of understanding the selection function in
the case of counterfactuals, although I read him as taking the notion of ‘random selection’ to
give us a more informative grip on conditionals than I do.

28Another worry you might have is that to many people it seems clear that some notion
of similarity is important for evaluating subjunctive conditionals, and that our analysis of
indicatives belies the parallels between the two cases. My view is that if similarity does make
its way into the analysis of subjunctive conditionals, it is through the distinctive behaviour
of modals like ‘will’ and ‘would’ that appear in these constructions. A natural view would be
that the counterfactual selection function selects an A world at random from among the most
similar A worlds. This also has the side effect of validating CEM without imposing implausible
constraints on similarity.
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burden of explanation between pragmatics and semantics’ and that ‘to some
extent the issue may be one of simplicity and efficiency of formulation rather
than substance’. Stalnaker also points toward many good inferences involving
CSO and related principles. (I find these examples less than convincing, how-
ever, since alternative accounts of the goodness of these inferences are available.
CP already predicts that anyone who is certain in A ↔ B and in A → C in at
a given context must be certain in B → C. Moreover, while the axiom CSO,
a compound of conditionals, might not always be fully probable in a context,
there is a threshold below which its probability cannot fall, according to CP, so
that one can never be in a context where one can outright assert its negation.)

An example we discussed earlier brings out the difference between Stalnaker’s
gloss and mine quite nicely (this point is due to Edgington [8].) In the example
where Bob knows that a car has travelled between 0 and 100 miles but does not
know how far, it seems natural to say that he also doesn’t know whether the car
travelled, say, 63 miles if it passed the 50 mile mark, or 89. Indeed it’s natural
to think that he takes it to be just as probable that it went 63 miles if it passed
the 50 mile mark as that it went any other number of miles between 50 and
100. This fits my interpretation fairly naturally, where the world that describes
how far the car went is picked randomly from the worlds where it travelled
between 50 and 100 miles, with no preference for one world over any other (and
in particular, no preference for more similar worlds.) A similarity analysis would
rather suggest that at any world at which the car actually went less than 50
miles, the conditional ‘the car went exactly 50 miles if it went at least 50 miles’
would be true. Since it went less than 50 miles in half the accessible worlds, this
makes it much more probable that it went 50 exactly miles if it went at least 50
miles, than that it went any other number of miles.

Although neither account can give an analysis of the selection function re-
ductively in terms of similarity or random selection, the present proposal has an
advantage over the similarity analysis. For I can say something substantial about
the conceptual role of the ur-selection function that a similarity theorist cannot.
While, of course, we can both say something about the logical role of condition-
als, this will not rule out a material analysis since that satisfies all of the logical
principles we have mentioned in this paper. However the ur-selection function
has a distinctive role in thought which neither the material analysis nor the sim-
ilarity analysis can accommodate.29 Supposing that my present epistemic state
at world x is represented by a prior Pr and an epistemic accessibility relation
E. Then the ur-selection function is subject to satisfying the following rational
constraint: Pr({y | fE(A, y) ∈ B} | E(x)) = Pr(B | A ∩ E(x)), where fE is
defined from the ur-selection function (this could be filled out using Harper’s
condition, or some other way.) Writing Cr(·) for Pr(· | E(x)) (my present ra-
tional credences, relative to evidence E) and f−1

E (A,B) for {y | fE(A, y) ∈ B}
(my ‘personal’ conditional, which plays a special role in my thinking) this just
simplifies to:

29In the case of the similarity analysis, it is exactly the validity of the principle CSO that
prevents it from satisfying this role.
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Cr(f−1
E (A,B)) = Cr(B | A).

Of course, this is just a restatement of CP. Note, however, that one can perfectly
well ask whether there is a selection function that plays this distinctive role in
thought without taking any stance about how it relates to the semantics of
indicative sentences in any language.30 The idea is that we first get a grip on
the selection function this way, and then we ask whether this is clearer than
Stalnaker’s abstract orderings, and whether it is more suited to play a role in a
theory of conditional language.

If this is right then it opens up the possibility of providing a theory of
indicatives that is based on probabilistic considerations rather than similarity.
These are no more than programmatic remarks, of course, yet I hope that the
above results will open up an avenue of research (outlined in Stalnaker [32])
that has been long abandoned.

30One does not, for example, need to be a contextualist to raise this question.
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4 Appendix A: Tenability result with Harper’s
Condition

In this section we will construct a model for CP. Several things that are worth
noting about this model

1. All of the selection functions are determined by the ur-selection function
in accordance with Harper’s condition: fE(A, x) = f(A ∩ E(x), x).

2. The ur-selection functions is normal so that f(A, x) = ∅ only if A = ∅,
thus it satisfies B, 4 and C0.

3. The model is not full: the set of evidence propositions, B is a strict subset
of the set of all proposition P(W ). Here B intuitively represents the
categorical (non-conditional) propositions.

4. P is a fairly rich set of probability functions. In fact, for every probability
function Pr over the non-conditional propositions, B, there is a unique
probability function in P whose restriction to B is Pr.

The third point is particularly worthy of note. According to the informal
gloss, B represents the set of propositions that could, in some possible world, be
an agent’s total evidence. Since some propositions do not belong to B according
to this model it follows that there are some propositions that could not be an
agent’s total evidence. Fortunately there is an intuitive interpretation of this
feature of the model.

In the model we start off with an initial set of objects, which we can think
of as possible worlds, and the propositions in B can be identified with arbitrary
sets of these worlds. We can think of a possible world as determining all the
ordinary facts concerning where objects are located, and so on and so forth, but
not the conditional facts. For example a possible world might determine that
a particular coin, C, isn’t flipped on a particular occasion, but it won’t deter-
mine whether the coin will land heads or tails if it is flipped at that occasion.
Thus there will be two epistemic possibilities, corresponding to the same worldly
facts (i.e. the same possible world), and according to one the coin lands heads
if it is flipped, and according to the other it lands tails if flipped. In general,
then, B represents non-hypothetical/non-conditional propositions and can be
represented by sets of possible worlds whilst the full set of propositions, includ-
ing hypothetical propositions, and can be represented by sets of epistemically
possible worlds.

Why then, couldn’t an arbitrary hypothetical proposition, say the proposi-
tion that the coin C will land heads if it’s flipped, be an agent’s total evidence?
A common observation for views accepting CEM is that conditionals like these
give rise to a curious epistemic phenomenon: in this case it doesn’t seem to be
possible to find out whether the coin will land heads if flipped when the coin is
never flipped. For example, if you accept conditional excluded middle then ei-
ther C will land heads if it is flipped, or it will land tails, but in worlds where the
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coin is not flipped it is impossible to obtain further evidence to settle the ques-
tion of which way it would land if flipped. Philosophers subscribing to the law
of conditional excluded middle have conjectured that hypothetical propositions
like this are a special source of indeterminacy (e.g. [31].) Whether or not this
is so we can certainly agree that we must be ignorant in the scenario described,
much as we would be in the face of vagueness or indeterminacy. The basic
intuition is that one can have any credence you like regarding the completely
determinate non-hypothetical facts, but once you have fixed your credences in
those propositions your credences over the rest of the space of propositions is
fixed. For example, if you know that C is fair and will not be flipped, then you
are forced to have a credence of a half in the proposition that C will land heads
if flipped. The situation here is similar to the analogous situation with vague
propositions. Once you know someone has a certain borderline number of hairs,
N , you are forced to be uncertain, to some degree, in the proposition that that
person is bald.

Of course, we learn conditionals all the time; it is important to keep in mind
that this fact is completely consistent with the thesis that our total evidence
is never conditional. According to the logic L, when one learns that A and B
then one learns the conditional stating that if A then B, and when you learn
that A and ¬B you can rule out the conditional if A then B. But in these cases
your total evidence (AB and A ∧ ¬B respectively) is strictly stronger than the
conditional facts you’ve learnt. In other cases we know conditionals even when
we are ignorant about the antecedent and consequent. Even when you do not
know whether the fuse will blow or the light will go off, it is quite reasonable to
assert that if the fuse blows the light will go off. But in these cases it is natural
to think that your assertion is only appropriate when you know a stronger strict
conditional (say, that in all nomically possible worlds in which the fuse blows
the light goes off.) When you do not know the strict conditional, such as in the
case of the coin flip, it is not appropriate to assert the indicative conditional,
even if it is in fact true.

4.1 The construction

The following construction uses the ideas developed by van Fraassen’s in his
‘Bernoulli - Stalnaker’ models from [37]. However van Fraassen’s models do not
satisfy the principle CP for two reasons. Firstly, there is only one conditional
connective that satisfies a variant of the conditional to conditional probability
link, whereas CP states something much more general (that some form of the
link holds for each conditional connective you can express in some context or
other.) Secondly in van Fraassen’s model the probability conditional to condi-
tional probability link holds only for special conditionals and does not extend to
iterated conditionals of various sorts. The following construction is, in a loose
sense, the result of iterating van Fraassen’s construction ω1 many times.

The construction begins with an initial set of possible worlds, W , which
intuitively can be thought of as representing maximally specific things that can
be said about the world without mentioning conditional facts (i.e. facts about
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what will happen if this or that happens.) The set W∞ then extends this set,
dividing members of W into epistemic possibilities according to the kind of
hypothetical distinctions you can make. Epistemic possibilities can be thought
of as ordered pairs of ordinary worlds and sequences of worlds, with the latter
encoding all the conditional facts that hold at that epistemic possibility. An
ordered pair of a world and a sequence is isomorphic another sequence with an
extra initial element – thus epistemic possibilities will just be represented as
sequences of possible worlds.

Let us put this into practice. Assume that the initial set of states, W , that
do not involve conditional facts is given and is countable. The set of worlds
in our model will be the set W∞ = Wω1 = {π | π : ω1 → W}. We shall set
B = {A ×W∞ | A ⊆ W}. B is isomorphic to P(W ) and is thus a complete
Boolean algebra. It is easy to see that B embeds into the larger algebra of all
propositions, which we shall denote B∞ = P(W∞).

Given our initial space W , define the following sequence of sets for α < ω1

• Wα = Wωα

That is, Wα represents the set of all ωα sequences of members of W . Since
ωα < ω1 whenever α < ω1 it follows that an element of Wα will be isomorphic
to an initial segment of a member of W∞. Note also the following consequences
of this definition:

• W0 = W

• Wα+1
∼= Wω

α = Wα ×Wα ×Wα × . . .

In what follows we shall adopt a practice of identifying products which are
isomorphic to subsets of W∞, allowing us, for example, to identify A × W∞
with a subset of W∞ whenever A is contained in some Wα.

The sets Wα for α < ω1 help us describe the measurable sets.

Definition 4.0.1. Suppose X is a set of subsets of W∞. Then cl(X) is the
closure of X under the operations of countable unions and intersections, and
complements relative to W∞.

The measurable sets, which we shall denote Σ∞, can be thought of as being
approximated by an infinite sequence of σ-algebras, Σα ⊂ B∞ for α < ω1.

• Σ0 = {A×W∞ | A ⊆W}

• Σα+1 = cl{A0 × . . .×An ×W∞ | Ai ×W∞ ∈ Σα for 0 ≤ i ≤ n}

• Σγ = cl(
⋃
α<γ Σα)

Note that Σα+1 is generated by sets of the form A0 × . . . × An ×W∞ where
Ai ⊆Wα. Each of these generating sets consists of an ω1 sequence such that an
initial finite number of elements belong to Wα and the rest belong to W . This is,
of course, just equivalent to an ω1 sequence of elements of W whenever α < ω1:
it is just equivalent to n successive ωα-sequences of elements of W followed by

30



an ω1-sequence of elements of W , which is itself an ω1-sequence of elements of
W . Bearing this equivalence in mind we can see from the construction that
an arbitrary member of Σα will be of the form A ×W∞ where A ⊆ Wα. It is
straightforward to show

Proposition 4.1. Σα ⊆ Σβ if α ≤ β

Now we turn to our definition of Σ∞, the set of measurable sets.

Definition 4.1.1. A set A ∈ B∞ is measurable iff A ∈ Σα for some α. We
denote the set of measurable sets Σ∞ :=

⋃
α<ω1

Σα.

It should now become apparent why we chose the ordinal ω1 in our defini-
tions: it is due to this choice that our measurable sets are closed under countable
unions so that Σ∞ is a σ-algebra.

Definition 4.1.2. If A is measurable then the rank of A is the smallest α such
that A ∈ Σα. We shall write this: rank(A) = α. If A is not measurable then
rank(A) =∞.

It is now time to define the ur-selection function for a A ∈ B∞ of rank α
(possibly identical to ∞). If A is non-empty let τA be any member of A (it
doesn’t matter which.)

f(A, π) =

 π[ωα.i] where i is the smallest number such that π[ωα.i] ∈ A
τA if there is no such number and A 6= ∅
# A = ∅

Here π[α] : ω1 →W is given by the function π[α](β) = π(α+β) (i.e. π[α] is just
the ω1 sequence you get by lopping off the first α members of π.) Note that this
is formally reminiscent of Stalnaker’s semantics: f(A, π) represents the closest
world to π which belongs to A, where closeness depends on how small the ‘i’
is – the crucial difference is that the notion of closeness at play here depends
on the rank of the antecedent, A. It is easy to verify that f is normal. In
particular, the second condition – that f(A, π) = τ if A is non-empty and there
is no A-world in the sequence of π[ωα.i]’s – is to ensure that f(A, π) does not
output the impossible world unless A = ∅ (if we were to replace τA with # in
the definition we get a merely regular selection function.) In order to obtain fE
we simply identify fE(A, x) with f(A ∩ E(x), x) in accordance with Harper’s
condition.

Proposition 4.2. ∅ is measurable and if A, B and A0, A1, A2, . . . are measur-
able then so is W∞ \A, A⇒ B and

⋃
nAn.

We now define the set, P , of ur-priors. For simplicity we have assumed that
W is countable so that every subset of W can be treated as a measurable set
(although it would be simple enough to drop this assumption and work with an
initial σ-algebra over W instead.) We shall show that every regular countably
additive probability function Pr on the powerset algebra on W extends to the
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measurable sets over B∞. We then identify P with the set of all such probability
functions generated this way.

Suppose that Pr is a regular countably additive probability function on B.
For α ≤ ω1 we define Prα over Σα as follows.

• Pr0 = Pr

• Prα+1(A0 × . . .×An ×W∞) = Prα(A0 ×W∞) . . . P r(An ×W∞); Prα+1

extends to the rest of Σα+1 via Carathéodory’s extension theorem.

• Prγ(A) = Prα(A) when A ∈ Σα for α < γ. This extends to the rest of
Σγ by Carathéodory’s extension theorem.

Write Pr∞ for Prω1 . Observe, from the construction of Pr∞, that for any α <
ω1 and A0, . . . , Ak ⊂Wα Pr∞(A0×. . .×Ak×W∞) = Pr∞(A0×W∞)Pr∞(A1×
W∞) . . . P r∞(Ak ×W∞)

We are now in a position to prove our main theorem.

Theorem 4.3. The frame 〈W∞,B, f·,Σ∞, P 〉 is adequate.
In particular, if Pr is a countably additive regular probability function over

W then Pr∞ ∈ P and Pr∞(A ⇒E B | E(τ)) = Pr∞(B | A ∩ E(τ)) whenever
Pr(A) > 0, E(π) ∈ B for all π and A, B and E(π) are measurable.

Proof. We begin by showing the result for the ur-selection function. Suppose
that rank(A) = α so that A = A′ ×W∞ for some A′ ⊆Wα.

Assume that Pr∞(A) > 0. Thus A 6= ∅ so according to our definition
π ∈ A⇒ B if and only if the smallest A world in the sequence (π[ωα.i])i is a B
world or there are no A-worlds in this sequence and τA is a B world. In other
words, if and only if π[ωα.0] = π ∈ A ∩ B or π 6∈ A but π[ωα.1] ∈ A ∩ B or
π[ωα.0] 6∈ A, π[ωα.1] 6∈ A and π[ωα.2] ∈ A ∩ B or ... or π[ωα.i] 6∈ A for any i
and τA ∈ B.

Let R be the set of π with f(A, π) = τA. Thus A ⇒ B = (A ∩ B) ∪ (A′ ×
(A ∩ B)) ∪ (A′ × A′ × (A ∩ B)) ∪ ... ∪ R =

⋃
n(Ā′

n × (A ∩ B)) ∪ R. Here I am
using X to denote the complement of X.

Note that R ⊆ (A′)ω ×W∞ which has probability 0 whenever Pr∞(A) > 0.
Since we are calculating a union of disjoint sets we have

Pr∞(A⇒ B) =
∑
n<ω

(Pr∞(A)n·Pr∞(A∩B)) =
Pr∞(A ∩B)

1− Pr∞(A)
=
Pr∞(A ∩B)

Pr∞(A)
= Pr∞(B | A)

The above demonstrates the result for the ur-conditional: Pr∞(A ⇒ B) =
Pr∞(B | A). It remains to show that Pr∞(A ⇒E B | E(τ)) = Pr∞(B |
A ∩ E(τ)) for accessibility relations E. In what follows I restrict attention to
accessibility relations, E, and worlds τ such that E(τ) = E(π) whenever Eτπ.
When this holds say that E is locally an equivalence relation at τ . Intuitively
these correspond to worlds where the evidence concerning what the evidence
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is is complete at the world w (for example, if the salient evidence is just my
current knowledge, then this means that I know what I do and don’t know.)
The restriction to these cases is purely an idealization – I do not think it is a
general fact that the evidence available in a context always behaves like this.
Whether these idealizations can be relaxed is a question I shall leave to future
work.

We shall begin by showing how to write (A⇒E B)∩E(τ) as a disjunction of
disjoint sets as in the previous proof. Suppose that E is locally an equivalence
relation at τ and that E(τ) ∈ B. For short let us write X for E(τ) and suppose
that the rank of A is α. Recall that since X is a member of B, X = X ′ ×W∞
for some X ′ ⊆Wα.

Lemma 4.4. Given the above definitions, (A ⇒E B) ∩ X =
⋃
n(A′X ′

n ×
ABX) ∩X

Proof. Suppose π ∈ (A′X ′
n ×ABX) ∩X for some n. That means that π ∈ X,

π[ωα.n] ∈ ABX and π[ωα.m] 6∈ A and 6∈ X for m < n.
Since π[ωα.n] ∈ X = E(τ) this means that n is the smallest number such

that π[ωα.n] is both a member of A and E(τ): i.e. f(A ∩ E(τ), π) = π[ωα.n].
Since Eτπ, E(τ) = E(π) so f(A ∩E(π), π) = π[ωα.n]. Moreover, since π[ωα.n]
is B world, π ∈ A⇒E B. Since, by assumption, π ∈ X this shows one inclusion.

Now suppose that π ∈ (A ⇒E B) ∩ X. Suppose that f(A ∩ E(π), π) =
π[ωα.n]. Since π ∈ X = E(τ) we know that Eτπ, and thus that E(π) = X =
E(τ). f(A∩E(π), π) = f(A∩X,π) ∈ ABX which means that π ∈ A′X ′n×ABX
(just as in the last theorem.) Thus π ∈

⋃
n(A′X ′

n×ABX)∩X completing the
proof.

We shall now demonstrate that CP holds in this model.

Theorem 4.5. If X ∈ Σ0 and Pr ∈ P then Pr(A⇒E B|X) = Pr(B | AX).

Proof. Suppose that X = X ′ ×W∞ where X ′ ⊆ W . Then in general, for any
α, and A0 . . . Ak ⊆Wα, (A0 × . . .×Ak ×W∞)∩X = (A0 ∩ (X ′ ×Wα))×A1 ×
. . .×Ak ×W∞.

By 4.4 (A⇒E B)∩X =
⋃
n(A′(X ′ ×Wα)

n
×ABX)∩X. By the above obser-

vation this amounts toABX∪
⋃
n>0(A′(X ′ ×Wα)∩X ′×Wα)×(A′(X ′ ×Wα)

n−1
×

ABX), which simplifies to ABX ∪
⋃
n>0(A′ ∩X ′ ×Wα)× (A′(X ′ ×Wα)

n−1
×

ABX)
Now Pr((A ⇒E B) ∩ X) = Pr(ABX) + ΣnPr(

⋃
n>0(A′ ∩ X ′ × Wα) ×

(A′(X ′ ×Wα)
n−1
×ABX)). Simplifying we get Pr(ABX)+Σn>0Pr(AX)Pr(AX)n−1Pr(ABX) =

Pr(ABX)+Pr(AX)Σn>0Pr(AX)n−1Pr(ABX). And finally, as in theorem 4.3

this amounts to Pr(ABX)+Pr(AX) Pr(ABX)

1−Pr(AX)
= Pr(ABX)+Pr(AX)Pr(B|AX).

To get Pr(A ⇒E B | X) we simply divide this number by Pr(X), which
simplifies to Pr(AB | X) + Pr(A | X)Pr(B|AX). This reduces to Pr(AB |
X) + Pr(B | AX)− Pr(A | X)Pr(B | AX) using Pr(Ā | X) = 1− Pr(A | X).
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Note that by the definition of conditional probability Q(AB) = Q(A)Q(B | A),
so Pr(AB | X) = Pr(A | X)Pr(B | AX). Thus the last expression cancels out
to Pr(B | AX) as required.

5 Appendix B: Tenability Result with Fullness

Here we construct instead a probability frame that is normal, full and satisfies
Stalnaker’s condition. However, unlike the previous construction, this construc-
tion does not satisfy Harper’s condition. Here it will be useful to use Stalnaker’s
original selection function semantics in which f maps us into W (so f(A, x) picks
out a world instead of a singleton of a world. When A crashes, f(A, x) picks out
a distinguished object, #, the impossible world, instead of the empty set.) In
this model we use only probability functions defined over the real numbers – to
distinguish these we shall use Greek letters ‘µ’, ‘ρ’ and so on, to denote measures
on the reals with ‘λ’ being reserved for the standard Lebesgue measure.

Given a probability space 〈W,Σ, µ〉 we define a subspace of W to be those
spaces of the form 〈X,Σ ∩ P(X), µ(· | X)〉 with X ∈ Σ. I shall write µX for
µ(· | X) and ΣX for Σ ∩ P(X).

We need to employ a notion from measure theory – that of a measure-
preserving map:

Definition 5.0.1. Let X and Y be subspaces of W . A map, t : X → Y , is
measure preserving on the spaces 〈X,µX〉, 〈Y, µY 〉 iff (i) t−1(A) is measurable
in X when A is in Y and (ii) µX(t−1(A)) = µY (A) for each A in Y ’s sigma-
algebra.

As usual, the preimage of a set A under the function f , written f−1(A), is
defined as {x | f(x) ∈ A}.

Definition 5.0.2. A selection function, f , is stretchy on a probability space
〈W,Σ, µ〉 iff for every measurable A ∈W , the restriction of f(A, ·) to Ā, f(A, ·) :
Ā→ A, is measure preserving on the spaces 〈Ā, µĀ〉, 〈A,µA〉. Here Ā just means
W \A.

Proposition 5.1. Suppose that there exists a tuple 〈W,Σ, µ, tA〉 satisfying the
following conditions:

1. Σ is a σ-algebra over W ,

2. µ a probability measure over Σ and for each non-empty A ⊆W ,

3. tA : A→ A, for each A ⊆W ,

4. tA is measure preserving on 〈Ā, µĀ〉, 〈A,µA〉 whenever µ(A) ∈ (0, 1)

Then the selection function f defined as f(A, ·) = idA∪ tA is stretchy, where
idA is the identity function on A. More precisely, f , as defined below, is stretchy:
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f(A, x) = x if x ∈ A and f(A, x) = tA(x) if x ∈ Ā provided A is non-
empty

f(∅, x) = #.

Any set A in Σ which has measure in (0, 1) is stretched out onto its comple-
ment by f in a way that preserves the measure of its measurable subsets. (In
the models we consider any pair of sets, X and Y , with measures in (0, 1], can
be stretched on to the other.)

Note also that f is normal and thus will validate CEM, MP, ID, 4, B and
C0. By construction f(A, x) ∈ A and f(A, x) = x whenever x ∈ A. But notice
further that A crashes (f(A, x) = #) only if A = ∅, so the principles C0, B
and 4 for crashing are validated in this kind of model as well.31 So the logic
of stretchy selection functions of this type is at least L+C0+4+B. Whether the
logic of stretchy selection functions generated this way is exactly this logic bears
further investigation.

It should be clear that Stalnaker’s thesis holds for any stretchy selection
function. If µ(A) = 0 then Stalnaker’s thesis vacuously holds. If µ(A) = 1 then
(i) µ(B | A) = µ(B) and (ii) t−1

A (B) ⊆ Ā has measure 0 so µ(f−1(A,B)) =
µ(id−1

A (B)) + µ(t−1
A (B)) = µ(AB) + 0 = µ(B). Suppose that µ(A) ∈ (0, 1).

Note that f−1(A,B) = id−1
A (B)∪ t−1

A (B) = AB ∪ t−1
A (B). Note that µ(t−1(B) |

A) = µ(B | A), since tA is measure preserving, so µ(t−1(B)) = µ(B | A)µ(A).
Thus f−1(A,B) has a measure of µ(AB) + µ(B | A)µ(A) = µ(B | A).

5.1 Existence of a model

Here we construct a full model, 〈W,B, f·,Σ, P 〉, for CP. In this model worlds will
be identified with real numbers, with the constraint that the selection functions
fE are stretchy on each world E(x).

• W := [0, 1], w ∈ [0, 1].

• B := P([0, 1])

• P := {λ} where λ is the Lebesgue measure on [0, 1].

• Σ is the Lebesgue measurable subsets of [0, 1].

• fE is a normal selection function on E which is additionally stretchy on
〈X,ΣX , λX〉 for every measurable X = E(x) with positive measure.

One thing to note about this model is that I have only specified one ur-prior, λ.
This does not appear to be an essential restriction – the following proof works
with any measure isomorphic to the Lebesgue measure, so we could equally well
expand P to {λ′ | 〈[0, 1],Σ, λ′〉 ∼= 〈[0, 1],Σ, λ〉} – i.e. the set of measures on
[0,1] with the Lebesgue measurable sets, that are isomorphic to the Lebesgue

31In my view neither C0 B nor 4 are valid; however for the purposes of showing that a
reasonable logic is consistent with Stalnaker’s thesis this does not matter as every sublogic is
also shown to be consistent.
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measure.32 For example, while the Lebesgue measure is generated by stipulating
that the length of an interval (a, b) is b− a, the measure one gets by stipulating
that the ‘length’ of the interval (a, b) be given by b2−a2 is isomorphic to λ even
though it is a very different measure.

I have thus explicitly defined every aspect of the model except for the selec-
tion functions, fE , for accessibility relations E. I shall once again assume that
E is locally an equivalence relation around the actual world w. The only thing
to prove, then, is that we can find a stretchy selection function defined on the
restricted conditional probability space over E(w), where w is the actual world.
Any extension of this function to the whole space [0, 1] which only maps worlds
to accessible worlds, and therefore in particular maps E(w) to itself, will be a
function of the desired type.33 Moreover, by construction, it will be a stretchy
selection function relative to the probability space gotten by conditioning on
E(w).

By proposition 5.1 it suffices to show that for any measurable E (of positive
finite measure) and measurable A ⊆ E where A,E \ A have positive finite
measure, we can find a measure preserving function from E\A to A, tA. Indeed,
we shall go one further and show that for any two measurable sets of reals, X
and Y , of positive and finite measure there is a measure preserving function,
t,from X to Y .

For existence of a model it thus suffices to prove the following34

Theorem 5.2. Given any two measurable sets of reals, X and Y , of positive
and finite measure there is a measure preserving function, t,from X to Y .

This is all we need to construct the relevant stretchy selection functions. If
Ā and A have positive measure we can use this theorem to choose a measure
preserving map tA from Ā to A.

In what follows I will need to talk about the Lebesgue measure, λ, and the
renormalised Lebesgue measures on X and Y , λX(·) = λ(·)/λ(X) and λY (·) =
λ(·)/λ(Y ). However since this notation becomes hard to follow I shall rename
the latter two measures as µX and µY for ease of reading.

The basic idea for the proof of this theorem is to construct a pair of measure
preserving maps, f : X → [0, 1] and h : [0, 1] → Y , which can be composed to
form a measure preserving map from X to Y . Things are more transparent if
we define h in terms of a another measure preserving map, g : Y → [0, 1]. Here
is how we define them:

• f : X → [0, 1]

• g : Y → [0, 1]

32Here the relevant notion of isomorphism is the existence of an invertible measure preserv-
ing function between the two spaces.

33It would also be quite easy to ensure that the function is stretchy relative to E(x) for any
x where E is locally an equivalence relation by constructing a stretchy selection function on
E(x) for each such x and extending them jointly to the whole space.

34I am indebted to Gareth Davies here for some helpful suggestions regarding this proof.
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• h : [0, 1]→ Y

• f(x) = µX((−∞, x] ∩X)

• g(y) = µY ((−∞, y] ∩ Y )

• h(α) =

{
y if there is exactly one y such that g(y) = α
a otherwise

here a can be any old member of Y , it does not matter which. We will also
make use of the following property of the Lebesgue measure.

Nifty fact: the Lebesgue measure, λ, is regular. This means that:

1. λ(S) = inf{λ(O) | S ⊆ O,O is open}

2. λ(S) = sup{λ(C) | C ⊆ S,C is closed}

Lemma 5.3. f and g are measure preserving on open (and therefore closed)
sets.

Proof. Since g is defined exactly analogously to f it suffices to show that f is
measure preserving on open sets.

Firstly note that by construction µX(f−1((a, b))) = b− a.
Let O be an open set. Since O is open, it may be written as a countable

union of disjoint intervals,
⋃
i(ai, bi). So µX(f−1(O)) = µX(f−1(

⋃
i(ai, bi))) =

µX(
⋃
i f
−1((ai, bi))) = ΣiµX(f−1((ai, bi))) = Σi(bi − ai) = λ(O) as required.

Now let C be a closed set, so C = [0, 1] \O for some open set O. So λ(C) =
1−λ(O) = 1−µX(f−1(O)) = 1−µX(f−1([0, 1]\C)) = 1− (1−µX(f−1(C))) =
µX(f−1(C)). So f is measure preserving on closed sets too.

Theorem 5.4. f and g are measure preserving.

Proof. Let S ⊂ [0, 1] be a measurable set. Then by regularity (form 1) and the
fact that f is measure preserving on opens sets we have:

λ(S) = inf{λ(O) | S ⊆ O,O is open} = inf{µX(f−1(O)) | S ⊆ O,O is
open} ≥ µX(f−1(S))

Then by regularity (form 2) and the fact that f is measure preserving on
closed sets we have:

λ(S) = sup{λ(C) | C ⊆ S,C is closed} = sup{µX(f−1(C)) | C ⊆ S,C is
closed} ≤ µX(f−1(S))

So λ(S) = µX(f−1(S)) as required. The argument that g is measure-
preserving is exactly analogous.

Now to finish the argument we have

Theorem 5.5. h is measure preserving.
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Proof. Suppose that Z ⊆ Y .
Our strategy will be to show that µY (Z) = µY (g−1(h−1(Z))). This suffices

since µY (g−1(h−1(Z))) = λ(h−1(Z)) by the fact that g is measure preserving.
Here goes.

g−1(h−1(Z)) = {y | g(y) ∈ h−1(Z)} = {y | ∃!z : g(z) = g(y) and z ∈ Z} =
Z \ {y | g(y) = g(z) for some z 6= y} = Z \ g−1({α | |g−1({α})| > 1}).

Now note that the set S := {α | |g−1({α})| > 1} is countable. We can map
S injectively into Q as follows: if α ∈ S, then since |g−1({α})| > 1 there is a
rational number, q, strictly inside the convex hull of g−1({α}). So we can map
α to q. This mapping is injective because g is increasing: if α < β then the
convex hull of g−1({α}) and of g−1({β}) overlap at most at a boundary point
(since, if α < β, g(x) = α and g(y) = β then x ≤ y) and we have chosen q not
to be a boundary point.

Now, of course, {α} has Lebesgue measure 0, so µY (g−1({α})) = 0 since
g is measure preserving. So g−1({α | |g−1({α})| > 1}) is a countable union
of null sets, and is thus a null set. So putting this all together we have
µY (g−1(h−1(Z))) = µY (Z \ g−1({α | |g−1({α})| > 1})) = µY (Z)− 0 = µY (Z).

So µY (Z) = µY (g−1(h−1(Z))).

This completes the proof. To obtain a measure preserving map, t, from X
to Y we simply let t = h ◦ f .
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[11] A. Hájek and N. Hall. The hypothesis of the conditional construitl of
conditional probability. Probability and conditionals: belief revision and
rational decision, page 75, 1994.
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