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Abstract  

 

In this article the Dirac equation is used as a guideline to see the historical emergence of the concept 

of quanta, associated with the quantum field. In P. Jordan’s approach, electrons as quanta result from the 

quantization of a classical field described by the Dirac equation. With this quantization procedure – also 

used for the electromagnetic field – the concept of quanta becomes a central piece in the applications of 

quantum electrodynamics. This does not seem to avoid the apparent impossibility of using the concept of 

quanta – and with it the common interpretation of quantum fields – when interacting fields are considered 

together as one complete system. In this article it is defended that the type of analysis that leads to so 

drastic conclusions is avoidable if a clear distinction is made between the mathematical framework of the 

theory and the particular physical models (used in the empirical corroboration of the theory) that are 

constructed using the theory. When dealing with models there really is no system of complete interacting 

fields, and what we have is a description of the interactions between distinct fields. In this situation the 

concept of quanta is central in the description of interacting fields, the Fock space being the natural 

mathematical structure that permits maintaining the quanta concept when considering the interaction 

between fields.  

 

 

1. Introduction 

 

Once upon a time, R. P. Feynman wrote that “we know so very much and then 

subsume it into so very few equations that we can say we know very little (except these 

equations – Eg. Dirac, Maxwell, Schrod.). Then we think we have the physical picture 

with which to interpret the equations. But these are so very few equations that I have 

found that many physical pictures can give the same equations” (quoted in Schweber, 

1994, p. 407). He wrote this having in mind, mainly, the Dirac equation: ψψ mi =∇/  

(Feynman, 1961, p. 57).  

In this article I will try to elaborate some ‘pictures’, or more exactly give some 

perspectives on the physical-mathematical framework related to the Dirac equation and 

its use in physical models developed within quantum electrodynamics, and try to get a 

glimpse of the ‘so very much’ that is condensed in so very little.  

The meaning of the simple looking Dirac equation is not as simple as we might 

think. Since its first formulation, its meaning has changed from a relativistic wave 

equation for an electron to a classical field equation from which an electron-positron 

quantum field is derived; and from a relativistic ‘update’ on the Schrödinger equation in 

the calculation of energy levels in atoms (basically of hydrogen), it became one of the 

cornerstones of the most successful quantum field theory: quantum electrodynamics 

(section 2). To clarify the relation between the different interpretations of the Dirac 

equation, the results provided by Dirac’s equation as a relativistic one-electron equation 

are reinterpreted from the perspective of the quantized Dirac field (section 3). Doing 

this, the importance of the concept of quanta in the description of bound states becomes 

clear. By contrast, bound states are usually only analyzed at the level of the one-electron 

interpretation of the Dirac equation, which gives a distorted idea of the physical 

description of bound states that should be analysed from the perspective of quantum 

fields. In particular, an analysis of a two-body model for the hydrogen atom reveals a 
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distinctive feature of quantum electrodynamics: the interaction between fermions 

described as an exchange of photons. A closer look at the interaction between Dirac and 

Maxwell fields reveals the existence of mathematical problems in the application of the 

theory in the description of the interaction between fields (section 4).  Haag’s theorem 

seams to render impossible the usual treatment of interaction within quantum 

electrodynamics using perturbative methods. To overcome the mathematical 

consequences of the theorem a clear separation is needed between what might appear to 

be the physics inscribed in the mathematical formalism of the theory and the physics 

that is imperfectly sustained by the mathematical formalism of the theory. It might 

appear (at least from a mathematical point of view) that the theory provides means to 

treat almost undifferentiated interacting fields. On the contrary, from a physical point of 

view, the theory was developed as a theory that describes the interaction between 

clearly distinct fields. In this way the mathematical difficulties related to the 

convergence problem of the series resulting from the perturbative approach used in the 

description of interactions (Aramaki, 1989, pp. 91-93) can be seen from the positive 

perspective of meaning that we have to use the mathematical formalism carefully, 

subjected to the physical content of the theory, not the other way around.  

 

2. Different views on the Dirac equation 

 

2.1. Dirac’s equation as a one-electron equation 

 

In the early days of 1928, in the paper that presented what he thought was a 

relativistic wave equation for one electron, P. A. M. Dirac made a clear distinction 

between the model of a spinning electron
1
 and the simpler model of a point-like 

electron, which he used in the development of his equation. It seems that the spin had 

no direct relevance to Dirac’s work (besides his ‘playing’ around with the mathematics 

that Pauli used to ‘put’ the spin into a Schrödinger-like equation for a two-component 

wave function: the Schrödinger-Pauli equation), but nevertheless it came out as a 

‘natural’ mathematical consequence  of the equation (Kragh, 1981, p. 56). But as Dirac 

remarks, this is a different spin from the one in the “previous electron theory” (Dirac, 

1928, p. 620). So we might say, following Pauli’s view on the subject, that this strange 

creature, the spin,  is of a quantum character, a ‘characteristic’ of the electron which, 

nevertheless, Dirac regards as a point-like particle.  

In his 1927 article on the quantization of the electromagnetic field, Dirac clearly 

stated that there was no wave – in the sense that we can consider light as a wave in 

space – which we might associate with the electron (Dirac, 1927b, p. 247).  Regarding 

the Schrödinger wave equation from the point of view of his transformation theory, for 

Dirac “the eigenfunctions of Schrödinger’s wave equation are just the transformation 

functions … that enable one to transform … to a scheme in which the Hamiltonian is a 

diagonal matrix” (quoted in Moyer, 1981, p. 946). This highly abstract approach is to be 

contrasted with Schrödinger’s original approach where he developed his wave equation 

taking into account L. de Broglie’s association of a wave with the electron 

(Schrödinger, 1926a, p. 9). 

The main guidelines in obtaining Dirac’s equation were, besides the requirement of 

being relativistic, to conform to the mathematical scheme of transformation theory. This 

meant an equation that is linear in the time derivative d/dt. Dirac felt that “an 

                                                 
1
 Referring to the model of the spinning electron, Dirac associated the different views of W. Pauli and C. 

G. Darwin to the more semi-classical idea of S. A. Goudsmit and G. E. Uhlenbeck, which first saw the 

light with R. de L. Kronig (Dirac, 1928, p. 610; Kragh, 1981, pp. 44-47; Tomonaga, 1974, pp. 32-42). 
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appropriate formulation of quantum mechanics will only be possible when we succeed 

in treating space and time as equal to one another” (quoted in Kragh, 1990, p. 54). This 

means that space and time must appear in the equation on equal footing, as the 

coordinates of a Minkowski space-time.  

Dirac ended up with a relativistic equation for a four-component wave function 

(Dirac, 1928, p. 615): 

0mc]ψρ),(ρ[p 310 =++ pσ , 

 

where p0  = iħ ∂/(c∂t) and pr = –iħ ∂/(c∂xr) with r = 1, 2, 3; σσσσ = (σ1, σ2, σ3) is a vector 

formed with four rows and columns matrices that are an extension of the 2 ä 2 Pauli 

matrices, and the 4 ä 4 matrices ρ1 and ρ3 are also obtain from the Pauli matrices (Dirac, 

1928, p. 614). 

Spin could account for two of the four components of the wave function solution of 

the Dirac equation, but there were another two that had to be accounted for.  

In the simplest case of a free electron, four independent solutions exist: two 

corresponding to electron states with positive energy and two to states with negative 

energy. Dirac’s first attitude was to reject these negative-energy solutions because they 

referred to a charge +e of the electron (Dirac, 1928, p. 618). More generally the wave 

function will have components corresponding to positive and negative energy, as can be 

seen in the application of the equation in the determination of the energy levels for an 

electron in motion in a central field: a model for the hydrogen atom. Dirac considered 

an approximate solution to this problem in which he could neglect half the components, 

and apparently obtain a two-component equation that “becomes the same as the 

ordinary Schrödinger equation for the system, with relativity correction included” 

(Dirac, 1928, p. 623). But when solving exactly the equation for an electron in a 

Coulomb potential, the upper and lower two-components of the four-component wave 

function are solutions of two coupled equations (derived from the Dirac equation) and 

so we must associate with the electron in the hydrogen atom a four-component wave 

equation (Dirac, 1958, pp. 269-272; Sakurai, 1967, pp. 122-129). 

Dirac’s not very consistent idea of neglecting the negative-energy solutions was 

soon challenged when O. Klein showed that the simple case of a positive-energy wave 

incident on a potential barrier could give rise to a transmitted negative-energy wave 

(Mehra & Rechenberg, 2000, pp. 309-311). More importantly, to obtain the Klein-

Nishina relativistic formula for the photon-electron scattering, the negative-energy 

solutions had to be considered, and as N. Bohr puts it: “The striking confirmation which 

this formula has obtained became soon the main support for the essential correctness of 

Dirac’s theory when it was apparently confronted with so many grave difficulties” 

(quoted in Kragh, 1990, p. 89). So, the existence of negative-energy solutions in the 

Dirac equation had to be addressed properly. 

This was done by Dirac himself. He recognized the problem that “in the general 

case of an arbitrary varying electromagnetic field we can make no hard-and-fast 

separation of the solutions of the wave equation into those referring to positive and 

those to negative kinetic energy” (Dirac, 1930, p. 361), and proposed as a solution that 

“all the states of negative energy are occupied except perhaps a few of small velocity. 

[…] We shall have an infinite number of electrons in negative-energy states, and indeed 

an infinite number per unit volume all over the world, but if their distribution is exactly 

uniform we should expect them to be unobservable” (Dirac, 1930, p. 362). 

In this first version of his negative-energy electron sea the ‘holes’ in the ocean were 

identified as protons: “the holes in the distribution of negative-energy electrons are the 

protons” (Dirac, 1930, p. 363). A few months latter, a note by J. R. Oppenheimer 
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(1930) was published in which the author calculated the transition probability for the 

annihilation of an electron and a proton that corresponds to the filling of a hole in the 

sea. The result was not very promising. Oppenheimer obtained a mean lifetime of a free 

electron in matter that was too low (Kragh, 1990, pp. 101-102). 

What turned out to be more important was H. Weyl’s demonstration that “according 

to Dirac’s own theory of the electron the hole must necessarily have the same mass as 

an ordinary electron” (quoted in Kragh, 1990, p. 102). This paved the way to a second 

version of Dirac’s sea in which “a hole, if there is one, would be a new kind of particle, 

unknown to experimental physics, having the same mass and opposite charge to an 

electron. We may call such a particle an anti-electron” (Dirac, 1931, p. 61). 

The reception of the ‘hole’ theory was not very warm. Some compared the negative-

energy sea with the unobservable ether, others referred to the negative-energy electrons 

as donkey electrons because of their unusual ‘dynamical’ behaviour, and Pauli – not 

restrained by Dirac’s views on the importance of the transformation theory – worked 

out with V. F. Weisskopf a quantum field theory based on the Klein-Gordon equation, 

in which there was no need for a sea to take care of the concept of anti-particle (Kragh, 

1990, pp. 111-114). In this work they followed recent approaches where the electrons 

and the anti-electrons (positrons) were described in the formalism of the theory on the 

same footing in a completely symmetrical way (Heisenberg, 1934, p. 183; Schweber, 

1994, pp. 76-77; Zinkernagel, 1998, p. 125).  

This symmetrical treatment of the electrons and the positrons solved the newly 

created interpretation problem of Dirac’s equation, because Dirac’s solution of the 

negative-energy difficulty makes it impossible to maintain a single electron 

interpretation of his equation, as can be seen in the derivation of the Klein-Nishina 

formula using the hole theory: In the scattering of a photon by a free electron, 

intermediate states with a negative-energy solution must be considered. For example an 

intermediate state must be considered in which a negative-energy electron absorbs the 

incident photon and makes a transition to a state of positive-energy, leaving a hole 

present (that is seen as a positron). Then the free electron “drops into the hole and fills it 

up” (Dirac, 1930, p. 363), emitting the outgoing photon. In this intermediate state we 

have three particles present (Sakurai, 1967, pp. 134-138), which means that the one-

electron interpretation of Dirac’s equation is not consistent.  

 

2.2. Dirac’s equation as a classical wave equation: a first perspective 

 

As Dirac himself mentioned, the appearance of negative energy solutions “is 

inherent in any relativistic theory. It occurs also in classical relativistic theory, but is not 

then serious since, owing to the continuity in the variation of all classical dynamical 

variables, if the kinetic energy cp0 + eA0 is initially positive … it cannot subsequently 

be negative” (Dirac, 1958, p. 273). So, as a classical electron-wave equation, Dirac’s 

equation wouldn’t be so problematic in what regards the presence of negative-energy 

solutions.  

In Dirac’s calculations of the motion of a particle in a central force field no explicit 

use of commutation relations between operators is needed, only a straightforward 

solution of two coupled differential equations. A similar situation occurs with the 

Schrödinger equation. In both cases a more classical view of the equations is possible, 

using them as classical wave equations whose solutions – in the simple case of one 

electron – are then submitted to the quantum relation E = hν (Tomonaga, 1962, pp. 47-

54, Vol. 2). 
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When applying the Schrödinger equation to a system of n electrons, the wave 

function φ(x1, … , xn, t) depends on the 3n position coordinates of what we can call a 

configuration space. Because of this H. A. Lorentz in a letter to E. Schrödinger 

mentioned that “I cannot interpret the waves and vibrations physically” (quoted in 

Jammer, 1974, p. 32). Schrödinger recognized this problem when he wrote that “we 

must not forget that it is only in the one electron problem that the interpretation as a 

vibration in real three-dimensional space is immediately suggested”
2
 (Schrödinger, 

1926b, p. 28).  

When approaching the hydrogen atom, from an electron-wave perspective (meaning 

using Schrödinger equation as an equation for a ‘real’ wave in ‘real’ space) the Bohr 

quantum numbers appear as a classical consequence of the wave properties of the 

electron. Considering the Schrödinger wave equation for the proper oscillation of an 

electron-wave in a central potential: 

 

 0
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we obtain for the proper frequencies of the electron-wave  
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ν , where nr, l = 0, 1, 2, … (Tomonaga, 1962, pp. 47-54, Vol. 2). 

 

As S. Tomonaga puts it: “we have used here the terminology ‘quantum number’ for n, l 

and m. Strictly speaking this is not the proper terminology in wave theory, since these 

numbers are nothing but the number of nodal surfaces of the wave and have nothing to 

do with quantization” (Tomonaga, 1962, p. 55, Vol. 2).  In the particular case of one 

electron the quantization ‘procedure’ corresponds simply to taking the energy to be a 

multiple of the wave frequency using the relation E = hν, so that the discrete energy 

levels follow directly from the classical discrete frequencies of an electron-wave 

‘bound’ in the atom.  

We can do the same to Dirac’s relativistic equation for a point-like electron. In this 

case, Dirac’s results for the electron in a central field can be reinterpreted as an 

application of a classical wave equation (with some ‘strange’ properties like ψ  being a 

complex function as in the Schrödinger equation). The solution of this non-quantum 

wave equation in the case of the electron-wave subjected to a Coulomb potential gives 

the discrete set of frequencies from which, using the simple quantum relation E = hν, 
the ‘correct’ energy levels come out. So, in this simple scheme we would not have any 

commutation relations because there would not be any quantum operators. 

 

2.3. The (classical) Dirac equation and the quantization of the Dirac field 

 

When in 1927 Dirac developed a quantum treatment of the electromagnetic field he 

did this from two different approaches, which at a quantum level gave the same 

mathematical result. In the final part of his paper Dirac extended Jordan’s initial work 

on the quantization of the electromagnetic field (Born, Heisenberg & Jordon, 1926; 

Schweber, 1994, p. 11; Darrigol, 1986, pp. 220-221). Dirac began by resolving the 

                                                 
2
 The recognition of this situation however did not prevent Schrödinger from developing mainly an 

electromagnetic electron-wave interpretation (Schrödinger, 1926c, pp. 120-123). 
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radiation field into its Fourier components. Then, having made the Fourier expansion of 

the field, “we can consider the energy and phase of each component to be dynamical 

variables describing the radiation field … we can suppose each Er and θr to form a pair 

of canonically conjugate variables … satisfying the standard quantum conditions θrEr – 

Erθr = iħ … this assumption immediately gives light-quantum properties to the 

radiation” (Dirac, 1927b, p. 244). 

But the main drift of Dirac’s work was not the quantization of a wave; on the 

contrary his paper is mainly a treatment of an assembly of identical particles. It seems 

that Dirac got to this approach by “playing about with Schrödinger equation” (quoted in 

Darrigol, 1986, p. 226). In this method, later called ‘second quantization’, Dirac started 

with an assembly of N similar independent particles subjected to a perturbation, whose 

wave function is ψr  = Σrarψr (where ψr are the eigenfunctions of the free particles), and 

considered the expansion coefficients ar as canonical conjugates. Working with the 

canonical variables br = ar e
-iwrt/ħ and br* = ar* e

iwrt/ħ (where wr is the energy of the 

unperturbed state), Dirac assumed that these variables were “q-numbers satisfying the 

usual quantum conditions instead of c-numbers” (Dirac, 1927b, p. 251). This gives the 

false impression that a quantization scheme is being used, but what is being done is 

changing from a configuration space representation to a occupation number 

representation (Cao, 1997, pp. 166-167), where the commutation relation [br, bs*]= δrs  

holding between br and  br* serves to impose the symmetrization of the configuration 

space wave function, which means that the particles obey Bose-Einstein statistics 

(Dirac,1927b, pp. 252-255; Schweber, 1994, p. 28). What Dirac thinks he demonstrates 

in this work, is the equivalence between a quantized electromagnetic wave and a system 

of bosons (light-quanta), but for this he makes an identification of the quanta of energy 

with the particles (light-quanta), and in order to get this result the particle cannot cease 

to exist when it is apparently absorbed, or created when it is emitted. It is therefore 

necessary to have an infinite sea of light-quanta in a state in which their momentum and 

energy are zero, from which the particle can jump from or into (Cao, 1997, pp. 163-

164). One thing seems clear, even in the case of the electromagnetic field, Dirac 

developed his work mainly from a particle perspective. 

Jordan’s approach was almost the opposite. He chose to see the Schrödinger 

equation as an equation for a classical wave that we would submit to a quantization 

procedure. The rupture with Dirac’s view is most evident in Jordan’s application of this 

approach to the electrons (fermions) using anticommutation relations, a view impossible 

for Dirac who saw the electrons as particles. Jordan clearly stated his ideas:  

 
The results we have reached hardly leave any doubt that … a quantum-mechanical wave 

theory of matter can be developed that represents electrons by quantized waves in the usual 

three-dimensional space. The natural formulation of the quantum theory of electrons will be 

attained by conceiving light and matter as interacting waves in three-dimensional space. 

The basic fact of electron theory, the existence of discrete electric particles, appears in this 

context as a characteristic quantum phenomenon; indeed it means exactly that matter waves  

occur only in discrete quantum states (quoted in Darrigol, 1986, p. 232). 

 

The work of Jordan (and his collaborators) was extended by Heisenberg and Pauli in 

the development of a quantum theory of fields in which the electromagnetic and matter 

fields were described by a classical Lagrangian and quantized by a new method (Miller, 

1994, p. 31). The difficulties in the quantization of the Maxwell equations delayed for 

more than a year the completion of their work. When finally Heisenberg managed “to 

eliminate the difficulties by means of a formal trick” (quoted in Pais, 1986, p. 343), 
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Dirac had already published his equation, and Heisenberg and Pauli adopted it in their 

quantum field treatment of the interaction of matter and the electromagnetic field. 

After a subsequent refinement, mentioned above, the quantum field approach gave a 

different view on the negative-energy solutions without need for the hole theory. Taking 

the Dirac equation and its adjoint equation as classical field equations derived from a 

classical Lagrangian, an arbitrary field can be expanded in terms of the complete set of 

free-particle solutions. In the usual scheme for a ‘box’ quantization we have 
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Replacing the expansion coefficients by operators satisfying the anticommutation 

relations [bn, bm]+ = [bn*, bm*]+ = 0 and [bn, bm*]+ = δnm , ψ(x) and the adjoint spinor 

field ψ*(x)  become operators that act on  state vectors of a Fock space
3
,  and  br(p) and 

br*(p) are interpreted as the annihilation and creation operator of an electron in a state 

characterized by (p, r). Redefining the operators for the negative-energy states as br+2(-

p) = dr*(p) and br+2*(-p) = dr(p) with r = 1, 2, these operators can be interpreted as the 

creation and annihilation operators for a positive-energy positron (Miller, 1994, p. 183), 

and the expansion of the ψ(x) operator is now given by 
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With this formulation there are no negative-energy states (identified as the positive-

energy positrons), and so no need for the infinite sea of negative-energy electrons. Also 

in the field operators ψ(x) and ψ*(x) we have simultaneously operators related to 

electrons and positrons: they are both a manifestation of the field.  

Considering the energy-momentum operator  

 

 )](n)([nppd)]()b(*b)()a(*[appdP µ3

r

rrrr

µ3µ
pppppp

+− +=+= ∫∑∫ , 

 

and the total charge operator 
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where n
-
(p) is the number of the quanta denominated as electrons and n

+
(p) is the 

number of quanta denominated as positrons (Jauch & Rohrlich, 1976, p. 64), the 

quantization of charge and subsequent emergence of a particle-like concept of an 

electron can be seen as a result of the quantization of the classical field, as Jordan 

proposed.  

 

                                                 
3
 Considering the vacuum state, which is the state with no quanta, an n-quanta Hilbert space can be 

defined by n applications of creation operators. The Fock space is the (infinite) product of the n-quanta 

Hilbert spaces: H
(0)

 ∆ H
(1)

 ∆ H
(2)

 … (Schweber, 1961, pp. 134-137). 
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3. Combining results from the different views on Dirac’s equation 

 

3.1. A quantized electron-positron field view on the solutions of the Dirac equation as a 

relativistic one-electron equation 

 

To connect the electron-positron quantum field with Dirac’s view of electrons (and 

positrons) as particles, we might proceed like he did in the case of the electromagnetic 

field – considering the idea of light-quanta – and try an ‘electron-quanta’ view. In this 

case we would end up considering that “the Dirac equation in the quantized theory 

should be regarded as a differential equation that determines the dynamical behaviour of 

the entire aggregate of electrons (and positrons)” (Sakurai, 1967, p. 148). Even in this 

more favourable attitude towards a particle view of the electron, it is clear that in the 

field operators there is a clear separation between the components related to the 

electrons and the ones related to the positrons.  

In the exact solution of the one-electron Dirac equation in a central potential (the 

hydrogen atom) we see in the new field (or aggregate) perspective components related 

to both electrons and positrons. This means that the one-electron four-component wave 

solution must be reinterpreted by taking into account the field perspective that clearly 

relates the positive-energy solutions to the electrons and the negative-energy solutions 

to the positrons. Also, if we want, from this perspective,  a simple model for the 

hydrogen atom with only one electron, using the Dirac equation as a relativistic one-

electron equation, we must have some other way of doing the calculations, or, what is 

the same, of creating a model that uses only two-component positive-energy wave 

functions to describe the electron. This approach is also important if we want to make a 

clear connection between the relativistic and non-relativistic equations, that is, between 

the Dirac and the Schrödinger equations.   

Considering the positive-energy four-component solutions of the Dirac equation: u+ 

= (u+
L
 u+

S
), in the non-relativistic limit the lower two components u+

S
 are smaller than 

the upper two u+
L
. When calculating matrix elements like (u+, γ4u+) = u+

L*
u+

L
 – u+

S*
u+

S
, 

neglecting terms of order (v/c)
2
, we consider only the large components (u+

L
, u+

L
) = 

u+
L*

u+
L
 that corresponds to a two-component wave function (Mandl, 1957, pp. 214-

215). In the presence of electromagnetic coupling the large components can be seen as 

the solution of the Schrödinger-Pauli non-relativistic two-component wave equation 

(Björken & Drell, 1964, pp. 10-13). 

Concerning this approach to the problem of the non-relativistic limit of the Dirac 

equation, L. L. Foldy and S. A. Wouthuysen considered that “the above method of 

demonstrating the equivalence of the Dirac and Pauli theories encounters difficulties 

[…] when one wishes to go beyond the lowest order approximation” (Foldy & 

Wouthuysen, 1949, p. 29). In the case of the Dirac equation for a free electron it is 

possible to perform a canonical transformation on the Hamiltonian that enables to 

uncouple the positive- and negative-energy components of the wave equation. This 

means we get two independent equations for two-component wave functions, and 

identify the equation with positive-energy solution as the Schrödinger-Pauli equation. 

The case of an electron interacting with an external electromagnetic field is more 

involving. The trick is to consider the electromagnetic field as a perturbation and to 

make a sequence of transformations to obtain the separation of negative- and positive-

energy solutions (corresponding each to two-component wave functions). In the non-

relativistic limit, like in the previous method, the Schrödinger-Pauli equation is 

obtained.  
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It is then possible to rework the relativistic Dirac one-electron equation in a way in 

which only the positive-energy solutions are considered, including the case of the 

hydrogen atom. Foldy and Wouthuysen applied their method to the case where a Dirac 

electron interacts with an external electromagnetic field, and obtained, making three 

canonical transformations and using only terms of order (1/m)
2
, the same results as the 

Pauli-Darwin semi-empirical theory – as Dirac did in is original work –, but making a 

clear separation of positive- and negative-energy solutions using directly a two-

component wave equation. 

 

3.2. A Dirac field approach to the hydrogen atom 

 

One of the most relevant aspects in the construction of a hydrogen atom model 

using only positive-energy solutions is that it is only an approximate approach, and that, 

moreover, it is not possible to make an infinite sequence of transformations to get the 

exact solution. An infinite sequence of canonical transformations leads to a Hamiltonian 

which is an infinite power series, and, as Foldy and Wouthuysen remarked, “it can 

hardly be expected that this series is convergent, the series is presumably an asymptotic 

or semi-convergent series in the sense that the sum of a finite number of terms of the 

series is a better-and-better approximation” (Foldy & Wouthuysen, 1949, p. 34). This 

means that a hydrogen atom model with one positive-energy electron is poorer than the 

previous calculation with the positive- and negative-energy components mixed up.  

This takes us to the necessity of making a derivation of a quantum field model for 

the hydrogen atom as exact as the one-electron four-component eigenfunction 

calculation. One of the approaches is to use the so called Furry or bound interaction 

representation within the external field approximation. This gives a method for 

calculating corrections to the energy levels of a bound electron determined by the Dirac 

equation as a relativistic one-electron equation (Berestetskii, Lifshitz & Pitaevskii, 

1982, p. 487). But the starting point is the field operator defined by 

 
tt

ebveaux rr iE

rr

iE

r

r

r )()()ψ( *xx += −∑ , 

 

where ur(x) and vr(x) are obtained by solving the Dirac equation for a positive-energy 

particle representing the electron, and a negative-energy particle representing de 

positron: Hua(x) = Eaua(x) and Hvb(x) = –Ebvb(x), where H = iγ0γγγγ.∇ − eγ0γµϕµ  + iγ0
m, 

with ϕµ
 a static external field (Jauch & Rohrlich, 1976, p. 313). The first equation is 

exactly the one solved in the case of the one-electron interpretation of the Dirac 

equation. This means that Ea gives the energy levels obtained by this method, and that in 

spite of identifying ua(x) as the electron’s wave function it contains positive- and 

negative-energy components (Schweber, 1961, p. 566). 

Now, what is needed is a method in which the free particle positive-energy 

characteristic of the electron is maintained during the interactions with no mixing of 

positive- and negative-energy components. This implies seeing, at the quantum field 

level, the binding of an electron as resulting from the scattering of the electron by an 

external field. 

The main working tool in quantum electrodynamics, the S-matrix, was designed for 

scattering problems where we have free particles in the beginning and free particles in 

the end of an interaction (scattering). This means that it is not very appropriate to deal 

with the case of a bound particle, at least in a direct way. On the other hand, one of the 

most important characteristics of quantum field methods is that the interaction between 
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fermions is represented by the exchange of quanta of one field by the quanta of another 

(Zee, 2003, p. 27). For example the electron-electron scattering is simulated by the 

exchange of photons between the electrons. If we make a model of the atom in which 

the effect of the nucleus is simulated by a classical Coulomb field, this view is lost (as 

in the external field method previously discussed). A way to overcome these difficulties 

is to address directly the two-body problem using the Bethe-Salpeter equation. The two-

body problem is addressed in this method by considering directly the two-particle 

propagator for an electron and a proton (that in the calculations is modelled as a ‘big’ 

positron with the same mass as the proton)
4
. Considering a power series expansion of 

the two-particle propagator, the binding energy between a proton and an electron is 

basically calculated using what is known as the ladder approximation (Schweber, 1961, 

p. 713). Concerning this approximation H. A. Bethe and E. E. Salpeter considered that 

“although the probability for the exchange of a quantum during a small time interval is 

fairly small, during the infinite time of existence of the bound state an indefinite number 

of quanta may be exchanged successively. It is just such processes that the ladder-type 

graphs deal with” (Salpeter & Bethe, 1951, p. 1234). Thus, in the field theory model the 

binding of the electron in the atom is achieved by an exchange of photons with the 

proton. We see that from a field theory perspective, a rigorous description of the 

hydrogen atom (as a two-body problem) leads to a physical picture of the process going 

on in the atom quite different from the one obtained when using the Dirac equation as a 

one-electron equation.  

 

4. Interacting fields or interaction between fields 

 

4.1. Interacting fields and theory design in quantum electrodynamics 

 

From a Jordan’s perspective on quantization of a classical field, the eigenfunctions 

of the field operator are a superposition of classical field configurations (Schweber, 

1961, p. 193). In this case we can see the Fock space as constituted by the 

“wavefunctionals ψ(φ) that describe superpositions of different classical field 

configurations” (Baker, p. 5). This means that we can construct the Fock space 

associating classical field configurations to the field quanta. 

The analysis of the theory in terms of a field interpretation of the Fock space, and 

the use of the quanta concept in the description of fields and their interaction might be 

thrown over board when we make a detailed analysis of the mathematics of the 

interacting system of Dirac and Maxwell fields. Since as seen before, apparently, the 

interaction has a physically appealing description in terms of quanta exchange – or more 

properly, coordinated creation and annihilation of quanta of the two fields – at first sight 

it looks strange that from a deeper analysis of the interaction (the important stuff) we 

might get into trouble. 

Using the Lagrangian formalism, in quantum electrodynamics, the system of 

interacting Dirac and Maxwell fields is described by a Lagrangian L = L0(Aµ) + L0(ψ) + 

LI(ψ, Aµ), where L0(ψ) and L0(Aµ) are the Lagrangian densities for the free Dirac and 

Maxwell fields, and LI(ψ, Aµ) = 
µ

µψAγψe  is the interaction term. The form of the latter 

term can be determined by imposing invariance requirements on the total Lagrangian 

                                                 
4
 There is an indirect method to calculate the energy levels of bound states from the S-matrix, which 

consists in determining the poles of the exact scattering amplitude. But in practice this approach leads to 

a summation of an infinite series of diagrams that corresponds to solving the Bethe-Salpeter equation 

(Berestetskii, Lifshitz & Pitaevskii, 1982, p. 554). 
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and selecting the simplest expression possible. The interaction term can also be obtained 

by correspondence to the classical term in the Lorentz theory of electrons. 

Considering the relativistic equation of motion for an electron in an external field Aµ 

(basically the four-vector version of the Lorentz force law), a Hamiltonian is defined 

using the total four-momentum of the electron: pµ = uµ + eAµ (Heitler, 1954, p. 15). 

From the Hamilton equations, the expression for the equation of motion is derived with 

the ‘kinetic momentum’ being given by uµ = pµ – eAµ (Heitler, 1954, p. 43), which 

corresponds to the minimal coupling used in quantum electrodynamics. 

The variation of the Lagrangian with respect to the field operators results in a set of 

nonlinear coupled equations. In this case, the Dirac equation in the presence of the 

electromagnetic field is given by ψψ m)Ae-(i =/∇/ (Feynman, 1961, p. 56). 

It is relevant that quantum electrodynamics, as an interacting field theory, is 

designed as a theory that describes the interaction between distinct fields. Quantum 

electrodynamics was developed by considering two clearly separated fields from the 

beginning, which corresponds to having in the Lagrangian (the mathematical core of the 

theory) two separated pieces exclusive of each field. The relations between the two 

fields are determined by an interaction term that couples the Maxwell and Dirac 

equations.  

The (apparent) problem we have in the case of interacting Dirac and Maxwell fields 

is simply that it is not possible to “use the Fock representation for a free field to 

represent an interacting field” (Earman & Fraser, 2006, p. 322). In the Fock space we 

have a direct connection of quanta to the normal modes of classical field configurations. 

It is from the Fourier splitting of a classical wave into positive and negative frequency 

normal modes, providing the basis for the configuration space, that the concept of 

quanta emerges (via a quantization procedure and associated to each normal mode). In 

the case of interacting fields it is not possible to make this Fourier expansion (Fraser 

2006, p. 136). This means that following this line of reasoning the quanta concept is 

unavailable when we consider full interacting fields (Earman & Fraser, 2006, p. 330). 

Going deeper into this, it is possible to conclude that “no space of wavefunctionals over 

interacting fields exists, since no Fock space over such fields exists. So whatever an 

interacting state is, it is manifestly not a probability distribution over classical field 

configurations” (Baker, p. 24). This means that we would lose the concept of quanta and 

the field interpretation in one struck. 

This problem comes about because of the differences between the practice in 

physics with concrete models worked out from the theory, and the mathematical 

abstract framework itself. The previous apparent conceptual collapse is due to that. 

Even when we are not considering the incompleteness of quantum electrodynamics 

– in what regards the need for classical theory to construct the quantum structure as a 

physical-mathematical upgrade of classical physics, and also the complicated matter of 

the need of a classical basis for the description of observation of quantum systems – the 

theory does not provide the possibility of describing a closed system of interacting 

fields even if considering the mathematical framework of the theory it would appear it 

does. I consider that the previous apparent conceptual collapse results from dealing with 

the theory in a more abstract mathematical way and not considering the concrete 

applications that permit the empirical corroboration of the theory. For good or for bad, 

physical theories (at least the ones under consideration) have been constructed based on 

the idea that there can be a clear distinction between phenomena (like the distinction 

between matter and radiation), and that this empirical distinction can be reflected in the 

design of the theories. This world view of a reality built by disconnectable entities is 

used in quantum electrodynamics, inherited from the classical theories. The theory was 
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built by explicitly considering completely disentangled ‘building blocks’ of reality, in 

the present case the Dirac and Maxwell fields that exist in a Minkowski space-time. 

Then from the interaction of this distinct ‘elements of reality’ the change in the world 

can be ‘explained’.  

The trick in quantum electrodynamics is that it is not as a full interacting theory that 

results are worked out. If we do not bring the mathematical structure of the theory to the 

level of specific physical models, that can be contrasted with experimental results, but 

try to take a more formal approach from the general framework of the theory, not taking 

too much into account the physical basis of its development and its applications, we get 

absurd conclusions (as will be seen in the next section when considering the 

implications of Haag’s theorem). We must analyse the interaction of fields from the 

perspective of independent fields that make sense on their own. Then, from the 

modelling of the interaction using the mathematical structure provided by the theory, 

results can be obtained for a system of different interacting fields, not the other way 

around.  

 

4.2. From a theory of interacting fields to models of interaction between fields  

 

The (apparent) impossibility of using the Fock space (connected with the concept of 

quanta) in the description of interacting fields appears as a rigorous mathematical 

consequence of the Haag theorem, which is valid in the context of quantum 

electrodynamics. 

From Haag’s theorem (Haag, 1955) we know that we cannot have a unitary 

transformation relating the field operators corresponding to the free Hamiltonian H and 

the interacting field Hamiltonian HI. Considering that at t0 the Heisenberg 

representation and the Dirac (interaction) representation coincide (Earman & Fraser, 

2006, p. 320), in the limit t T ±∞ it would seem that the state vector in the Dirac 

representation corresponds to free particles due to the fact that the interaction part of the 

Hamiltonian is neglectable. But from Haag’s theorem it seems that “at times t = ±∞, all 

the assumptions of the theorem hold for the Heisenberg representation, which represents 

an interaction, and for the interaction representation, which is a Fock representation for 

a free system” (Earman & Fraser, 2006, p. 322). In informal terms Haag’s theorem 

implies that the state vectors in the Dirac representation, that for t T ±∞ are supposed 

to represent the free field, and the state vector in the Heisenberg representation for the 

interacting fields, are not in a common domain of both H and HI (Schweber, 1961, p. 

416).  

From Haag’s theorem we can conclude that when using the Dirac representation 

(also called interaction picture) in describing the interacting fields, if we have a free 

field at t = –∞,  the Dirac representation describes also a free field at any time t0. This 

means that we need from the start to have a state of the full interacting Hamiltonian so 

that we can consistently give to the Dirac representation its usual use in giving a 

different time dependency to the state vector and the operators (Schweber, 1961, p. 

317). 

Both the Heisenberg and Dirac representations can hypothetically be used in free or 

interacting systems, if we can separate in parts the Hamiltonian corresponding to free 

fields and an interaction term. The change of representation does not change the 

physical situation, be it of free fields or interacting fields. The change of representation 

does not bring a magical change from free fields to interacting fields or vice versa. 

There really is no “interaction picture’s assumption that there is a time at which the 

representation for the interaction is unitarily equivalent to the Fock representation for a 
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free system” (Fraser, 2006, p. 54). This ‘assumption’ has nothing to do with the 

representation being used. The ‘assumption’ is that with an adiabatic switching of the 

interaction, the state vector for the interacting systems can be constructed from the state 

vector of free fields (Schweber, 1961, p. 320):  

 

aa0
-t

t,tUlim ψϕ =
∞→

)( . 

 

This is what is supposed to be achieved in the adiabatic switching of the potential that 

‘connects’ a free field Hamiltonian with the interacting field Hamiltonian (Jauch & 

Rohrlich, 1976, p. 134; Schweber, 1961, p. 322): 
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The point is that at infinite times before and after the adiabatic switching of the 

interaction potential, the state vector in the Heisenberg or Dirac representation is 

assumed to be describing free fields.  

The question here is not the representation being used but when, how, and whether, 

it is possible to connect the interacting state to a free field state. It seems clear from the 

consequences of Haag’s theorem that the usual adiabatic switching of the interaction 

won’t do the trick.  

It might seem that by using renormalization techniques the consequences of Haag’s 

theorem might be evaded because “once infinite renormalization counter terms are 

introduced, the interaction picture is not mathematically well-defined” (Fraser, 2006, p. 

2), and from this it might seem that “renormalization addresses this problem not by 

refining the assumptions, but by rendering the canonical framework mathematically ill-

defined” (Fraser, 2006, p. 90). We would be in the surrealistic situation of needing bad 

maths to get good physics. But it would be rather strange to say the least, that 

considering an impoverished mathematical framework, suddenly, something physically 

equivalent to a unitary transformation connecting free and interacting field operators 

might emerge. 

 There does not seem to be any relation between the functionality of the Dirac 

representation in scattering problems in spite of Haag’s theorem, and the necessity of 

mass and charge renormalization to render the results finite (a problem that is not 

addressed here). 

The explanation for the good results of the perturbation theory approach to the 

scattering (and bound state) problems will not be found in the inapplicability of Haag’s 

theorem in the ill-defined mathematical framework of quantum electrodynamics. It is 

not in the mathematical imperfections of the theory that we should look for an answer to 

the functionality of the theory despite Haag’s theorem. We must look for a physical 

justification of it, even if this involves (as it is the case here) a clear imperfection in the 

mathematics of the theory as it is used. To properly address this question we have to 

work at the level of physical models. 

The use of the Dirac representation only makes physical sense at the level of models 

in which we can consider different systems (described by a limited number of quanta) 

that have some sort of interaction we can consider as a perturbation to their independent 

states, in this way maintaining their identity as separated physical systems even during 

the interaction. In this sense the use of Dirac representation is part of the model design. 

We simply use part of the Hamiltonian, which is possible since the theory was 

developed considering distinct parts in the Lagrangian, one corresponding to the free 
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Dirac field, another to the free Maxwell field and another to the interaction. This is the 

one pulled apart from the others in the Dirac representation.   

The model for scattering is constructed from the theory considering an initial state 

corresponding to a limited number of free particles (quanta), and with an adiabatic 

switching of the interaction between the fields, a full interacting state ψb
- is apparently 

obtained. The interacting state ψa
+ that corresponds to a determined number of quanta in 

the final state is defined in an equivalent way.  The scattering amplitude Sab is given by 

(ψb
-
, ψa

+
) (Schweber, 1961, p. 323).   

The point is that we really do not work with this doubtful interacting state. What is 

going on is quite different. We are only considering the first terms of a perturbation 

expansion of the scattering matrix corresponding to particular cases of quanta present. 

At the model level we are taking advantage of the way the theory was designed. We 

always have clearly distinct fields, and for the description of their interaction, with an 

excellent agreement with experimental results (Gabrielse et al., 2007), a blending of the 

description of the fields as a global interacting system is not needed. On the contrary, if 

we try to make a full description of the interaction considering all the (infinite) terms of 

the power series expansion of the S-matrix there is good reason to believe that in the 

present theory this series can “at best only be an asymptotic expansion” (Schweber, 

1961, p. 644).  

From a mathematical point of view the use of a few terms of a divergent series is 

difficult to defend, but from a physical perspective the justification for the use of 

perturbation theory in quantum electrodynamics is clear. It is related to the weakness of 

the interaction between the Maxwell and Dirac fields (Mandl & Shaw, 1984, p. 95). The 

possibility of a perturbative approach is a mathematical fingerprint of the physical 

distinction between the fields in the interpretation of all the experimental results that are 

agreed by the models of the theory. 

If when calculating the amplitude, for example, for the electron-electron scattering, 

the complete S-matrix was (somehow) considered, then there would be an infinite 

number of terms corresponding to an infinite number of combinations of different 

quanta, and we could say that in this case the quanta “type and number are not sharp” 

(Weingard, 1988, p. 46). The quanta description of interactions would then appear to be 

a mathematical fiction due to the use of perturbation theory in the calculation of the 

scattering amplitude. Simply, when considering a model of the scattering, we can only 

use the first terms of the S-matrix expansion. There is simply no possibility of 

considering the (unexisting) exact S-matrix, nor is there a motive
5
. We are working at 

the level of models of interaction between fields, not the mathematical abstract 

framework of the theory. In this way we are not restricted by Haag’s theorem – and so 

we can retain the concept of quanta in the description of interactions – because, from a 

physical point of view, the Lagrangian of quantum electrodynamics does not provide us 

(contrary to what from a mathematical abstract point of view might appear) with the 

possibility of describing a system of (undifferentiated) interacting Dirac and Maxwell 

fields, but with a way of developing models that describe in a limited way the 

interaction between the fields
6
. This limited possibility of the theory in describing the 

                                                 
5
 There might appear to be ways of sidestepping this type of approach considering the Feynman path 

integral approach (Weingard, 1988, p. 54). But again, when considering the specific models there is no 

infinite expansion of the transition amplitudes. In the mathematical expression for the transition 

amplitudes there are quanta propagators, and the interpretation of the propagators relating them to quanta 

cannot be overturned in a (finite expansion) model based on path integrals. 
6
 In this way, due to the ill-defined mathematics of quantum electrodynamics, the models are much more 

constructed from the theory than simply an application of it. But the models are developed within the 
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interaction between Dirac and Maxwell fields can be seen as an intrinsic limitation of a 

quantum treatment of the interaction, as Bohr stressed (Rueger, 1992, pp. 317-318). 

According to Bohr’s views, the correspondence principle implies that the quantum 

treatment of the interaction of the electron with the electromagnetic field can only be 

treated by an “essentially approximate procedure” (quoted in Rueger, 1992, p. 318). In 

this way, this physical limitation can be seen to have a sort of mathematical 

correspondence in the convergence problems of the S-matrix and the need of the 

adiabatic switching on/off trick. But, it cannot be seen as resulting from the 

mathematically ill-defined perturbative approach. On the contrary, the mathematical 

imperfections should be seen as a fingerprint of an intrinsic physical limitation of 

quantum electrodynamics. 

From the start the theory was not developed to treat the question of fully interacting 

almost undifferentiated fields, but to treat the question of interaction between distinct 

fields. To consider that “Fock representations are generally inappropriate for interacting 

fields” (Earman & Fraser, 2006, p. 330), is to turn upside down the theory as it was 

developed. The theory is built on top of the physical idea of independent entities whose 

interaction describes change in nature. When accepting this approach, and its intrinsic 

limitations, it is difficult to consider inappropriate, at least from an empirical point of 

view, the results of quantum electrodynamical models. 

 

Conclusions 

 

Accepting the construction limitations of quantum electrodynamics, it is not 

possible to analyse its basic physical concepts disregarding the way the theory is 

confronted with experimental results. The concept of quanta follows naturally from the 

quantization of the Dirac (and Maxwell) classical field as described by Dirac’s equation, 

and it is fundamental for the intelligibility of the theory independently of any 

ontological positioning. It is a central concept in the physical-mathematical description 

of interaction between fields, and in the visualization and mental comprehension of 

what’s going on at the level of physical models of interaction between fields. 

In what regards quantum electrodynamics, Fock space does its job well, both for 

free and for interacting fields. Taking into account the evident shortcomings of the 

theory in the description of interactions between fields, a view of quantum 

electrodynamics as a full interacting field theory should not be enforced, and lead to 

ontological debates on the clearly limited physical concepts being used (like the concept 

of quanta or quantum field). The delimitation and clarification of the theory 

shortcomings should instead help in the development of improved theories. 
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