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Abstract

The “myside bias” in evaluating arguments is an empirically
well-confirmed phenomenon that consists of overweighting ar-
guments that endorse one’s beliefs or attack alternative beliefs
while underweighting arguments that attack one’s beliefs or
defend alternative beliefs. This paper makes two contributions:
First, it proposes a probabilistic model that adequately captures
three salient features of myside bias in argument evaluation.
Second, it provides a Bayesian justification of this model, thus
showing that myside bias has a rational Bayesian explanation
under certain conditions.
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Introduction
Argumentation is central to our complex world. It often plays
a critical role in political, social, and scientific communities
and can play a key role in decision making and scientific re-
search. Therefore, the understanding of argumentation has
been the subject of numerous scientific investigations in dif-
ferent research areas (Hornikx & Hahn, 2012; Oaksford &
Chater, 2020).

These investigations have shown that argumentative con-
texts are very complex and that it can be more difficult than
expected to convince with one’s arguments. This is espe-
cially true when the participants in a discussion have differ-
ent prior assumptions about the topic under discussion. And
indeed, research has shown that participants in a discussion
are so influenced by their prior beliefs that they favor them
over alternatives both in finding arguments and in evaluating
other people’s arguments (Perkins, 1985; Kuhn, 1991; Ed-
wards & Smith, 1996; Nickerson, 1998; McKenzie, 2004;
Taber & Lodge, 2006; Wolfe & Britt, 2008; Čavojová, Šrol,
& Adamus, 2018; Stanovich, 2021).

In the literature, the influence of one’s own prior beliefs in
producing and evaluating arguments is commonly referred to
as myside bias (Nickerson, 1998; Stanovich, West, & Toplak,
2013; Stanovich, 2021). Sometimes the same phenomenon is
also referred to as confirmation bias (Stanovich, 2021). Here
we adopt the terminology of Stanovich (2008b; 2013; 2021),
and use the term myside bias exclusively to refer to the influ-
ence of one’s prior beliefs in argumentation, while restricting
confirmation bias to its original meaning of a bias in hypoth-
esis testing. See Stanovich (2021) for a detailed discussion.

Myside bias has been studied in the context of a variety of
other research topics in psychology, such as individual and

group reasoning (Mercier, 2017, 2018), scientific thinking
(Evans, 2002; Mercier & Heintz, 2014), intelligence and cog-
nitive abilities (Stanovich & West, 2007, 2008b; Stanovich et
al., 2013), human evolution (Mercier & Sperber, 2011, 2017;
Peters, 2020) and political thinking (Taber & Lodge, 2006;
Mercier & Landemore, 2012; Stanovich, 2021).

In the specific case of argument evaluation bias, research
has shown the following two effects. On the one hand, dis-
cussants overestimate the strength of arguments that support
their own prior beliefs or that attack opposing beliefs to their
own; on the other hand, discussants underestimate arguments
that either attack their own prior beliefs or that support op-
posing views to their own (Edwards & Smith, 1996; Nick-
erson, 1998; Toplak & Stanovich, 2003; Taber & Lodge,
2006; Stanovich & West, 2007, 2008b; Stanovich et al., 2013;
Mercier, 2017; Stanovich, 2021).

For these reasons, it has been argued that myside-biased
individuals risk to become overconfident in their beliefs and
are less easily willing to revise them, regardless of their truth
(Mercier, 2017; Mercier & Sperber, 2017; Stanovich, 2021).
In addition, it has also been argued that myside bias con-
tributes to undesirable social phenomena such as political po-
larization (Stanovich, 2021).

The purpose of this paper is twofold. First, it proposes
a probabilistic model that adequately captures three impor-
tant features of myside bias in argument evaluation. Sec-
ond, it provides a Bayesian justification of this model, thus
showing that myside bias has a rational Bayesian explana-
tion under certain conditions. In doing so, this paper fills a
gap in the literature, as despite the ever-growing literature on
Bayesian approaches to reasoning and argumentation (for an
overview, see Chater and Oaksford (2008), Zenker (2013),
and Oaksford and Chater (2020)), there is still no systematic
Bayesian model of myside bias in argument evaluation.

The Myside Bias
The myside bias in argument evaluation has been studied both
in the context of formal argumentation, in which participants
are asked to evaluate the conclusions of inferences that have
a clear logical structure, and in the context of informal argu-
mentation, in which subjects are asked to evaluate informal
arguments that resemble real-world discussions (Čavojová et
al., 2018). Overall, both lines of research show that the corre-
spondence between arguers’ prior beliefs and the content of
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a conclusion or proposition influences how arguers judge the
validity of the conclusion or the strength of the argument.

As for the study of formal arguments, early research on
belief bias showed that the prior credibility of the conclu-
sions of a deductive inference influences the arguer’s judg-
ment about the validity of the inference (Evans, Newstead,
& Byrne, 1993; Evans, 1989, 2002, 2007). Further research
has shown that the credibility of an argument’s conclusion
in light of one’s prior beliefs is a predictor of whether an
actor judges a conclusion to be valid or invalid. For exam-
ple, Čavojová et al. (2018) found that participants had diffi-
culty accepting the conclusions of logically valid conclusions
about abortion whose content conflicted with their prior be-
liefs about abortion. At the same time, participants had dif-
ficulty rejecting invalid conclusions whose conclusions they
agreed with (Čavojová et al., 2018).

Much of the experimental research on myside bias is con-
ducted in an informal argumentation framework (Čavojová
et al., 2018), and myside bias in argument evaluation has
been documented in a substantial number of experiments
(Nickerson, 1998; Edwards & Smith, 1996; Taber & Lodge,
2006; Stanovich & West, 2007, 2008a, 2008b; Stanovich et
al., 2013). For example, in a commonly used experimental
paradigm, participants are first asked to express their opin-
ion on a particular topic, such as abortion or public policy;
participants are then asked to rate the strength of arguments
from a set of arguments that include arguments both for and
against the participants’ positions on an issue (Edwards &
Smith, 1996; Taber & Lodge, 2006; Stanovich & West, 2007,
2008b; Stanovich et al., 2013).

Overall, three salient features of myside bias in the evalua-
tion of arguments stand out:

1. Reasoners overweight arguments that favour their own
prior beliefs and disfavour views opposite to their own
(McKenzie, 2004; Stanovich & West, 2007, 2008b;
Stanovich et al., 2013; Stanovich, 2021). Simultaneously,
an argument that attacks the reasoner’s prior opinion or
confirm opposite views is generally rated as a weak argu-
ment (Nickerson, 1998).

2. Reasoners that are neutral to the topic that is being dis-
cussed tend not to show a myside bias in evaluation tasks
(Taber & Lodge, 2006).

3. The myside bias occurs in various gradations: Proponents
who believe more firmly in their point of view tend to ex-
hibit a stronger bias than proponents who hold a milder
opinion (Stanovich & West, 2008a). In other words, two
arguers who are on the same side of an issue may differ
in the extent to which they believe the side of the issue
and thus show stronger or weaker bias depending on how
strong their prior beliefs are.

In summary, myside bias can be interpreted as a difference
of opinion about the extent to which an argument confirms
(or refutes) a belief (or its opposite) between an agent who is

neutral toward the belief versus the case in which the agent
endorses either the truth or falsity of the belief.

A Bayesian Model
To provide a Bayesian justification of myside bias, we intro-
duce binary propositional variables A and B (in italic script)
which have the values A and ¬A, and B and ¬B (in roman
script), respectively, with a prior probability distribution P de-
fined over them. In the present context, B is the target propo-
sition and A is an argument in support of B. A and B are con-
tingent propositions and we assume that P(A),P(B) ∈ (0,1).
P represents the subjective probability function of an agent
and P(A) measures how strongly they believe in A. See
Sprenger and Hartmann (2019) for a philosophical justifica-
tion of the Bayesian framework.

Next, we are interested in the posterior probability of B
after learning A. According to Bayes theorem, it is given by
P∗(B) = P(B|A) which can also be written as

P∗(B) =
P(B)

P(B)+ x ·P(¬B)
. (1)

Here the likelihood ratio x is given by

x :=
P(A|¬B)
P(A|B)

, (2)

where we follow the convention used in Bovens and Hart-
mann (2003). Then the following proposition holds:

Proposition 1. Let A and B be two binary propositional vari-
ables with a prior probability distribution P and a posterior
distribution P∗ defined over them. Then eq. (1) implies that
(i) P∗(B) > P(B) iff 0 ≤ x < 1, (ii) P∗(B) = P(B) iff x = 1,
and (iii) P∗(B)< P(B) iff x > 1.

This proposition directly relates confirmation and discon-
firmation of one’s own beliefs to the likelihood ratio x: if
x < 1, then the agent’s degree of beliefs in B increases, and
therefore the argument A confirms the target belief B; if x> 1,
then the agent’s degree of belief in B decreases, and therefore
the argument A disconfirms the target belief B (“A attacks
B”); if x = 1, then learning A does not make any difference
for the agent’s degree of belief in B, which means that the
argument A is not relevant for the truth or falsity of B.

The likelihood ratio x is also referred to as the diagnosticity
of an argument A relative to a belief B. Here the term “diag-
nosticity” refers to the fact that the likelihood ratio measures
how much A specifically supports the truth of B against its
falsity. For instance, consider a case in which an argument
A is more likely to be true if B is true than if ¬B is true, i.e.
when P(A|B)> P(A|¬B): then x < 1 and, by Proposition 1,
the argument A will increase the degree of belief in the tar-
get proposition B. The more likely it is that an argument A is
true if B is true, compared to the case where ¬B is true, the
smaller x is and the higher the confirmation of B is.
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(a) x′ as a function of b for
x = 1/2 and different values of γ.

(b) x′ as a function of x for γ = 1
and different values of b.

Figure 1: The perceived likelihood ratio x′.

The Perceived Likelihood Ratio
The central idea of the proposed model is that the myside
bias affects the way an agent judges the diagnosticity of an
argument A relative to B. This, in turn, affects the way the
agent updates the strength of their belief in B based on the
argument A. See also Nickerson (1998).

Therefore, we model the myside bias as a distortion of the
(pure) likelihood ratio x of A relative to B, via a perceived
likelihood ratio function x′. If an agent assigns a high degree
of belief to B, then using x′ yields more confirmation than
using the (pure) likelihood ratio x, provided that x is confir-
matory (i.e., x < 1); on the other hand, if x is disconfirmatory
(i.e., x > 1), then x′ yields less confirmation than x. More
specifically, we propose the following functional form:

Definition 1. An agent considers the propositions A (= the
argument) and B (= the target belief) with a probability dis-
tribution P defined over the corresponding propositional vari-
ables. x is the (pure) likelihood ratio defined in eq. (2) and
b := P(B) is the agent’s prior degree of belief in B. Then the
agent’s perceived likelihood ratio x′ is given by

x′(x,b) = 2x · b̄γ

bγ + b̄γ
, (3)

with b̄ := 1−b and 0 < γ < 1.

Note that the perceived likelihood ratio x′ is a function of
the prior probability of the target proposition, as opposed to
the pure likelihood ratio x, which is considered independent
of the prior probability. Fig. 1 (a) shows the perceived likeli-
hood ratio x′ as a function of the agent’s prior degree of belief
b. We see that x′ < x if b > 1/2 and x′ > x if b < 1/2. Fur-
thermore, the parameter γ, which determines the convexity of
the function, characterizes different ways in which the agent’s
prior belief b can distort the (pure) likelihood ratio. We will
see below that γ has to be in the open interval (0,1). Then
the distortion is much stronger for values of b close to the
extremes (i.e., 0 and 1), than for middling values of b.

Fig. 1 (b) plots the perceived likelihood ratio x′ as a func-
tion of the (pure) likelihood ratio x for fixed values of b and γ.
In this case, x′ is a linear function of x, where x′ > x if b > 1/2.

Similarly, x′ < x if b < 1/2. We summarize our findings in two
propositions:

Proposition 2. The perceived likelihood ratio x′(x,b) has the
following features: (i) If b > 1/2, then x′ < x, (ii) if b = 1/2,
then x′ = x, and (iii) if b < 1/2, then x′ > x.

Proposition 3. The perceived likelihood ratio x′(x,b) is
strictly monotonically decreasing in b.

Propositions 2 and 3 demonstrate that the perceived like-
lihood ratio x′(x,b) is adequate to represent the myside bias,
as it incorporates the three salient features of myside biased
identified above. In particular, Proposition 2 shows that if
the agent is more convinced of B than of ¬B, any argument
will be perceived as more confirmatory or less disconfirma-
tory compared to the evaluation of a neutral observer (who
uses the pure likelihood ratio x). On the other hand, if the
agent is prone to believe that the target proposition is false,
they will tend to perceive arguments as less confirmatory or
more disconfirmatory than a neutral observer. Furthermore,
an agent who is indifferent between B and ¬B will not be bi-
ased towards either of the two sides. This is consistent with
the first two salient features of myside bias.

In addition, Proposition 3 shows that, all things being
equal, the perceived likelihood ratio decreases as the strength
of belief in B increases, and increases as the strength of belief
in B decreases. Intuitively, this means that myside bias gets
more pronounced as the degree of belief in the target proposi-
tion increases, in accordance with the third salient feature of
myside bias.

Predictions of the Model
An agent who commits the myside bias does not update with
the (pure) likelihood ratio x, but with the perceived likelihood
ratio x′(x,b) provided in Definition 1. Using Bayes theorem
with x′ instead of x, the posterior degree of belief in the target
proposition B, after updating on the argument A, is then given
by

P∗∗(B) =
b

b+ x′(x,b) · b̄
. (4)

From eqs. (1) and (4) and Proposition 2 we then obtain:

Proposition 4. The following claims hold: (i) If b > 1/2, then
P∗∗(B) > P∗(B); (ii) if b = 1/2, then P∗∗(B) = P∗(B), and
(iii) if b < 1/2, then P∗∗(B)< P∗(B).

Therefore, our model predicts that agents’ posterior de-
grees of belief will be more extreme than those of an agent
who uses eq. (1) to calculate his posterior degree of belief
(unless they are indifferent to the target statement). More
specifically, agents who rate ¬B as more likely than B will
have a lower posterior degree of belief than that obtained us-
ing eq. (1). Conversely, agents who believe B more strongly
than ¬B will have a higher posterior degree of belief than an
agent who uses eq. (1). This prediction is consistent with re-
cent findings presented in Bains and Petkowski (2021).

Another interesting consequence of the proposed model is
that the new updating rule (i.e., eq. 4) is non-commutative, i.e.
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Figure 2: The result of the update on two arguments, A1
(with likelihood ratio x1) and A2 (with likelihood ratio x2)
for b = 1/2 and γ = 1/2. Line 1: first update on A1, then on
A2. Line 2: first update on A2, then on A1.

the result of an update on two or more arguments depends on
the order in which the update takes place.

Fig. 2 illustrates this point. Here we consider an agent who
is initially indifferent between B and ¬B (and therefore sets
b = 1/2). Then the agent is presented with two arguments, A1
(with the pure likelihood ratio x1) and A2 (with the pure like-
lihood ratio x2), such that x1 < 1 < x2, i.e. the first argument
(A1) is confirmatory and the second argument (A2) is discon-
firmatory. If the agent first updates on A1, then their degree
of belief in B will increase; in turn, this will determine an
underweighting of the disconfirmatory strength of A2, since
P∗∗(B)> 1/2, by Proposition 2. However, if the agent first up-
dates on A2, then P∗∗(B)< 1/2 and her second update (on A1)
uses the perceived likelihood ratio x′1 > x1, again by Propo-
sition 2. Thus, the agent assigns a higher posterior degree of
belief to B if they first update on the stronger argument A1,
followed by a second update on the weaker argument A2.

Mathematically, the reason for the non-commutability of
the new updating rule is the fact that the perceived likelihood
ratio is a function of the prior probability. (While updating by
Bayes theorem is commutative, it is well known that updat-
ing by Jeffrey conditionalization is non-commutative, how-
ever for a different reason.) It is worth noting that likelihood
ratios that depend on the prior probability of the hypothesis
being tested, while unusual, are not uncommon in the litera-
ture. See, e.g., chapter 5 of Bovens and Hartmann (2003) for
a discussion.

We summarize our findings on the non-commutativity of
my-side biased updating in the following proposition.

Proposition 5. An agent considers the propositions A1,A2
and B with a prior probability distribution P defined over
them. The corresponding likelihoods are x1 and x2, respec-
tively. Let P†(B) be the posterior probability of B after up-
dating first on A1 and then on A2, and let P‡(B) be the pos-
terior probability of B after updating first on A2 and then on
A1. Then P‡(B)> P†(B) iff x1 > x2.

Hence, it is epistemically advantageous for a myside-
biased agent to first update on the stronger argument, i.e. on
the argument with the smaller (pure) likelihood ratio.

Our model also predicts that reasoners are easily persuaded
of their own position and harder to change. For instance,
the stronger an agent’s prior degree of belief becomes, the
stronger contrasting arguments needed to be in order to sway
the reasoner. In contrast with this view, Mercier (2017, 2020)
and Mercier and Sperber (2017) argue that myside bias does
not directly affect an agent’s evaluation of external argu-
ments, and that reasoners are able to accept good arguments
even when they challenge their own view. Within this frame-
work, one would not expect to observe differences in argu-
ment evaluation between reasoners differing in prior degrees
of beliefs. This contrasts with our prediction that argument
evaluation changes as a function of an arguers’ prior degree
of belief.

While the correctness of one or the other of these predic-
tions remains an open question, our model has the advantage
of more intuitively explain harmful group-level phenomena,
such as polarization in peer groups and communication dif-
ficulties between polarized groups as an effect of one-sided
exchanges and evaluations of arguments (Stanovich, 2021).

Discussion
So far, we have presented a model that is consistent with the
three salient features of myside bias. The model is Bayesian
because it models the bias in a Bayesian way: The agent as-
signs a prior probability to B, is then presented with an ar-
gument A, and updates B accordingly. This requires speci-
fying a likelihood ratio, and our model identifies an appro-
priate choice, viz. x′(x,b). However, this choice must be
justified. Otherwise, the model would be a purely ad hoc so-
lution. So how can the choice and the proposed functional
form of x′(x,b) be justified?

To address this question, we introduce a new propositional
variable E and argue that the agent does not only learn A,
but also E. In the present context, the appropriate posterior
probability of B is therefore P∗∗∗(B) = P(B|A,E). We will
then see that, under certain conditions, P∗∗∗(B) = P∗∗(B).

The new propositional variable E has the values E: “The
target belief coheres with the background beliefs” and ¬E:
“The target belief does not cohere with the background be-
liefs” We take E to be supporting evidence for B. That is, it
is rational to assign a higher degree of belief to a proposition
that fits well to one’s background beliefs than to a proposition
that does not. Hence, it is rational that P(B|E)> P(B|¬E).

It has already been suggested that the link between an
agent’s beliefs and their background beliefs justifies their pu-
tative bias in evaluating arguments (Evans & Over, 1996;
Evans, 2002). For example, Evans (2002) argues that a
broadly coherent system of beliefs is necessary to make sense
of the world, and that this justifies an individual’s biased atti-
tude toward her or his own view and toward alternatives. Our
proposal is in line with this research.

Before proceeding, it is important to note that the agent
considers proposition E on the basis of the argument A put
forward. Considerations of coherence with background be-
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Figure 3: The Bayesian network for the myside bias.

liefs also play a role, of course, in an agent’s determination
of the prior probability of B. Here, however, the focus is on
the following question: does B cohere with the agent’s back-
ground beliefs in light of A?

Next, we note that A ⊥⊥ E|B. That is, once we know that
B, learning E will not change the degree of belief an agent as-
signs to A: The truth (or falsity) of the argument only depends
on the target belief. This plausible assumption then suggests
the Bayesian network represented in Fig. 3. Note that there
are arcs from B to A and from B to E, indicating that the corre-
sponding propositional variables are directly probabilistically
dependent on each other. For an introduction to the theory of
Bayesian networks, see Neapolitan (2003).

To complete the Bayesian network, we have to specify the
prior probability of the root node B, i.e.

P(B) = b, (5)

and the conditional probabilities of the child nodes (i.e. A and
E) given the values of their parent (i.e. B). These likelihoods
are given by

P(A|B) := p1 , P(A|¬B) := q1

P(E|B) := p2 , P(E|¬B) := q2. (6)

With this we can calculate the posterior probability of B
after learning A and E.

Proposition 6. An agent considers the propositions A,B and
E with a prior probability distribution P defined in eqs. (5)
and (6). The corresponding propositional variables satisfy
the conditional independencies encoded in the Bayesian net-
work in Fig. 3. Then

P(B|A,E) =
b

b+ x′′ · b̄
.

with x′′ = x · xE and x := q1/p1 and xE := q2/p2.

To establish that P∗∗∗(B) = P(B|A,E) = P∗∗(B), we need
to show that

xE := q2/p2 =
2 b̄γ

bγ + b̄γ
. (7)

This obtains if one sets

p2 := 1/2 ·
(

b
γ
+bγ

)
q2 := b

γ
. (8)

We will now argue that this is a good choice. And indeed,
eqs. (8) are plausible. First, we mentioned already that a prior

dependence of the likelihoods has already been used in other
contexts. Second, an agent who believes B more strongly
than ¬B (i.e. who assigns b > 1/2) expects the target belief to
cohere more with their background beliefs under the assump-
tion that B is true than if it is false. Likewise, an agent who
believes ¬B more strongly than B (i.e. who assigns b < 1/2)
expects the target belief to cohere less with their background
beliefs under the assumption that B is true than if it is false.
It is easy to see that eqs. (8) account for this. See also Fig. 4.
Third, q2 is a decreasing function of b. That is, the probabil-
ity that the target belief coheres with the background beliefs
decreases with the prior probability of the target belief, un-
der the assumption that it is false. Fourth, p2 has a maximum
at b = 1/2 if γ < 1. See also Fig. 4. This is plausible as a
proposition with a middling prior probability is most “flex-
ible” and one would expect it to easily fit into a system of
background beliefs. This is not to be expected with a propo-
sition of whose truth or falsity one is much more convinced.
In this case (i.e. for b ≈ 0 or b ≈ 1), the chance should be 1/2
that the target belief coheres with the background beliefs. For
γ > 1, p2 has a minimum at b = 1/2. As this is not plausible
(given the above considerations), we restrict the range of γ to
the open interval (0,1) (see Definition 1).

The crucial idea of the present proposal is that an agent,
who holds a belief B and who is confronted with an argu-
ment A for or against B does not only update their strength of
belief on A but also investigates, prompted by the argument
A, whether B fits to the agent’s background beliefs. This will
lead to an increase or decrease of the agent’s strength of belief
in B–the myside bias–which then, under these assumptions,
turns out to be a rational response.

In closing this section, let us shortly comment on the notion
of coherence that is used here. “Coherence” is a notoriously
vague term that plays a key role in the coherence theory of
justification in epistemology (see, e.g., BonJour (1985)). It
refers to the property of an information set to “hang together
well” which is often taken to be a sign of its truth. Witness
reports in murder cases are good illustrations of this. But
while we have a good intuitive sense of which information
sets are coherent and which not (and which of two informa-
tion sets is more coherent), it is notoriously hard to make
precise what coherence means and to substantiate the claim
that coherence is, under certain conditions, truth conducive
(or at least probability conducive) in the sense that a more
coherent set is, given certain conditions, more likely to be
true (or has a higher posterior probability). These questions
have been addressed in the literature in formal epistemology.
See, e.g., Bovens and Hartmann (2003); Douven and Meijs
(2007); Olsson (2005) and it will be interesting to relate the
qualitative proposal made in this paper to that literature. This
will allow for a more fundamental derivation of the perceived
likelihood ratio proposed in this paper. We leave this task for
another occasion.
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Figure 4: The likelihoods p2 and q2 as a function of b for
γ = 1/2.

Conclusion
In this paper, we proposed a novel probabilistic model of my-
side bias in argument evaluation, in which myside bias is rep-
resented as a bias in the diagnosticity of an argument rela-
tive to a belief. Moreover, we have shown that our model
can be derived from Bayesian assumptions if we assume that
an agent takes into account the coherence of the belief under
consideration with her background beliefs.

The proposed model is specific enough to be empirically
tested. This should be done, first, to evaluate whether the
proposed model is quantitatively adequate to describe myside
bias in argument evaluation. Second, it is important to empir-
ically investigate the relationships between the influence of
coherence and other epistemic motives on myside bias and,
more generally, on argument evaluation. Finally, it will be in-
teresting to compare the proposed Bayesian explanation with
other explanations for the myside bias and develop criteria for
evaluating them.

Proofs
Proposition 2

Definition 1 implies that

x′

x
=

2
1+(b̄/b)γ

. (9)

Next, we note that (b/b)γ < 1 for b > 1/2, (b/b)γ = 1 for
b = 1/2 and (b/b)γ > 1 for b < 1/2. Hence, from eq. (9),
x′/x < 1 if b > 1/2, x′/x = 1 if b = 1/2 and x′/x > 1 if b < 1/2.
From this, the proposition follows.

Proposition 3

We differentiate x′(x,b) with respect to b and obtain:

∂x′

∂b
=−2γx · (bb̄)γ−1

(bγ + b̄γ)2 < 0

Hence, x′(x,b) is a strictly monotonically decreasing function
of b.

Proposition 4
It is easy to see from eqs. (1) and (4) that (i) P∗∗(B)> P∗(B)
iff x′ < x, (ii) P∗∗(B) = P∗(B) iff x′ = x, and (iii) P∗∗(B) <
P∗(B) iff x′ < x. Using Proposition 2 then completes the
proof.

Proposition 5
We begin with some notation. We denote the probability of B
after first updating on A1 by b′ and the probability of B after
first updating on A2 by c′. Likewise, we denote the probabil-
ity that results after first updating on A1 and then on A2 by b′′

and the probability that results after first updating on A2 and
then on A1 by c′′. These are given by

b′ =
b

b+bx′(x1,b)
=:

b
N1

b′′ =
b′

b′+b′ x′(x2,b′)
=:

b′

N2

c′ =
b

b+bx′(x2,b)
=:

b
N3

c′′ =
c′

c′+ c′ x′(x1,c′)
=:

c′

N4

Next, we calculate ∆ := c′′−b′′:

∆ =
1

N2 N4
·
(
c′ (b′+b′ x′(x2,b′))−b′ (c′+ c′ x′(x1,c′)).

)
=

1
N2 N4

·
(
c′ b′ x′(x2,b′))−b′ c′ x′(x1,c′))

)
=

bb
N1 N2 N3 N4

·
(
x′(x1,b)x′(x2,b′)− x′(x2,b)x′(x1,c′)

)
Plugging in the expressions for the various x′, one obtains
after some algebra that

∆ = K ·

((
b′ c′

b′ c′

)γ

−1

)
, (10)

where K is a positive constant. Hence, ∆ > 0 iff b′ c′ > b′ c′.
This holds iff c′ > b′ which in turn holds iff x1 > x2. This
completes the proof.

Proposition 6
We first note that

P(B|A,E) =
P(A,B,E)

P(A,E)
.

Next we apply the product rule from the theory of Bayesian
networks (see, e.g., Hartmann (2021)) and obtain:

P(B|A,E) =
P(B)P(A|B)P(E|B)

∑B P(B)P(A|B)P(E|B)

=
b p1 p2

b p1 p2 +bq1 q2

=
b

b+b(q1/p1)(q2/p2)

From this, the proposition follows.
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