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Abstract 

Shared conceptualization, in the sense we take it here, is as recent a notion as the Semantic Web, 

but its relevance for a large variety of fields requires efficient methods of extraction and 

representation for both quantitative and qualitative data. This notion is particularly relevant for the 

investigation into, and construction of, semantic structures such as knowledge bases and 

taxonomies, but given the required large, often inaccurate, corpora available for search we can get 

only approximations. We see fuzzy description logic as an adequate medium for the representation 

of human semantic knowledge and propose a means to couple it with fuzzy semantic networks via 

the propositional Łukasiewicz fuzzy logic such that these suffice for decidability for queries over a 

semantic-knowledge base such as “to what degree of sharedness does it entail the instantiation 

C(a) for some concept C” or “what are the roles R that connect the individuals a and b to degree of 

sharedness ε.” 

  

Keywords:  Shared conceptualization; Directed graph; Description logics; Fuzzy logic; Fuzzy 

semantic network 

1. Introduction 

Semantic networks have for long been considered adequate means to represent meaning in natural 

languages (e.g., Richens 1956, 1958) and the way humans store meanings in their long-term 

memory in a structured way (e.g., Collins & Loftus 1975; Collins & Quillian 1969; Quillian 

1967, 1968, 1969). With the advent of AI robotics, these networks soon appeared as important 

tools in providing robots with precise knowledge of meanings, in order to have them operate in 

the desired ways (e.g., Lehmann 1992). After the original work of L. A. Zadeh in fuzzy set theory 

and fuzzy logic (Zadeh 1965, 1975), the utility of this formalism for the representation of 

vagueness in the structure of human meanings was quickly captured in the creation of fuzzy 

semantic networks (e.g., Saitta 1978).  

All these networks for representing human semantic knowledge neglect the crucial fact that 

this is a shared business, namely as far as conceptualization is concerned. In effect, concepts and 
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relations between concepts, which constitute the basic elements of meanings for humans, find 

their place in a semantic network according to the degree of sharing of conceptualizations in a 

specific community at a specific period (see Augusto & Badie forthcoming). The importance of 

shared conceptualization became only recently evident, namely with the creation of the internet 

and more specifically of the semantic web, but it ranges over an impressively large variety of 

fields.1 We elaborate on how semantic networks can represent adequately the fuzzy business of 

shared conceptualization. 

Although fuzzy semantic networks are not recent constructs, a Google search returns a 

surprisingly low number of occurrences for the search “fuzzy semantic network”; 2350 to be 

precise, in a search in March 2021, many of which are for neural networks. A combined search 

for “fuzzy semantic network” and “description logic” returns a negligible result (8!) in the same 

date. Thus, even though there are some published articles on logic-based semantic networks (e.g., 

Andreasen 1997), our combination of description logic and fuzzy formalisms in an approach to 

semantic networks is, if not novel, certainly original. Importantly, this combination provides 

semantic networks with an adequate formal semantics, and their application to the analysis of 

shared conceptualizations connects concepts to the world rather than only to other concepts; we 

thus dismiss an influential critique by Johnson-Laird et al. (1984). 

2. Shared Conceptualizations2 

What is the semantic knowledge of an European with respect to breakfast as expressed in typical 

food items for this meal? If they are not British, it is very likely that BREAD & BUTTER will 

come to their minds when asked what it is they associate with this meal. They may even say 

outright “bread and butter,” (or the equivalent expression in any other European language), but 

not necessarily so, as humans can represent concepts in a wholly unconscious way (e.g., Augusto 

2013) and actually even if they are averbal (e.g., Lecours & Joanette 1980). Importantly, non-

British Europeans who themselves do not eat bread and butter for breakfast are also likely to 

output BREAD & BUTTER, as they are familiar with people who eat these food items for 

breakfast, have often read texts or watched films in which Europeans had them, etc. This is what 

constitutes shared conceptualization, the semantic knowledge acquired either by acquaintance or 

by description—to adapt rather loosely an old philosophical distinction (Russell 1912)—that 

concepts and instantiations thereof have specific properties (e.g., “bread is a food item,” “butter is 

yellow”) and are interconnected by specific relations (e.g., “butter is spread on bread”). 

Despite our remark above with respect to averbal humans we shall consider that for humans 

exhibiting normal verbal behavior (many) concepts are associated to specific words; for instance, 

someone representing the concepts BREAD and BUTTER can utter or write the words “bread” 

and “butter.” This allows for investigation on shared conceptualization to be carried out over 

extensive corpora available on the Internet (e.g., OWL or RDF bases). In our theoretical 

approach, we do not distinguish between written and audio databases.  

 
1 For instance, in Badie & Augusto (2022) we show its relevance for the detection of singularities in human semantic 

processing. 
2 We discuss shared conceptualization here only too briefly, referring the reader to Augusto & Badie (forthcoming) for 

an elaboration. 
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3. Fuzzy Semantic Networks for Shared Conceptualization 

3.1. From fuzzy digraphs to fuzzy semantic networks 

 

A directed graph (abbr.: digraph) is a triple 𝓖 = (V, E, f) where V = {V1, …, Vn} is a set of 

vertices, or nodes, E = {E1, …, Ek} is a set of directed edges (arcs), and f : E → {tail, head}  is a 

function  assigning to each arch a tail and a head, called endpoints, such that arc Ei = 𝑉𝑗 𝑉𝑙
⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

connects the vertices Vj (tail) and Vl (head). For graphical convenience, we write arc Ei as the 

ordered pair 〈Vj,Vl〉. A semantic network is a labeled digraph where V is a set of concepts (e.g., 

FOOD, BREAKFAST, BREAD, BUTTER) and the Ei are labeled with relations r between the 

concepts (“is a,” “is spread on,” etc.), so that we have 〈Vj,Vl〉r denoting that the vertices 〈Vj,Vl〉 are 

connected by means of relation r. Furthermore, for computability reasons, we shall consider a 

semantic network to be a simple digraph, i.e. a graph without loops (arcs connecting a vertex to 

itself), despite the fact that  a semantic network is often a partial order, i.e. as implementing 

relations r that are reflexive (“XrX”), anti-symmetric (if “XrY” and “YrX”, then X = Y), and 

transitive (if “XrY” and “YrZ”, then “XrZ”).3 This allows us to consider semantic networks from 

other relevant formal perspectives such as lattice theory and Galois connections, which are useful 

for ontologies and other formal concept analyses (see, e.g., Ganter & Wille 1999).  

A fuzzy semantic network just is a digraph 𝓖fuzzy = (V, E, ffuzzy) where ffuzzy : E → ({tail, head} 

× (0,1]), i.e. ffuzzy additionally assigns to every relation r a value ε ∈ (0, 1] such that every arc of 

𝓖fuzzy is of the form 〈Vj,Vl〉r,ε denoting that the relational arc 〈Vj,Vl〉r is labeled with the fuzzy value 

ε. The interval [0, 1] of the reals has infinite cardinality, so that each arc of 𝓖fuzzy can be labeled 

with any of many infinite values in the infinite interval (0, 1]. It is the latter property that makes 

of 𝓖 a fuzzy labeled digraph 𝓖fuzzy. 

 

3.2. Valuating shared conceptualizations 

 

In a semantic network, the pair 〈Vj,Vl〉r typically denotes the direction (sub-)concept → (super-

)concept of the relation “is a”, but may also label relations such as “is adequate for,” “takes place 

in,” etc., so that virtually any relation between concepts as expressible in a natural language can 

be labeled by means of f in 𝓖. In other words, a semantic network is a formally adequate means to 

represent diagrammatically human semantic knowledge. This is not always so, though; for 

instance, while most birds fly, penguins do not, so that an arc labeled “has motion type” joining 

the concepts BIRD (tail) and FLY (head) requires restrictions or further information. This caveat 

is particularly important in the case of shared conceptualizations, as these are but approximations 

in the sense that, say, BREAD and BUTTER are associated with BREAKFAST by only so many 

people in so many specific situations. For instance, even though one may eat bread and butter for 

breakfast (let us call this the context, or domain of speech), one is unlikely to associate these two 

breakfast food items explicitly when, say, scuba diving; on the other hand, when writing a text on 

scuba diving one may use the words “bread,” “butter,” and “breakfast,” without for that 

combining them in the specific association “BREAD and BUTTER are BREAKFAST FOOD.” 

Additionally, texts in which this association is explicitly made may contain alternative words or 

synonyms (e.g., “baguette”, “margarine”), typos (e.g., “bead”), or even spelling mistakes (e.g., 

“buter”) that will not feature in the results for the search. All this, together with many other 

factors, entails that any combined search for these words will return results that only in part hold 

 
3 For example, where r is the relation “is a”, we have: “CAT is a CAT”; if “MARE is a FEMALE HORSE” and 

“FEMALE HORSE is a MARE”, then MARE = FEMALE HORSE; if “APPLE is a FRUIT” and “FRUIT is a FOOD”, 

then “APPLE is a FOOD”. 
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as the shared conceptualization. For this reason, we see fuzzy formalisms as adequate for 

semantic networks for shared conceptualizations. 

To obtain valuations—that can be seen as de-facto truth values (see Augusto 2020b)—in the 

interval [0, 1] we compute the frequency of a concept (i.e. its associated lexical item, or word) 

with respect to other concepts by means of the computation x = n(C1) / 100(C2), where n ≤ 100 is 

the number of occurrences of a concept C1 for every 100 occurrences of some other concept of 

interest C2. For instance, to obtain a fuzzy value for the shared valuation of the concept LOAF 

with respect to BREAD, which can be specified as the relation “LOAF is a BREAD”, we carry 

out a search in as large a corpus as possible to determine the ratio x = n(loaf) / 100(bread). Yet 

another example: To find the fuzzy valuation for the relation “BUTTER is spread on BREAD”, 

we compute x = n(butter + bread) / 100(spread). Clearly, this search can only give us approximate 

values, as the words in the corpus of search may not be there with these exact, explicit relations.  

 

3.3. Description logic and knowledge bases 

 

Description logic (DL) is widely considered as an adequate medium to represent semantic 

knowledge (e.g., Badie, 2018), including the terminological knowledge of individual cognitive 

agents (e.g., Badie, 2017, 2020a, 2020b, 2021, 2022). Instead of the propositions of predicate 

logic (PL), DL’s largest complete expressions are descriptions. We use here the simplest 

decidable propositional DL, ALC (Attributive Concept Language with Complements), whose 

language, or description set Σ*, is built over the Roman alphabet together with the set of logical 

constants Cons = {¬, ⊔, ⊓, ⊑, ≡, ∀, ∃}.4  
 

 

Terminological axiom Formal representation description 

concept inclusion  C1 ⊑ C2 C1  is subsumed under C2. 

role inclusion R1 ⊑ R2 R1  is subsumed under R2. 

concept equality C1 = C2 C1 is equal to C2. 

role equality R1 = R2 R1 is equal to R2. 

Table 1. Fundamental Terminological Descriptions in DL 

 

 

ALC represents semantic knowledge in terms of (possibly infinite) sets of (i) individuals {a1, a2, 

…} (which are equivalent to constant symbols in PL), (ii) concepts {C1, C2, …} (which are 

equivalent to unary predicates in PL), and (iii) roles {R1, R2, …} (which are equivalent to binary 

predicates in PL and can be either relations or properties). More specifically, a role expresses a 

relationship between individuals or it assigns a property to an individual. In DL, there are three 

kinds of fundamental symbols: (i) individuals (e.g., pita), (ii) atomic concepts (e.g., Bread), and 

(iii) atomic roles (e.g., isA). Atomic symbols are elementary descriptions from which we 

inductively build complex (more-specified) descriptions of the world. Typically, a DL 

terminological knowledge base is constituted by a TBox, containing terminological axioms and 

 
4 As usually, Σ* denotes a possibly infinite set of strings or, in logical jargon, formulae. Cons is actually a subset of the 

logical constants of ALC; on the other hand, we include in it the existential and universal quantifiers, despite the 

negligible use we make of them here, as ALC is a propositional DL.  
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definitions corresponding by-and-large to predicate formulas of the type ∀x (Human(x) → 

Mortal(x)) and ∃y (Fruit(y) ∧ Vegetable(y)). A TBox is structured based on terminological 

axioms, the most fundamental strings describing the underlying terminologies and vocabularies. 

Concepts and their interrelationships are, in the form of hierarchical structures, used to create a 

terminology in a TBox. Table 1 presents terminological axioms in DL. Fig. 1 shows an example 

of a TBox. 

 

 

BAKERY ≡ BAKED_DOUGH ⊓ (SALTED ⊔ SWEET) 

BREAD ⊑ BAKERY 

DAIRY ≡ MILK ⊓ (SOFT_SOLID ⊔ HARD_SOLID ⊔ LIQUID) 

SPREAD ≡ (DAIRY ⊔ VEGETABLE) ⊓ SOFT  

BUTTER ⊑ SPREAD ⊓ ¬ VEGETABLE 

MEAL ≡ ∃eats.LARGE_GROUP ⊓ (MORNING ⊔ NOON ⊔ EVENING) 

BREAKFAST ⊑ MEAL ⊓ MORNING 

LUNCH ⊑ MEAL ⊓ NOON 

DINNER ⊑ MEAL ⊓ EVENING 

Figure 1: TBox for BREAKFAST. 

 

Semantic knowledge can be described and represented in ABox to give us instantiations of the 

concepts and relations of interest, called assertions. DL assertional axioms (which are the most 

fundamental descriptions of the real world) are presented in table 2. 
 

 

Assertional Axiom Formal representation 

concept assertion  C(a)  

role assertion R(a, b) 

Table 2. Fundamental Assertional Descriptions in DL 

 

 

C(a) represents that individual a is an instance of concept C (i.e. “a is a C.”; formally: a : C). 

Also, R(a, b) expresses the property that a and b are related together by means of R((a,b) : R). 

Fig. 2 shows an ABox for the TBox in Fig. 1.5  

 

3.4. A fuzzy formal semantics for ALC 

 

The formal semantics for the above constructs expressed in ALC is built on an interpretation I = 

(ΔI, .I) given some non-empty set ΔI (that is the interpretation domain and consists of any 

 
5 We abbreviate roles of the form isA(x) as A(x). 
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individual that may occur in our concept descriptions), and an interpretation function “.I” that 

assigns to every individual symbol a an element aI ∈ ∆I, to every atomic concept symbol A a set 

AI ∈ ∆I, and to every atomic role symbol r a binary relation rI ⊆ ∆I × ∆I . 

 

Bread(loaf)    isSpreadOn(butter, bread) 

Bread(pita)    isSpreadOn(jam, bread) 

Bread(baguette)                   isSpreadOn(margarine, bread) 

Bread(croissant)                   isEatenFor(bread, breakfast) 

Spread(butter)    isEatenFor(butter, breakfast) 

Spread(jam)    isEatenFor(bread, lunch) 

Spread(margarine)   isEatenFor(bread, dinner) 

Dairy(cheese)    isEatenFor(pita, breakfast) 

Dairy(yoghurt) 

Dairy(butter) 

Figure 2: The ABox for BREAKFAST. 

 

Let α be an ALC (concept or role) assertion; a fuzzy assertion (denoted by ψ) is an expression 

having the form “αε”, where the value ε ∈ (0, 1] is computed as above.6 An interpretation I 

satisfies fuzzy assertions “(a: C)ε” and “[(a, b): R]ε” iff CI(aI) = ε and RI(aI, bI) = ε, respectively, 

whenever ε ∈ (0, 1], where by the superscript I a fuzzy valuation function valf : Σ* → [0, 1] in I is 

implicit. In addition, CI(aI) = ε is defined as aI ∈ε CI, and RI(aI, bI) = ε is so as (aI, bI) ∈ε RI. We 

say that the symbol “∈ε” denotes fuzzy membership, because it is obtained by means of the fuzzy 

membership function μ : ΔI → [0, 1] such that we have the following for the universal and 

existential quantifiers for ε ∈ (0, 1]:  

 

(∀R.εC)I = {a ∈ε Δ
I | ∀b. (a, b) ∈ε RI ⇒ b ∈ε CI}, and 

 

(∃R.ε)I = {a ∈ε Δ
I | ∃b. (a, b) ∈ε RI}. 

 

As above, it is by means of definitions over, or identities with, the relations and operations of set 

theory that ALC is provided with an adequate formal semantics. Let us represent fuzzy concept 

(role) subsumption by “C1 ≼ C2” (“R1 ≼ R2”, respectively), and concept (and role) equivalence by 

“C1 ≡ C2” (“R1 ≡ R2”, respectively). We have the following axioms for the fuzzy valuations 

based on the fuzzy subsumption function σ : (ΔI × ΔI) → [0, 1]: 
 

i.  (C1 ≼ε C2)
I = C1

I ⊆ε C2
I. The symbol “≼ε” denotes here fuzzy concept subsumption.  

ii.  (R1 ≼ε R2)
I =  R1

I ⊆ε R2
I. The symbol “≼ε” denotes here fuzzy role subsumption. 

iii.  (C1 ≡ε C2)
I = C1

I =ε C2
I. The symbol “≡ε” denotes here fuzzy concept equivalence. 

iv. (R1 ≡ε R2)
I = R1

I =ε R2
I. The symbol “≡ε” denotes here fuzzy role equivalence. 

 
6 Traditionally, ε denotes a value that can be as arbitrarily small as required. 
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Furthermore, and more briefly now for fuzzy conjunction, disjunction, and negation, we have the 

identities 

 

v.  (C1 ⊓ε C2)
I  = C1

I ⋂ε C2
I. 

vi. (C1 ⊔ε C2)
I  = C1

I ⋃ε C2
I. 

vii.  (¬ε A)I = ΔI \ε A
I. 

 

3.5.  Fuzzy sharedness consequence relation 

Given this semantics, which provides DL with logical adequacy, i.e. both soundness and 

completeness (see Straccia 2005), we can obtain reliable replies to queries on the knowledge base 

such as “to which sharedness degree ε is a a member of C?” (shared instantiation problem) and 

“to which sharedness degree ε does C2 subsume C1?” (shared subsumption problem). But we also 

want to obtain replies to other queries such as “does C hold, and if so, to what sharedness degree, 

in the knowledge base?” (shared concept satisfiability), “what are the instances a of C to 

sharedness degree ε?” (shared retrieval), “what are the concepts C such that a is a shared 

instantiation to degree ε?” (shared realization), “what are the elements a and b such that they are 

related by means of R to sharedness degree ε?” (shared role retrieval), and “what are the roles R 

such that a and b are a shared instantiation to degree ε?” (shared role realization). Just as in all 

other logical systems, DL replies to these queries by means of its own notion of logical 

consequence. The affirmative replies to these queries are, respectively, for a KB = TBox ⋃ ABox: 

 

KB ⊨ε (a: C) 

 

KB ⊨ε (C1 ≼ C2) 

 

KB ⊨ε C 

 

{a | KB ⊨ε (a: C)} 

 

{C | KB ⊨ε (a: C)} 

 

{(a,b) | KB ⊨ε ((a, b): R)} 

 

{R | KB ⊨ε ((a, b): R)} 

 

where ⊨ε denotes the fuzzy sharedness relation of semantic logical consequence (fuzzy 

sharedness consequence, for short) defined below, after some preliminary definitions:7 

Let a fuzzy shared-conceptualization valuation  be the function valf : Φ → [0, 1] such that for 

a set of DL expressions Φ = {φ1, ..., φk} and for some arbitrary expression φ in some 

interpretation I we have valf (φ)I ∈ (0, 1] if and only if φI ∈ε [ΔI(ΦI)], i.e. the interpreted 

expression φ is valuated as some ε in the interval (0, 1] according to its valued membership in the 

interpreted domain for Φ, denoted by “ΔI(ΦI)”, in the same interval; otherwise, valf (φ)I = 0, 

 
7 Let Φ = {φ1, ..., φk} be a set of logical formulae—a knowledge base—and φ a logical formula. The semantic relation 

of logical consequence ⊨ ⊆ 2Φ × Φ holds, written Φ ⊨ φ, if and only if there is an interpretation I, called a model, such 

that valI (φ1 ∧ ... ∧ φk) = 1 and valI (φ) = 1. See Augusto (2020a) for details of the central notion of logical 

consequence. We assume the reader is familiar with the logical jargon (valuation, etc.). 
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whenever φ is not a member of the interpreted domain. Let further the conjunction of all the 

expressions in Φ be valuated as 

 

(∗)          𝑣𝑎𝑙𝑓(𝜑1  ⊓ …  ⊓  𝜑𝑘)
𝐼  = 𝑣𝑎𝑙𝑓  (∏

𝑘

𝑖=1

𝜑𝑖)

𝐼

= {𝑣𝑎𝑙𝑓(𝜑𝑖)
𝐼}  

 

Then, given a KB = {φ1, ..., φk}, we write KB ⊨ε φ, and say that φ holds to degree of sharedness ε 

in the knowledge base KB if valf (φ)I ≥ ε whenever (*) = ε for 0 < ε ≤ 1. 

This general definition can be specified for the cases above as follows8:  

 

i. We say that a knowledge base KB entails a concept C to degree ε of shared conceptualization 

(henceforth just degree), and we write KB ⊨ε C, if valf (C)I ≥ ε whenever (*) = ε for 0 < ε ≤ 

1. Otherwise, we write KB ⊭ε C, or simply KB ⊭ C. 

ii. We say that a knowledge base KB entails the subsumption C1 ⊑ C2 to degree ε, and we write 

KB ⊨ε (C1 ≼ C2), if valf (C1 ⊑ C2)
I ≥ ε whenever (*) = ε for 0 <ε ≤ 1, where valf (C1 ⊑ C2)

I is 

the shared valuation for the role “is a” in which C1 and C2 are the sub- and super-concepts, 

respectively. Otherwise, we write KB ⊭ε (C1 ≼ C2), or simply KB ⊭ (C1 ⊑ C2).  

iii. We say that a knowledge base instantiates “y:C” as “a:C” to degree ε, and we write “KB ⊨ε 

(a: C)”, if valf (φ)I ≥ ε whenever (*) = ε for 0 < ε ≤ 1. Otherwise, we write “KB ⊭ε (a: C)”, or 

simply KB ⊭ C(a).   

In the following examples, we shall assume, for simplicity, that (*) for our knowledge base (Figs. 

1-2) is a value ε > 0. (i) Suppose that a search for “bread” in the domain “Food and meals” 

resulted in 0.95. Then, we have KB ⊨0.95 Bread. (ii) Suppose that for the subsumption Breakfast 

⊑ Meal we have obtained the shared degree 0.89; then we have KB ⊨ (Breakfast ≼0.89 Meal). 

(iii) Let us suppose that we obtained the shared degree 0.2 for the role isEatenFor(pita, 

breakfast). Then, we have KB ⊨0.2 ((pita, breakfast): isEatenFor). 

Importantly, a fuzzy semantic network for shared conceptualization is a model of the 

associated knowledge base, as only concepts and relations are represented (assertions of the 

ABox) that actually hold (i.e. for which ε ∈ (0, 1]) as instantiations of the definitions and axioms 

of the TBox.9 A node with no incoming or outgoing arcs denotes a member of the domain that, in 

that particular instantiation of the knowledge base, has no relations to the other nodes. 

 

3.6.  Fuzzy degrees of sharedness for negation, conjunction, and disjunction 

In our fuzzy DL for shared conceptualization, we define the shared-conceptualization valuations 

in some interpretation I for the connectives ¬, ⊓, and ⊔, as follows, where φ, χ denote arbitrary 

DL expressions as in Table 2:  

 

(¬𝜀(𝜑))
𝐼
= 1 − 𝑣𝑎𝑙𝑓(𝜑)𝐼 

 

 
8 We give only a few cases: the reader can easily see how the remaining cases are computed. 
9 The fuzzy value ε can be made as close as 1 as desired (e.g., ε ∈ [0.5,1]). 
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(⊓𝜀 (𝜑, 𝜒))
𝐼
= {𝑣𝑎𝑙𝑓(𝜑)𝐼 , 𝑣𝑎𝑙𝑓(𝜒)𝐼}  

  
(⊔𝜀 (𝜑, 𝜒))𝐼 = {𝑣𝑎𝑙𝑓(𝜑)𝐼 , 𝑣𝑎𝑙𝑓(𝜒)𝐼}  

 

so that we have (*) above and also 

 

((∐

𝑘

𝑖=1

𝜑𝑖)

𝜀

)

𝐼

= {𝑣𝑎𝑙𝑓(𝜑𝑖)
𝐼}   

 

These valuations, also in Straccia (1998, 2001), correspond to those of the Łukasiewicz fuzzy 

logic (but any t-norm fuzzy logic should be adequate, in principle; see Augusto 2020b). However, 

we consider that the operation of conjunction (of disjunction) in a semantic network is only 

defined when there is some C with incoming edges E1, E2 (outgoing edges E1, E2, respectively) 

labeled with fuzzy values such that we have either E1 ≤ E2 or E2 ≤ E1. For instance, suppose we 

have the fuzzy shared conceptualizations Bread(loaf) valuated as 0.95 (i.e. there is an arc from 

the node Loaf to the node Bread labeled “0.95”) and Bread(Croissant) valuated as 0.2 (i.e. there 

is an arc from the node Croissant to the node Bread labeled with “0.2”). Then, by applying the 

above computation for ⊓, we obtain 

 

𝑣𝑎𝑙𝑓(⊓𝐵𝑟𝑒𝑎𝑑 (𝐿𝑜𝑎𝑓, 𝐶𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡))
𝐼
= 

{𝑣𝑎𝑙𝑓(𝐵𝑟𝑒𝑎𝑑(𝐿𝑜𝑎𝑓))
𝐼
, 𝑣𝑎𝑙𝑓(𝐵𝑟𝑒𝑎𝑑(𝐶𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡))

𝐼
}  = 

{0.95,0.2}  = 0.2 
 

In terms of shared conceptualization, we say that the shared association of the concepts Loaf and 

Croissant with respect to the concept Bread is of degree 0.2.10 We proceed similarly for 

disjunction and speak of the shared dissociation of two or more concepts with respect to some 

other concept. As for negation, we compute, say, ¬Bread(Croissant) as  

 

𝑣𝑎𝑙𝑓(¬𝐵𝑟𝑒𝑎𝑑(𝐶𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡))
𝐼
= 

1 − 𝑣𝑎𝑙𝑓(𝐵𝑟𝑒𝑎𝑑(𝐶𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡))
𝐼
= 

0.8 
 

and say that the degree of sharedness of the rejection of Croissant with respect to Bread is 0.8. 

As the reader can easily see from looking at Fig. 3, all the above computations can be found 

directly from the fuzzy semantic network11. However, the utility of a logical language as a 

medium for representing knowledge, semantic or of other kind, resides in its ability also to find 

implicit knowledge. Here, again, a fuzzy semantic network meets this criterion: Because the 

elements of a fuzzy semantic network constitute a poset, we can find knowledge that is implicit in 

transitivity. For instance, in Fig. 3 we have 〈Croissant,Bread〉isA,0.2 and 

〈Bread,Breakfast〉isEatenFor,0.89, so that we can extract the implicit knowledge that croissant is eaten 

for breakfast with a sharedness value 0.89. (Compare with 〈Pita,Bread〉isA,0.63; because in this case 

 
10 A rather low degree, as most people do not consider a croissant to be a kind of bread. 
11 The degrees of sharedness shown are wholly hypothetical. We are here interested in the analysis of the fuzzy 

semantic network, and not in the veridicality of data. 
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we have the explicit knowledge 〈Pita,Breakfast〉isEatenFor,0.2, we do not apply transitivity. Indeed, 

implicit knowledge should not conflict with explicit knowledge.) 

Finally, information that is not to be read from the fuzzy semantic network is not assumed to 

be negative. For instance, according to Fig. 3 alone we cannot conclude KB ⊨ 

¬isEatenFor(Baguette,Dinner). In other words, we adopt here the open-world assumption, 

according to which what is not in the network is simply not known. The reply to the query KB ⊨? 

isEatenFor(Baguette,Dinner) is simply “Unknown”; formally, KB ⊭ 

isEatenFor(Baguette,Dinner). 
 

 

 

Figure 3 – Fuzzy semantic network for the ABox for BREAKFAST. 

4. Applications 

The advantages of having a fuzzy semantic network are many and we explore here only a few. To 

begin with we consider the building of representations in a continual learning setting. Foreign 

language teaching is a very complex process that requires the interaction of both vocabulary items 

with cultural aspects; besides being complex, it is also continuous, as it aims at recreating to some 

extent the conditions of native language learning. Consider Fig. 3 above; this semantic network 

can be used in at least two complementary ways: firstly, it can be used by the teachers as an aid to 

their teaching by providing them with the fuzzy valuations that can guide their teaching activities. 

For example, in classes taking place in the United Kingdom in which students learn about 

continental breakfast habits the teacher should emphasize the bread items with greatest fuzzy 

sharedness values (i.e., loaf and croissant), instead of those with very low values (pita). 

Additionally, teachers can use fuzzy semantic networks to check for their students’ learning of 

food items by comparing the occurrence of specific items in their essays with those of the 

“canonical” semantic networks, and this at several times in the learning process.  
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Another way in which fuzzy semantic networks can be of import is in the clinical assessment 

of speech deficits. This is particularly the case in the condition known as formal thought disorder, 

in which irregularities at the level of the formation of individuals’ semantic networks plays a 

central role (Augusto & Badie, 2022; Badie & Augusto, 2022). One of the main characteristics of 

this condition is that the semantic networks of the individuals affected by it diverge significantly 

from those of the majority of the members of their linguistic and cultural community as far as 

shared conceptualization is concerned. For instance, one finds in a semantic network of a given 

patient the pair ⟨Captain,Blades⟩Has, which in a typical semantic network would have a fuzzy 

degree of sharedness equal to zero. Of course, assessors of this condition need to consider a 

plethora of other symptoms, in order to be able to produce a positive diagnosis, but access to a 

fuzzy semantic network will be of much help to them. 

5. Conclusions & Future Works 

Given its increasing relevance for many domains (education, scientific taxonomies, e-commerce, 

etc.) efficient means to obtain quantitative and qualitative data with respect to shared 

conceptualization are required. This efficiency should be reflected in the fulfillment of a few 

criteria, such as reliability, decidability, and tractability. A quantitative approach can only provide 

us with approximate values, typically called “fuzzy” in the knowledge-representation literature. 

We propose a method to extract fuzzy values for semantic knowledge from large corpora that 

reliably reflect the degree to which concepts and relations between concepts are shared by a 

specific community or culture. The values obtained with this method are then applied in the 

construction of semantic networks that are in fact models of (fragments of) the associated 

knowledge bases formulated in ALC, the simplest description logic. ALC is well known to be 

decidable, so that reasoning on the knowledge bases is decidable, and in the semantic networks 

we couple it with the propositional Łukasiewicz fuzzy logic, which is also known to be decidable. 

Obviously, the utility of semantic networks for the direct visualization of knowledge is 

limited, as they quickly become visually too complex. A semantic network is first and foremost a 

mathematical structure, to wit, a digraph, and as such search over it is faced with both structural 

and computational complexity issues. In any case, it can be implemented in an efficient 

algorithm, and the tractability of the semantic network search is then the tractability of the 

associated algorithm (see, e.g., Dehmer et al. 2019; Hunter & Kreutzer 2008). Importantly, we are 

interested in satisfiability alone, as validity in fuzzy logics in general is the case only for value 1, 

which is plausibly negligible for shared conceptualization as we discuss it here, in every model. 

SAT, i.e. the satisfiability problem, for the propositional Łukasiewicz fuzzy logic, is known since 

Mundici (1987) to be NP-complete.12 
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