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Abstract This paper defines a Sahlqvist fragment for relevant logic and establishes
that each class of frames in the Routley-Meyer semantics which is definable by a
Sahlqvist formula is also elementary, that is, it coincides with the class of structures
satisfying a given first order property calculable by a Sahlqvist-van Benthem algo-
rithm. Furthermore, we show that some classes of Routley-Meyer frames definable
by a relevant formula are not elementary.

Keywords Relevant logic · Routley-Meyer semantics · Correspondence theory ·
Frame definability · Sahlqvist’s correspondence

1 Introduction

The Sahlqvist Correspondence Theorem is a celebrated result in modal logic (see [3,
6] for slightly different expositions). It tells us that when a modal formula φ has cer-
tain syntactic form, we can always compute a first order formulaψ in the signature of
Kripke frames such that a frame validates φ iff it satisfies condition ψ , so the class of
frames definable by φ is elementary. The proof relies on the so called “Sahlqvist-van
Benthem algorithm” for transforming second order frame correspondents of some
modal formulas into first order properties.
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The present note is a contribution to the correspondence theory of relevant logic
in the Routley-Meyer semantic framework (cf. [4, 8, 16]).1 The framework has been
considerably generalized and investigated in relation to other semantics in [1].

We will show that, mutatis mutandis, the argument for the Sahlqvist Correspon-
dence Theorem (as presented in [3]) can be adapted to the context of relevant logic to
prove an analogous result in the Routley-Meyer semantics. This result improves our
understanding of the first order properties of Routley-Meyer frames which are defin-
able in relevant logic. It also begins to solve Problem 8.4.18 from [1]. Moreover, we
will show that some relevant formulas actually define non-elementary properties of
frames, so the problem of elementarity is not trivial.

Correspondence theory for the broader setting of substructural logics with frame
semantics was briefly explored by Restall in [14] (pp. 263-265) although the sub-
ject appears to have been discussed for the first time in the relevant logic literature
in [13].2 Recently, Suzuki [18] provided a rather general Sahlqvist result for sub-
structural logics with respect to what he calls bi-approximation semantics (which
unfortunately is much more complicated than the Routley-Meyer framework). Other
settings without boolean negation where Sahlqvist theorems have been obtained are
positive modal logic [5] and relevant modal logic [17]. In particular, the work in [17]
is rather close to ours, but the concern there is still modal logic.

In Section 2, we will introduce Routley-Meyer frames and some basic proposi-
tions on frame correspondence. In Section 3, we will discuss elementary classes of
Routley-Meyer frames and prove that not all classes of Routley-Meyer frames defin-
able by a relevant formula are elementary. In Section 4, we will present a Sahlqvist
fragment of relevant languages and establish a Sahlqvist correspondence theorem for
the Routley-Meyer semantics. Finally, in Section 5, we will sum up our work.

2 Routley-Meyer Frames

In this paper, a relevant language L will contain a countable list PROP of proposi-
tional variables p, q, r . . . and the logical symbols: ∼ (negation), ∧ (conjunction), ∨
(disjunction), ◦ (fusion), → (implication), t (the Ackermann constant). Formulas are
constructed in the usual way:

φ ::= p | t | ∼ φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ◦ ψ.

In this paper, a Routley-Meyer frame for L is a structure F = 〈W,R, ∗, O〉, where
W is a non-empty set, ∅ �= O ⊆ W , ∗ is an operation ∗ : W −→ W , and R ⊆ W ×

1The Routley-Meyer framework remains today the most prominent non-algebraic approach to the seman-
tics of propositional relevant languages (cf. [4, 8]). Recent applications (e.g., [15, 19]) are easy to find. The
Routley-Meyer semantics has also been given an appropriate philosophical justification in [2] and much
more recently in [9]. If anything comes close to being the “standard” relational semantics for propositional
relevant logics, it surely is the Routley-Meyer approach.
2Many thanks to an anonymous referee who pointed this out.
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W ×W satisfies p1-p5 below. In the standard way, we will abbreviate ∃z(Oz∧Rzxy)

by x ≤ y.

p1. x ≤ x

p2. If x ≤ y and Ryzv then Rxzv.
p3. If x ≤ y and Rzyv then Rzxv.
p4. If x ≤ y and Rzvx then Rzvy.
p5. If x ≤ y then y∗ ≤ x∗ .
p.6 O is upward closed under ≤.

The relation ≤ is a preorder. We can see this as follows. By p1, we have reflexivity.
Now if x ≤ y (i.e., ∃u(Ou ∧ Ruxy)) and y ≤ z (i.e., ∃v(Ov ∧ Rvyz)), by p3, we
have that ∃v(Ov ∧ Rvxz), i.e., x ≤ z.

These frames are essentially the same as what are called B◦t-frames in [4] (p. 80)
except that we have left out the condition that ∗ is an involution. Hence, our starting
basic system of relevant logic is slightly weaker than B◦t from [4]. The reason for this
is that we are interested in finding the exact first order frame correspondents of the
double negation laws ∼∼ p → p and p →∼∼ p using our Sahlqvist-van Benthem
algorithm, but this task becomes trivial if ∗ is an involution. Indeed, the system is
just the Hilbert calculus B◦t presented in [4] (p. 74) minus the axiom ∼∼ p → p,
whose axioms and rules we review here for the sake of completeness (a substitution
rule will be tacitly assumed):

A1. t
A2. t → (p → p)

A3. p ∧ q → p

A4. p ∧ q → q

A5. (p → q) ∧ (p → r) → (p → q ∧ r)

A6. p → p ∨ q

A7. q → p ∨ q

A8. p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r)

R1. p, p → q/q

R2. p, q/p ∧ q

R3. p → q/(q → r) → (p → r)

R4. p → q/(r → p) → (r → q)

R5. p →∼ q/q →∼ p

R6. (p ◦ q) → r/p → (q → r)

R7. p → (q → r)/(p ◦ q) → r

A Routley-Meyer model for L is a pair 〈F, V 〉, where V : PROP −→ ℘(W) is a
function such that for any p ∈ PROP, V (p) is upward closed under the ≤ relation,
that is, x ∈ V (p) and x ≤ y implies that y ∈ V (p). We define satisfaction at w in M

recursively as follows:

M, w � t iff there is v ∈ OM such that v ≤ w

M, w � p iff w ∈ V (p),
M, w �∼ φ iff M, w∗

� φ,



676 G. Badia

M, w � φ ∧ ψ iff M, w � φ and M, w � ψ ,
M, w � φ ∨ ψ iff M, w � φ or M, w � ψ ,
M, w � φ → ψ iff for every a, b such that RMwab, if M, a � φ then M,
b � ψ ,
M, w � φ◦ψ iff there are a, b such that RMabw,M, a�φ and M, b � ψ .

A formula φ is said to be true in a model M if M, w � φ for all w ∈ O. φ is said
to be valid in a frame F (in symbols F � φ) if φ is true in any model M based on F.
When w is an arbitrary world of F, we also write F, w � φ to mean that for every
model M based on F, M, w � φ. Validity and this latter semantic notions will be the
focus of the present study. We will be interested in what the languages defined above
can say at the level of frames, not so much of models.

Lemma 1 (Hereditary Lemma) For any relevant formula φ, model M based on a
Routley-Meyer frame, and worlds x, y of M , x ≤ y implies that M, x � φ only if
M, y � φ.

Proof This is traditionally proven by induction on formula complexity (see [8]). The
case φ = p follows simply because V (p) is upward closed under ≤, while the case
φ = t follows because ≤ is a transitive relation.

Next let φ =∼ ψ . By p5, we must have that y∗ ≤ x∗ given our assumption that
x ≤ y. Now, if M, x �∼ ψ then M, x∗

� ψ , and by inductive hypothesis, it follows
that M, y∗

� ψ , so M, y �∼ ψ as desired.
Let φ = ψ → χ . If M, x � ψ → χ , then for every a, b such that Rxab, if

M, a � ψ then M, b � ψ . Now suppose that M, y � ψ → χ , so there are a′, b′
such that Rya′b′ while M, a′ � ψ and M, b′

� χ . However, by p2, it must be that
Rxa′b′, which is impossible given the assumption that M, x � ψ → χ . Hence,
actually M, y � ψ → χ .

Let φ = ψ ◦ χ . Similar to the previous case but appealing to p4 instead. The
remaining cases are trivial.

Consider a monadic second order language that comes with one function symbol
∗, a unary predicate O, a distinguished three place relation symbol R, and a unary
predicate variable P for each p ∈ PROP. Following the tradition in modal logic, we
might call this a correspondence language L corr for L (cf. [3]). Now we can read
a model M as a model for L corr in a straightforward way: W is taken as the domain
of the structure, V specifies the denotation of each of the predicates P, Q, . . . ,
the collection O is the object assigned to the predicate O, while ∗ is the denota-
tion of the function symbol ∗ of L corr and R the denotation of the relation R of
L corr .

Where t is a term in the correspondence language, we write φt/x for the result of
replacing x with t everywhere in the formula φ. As expected, it is easy to specify
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a translation from the formulas of the relevant language into formulas of first order
logic with one free variable as follows:

Tx(t) = Ox

Tx(p) = Px

Tx(∼ φ) = ¬Tx(φ)x
∗/x

Tx(φ ∧ ψ) = Tx(φ) ∧ Tx(ψ)

Tx(φ ∨ ψ) = Tx(φ) ∨ Tx(ψ)

Tx(φ → ψ) = ∀y, z(Rxyz ∧ Tx(φ)y/x ⊃ Tx(ψ)z/x)

Tx(φ ◦ ψ) = ∃y, z(Ryzx ∧ Tx(φ)y/x ∧ Tx(ψ)z/x).

The symbols ¬ and ⊃ represent boolean negation and material implication in
classical logic (which should not be confused with the relevant ∼ and →).

Next we prove a proposition to the effect that our proposed translation is adequate.
While � stands for satisfaction as defined for relevant languages, � will be the usual
Tarskian satisfaction relation from classical logic.

Proposition 2 For any w, M, w � φ if and only if M � Tx(φ)[w].

Hence, without loss of generality, we can switch (when convenient) to the
following presentation of L as a fragment of the classical language L corr :

φ ::= Px | ∃v(Ov ∧ v ≤ x) | ¬φx∗/x | φ ∧ ψ | φ ∨ ψ | ∀y, z(Rxyz ∧ φy/x ⊃
ψz/x) | ∃y, z(Ryzx ∧ φy/x ∧ ψz/x).

Working with this presentation makes life easier in the next definition.

Definition 1 A relevant formula φ is said to be positive if Tx(φ) is a formula built up
from atomic formulas involving only unary predicates and first order formulas where
the only non-logical symbols are R and O, using the connectives ∃, ∀, ∧ and ∨. On
the other hand φ is negative if Tx(φ) is a formula built up from boolean negations of
atomic formulas involving only unary predicates and first order formulas where the
only non-logical symbols are R and T, using the connectives ∃, ∀, ∧ and ∨.

A remark seems in order here: the translation of a formula of the form φ → ψ is
in general not positive as it involves ⊃ with its usual definition in terms of ¬ and ∨.

Lemma 3 Let M be a Routley-Meyer model for a relevant language L , φ(x) a
positive first order formula of L corr where x is a sequence of variables, and M ′
a Routley-Meyer model identical to M except that the interpretation of the unary
predicates of the signature of M in the model M ′ are supersets of the interpretation
of the corresponding predicates in M . Then for any sequence of elements a of M ,
M � φ[a] only if M ′ � φ[a].
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Proof This follows from Theorem 10.3.3 (a) in [11].

We say that a formula φ′ of L corr corresponds to (or is a correspondent of) a
relevant formula φ if for any Routley-Meyer frame F, F � φ iff F � φ′. A formula ψ

of L corr locally corresponds to a relevant formula φ if for any Routley-Meyer frame
F and world w of F, F, w � φ iff F � ψ[w].

If we abreviate the formula of L corr which expresses that the value of a given
predicate P is upward closed under ≤ by Up≤(P ), the next proposition is easily
established using Proposition 2.

Proposition 4 For any relevant formula φ(p1, . . . , pn), Routley-Meyer frame F and
world w of F, the following holds:

(i) F � φ iff F � ∀P1, . . . , Pn(Up≤(P1) ∧ · · · ∧ Up≤(Pn) ⊃ ∀w(Ow ⊃
Tx(φ)w/x))

(ii) F, w � φ iff F � ∀P1, . . . , Pn(Up≤(P1) ∧ · · · ∧ Up≤(Pn) ⊃ Tx(φ))[w].

A class (or, informally, a property) K of Routley-Meyer frames will be said to be
definable by a relevant formula φ if K is exactly the class of all frames validating φ.
So, at the level of frames and validity, relevant languages can be seen as fragments of
monadic second order logic as opposed to fragments of first order logic at the level
of models. To be precise, the “relevant fragment” of monadic second order logic can
be taken to be any formula equivalent to a formula in the set

{∀P1, . . . , Pn(Up≤(P1) ∧ · · · ∧ Up≤(Pn) ⊃ Tx(φ)) : φ is a relevant formula}.

3 Elementary Classes of Frames

A class of structures K is said to be elementary if there is a first order formula φ such
that K is identical to the class of all models of φ. Since frames are clearly structures,
then it makes sense to talk about elementary classes of frames.

Note that it is easy to prove that a class of Routley-Meyer frames which is defin-
able by a formula of relevant logic is elementary iff it is closed under ultraproducts.
Goldblatt [10] observed that this was so for modal logic and the same quick little
argument applies here. Recall that a class of structures is elementary iff both the class
and its complement are closed under ultraproducts ([7], Corollary 6.1.16 (ii)3). Now,
the complement of a class of Routley-Meyer frames definable by a relevant formula φ

is always closed under ultraproducts. For it is the class of all models of a �1
1 sentence

∃P1, . . . , Pn(Up≤(P1)∧· · ·∧Up≤(Pn)∧¬Tx(φ)T/x) and�1
1 formulas are preserved

under ultraproducts ([7], Corollary 4.1.14). Hence, we have proven the observation.
Furthermore, following a similar argument to that in [21] for modal logic, we can
actually show that ultrapowers suffice for a characterization of elementarity.

As an example of a relevant formula which defines an elementary class of
frames we have p0 ∨ (p0 → p1) ∨ · · · ∨ (∧

0≤i≤n−1 pi → pn

)
. The intuitionistic

3Note that in [7] elementary classes are called “basic elementary”.
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counterpart of this formula on intuitionistic Kripke frames corresponds to a cardi-
nality claim ([6], Proposition 2.40). The first order correspondent of the formula on

Routley-Meyer frames is ∀x1, y1, . . . , xn, yn

(∧n
i=1 xi ≤ yi ⊃ ∨

1≤j<i≤n xi ≤ yj

)
.

This can be seen as follows. Let F be an arbitrary Routley-Meyer frame. Sup-
pose first that F satisfies our first order condition and that for some model M

based on F, M, T � p0 ∨ (p0 → p1) ∨ · · · ∨ (∧
0≤i≤n−1 pi → pn

)
for some

T ∈ O. The latter means that for each number 1 ≤ i ≤ n, there are xi, yi

such that xi ≤ yi , M, xi �
∧

0≤j≤i−1 pj but M, yi � pi . Now take xi, yj ,
j<i such that xi ≤ yj . We have that M, xi �

∧
0≤j≤i−1 pj but M, yj � pj ,

which by the Hereditary Lemma implies that M, xi � pj , a contradiction. On the

other hand, suppose ∀x1, y1, . . . , xn, yn

(∧n
i=1 xi ≤ yi ⊃ ∨

1≤j<i≤n xi ≤ yj

)
fails

in F, that is ∃x1, y1, . . . , xn, yn

((∧n
i=1 xi ≤ yi

) ∧
(∧

1≤j<i≤n xi � yj

))
holds in

F. Without loss of generality, we may assume that for some T ∈ O, we have
x0 = T , T = y0, x1, y1, . . . , xn, yn is an enumeration such that xi ≤ yj implies that
i ≤ j . Consider a valuation V on F such that V (pi) = {x : x � yi} (this set is upward
closed under ≤ by the transitivity of ≤). First thing to note is that 〈F, V 〉, T � p0
since ≤ is reflexive (which also implies that 〈F, V 〉, yi � pi). But for any i>0,
〈F, V 〉, xi �

∧
0≤j≤i−1 pj , since otherwise for some j<i, xi ≤ yj , which is impos-

sible by assumption. Hence, F � p0 ∨ (p0 → p1) ∨ · · · ∨ (∧
0≤i≤n−1 pi → pn

)
, as

desired.
The example in the above paragraph also serves as a point of comparison between

the expressive power of relevant formulas on Routley-Meyer frames and intuitionistic
formulas on Kripke frames. More illustrations of relevant formulas defining elemen-
tary classes will follow in Section 4, as applications of our Sahlqvist correspondence
theorem.

One question that arises immediately is whether all relevant formulas have first
order correspondents, i.e., define elementary classes. The next results show that this
is not the case (though Section 4 will give a positive result). The formula witnessing
this fact in the following theorem is roughly the analogue of the famous McKinsey
axiom from modal logic (which was shown not to be elementary simultaneously by
van Benthem [20] and Goldblatt [10]). We use a techinique due to van Benthem [20].

Theorem 5 The class of Routley-Meyer frames defined by the formula

(M) ∼ (∼ p ∧ (t∨ ∼ t → (p ◦ (t∨ ∼ t)))) ∨ ((t∨ ∼ t) ◦ (t∨ ∼ t → p))

is not elementary. In other words, the above formula has no first order correspondent.

Proof Consider the structure F0 = 〈W, R, ∗, {q}〉, where
W = {q, s} ∪ {qn : n ∈ ω} ∪ {qn,i : n ∈ ω, i ∈ {0, 1}} ∪ {rf : f ∈ {0, 1}ω},
R = {〈q, x, x〉 : x ∈ W } ∪ {〈qn,i , qn,j , qn,j 〉 : n ∈ ω, i, j ∈ {0, 1}}

∪{〈rf , qn,f (n), qn,f (n)〉 : n ∈ ω, f ∈ {0, 1}ω} ∪ {〈qn,i , qn,i , x〉 : x ∈ W

\{qn : n ∈ ω}, n ∈ ω, i ∈ {0, 1}} ∪ {〈qn,i , qn,i , qn〉 : n ∈ ω, i ∈ {0, 1}}
∪{〈s, rf , q〉 : f ∈ {0, 1}ω}x,
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and ∗ is the identity function. F0 is trivially a Routley-Meyer frame, since in F0,
a ≤ b iff a = b. Note that any subset of W is upward closed with respect to ≤ due to
this. It is easily seen that F0, w � t∨ ∼ t for anyw ∈ W by our definition of ∗, which
basically makes ∼ collapse to boolean negation in F0. Clearly, F0 has uncountable
cardinality. Also, we observe that over frames where ∗ is the identity (such as F0), a
formula like (M), of the form ∼ φ ∨ ψ , is essentially a material implication.

First, we show that (M) is valid in F0. Let V be an arbitrary valuation on F0.
Suppose that 〈F0, V 〉, q �∼ p ∧ (t∨ ∼ t → (p ◦ (t∨ ∼ t))). This means
that 〈F0, V 〉, q �∼ p (which implies that 〈F0, V 〉, q � p by our definition of
∗) and 〈F0, V 〉, q � t∨ ∼ t → (p ◦ (t∨ ∼ t)) (which implies that for all
w ∈ W , 〈F0, V 〉, w � p ◦ (t∨ ∼ t), i.e., there are v1, v2 such that Rv1v2w and
〈F0, V 〉, v1 � p). By the latter, for each qn there must be some qn,i such that
〈F0, V 〉, qn,i � p (for q, qn cannot witness p ◦ (t∨ ∼ t) since 〈F0, V 〉, q � p).
Take rf to be such that 〈F0, V 〉, qn,f (n) � p for any n ∈ ω. Then since Rsrf q

and 〈F0, V 〉, zf � t∨ ∼ t → p (since in F0, Rrf xy iff for some n ∈ ω,
x = qn,f (n) = y), we have that 〈F0, V 〉, q � (t∨ ∼ t) ◦ (t∨ ∼ t → p), as desired.

Now suppose (M) has a first order correspondent φ. By the above paragraph, F0 �
φ. By the downward Löwenheim-Skolem theorem, there is a countable elementary
substructure F0

′ of F0 including {q, s} ∪ {qn : n ∈ ω} ∪ {qn,i : n ∈ ω, i ∈ {0, 1}} as
a subset of its domain. We will show that (M) is not valid in F0

′. This will produce a
contradiction since F0

′ � φ, given that F0
′ and F0 are elementarily equivalent.

Being countable, F0
′ must leave out an element zg (g ∈ {0, 1}ω) of W . Consider

a valuation V on F0
′ such that V (p) = {qn,g(n) : n ∈ ω}. We note that 〈F0

′, V 〉, q �

p, so 〈F0
′, V 〉, q �∼ p. Now, for any qn, since Rqn,g(n)qn,g(n)qn, 〈F0

′, V 〉, qn �
p ◦ (t∨ ∼ t). Similarly if w �= qn (n ∈ ω), 〈F0

′, V 〉, w � p ◦ (t∨ ∼ t). Hence,
for all w in the domain of F0

′, 〈F0
′, V 〉, w � p ◦ (t∨ ∼ t), which implies that

〈F0
′, V 〉, q � t∨ ∼ t → (p ◦ (t∨ ∼ t)). Finally, we want to show that 〈F0

′, V 〉, q �

(t∨ ∼ t) ◦ (t∨ ∼ t → p). If Rxyq either (1) x = y = q or (2) x = y = qn,i

for some n ∈ ω, i ∈ {0, 1}, or (3) x = s and y = zf for some zf in the domain
of F0

′. It suffices to show that in all three cases 〈F0
′, V 〉, y � t∨ ∼ t → p. If (1),

since 〈F0
′, V 〉, q � p and given that Rqqq, 〈F0

′, V 〉, y � t∨ ∼ t → p. If (2), since
Rqn,iqn,h(g(n))qn,h(g(n)) (where h : {0, 1} −→ {0, 1} is the function such that h(0) =
1 and h(1) = 0) and 〈F0

′, V 〉, qn,h(g(n)) � p, we have that 〈F0
′, V 〉, y � t∨ ∼ t →

p. If (3), f �= g, so they differ in their value for some n, hence, qn,f (n) �= qn,g(n),
which implies that 〈F0

′, V 〉, qn,f (n) � p. Given that Rrf qn,f (n)qn,f (n), we see that
〈F0

′, V 〉, y � t∨ ∼ t → p, as desired.

Next we provide a much easily graspable non-elementary class of Routley-Meyer
frames which is definable in the language of relevant logic. For the conjunction of
conditions (i) and (ii) in Proposition 6 is not expressible in first order logic as will be
seen through a compactness argument. This time we build a relevant logic analogue
of the well-known Löb axiom.

Put R#xy =df ∃z(Rxyz ∨ Rxzy) and �p =df (p∨ ∼ p → p) ∧ (∼ p → p∧ ∼
p). Observe that for any frame F, and world x ∈ W , R#T x holds, so F � ∀x(R#T x).
In any frame F where ∀x(x∗ ≤ x ∧ x ≤ x∗), using the Hereditary Lemma, we see
that a formula of the form ∼ φ ∨ ψ behaves essentially as a material implication in
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a classical language at the level of models based on F. Also, for any valuation V in
any such frame F, 〈F, V 〉, w � �p iff for all x, y such that Rwxy, 〈F, V 〉, x � p

and 〈F, V 〉, y � p iff for all x such that R#wx, 〈F, V 〉, x � p.
Now, for any frame F, F � (p∧ ∼ p → q) ∧ (q → p∨ ∼ p) iff F � ∀x(x∗ ≤

x ∧ x ≤ x∗).

Proposition 6 F � (p∧ ∼ p → q) ∧ (q → p∨ ∼ p) ∧ ((�(�p ⊃ p) ∧ p) ⊃ �p)

iff (i) F � ∀x(x∗ ≤ x ∧ x ≤ x∗) and there is T ∈ O such that (ii) there is
no infinite sequence of worlds T = s0, s1, s2 . . . such that s0 � si(0<i<ω) and
R#s0s1, R

#s1s2, R
#s2s3, . . . and (iii) for any x, y, R#T x and R#xy implies that

R#Ty.

Proof Let F be an arbitrary Routley-Meyer frame. We have that if (i) holds, the valid-
ity of �(�p ⊃ p) ∧ p ⊃ �p implies (ii). For suppose (ii) fails, then there is an infi-
nite sequence of worlds T = s0 � s1, s2 . . . such that R#s0s1, R

#s1s2, R
#s2s3, . . .

Now take any valuation V based on F such that V (p) = {w : w � si, 0<i<ω}.
By transitivity of ≤, V (p) is upwards closed under ≤. For each si , si ≤ si , so
〈F, V 〉, si � p. Hence, 〈F, V 〉, T � �p. Also, by assumption, T � si (0<i<ω),
which mean that 〈F, V 〉, T � p. Now let R#T v and suppose that 〈F, V 〉, v � �p

but 〈F, V 〉, v � p. The latter means that v ≤ si for some 0<i<ω, however since
〈F, V 〉, si+1 � p and R#sisi+1, it must be that 〈F, V 〉, si � �p, and by the Hered-
itary Lemma, 〈F, V 〉, v � �p. Hence, 〈F, V 〉, T � �(�p ⊃ p). Similarly, if (iii)
fails, we have some x, y such that R#T x and R#xy but not R#Ty. Just consider a
valuation V such that V (p) = {w : w � x, y}. V (p) turns out to be upwards closed
under ≤ due to the transitivity of ≤. This concludes the left to right direction of the
proposition.

For the converse suppose 〈F, V 〉, T � �(�p ⊃ p) ∧ p ⊃ �p. If (i) holds,
one can build the desired sequence to falsify (ii) by taking x such that R#T x while
〈F, V 〉, x � p and applying 〈F, V 〉, T � �(�p ⊃ p) in conjunction with (iii).

To see that the conjunction of conditions (i) and (ii) in Proposition 6 is not
a first order property, let us suppose it is to derive a contradiction. Say φ is the
first order formula expressing (i) and (ii). Expand the correspondence language by
adding a constant ci for each i>0. Let � be the collection of first order formulas
axiomatizing our class of Routley-Meyer frames and 	 the set of first order formu-
las {O(T ), R#T c1, R

#cici+1 : 0<i<ω}. For each n>0, take the frame Fn where
W = {k : k ≤ n}, R = {〈0, i, i〉 : i ≤ n} ∪ {〈j, j + 1, j + 1〉 : j<n}, T is simply the
number 0 while O = {0} and ∗ the identity. Each finite subset of {φ} ∪ � ∪ 	 has
a model in Fn for sufficiently large n. By compactness, the whole thing must have a
model, which is impossible since φ forbids 	 from being true by assumption.

So we have seen that at the level of frames, the language of relevant logic can
go beyond the expressive power of first order logic. More precisely, the fragment
of monadic second order logic corresponding to the language of relevant logic over
frames can express some non-first order concepts. Does it contain first order logic,
though? We will give next an easy argument that it does not (though there was never
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a reason to believe that it did). This shows that the “relevant fragment” of monadic
second order logic is indeed incomparable with first order logic in terms of expressive
power.

Definition 2 Let M = 〈W, R, ∗, O, V 〉 and N = 〈W ′, R′, ∗′, O ′, V ′〉 be models
for a basic relevant language with absurdity L. A map f : W −→ W ′ is called a
bounded morphism if it satisfies the following:

(i) x and f (x) satisfy the same propositional variables.
(ii) Rxyz only if R′f (x)f (y)f (z).
(iii) f (x)∗′ = f (x∗).
(iv) R′f (x)y′z′ only if there are y, z such thatRxyz and f (y) = y′ and f (z) = z′.
(v) f (x) ∈ O ′ for x ∈ O

(vi) R′y′z′f (x) only if there are y, z such that Ryzx and f (y) = y′ and f (z) =
z′.

(vii) R′y′z′f (x) for y′, z′ ∈ O ′ only if there are y, z ∈ O such that Ryzx and
f (y) = y′ and f (z) = z′.

Lemma 7 Let M, N be two models and f a bounded morphism from M into N .
Then, for any world w of M and relevant formula φ, M, w � φ iff N, f (w) � φ.

Proof Routine induction on formula complexity.

When one omits condition (i) in Definition 2, we might speak of a bounded
morphism from a frame F into a frame F′.

Proposition 8 If there is a bounded morphism f from a frame F = 〈W,R, ∗, O〉 into
a frame F′ = 〈W ′, R′, ∗′, O ′〉, then F � φ implies F′ � φ for any relevant formula φ.

Proof Suppose F′
� φ. So there is a valuation V ′ such hat 〈F, V ′〉, T � φ for some

T ∈ O. Consider now the valuation V such that V (p) = {x ∈ W : f (x) ∈ V ′(p)}
for any p. Note that V (p) is closed under ≤ in F. For suppose x ∈ V (p) (i.e.,
f (x) ∈ V ′(p)) and x ≤ y in F, which by conditions (ii) and (v) in Definition 2 and
our assumption, implies that f (x) ≤ f (y). Hence, f (y) ∈ V ′(p), which means that
y ∈ V (p). So f is now a bounded morphism from the model 〈F, V 〉 into the model
〈F′, V ′〉, which, using Proposition 8, means that F � φ.

Finally, let F1 be the frame 〈W, R, ∗, {s, t}〉 where W = {s, t}, R = W × W × W

and ∗ = {〈t, t〉, 〈s, t〉}. On the other hand, let F2 be the frame 〈W ′, R′, ∗′, {s}〉 where
W ′ = {s}, R = W ′ × W ′ × W ′ and ∗ is the identity. There is only one function
f : W −→ W ′. The function f is a bounded morphism from F1 onto F2 as it is easy
to check. The first order property ∃x(Ox ∧ x �= x∗) (where the denotation of T is s

in both F1 and F2) holds at F1 but fails at F2, so by Proposition 8, ∃x(Ox ∧ x �= x∗)
is not definable by a relevant formula.



On Sahlqvist Formulas in Relevant Logic 683

4 A Sahlqvist Correspondence Theorem

In this section, we prove the result promised in Section 1 using the groundwork layed
out in Section 2. In the proof we use lambda terms as in [3], which are to be under-
stood as predicate constants (i.e., the denotation of the lambda term λu.(φ) is fixed
by the set of worlds satisfying φ).

Lemma 9 Let φ, θ, ψ and χ be relevant formulas such that θ contains no propo-
sitional variable and φ and χ have no propositional variable in common. Suppose
φ,ψ and χ have first order frame correspondents. Then θ → φ, φ ∧ ψ and φ ∨ χ

have first order correspondents.

Proof Suppose φ′, ψ ′, χ ′ are the first order local correspondents of φ,ψ and χ

respectively.
For (θ → φ), supposing that all its propositional variables appear in the list

p1, . . . , pn, we have that

F, w�θ →φ iff F � ∀P1, . . . , Pn∀x, y(
∧

i<n+1 Up≤(Pi) ∧ Rxyz ∧ Tx(θ) ⊃ Tx(φ)z/x)[w]
iff F � ∀P1, . . . , Pn∀x, y(Rxyz ∧ Tx(θ) ⊃ (

∧
i<n+1 Up≤(Pi) ⊃ Tx(φ)z/x))[w]

iff F � ∀x, y(Rxyz ∧ Tx(θ) ⊃ ∀P1, . . . , Pn(
∧

i<n+1 Up≤(Pi) ⊃ Tx(φ)z/x))[w]
iff F � ∀x, y(Rxyz ∧ Tx(θ) ⊃ φ′)[w].

For (φ∧ψ), supposing that all its propositional variables appear in the list p1, . . . , pn,
we have that

F, w � φ ∧ ψ iff F � ∀P1, . . . , Pn(
∧

i<n+1 Up≤(Pi) ⊃ Tx(φ) ∧ Tx(ψ))[w]
iff F � ∀P1, . . . , Pn((

∧
i<n+1 Up≤(Pi) ⊃ Tx(φ))∧

(
∧

i<n+1 Up≤(Pi) ⊃ Tx(ψ)))[w]
iff F � ∀P1, . . . , Pn(

∧
i<n+1 Up≤(Pi) ⊃ Tx(φ))∧

∀P1, . . . , Pn(
∧

i<n+1 Up≤(Pi) ⊃ Tx(ψ))[w]
iff F � φ′ ∧ ψ ′[w].

For (φ ∨ χ), F, w � φ ∨ χ iff F, w � φ or F, w � χ . Right to left is obvi-
ous. For the converse suppose that F, w � φ ∨ χ , F, w � φ and F, w � χ . Then
there are V1, V2 such that 〈F, V1〉, w � φ and 〈F, V2〉, w � χ . It is easy to show
by induction on formula complexity that for any two valuations V, V ′ on a frame
F such that V (p) = V ′(p) for all propositional variables p appearing in a for-
mula φ, 〈F, V 〉, w � φ iff 〈F, V ′〉, w � φ for any world w of F. Say p1, . . . , pn

and q1, . . . , qm are the propositional variables appearing in φ, χ respectively. Take
a valuation V3 such that V3(pi) = V1(pi) while V3(qj ) = V2(qj ). It follows that
〈F, V3〉, w � φ and 〈F, V3〉, w � χ , contradicting our assumption that F, w � φ ∨χ .
Finally, F, w � φ or F, w � χ iff F � φ′[w] or F � χ ′[w] iff F � φ′ ∨ χ ′[w].

Definition 3 A formula φ → ψ is called a relevant Sahlqvist implication if ψ is
positive while φ is a formula built up from propositional atoms, double negated atoms
(i.e., formulas of the form ∼∼ p), negative formulas, the constant t and implications
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of the form t → p (for any propositional variable p) using only the connectives ∨, ∧
and ◦.

Example 10 p∧ ∼ p → q,∼∼ p → p, p◦q → p∧q, ((p◦q)∨(t → p)) → p∨q,
p → (t∨ ∼ t → p) and (t → p) → p are all relevant Sahlqvist implications
according to Definition 3, while (p → (p → q)) → (p → q) is not since, for one
thing, Tx(p → q) is not a positive formula.

Lemma 11 Every relevant Sahlqvist implication has a local first order correspon-
dent on Routley-Meyer frames.

Proof Let φ → ψ be a relevant Sahlqvist implication. We consider the local frame
correspondent

(T) ∀P1, . . . , Pn∀y, z(Up≤(P1)∧· · ·∧Up≤(Pn)∧Rxyz∧Tx(φ)y/x ⊃ Tx(ψ)z/x).

Renaming variables we can make sure that no two quantifiers bind the same variable
and that x remains free. One can abbreviate Tx(ψ)z/x , which is a positive formula,
as POS.

Using the classical principles of associativity, distributivity and the well-known
equivalences

(∃xθ(x) ∧ σ) ≡ ∃x(θ(x) ∧ σ),
(∃xθ(x) ⊃ σ) ≡ ∀x(θ(x) ⊃ σ),
(θ ∨ δ ⊃ σ) ≡ ((θ ⊃ σ) ∧ (δ ⊃ σ)),
∀P1, . . . , Pn∀x1, . . . , xk(θ ∧ σ) ≡ ((∀P1, . . . , Pn∀x1, . . . , xk . . . θ) ∧
(∀P1, . . . , Pn∀x1, . . . , xk . . . σ )),

by “pulling out” the fusions in the antecedent of (T), we will obtain a conjunction of
formulas of the form:

(1) ∀P1, . . . , Pn∀x1, . . . , xk(Up≤(P1)∧· · ·∧Up≤(Pn)∧REL∧ (DN)AT∧ IMP∧
NEG ⊃ POS).

Here, REL is a conjunction of atomic first order expressions involving only the
ternary predicate R, (DN)AT is a conjunction of translations of (double negated)
propositional variables, IMP is a conjunction of translations of formulas of the form
t → pi , that is, formulas of the form ∀y, z(Rxyz ∧ ∃b(Ob ∧ b ≤ y) ⊃ Piz), while
NEG is a conjunction of negative formulas. Our purpose will be to eliminate all the
second order quantifiers in (1).

Next we observe that one may assume that any unary predicate (corresponding to
a propositional variable) appearing in POS, appears also in the antecedent of (1). For
suppose not, that is, there a unary predicate Pi which appears only in POS. Take

(2) [λu.(u � u)/Pi]∀P1, . . . , Pi−1, Pi+1, . . . , Pn∀x1, . . . , xk(Up≤(P1)

∧ · · · ∧ Up≤(Pn) ∧ REL ∧ (DN)AT ∧ IMP ∧ NEG ⊃ POS),

the formula resulting by instantiating the quantifier ∀Pi to the particular instance
λu.(u � u). Note that the extension of λu.(u � u) is empty on any Routley-Meyer
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frame (by p.1) and that, moreover,Up≤(λu.(u � u)) holds trivially. Now assume that
(2) to show that (1) holds. Take arbitrary P1 . . . Pn and suppose that the antecedent
of (1) holds. By (2), it follows that [λu.(u � u)/Pi]POS, but by Lemma 3, [Pi]POS
must be the case. Hence, (1). So (1) and (2) are actually equivalent.

It is easy to see that (1) is equivalent to

(3) ∀P1, . . . , Pn∀x1, . . . , xk(Up≤(P1)∧· · ·∧Up≤(Pn)∧REL∧(DN)AT∧IMP ⊃
¬NEG ∨ POS).

Observe that ¬NEG ∨ POS is a positive formula.
Suppose π1(xi1), . . . , πk(xik) are all the conjuncts of (DN)AT and IMP in the

antecedent of (3) in which the unary predicate Pi occurs. Then if πj (xij ) appears
in one of the conjuncts in IMP, it must be a formula of the form ∀yz(Rxij yz ∧
∃b(Ob ∧ b ≤ y) ⊃ Piz), in which case we define σ(πj (xij )) = λu.(∃yz(Rxij yz ∧
∃b(Ob ∧ b ≤ y) ∧ z ≤ u)). On the other hand if πj (xij ) appears in one of the
conjuncts in (DN)AT we put σ(πj (xij )) = λu.(xij ≤ u) in case πj (xij ) = Pixij

and σ(πj (xij )) = λu.(x∗∗
ij ≤ u) in case πj (xij ) = ¬¬Pix

∗∗
ij . Note that σ is a well-

defined function and that for any πj (xij ), if πj (xij )[w] then ∀y(σ (πj (xij )(y) ⊃
Piy)[w]. Next define δ(Pi) = λu.(σ (π1(xi1))(u) ∨ · · · ∨ σ(πk(xik))(u)). Now, if
(DN)AT[ww1 . . . wk] and IMP[ww1 . . . wk] then ∀u(δ(Pi)(u) ⊃ Piu)[ww1 . . . wk].

At this point we should note that Up≤(δ(Pi)) holds for any Pi . This is so
because each σ(πj (xij ))(u) is upward closed under ≤, and any union of upward
closed sets under ≤ is also upward closed under ≤. Moreover, by the reflexivity
of ≤, [δ(P1)/P1 . . . δ(Pn)/Pn](DN)AT and [δ(P1)/P1 . . . δ(Pn)/Pn]IMP will hold
trivially. So, from

(4) [δ(P1)/P1 . . . δ(Pn)/Pn]∀x1, . . . , xk(Up≤(P1) ∧ · · · ∧ Up≤(Pn) ∧ REL ∧
(DN)AT ∧ IMP ⊃ ¬NEG ∨ POS),

we end up with the equivalent formula

(5) ∀x1, . . . , xk(REL ⊃ [δ(P1)/P1 . . . δ(Pn)/Pn](¬NEG ∨ POS)).

Given that any unary predicate appearing in POS also appears in the antecedent of (4),
(5) is a first order formula in the signature of Routley-Meyer frames, which contains
R, ∗, and O as the only non-logical symbols.

We have seen that (1) implies (5). All that is left is to show that (5) implies (1).
Recall that (1) is equivalent to (3). Thus it suffices to prove that (5) implies (3).
Assume (5), let P1, . . . , Pn be arbitrary and suppose further that

Up≤(P1) ∧ · · · ∧ Up≤(Pn) ∧ REL ∧ (DN)AT ∧ IMP[ww1 . . . wk],
so, by (5), we obtain that

[δ(P1)/P1 . . . δ(Pn)/Pn](¬NEG ∨ POS)[ww1 . . . wk].
But recall that since (DN)AT[ww1 . . . wk] and IMP[ww1 . . . wk], it must be the case
that ∀u(δ(Pi)(u) ⊃ Piu)[ww1 . . . wk]. Hence, by Lemma 3,

(¬NEG ∨ POS)[ww1 . . . wk],
which proves (3).
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The procedure in the above proof is better understood by working out some
examples, which we will do next for the benefit of the reader.

Example 12 By the Sahlqvist-van Benthem algorithm, the following list of equiva-
lences must hold:

F, w � p∧ ∼ p → q iff F � ∀P,Q∀y, z(Up≤(P ) ∧ Up≤(Q)
∧Rxyz ∧ Py ∧ ¬Py∗ ⊃ Qz)[w]

iff xF � ∀P∀y, z(Up≤(P ) ∧ Up≤(λu.(u � u)) ∧ Rxyz

∧Py ∧ ¬Py∗ ⊃ λu.(u � u)(z))[w]
iff F � ∀P∀y, z(Up≤(P ) ∧ Rxyz ∧ Py ∧ ¬Py∗ ⊃ z � z)[w]
iff F � ∀P∀y, z(Up≤(P ) ∧ Rxyz ∧ Py ⊃ Py∗ ∨ z � z)[w]
iff F � ∀y, z(Up≤(λu.(y ≤ u)) ∧ Rxyz

∧λu.(y ≤ u)(y) ⊃ λu.(y ≤ u)(y∗) ∨ z � z)[w]
iff F � ∀y, z(Rxyz ∧ y ≤ y ⊃ y ≤ y∗ ∨ z � z)[w]
iff F � ∀y, z(Rxyz ⊃ y ≤ y∗ ∨ z � z)[w].

It is easy to check that this correspondence is accurate. First, if F � ∀y, z(Rxyz ⊃
y ≤ y∗ ∨ z � z)[w] and M is any model based on F, if Rwyz and M, y � p∧ ∼ p

either z � z or M, y � p and M, y � p (contraposing the Hereditary Lemma). So,
M, w � p∧ ∼ p → q as desired. Conversely, if F � ∀y, z(Rxyz ⊃ y ≤ y∗ ∨ z �

z)[w], F � ∃y, z(Rxyz ∧ y � y∗ ∧ z ≤ z)[w], i.e., F � ∃y, z(Rxyz ∧ y � y∗)[w].
Take a valuation V on F such that V (p) = {x : y ≤ x} and V (q) = {x : x � z}
(note that these two sets are upward closed under ≤ by transitivity of ≤). V suffices
to show that F, w � p∧ ∼ p → q. Note that from this correspondence, we obtain
that F � p∧ ∼ p → q iff F � ∀y, z(y ≤ z ⊃ y ≤ y∗) iff F � ∀y(y ≤ y∗).

Example 13 By the Sahlqvist-van Benthem algorithm,

F, w �∼∼ p → p iff F � ∀P∀y, z(Up≤(P ) ∧ Rxyz ∧ ¬¬Py∗∗ ⊃ Pz)[w]
iff F � ∀y, z(Up≤(λu.(y∗∗ ≤ u)) ∧ Rxyz

∧¬¬λu.(y∗∗ ≤ u)(y∗∗) ⊃ λu.(y∗∗ ≤ u)(z))[w]
iff F � ∀y, z(Rxyz ∧ y∗∗ ≤ y∗∗ ⊃ y∗∗ ≤ z)[w]
iff F � ∀y, z(Rxyz ⊃ y∗∗ ≤ z)[w].

Next we establish that the correspondence is correct. Suppose that F � ∀y, z(Rxyz ⊃
y∗∗ ≤ z)[w], so, using the Hereditary Lemma, F, w �∼∼ p → p. On the other
hand if F � ∀y, z(Rxyz ⊃ y∗∗ ≤ z)[w], i.e., F � ∃y, z(Rxyz ∧ y∗∗

� z)[w]. Then
any valuation V such that V (p) = {x : x � z} guarantees that 〈F, V 〉, z � p and
〈F, V 〉, y∗∗ � p, so F, w �∼∼ p → p.

The above condition reduces to ∀x(x∗∗ ≤ x ∧x ≤ x∗∗) when we consider validity
with respect to all the worlds in O of the frame. This is not the same in general
as ∀x(x = x∗∗) which is the condition usually required to validate ∼∼ p → p.
However, it is certainly the case that, using the construction from Theorem 5 [12], by
restricting our attention to just the frames where ≤ is antisymmetric, we get exactly
the same set of validities as in the general case.



On Sahlqvist Formulas in Relevant Logic 687

Example 14 By the Sahlqvist-van Benthem algorithm,

F, w�p ◦ q →p ∧ q iff F � ∀P, Q∀y, z(Up≤(P ) ∧ Up≤(Q) ∧ Rxyz
∧∃u1u2(Ru1u2y ∧ Pu1 ∧ Qu2) ⊃ Pz ∧ Qz)[w]

iff F � ∀P, Q∀y, z, u1, u2(Up≤(P ) ∧ Up≤(Q) ∧ Rxyz
∧Ru1u2y ∧ Pu1 ∧ Qu2 ⊃ Pz ∧ Qz)[w]

iff F � ∀y, z, u1, u2(Up≤(λu3.(u1 ≤ u3)) ∧ Up≤(λu3.(u2 ≤ u3))
∧Rxyz ∧ Ru1u2y ∧ λu3.(u1 ≤ u3)(u1)∧λu3.(u2 ≤ u3)(u2) ⊃ λu3.(u1 ≤ u3)(z) ∧ λu3.(u2 ≤ u3)(z))[w]

iff F � ∀y, z, u1, u2(Rxyz ∧ Ru1u2y ∧ u1 ≤ u1
∧u2 ≤ u2 ⊃ u1 ≤ z ∧ u2 ≤ z)[w]

iff F � ∀y, z, u1, u2(Rxyz ∧ Ru1u2y ⊃ u1 ≤ z ∧ u2 ≤ z)[w].

Now we show that the correspondence is indeed correct. First, let F � ∀y, z, u1,

u2(Rxyz ∧ Ru1u2y ⊃ u1 ≤ z ∧ u2 ≤ z)[w]. Suppose M is an arbitrary model based
on F, then if Rwyz ∃u1u2(Ru1u2y ∧Pu1∧Qu2) both hold, u1 ≤ z and u2 ≤ z, and,
by the Hereditary Lemma, Pz and Qz as desired. Hence, F, w � p ◦ q → p ∧ q. On
the other hand, suppose F � ∀y, z, u1, u2(Rxyz ∧ Ru1u2y ⊃ u1 ≤ z ∧ u2 ≤ z)[w].
A valuation V on F such that V (p) = {x : u1 ≤ x} and V (q) = {x : u2 ≤ x} suffices
to guarantee that F, w � p◦q → p∧q (for 〈F, V 〉, y � p◦q but 〈F, V 〉, z � p∧q).
Observe that in fact the condition simplifies to ∀y, z(Rxyz ⊃ x ≤ z ∧ y ≤ z) by
some manipulations.

Example 15 By the Sahlqvist-van Benthem algorithm,

F, w�(t→p)→p iff F � ∀P∀y, z(Up≤(P ) ∧ Rxyz
∧∀u, v(Ryuv ∧ ∃b(Ob ∧ b ≤ u) ⊃ Pv) ⊃ Pz)[w]

iff F � ∀y, z(Rxyz ∧ ∀u, v(Ryuv ∧ ∃b(Ob ∧ b ≤ u) ⊃ λu1
.(∃u2u3(Ryu2u3 ∧ ∃b(Ob ∧ b ≤ u2) ∧ u3 ≤ u1))v) ⊃ λu1
.(∃u2u3(Ryu2u3 ∧ ∃b(Ob ∧ b ≤ u2) ∧ u3 ≤ u1))z)[w]

iff F � ∀y, z(Rxyz ∧ ∀u, v(Ryuv ∧ ∃b(Ob ∧ b ≤ u) ⊃ ∃u2u3(Ryu2u3∧∃b(Ob ∧ b ≤ u2) ∧ u3 ≤ v)) ⊃ ∃u2u3(Ryu2u3 ∧ ∃b(Ob ∧ b ≤ u2)∧u3 ≤ z))[w]
iff F � ∀y, z(Rxyz ⊃ ∃u2u3(Ryu2u3 ∧ ∃b(Ob ∧ b ≤ u2)∧ u3 ≤ z))[w].

The latter condition can be written as ∀x, y, z(Ox ∧ Rxyz ⊃ ∃u2u3(Ryu2u3 ∧
∃b(Ob ∧ b ≤ u2) ∧ u3 ≤ z)) when we consider correspondence with respect to the
worlds in O of a given frame. This condition is actually equivalent to the condition
∀x∃b(Ob ∧ Rxbx) corresponding in [4] to (t → p) → p ([4], p. 80, q6).

All that is left is to verify that F � ∀y, z(Rxyz ⊃ ∃u2u3(Ryu2u3 ∧ ∃b(Ob ∧
b ≤ u2) ∧ u3 ≤ z)) does locally correspond to (t → p) → p. Take a frame F

such that F � ∀y, z(Rxyz ⊃ ∃u2u3(Ryu2u3 ∧ ∃b(Ob ∧ b ≤ u2) ∧ u3 ≤ z))[w].
Let M be any Routley-Meyer model based on F. Consider arbitrary worlds w1, w2
such that Rww1w2 holds in M and suppose that M, w1 � t → p, which means
that ∀u, v(Ryuv ∧ ∃b(Ob ∧ b ≤ u) ⊃ Pv) holds in M . Since Rww1w2, we can
conclude that ∃u2u3(Rw1u2u3 ∧ ∃b(Ob ∧ b ≤ u2) ∧ u3 ≤ w2), but then Pu3, and,
by the Hereditary Lemma, Pw2 as desired. On the other hand, suppose that F �

∀y, z(Rxyz ⊃ ∃u2u3(Ryu2u3∧∃b(Ob∧b ≤ u2)∧u3 ≤ z))[w], so there are worlds
w1, w2 such that Rww1w2 and ∀u2u3(Rw1u2u3 ∧ ∃b(Ob ∧ b ≤ u2) ⊃ u3 � w2).
Take any model M based on F such that V (p) = {x ∈ W : x � w2}. V (p) is upward
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closed under ≤ thanks to the transitivity of ≤. Also, using the reflexivity of ≤, it is
easy to see that M, w � (t → p) → p, as desired.

The procedure can be used to obtain in a systematic way the following well-known
correspondences for the fusion version of some important principles of relevant logic
(cf. [14], Table 2.2):

a ≤ b ⊃ ∃y, z(Ryzb ∧ a ≤ y ∧ a ≤ z) xp → p ◦ p

(which is equivalent to ∀xRxxx) ( Weak Contraction or WL)
∀y, z(a ≤ b ∧ Ryza ⊃ ∃v0, v1, v2, v3(Rv0v1b∧ p ◦ q → p ◦ (p ◦ q)

y ≤ v0 ∧ Rv2v3v1 ∧ y ≤ v2 ∧ z ≤ v3)) (Strong Contraction orW)

(which is equivalent to ∀x, y, z(Rxyz ⊃ ∃v(Rxvz ∧ Rxyv)))

∀y, z(a ≤ b ∧ Ryza ⊃ z ≤ b) p ◦ q → q

(which is equivalent to ∀x, y, z(Rxyz ⊃ y ≤ z)) (Commuted Weakening or K′)
∀y, z(a ≤ b ∧ Ryza ⊃ y ≤ b) p ◦ q → p

(which is equivalent to ∀x, y, z(Rxyz ⊃ x ≤ z)) (Weakening or K)

∀y, z(a ≤ b ∧ Ryza ⊃ p ◦ q → q ◦ p

∃v0, v1(Rv0v1b ∧ z ≤ v0 ∧ y ≤ v1)) (Weak Commutativity or CL)
(which is equivalent to ∀x, y, z(Rxyz ⊃ Ryxz))

∀y, z, u, v(a ≤ b ∧ Ryza ∧ Ruvy ⊃ (p ◦ q) ◦ r → p ◦ (q ◦ r)

∃v0, v1, v2, v3(Rv0v1b ∧ u ≤ v0 ∧ Rv2v3v1 ∧ v ≤ v2 ∧ z ≤ v3)) (Twisted Associativity or B′)
(which is equivalent to ∀x, y, z, v(∃w(Rxyw ∧ Rwzv) ⊃
∃w(Rxwv ∧ Ryzw))x)

Definition 4 A formula φ → ψ is called a dual relevant Sahlqvist implication if
ψ is negative while φ is a formula built up from negated propositional atoms (i.e.
formulas of the form ∼ p), triple negated atoms (i.e., formulas of the form ∼∼∼ p),
positive formulas, the constant ∼ t and implications of the form p → t (for any
propositional variable p) using only the connectives ∨, ∧ and ◦.

Lemma 16 Every dual relevant Sahlqvist implication has a local first order corre-
spondent on Routley-Meyer frames.

Proof We argue essentially as in the proof of Lemma 11. Hence, our purpose is to
eliminate all second order quantifiers in a formula of the form:

(1) ∀P1, . . . , Pn∀x1, . . . , xk(Up≤(P1)∧· · ·∧Up≤(Pn)∧REL∧ (T)NAT∧ IMP∧
∧POS ⊃ NEG),

where REL is a conjunction of literals involving only the non-logical symbols R

and O, (T)NAT is a conjunction of translations of negated atomic relevant formulas
and triple negated atomic relevant formulas, IMP is a conjunction of translations of
formulas of the form p → t, POS is a conjunction of positive formulas and NEG, a
negative formula.

As before, we may assume that any unary predicate (corresponding to a proposi-
tional variable) appearing in NEG, appears also in the antecedent of (1). Otherwise,
instantiate the given unary predicate Pi appearing in NEG (and not in the antecedent
of (1)) to λu.(u ≤ u) getting a formula (1)′ −and note that Up≤(λu.(u ≤ u)). As
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before, using (the contrapositive of) Lemma 3 and the fact that a negative formula is
just the (boolean) negation of a positive formula, we see that (1)′ implies (1), so they
are indeed equivalent.

We also see that (1) is in fact equivalent to

(1) ∀P1, . . . , Pn∀x1, . . . , xk(Up≤(P1)∧· · ·∧Up≤(Pn)∧REL∧ (T)NAT∧ IMP ⊃
¬POS ∨ NEG),

where ¬POS ∨ NEG is, of course, a negative formula.
Finally, let π1(xi1), . . . , πk(xik) be all the conjuncts of (T)NAT and IMP in the

antecedent of (3) in which the unary predicate Pi occurs. Then if πj (xij ) appears in
one of the conjuncts in IMP, it must be a formula of the form ∀yz(Rxij yz ∧ Piy ⊃
∃b(Ob∧b ≤ z)), in which case we define σ(πj (xij )) = λu.(∀z(Rxijuz ⊃ ∃b(Ob∧
b ≤ z))). On the other hand if πj (xij ) appears is one of the conjuncts in (T)NAT we
put σ(πj (xij )) = λu.(u � x∗

ij ) in case πj (xij ) = ¬Pix
∗
ij and σ(πj (xij )) = λu.(u �

x∗∗∗
ij ) in case πj (xij ) = ¬¬¬Pix

∗∗∗
ij . Note that σ is a well-defined function and that

for any πj (xij ), if πj (xij )[w] then, then ∀y(Piy ⊃ σ(πj (xij ))(y))[w]. Next define
δ(Pi) = λu.(σ (π1(xi1))(u)∧· · ·∧σ(πk(xik))(u)). Now, if (T)NAT[ww1 . . . wk] and
IMP[ww1 . . . wk] then ∀u(Piu ⊃ δ(Pi)(u))[ww1 . . . wk]. The remainder of the proof
is as before but using again the contrapositive formulation of Lemma 3 and noting
that the intersection of a collection of upward closed sets under ≤ is also upward
closed under ≤.

Example 17 Consider the dual relevant Sahlqvist implication (p → t)∧ ∼ t →∼ p.
Using our Sahlqvist-van Benthem algorithm, we obtain that the following equiva-
lences hold:

F, w� (p→ t)∧ ∼ t→∼ p iff F � ∀P∀y, z(Up≤(P ) ∧ ∀u, v(Ryuv ∧ Pu ⊃ ∃b
(Ob ∧ b ≤ v)) ∧ Rxyz ∧ ¬∃b(Ob ∧ b ≤ y∗) ⊃ ¬Pz∗)[w]

iff F � ∀y, z(∀u, v(Ryuv∧
λu1.(∀u2(Ryu1u2 ⊃ ∃b(Ob ∧ b ≤ u2)))(u) ⊃
∃b(Ob ∧ b ≤ v)) ∧ Rxyz ∧ ¬∃b(Ob ∧ b ≤ y∗) ⊃
¬λu1.(∀u2(Ryu1u2 ⊃ ∃b(Ob ∧ b ≤ u2)))(z

∗))[w]
iff F � ∀y, z(∀u, v(Ryuv ∧ ∀u2(Ryuu2 ⊃ ∃b(Ob ∧ b ≤ u2))⊃ ∃b(Ob ∧ b ≤ v) ∧ Rxyz ∧ ¬∃b(Ob ∧ b ≤ y∗) ⊃

¬∀u2(Ryz∗u2 ⊃ ∃b(Ob ∧ b ≤ u2)))[w]
iff F � ∀y, z(Rxyz ∧ ¬∃b(Ob ∧ b ≤ y∗) ⊃

¬∀u2(Ryz∗u2 ⊃ ∃b(Ob ∧ b ≤ u2)))[w]
iff F � ∀y, z(Rxyz ∧ ¬∃b(Ob ∧ b ≤ y∗)

⊃ ∃u2(Ryz∗u2 ∧ ¬∃b(Ob ∧ b ≤ u2)))[w].

We now show that the above correspondence is indeed correct. First let F �
∀y, z(Rxyz ∧ ¬∃b(Ob ∧ b ≤ y∗) ⊃ ∃u2(Ryz∗u2 ∧ ¬∃b(Ob ∧ b ≤ u2)))[w]. Then
if Up≤(P ), Rwyz, ∀u, v(Ryuv ∧ Pu ⊃ ∃b(Ob ∧ b ≤ v)) and ¬∃b(Ob ∧ b ≤ y∗),
it must be that ∃u2(Ryz∗u2 ∧ ¬∃b(Ob ∧ b ≤ u2)). Thus if Pz∗, ∃b(Ob ∧ b ≤ u2),
which is a contradiction, so ¬Pz∗. Consequently F, w � (p → t)∧ ∼ t →∼ p, as
desired. On the other hand suppose that F � ∀y, z(Rxyz ∧ ¬∃b(Ob ∧ b ≤ y∗) ⊃
∃u2(Ryz∗u2 ∧ ¬∃b(Ob ∧ b ≤ u2)))[w], so F � ∃y, z(Rxyz ∧ ¬∃b(Ob ∧ b ≤
y∗) ∧ ∀u2(Ryz∗u2 ⊃ ∃b(Ob ∧ b ≤ u2)))[w]. Take any model M based on F with
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a valuation such that V (p) = {x : z∗ ≤ x}. Now, if Ryu1u2 and u1 ∈ V (p), that
is, z∗ ≤ u1, we that, by p3, Ryz∗u2, and hence, ∃b(Ob ∧ b ≤ u2). This shows that
M, y � (p → t)∧ ∼ t while M, z �∼ p, which implies that F, w � (p → t)∧ ∼
t →∼ p.

Definition 5 A relevant Sahlqvist formula is any formula built up from (dual)
relevant Sahlqvist implications, propositional variables, and negated propositional
variables using ∧, the operations on formulas 	 (for any propositional variable free
relevant formula θ ) defined by 	(φ) = θ → φ, and applications of ∨ where the
disjuncts share no propositional variable in common.

Theorem 18 Every relevant Sahlqvist formula has a local first order correspondent
on Routley-Meyer frames.

Proof Immediate from Lemma 11, Lemma 16 and Lemma 9. The only thing the
reader should note is that F, w � p iff F � x � x[w] and F, w �∼ p iff F � x∗

�

x∗[w].

5 Conclusion

In this paper we have defined a fragment of relevant languages analogue to the
Sahlqvist fragment of modal logic. We then went to establish that every class of
Routley-Meyer frames definable by a formula in this fragment is actually elemen-
tary. This isolates a modest but remarkable collection of relevant formulas. We also
showed that there are properties of Routley-Meyer frames definable by relevant
formulas which are not first order axiomatizable.
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