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Abstract This paper is a contribution to graded model
theory, in the context of mathematical fuzzy logic. We
study characterizations of classes of graded structures
in terms of the syntactic form of their first-order axiom-
atization. We focus on classes given by universal and
universal-existential sentences. In particular, we prove
two amalgamation results using the technique of dia-
grams in the setting of structures valued on a finite
MTL-algebra, from which analogues of the Łoś–Tarski
and the Chang–Łoś–Suszko preservation theorems fol-
low.
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1 Introduction

Graded model theory is the generalized study, in mathe-
matical fuzzy logic (MFL), of the construction and clas-
sification of graded structures. The field was properly
started in [17] and has received renewed attention in re-
cent years [2,3,8–12]. Part of the programme of graded
model theory is to find non-classical analogues of re-
sults from classical model theory (e.g., [5,18,22]). This
will not only provide generalizations of classical theo-
rems but will also provide insight into what avenues of
research are particular to classical first-order logic and
do not make sense in a broader setting.

On the other hand, classical model theory was de-
veloped together with the analysis of some very relevant
mathematical structures. In consequence, its principal
results provided a logical interpretation of such struc-
tures. Thus, if we want model theory’s idiosyncratic
interaction with other disciplines to be preserved, the
redefinition of the fundamental notions of graded model
theory cannot be obtained from directly fuzzifying ev-
ery classical concept. Quite the contrary, the experience
acquired in the study of different structures, the results
obtained using specific classes of structures, and the po-
tential overlaps with other areas should determine the
light the main concepts of graded model theory have to
be defined in. It is in this way that several fundamen-
tal concepts of the model theory of mathematical fuzzy
logic have already appeared in the literature.

The goal of this paper is to give syntactic charac-
terizations of classes of graded structures; more pre-
cisely, we want to study which kind of formulas can be
used to axiomatize certain classes of structures based
on finite (expansions of) MTL-chains. Traditional ex-
amples of such sort of results are preservation theorems
in classical model theory, which, in general, can be ob-
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tained as consequences of certain amalgamation prop-
erties (cf. [18]). We provide some amalgamation results
using the technique of diagrams which will allow us to
establish analogues of the Łoś–Tarski preservation the-
orem [18, Theorem 6.5.4] and the Chang–Łoś–Suszko
theorem [18, Theorem 6.5.9].

This is not the first work that addresses a model-
theoretic study of the preservation and characteriza-
tion of classes of fuzzy structures. Indeed, Bagheri and
Moniri [3] have obtained results for the particular case
of continuous model theory by working over the stan-
dard MV-algebra [0, 1]Ł and with a predicate language
enriched with a truth-constant for each element of [0, 1]Ł.
In that context, they characterize universal theories in
terms of the preservation under substructures [3, Prop.
5.1], and prove versions of the Tarski–Vaught theorem
[3, Prop. 4.6] and of the Chang–Łoś–Suszko theorem [3,
Prop. 5.5].

The connection between classical model theory and
the study of classes of fuzzy structures needs to be clar-
ified. Namely, as explained and developed in previous
papers [6, 13, 14], there is a translation of fuzzy struc-
tures into classical many-sorted structures, more pre-
cisely, two-sorted structures with one sort for the first-
order domain and another accounting for truth-values
in the algebra. Such connection certainly allows to di-
rectly import to the fuzzy setting several classical re-
sults, but, as already noted in the mentioned papers,
it does not go a long way. Indeed, the translation does
not preserve the syntactical complexity of sentences (re-
garding quantifiers) and, hence, it cannot be used for
syntactically-sensitive results, such as those studied in
the present paper.

The paper is structured as follows: in section 1, we
introduce the syntax and semantics of fuzzy predicate
logics. In section 2, several fuzzy model-theoretic no-
tions such as homomorphisms or the method of dia-
grams are presented. In section 3, we study the preser-
vation of universal formulas, obtain an existential form
of amalgamation and derive from it an analogue of the
Łoś–Tarski theorem. In section 4, we study classes given
by universal-existential sentences by showing that such
formulas are preserved under unions of chain, obtain-
ing another corresponding amalgamation result and a
version of Chang–Łoś–Suszko preservation theorem. We
end with some concluding remarks and suggestions for
lines of further research.

2 Preliminaries

In this section we introduce the syntax and semantics
of fuzzy predicate logics, and recall the basic results on
diagrams we will use in the paper. We use the notation

and definitions of the Handbook of Mathematical Fuzzy
Logic [7].

Definition 1 (Syntax of Predicate Languages) A pred-
icate language P is a triple 〈PredP , FuncP , ArP〉, where
PredP is a non-empty set of predicate symbols, FuncP
is a set of function symbols (disjoint from PredP), and
ArP represents the arity function, which assigns a natu-
ral number to each predicate symbol or function symbol.
We call this natural number the arity of the symbol. The
predicate symbols with arity zero are called truth con-
stants, while the function symbols whose arity is zero
are named object constants ( constants for short).

P-terms, P-formulas, ∀n and ∃n P-formulas, and
the notions of free occurrence of a variable, open for-
mula, substitutability, and sentence are defined as in
classical predicate logic. A theory is a set of sentences.
When it is clear from the context, we will refer to P-
terms and P-formulas simply as terms and formulas.

Let MTL stand for the monoidal t-norm based logic
introduced by Esteva and Godo [15]. Throughout the
paper, we consider the predicate logic MTL∀ (for a def-
inition of the axiomatic system for MTL∀ we refer the
reader to [7, Def. 5.1.2, Ch. I]). Let us recall that the de-
duction rules of MTL∀ are those of MTL and the rule
of generalization: from ϕ infer (∀x)ϕ. The definitions
of proof and provability are analogous to the classical
ones. We denote by Φ `MTL∀ ϕ the fact that ϕ is prov-
able in MTL∀ from the set of formulas Φ. For the sake
of clarity, when it is clear from the context we will write
` to refer to `MTL∀. The algebraic semantics of MTL∀
is based on MTL-algebras [15].

A is called an MTL-chain if its underlying lattice is
linearly ordered. Since it is costumary to consider fuzzy
logicsin languages expanding that of MTL, henceforth,
we will confine our attention to algebras which are ex-
pansions of MTL-chains of such kind and just call them
chains.

Definition 2 (Semantics of Predicate Fuzzy Logics [7,
Def. 5.2.1, Ch. I]) Consider a predicate language P =

〈PredP , FuncP , ArP〉 and let A be a chain. We define
an A-structure M for P as a pair M = 〈A,M〉 where

M = 〈M, (PM )P∈Pred, (FM )F∈Func〉,

where M is a non-empty domain, PM is an n-ary fuzzy
relation for each n-ary predicate symbol, i.e., a func-
tion from Mn to A, identified with an element of A if
n = 0; and FM is a function from Mn to M , identified
with an element of M if n = 0. As usual, if M is an
A-structure for P, an M-evaluation of the object vari-
ables is a mapping v assigning to each object variable an
element of M . The set of all object variables is denoted
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by V ar. If v is an M-evaluation, x is an object variable
and d ∈M , we denote by v[x 7→ d] the M-evaluation so
that v[x 7→ d](x) = d and v[x 7→ d](y) = v(y) for y an
object variable such that y 6= x. If M is an A-structure
and v is an M-evaluation, we define the values of terms
and the truth values of formulas inM for an evaluation
v recursively as follows:

‖x‖AM,v = v(x);
‖F (t1, . . . , tn)‖AM,v = FM(‖t1‖AM,v, . . . , ‖tn‖AM,v),
for F ∈ Func;
‖P (t1, . . . , tn)‖AM,v = PM(‖t1‖AM,v, . . . , ‖tn‖AM,v),
for P ∈ Pred;
‖c(ϕ1, . . . , ϕn)‖AM,v = ◦A(‖ϕ1‖AM,v, . . . , ‖ϕn‖AM,v),
for ◦ ∈ L;
‖(∀x)ϕ‖AM,v = inf≤A{‖ϕ‖AM,v[x→d] | d ∈M};
‖(∃x)ϕ‖AM,v = sup≤A{‖ϕ‖AM,v[x→d] | d ∈M}.

For a set of formulas Φ, we write ‖Φ‖AM,v = 1, if
‖ϕ‖AM,v = 1 for every ϕ ∈ Φ. We denote by ‖ϕ‖AM = 1

the fact that ‖ϕ‖AM,v = 1 for all M-evaluations v. We
say that 〈A,M〉 is a model of a set of formulas Φ, if
‖ϕ‖AM = 1 for any ϕ ∈ Φ. Sometimes we will denote
by −→x a sequence of variables x1, . . . , xn (and the same
with sequences

−→
d of elements of the domain). Given

a structure 〈A,M〉 and a formula ϕ(−→x ), we say that
−→
d ⊆M satisfies ϕ(−→x ) (or that ϕ(−→x ) is satisfied by

−→
d )

if ‖ϕ(−→x )‖AM,v[−→x→
−→
d ]

= 1
A for any M-evaluation v (also

written
∥∥∥ϕ[
−→
d ]
∥∥∥A
M

= 1
A); for the sake of clarity we will

use also the notation 〈A,M〉 |= ϕ[
−→
d ] when is needed.

Two theories T and U are said to be 1-equivalent if a
structure is a model of T if it is also a model of U (in
the case where T and U are singletons of formulas, we
say that these formulas are 1-equivalent).

Given a set of sentences Σ, and a sentence φ, we
denote by Σ |=A φ the fact that every A-model of Σ is
also an A-model of φ. We focus on classes of structures
over a fixed finite chain A whose set of elements is de-
noted by {a1, . . . , ak}. Such restriction is due to the fact
that dropping finiteness can cause to lose compactness,
which is an essential element of our proofs. However,
the results will still be quite encompassing in practice.
Indeed, for instance, prominent examples of weighted
structures in computer science are valued over finite
chains. Structures over a fixed finite chain A have two
important properties: they are witnessed (the values of
the quantifiers are maxima and minima achieved in par-
ticular instances), and have the compactness property,
both for satisfiability and for consequence (see e.g. [11]).

Proposition 1 Let A be a fixed finite chain. For every
set of sentences Σ ∪ {α}, the following holds:

1. If every finite subset Σ0 ⊆ Σ has a model 〈A,MΣ0
〉,

then Σ has a model 〈A,N〉.
2. If Σ |=A α, then there is a finite subset Σ0 ⊆ Σ

such that Σ0 |=A α.

From now on we refer to A-structures simply as
structures (or as P-structures if we need to specify the
language). For the remainder of the article, let us as-
sume that we have a crisp identity ≈ in the language.

Definition 3 Let P be a predicate language, 〈A,M〉
and 〈B,N〉 structures for P, f a mapping from A to B
and g a mapping from M to N . The pair 〈f, g〉 is said
to be a strong homomorphism from 〈A,M〉 to 〈B,N〉
if f is an algebraic homomorphism and for every n-ary
function symbol F ∈ P and d1, . . . , dn ∈M ,

g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn))

and for every n-ary predicate symbol P ∈ P and
d1, . . . , dn ∈M,

f(‖P (d1 . . . , dn)‖AM) = ‖P (g(d1), . . . , g(dn))‖BN .

A strong homomorphism 〈f, g〉 is said to be elemen-
tary if we have, for every P-formula ϕ(x1, . . . , xn) and
d1, . . . , dn ∈M ,

f(‖ϕ(d1 . . . , dn)‖AM) = ‖ϕ(g(d1), . . . , g(dn)‖BN .

Let 〈f, g〉 be a strong homomorphism from 〈A,M〉
to 〈B,N〉, we say that 〈f, g〉 is an embedding from
〈A,M〉 to 〈B,N〉 if both functions f and g are injec-
tive, and we say that 〈f, g〉 is an isomorphism from
〈A,M〉 to 〈B,N〉 if 〈f, g〉 is an embedding and both
functions f and g are surjective. For a general study
of different kinds of homomorphisms and the formulas
they preserve we refer to [13].

Later in the article we will use diagram techniques.
We present here some corollaries of the results obtained
in [12]. Given a language P, we start by introducing
three different expansions adding either a new truth-
constant for each elements of the algebra, or new object
constants. For any element a ofA, we will use the truth-
constant a to denote it. When a = 1

A or a = 0
A, then

a = 1 or a = 0, respectively.

Definition 4 Given a predicate language P, we expand
it by adding an individual constant symbol cm for ev-
ery m ∈ M , and denote it by PM. If 〈A,M〉 is a
PM-structure, we denote by 〈A,M]〉 the expansion of
the structure 〈A,M〉 to PM, where for every m ∈ M ,
(cm)M] = m.

Definition 5 Given a predicate language P, we expand
it by adding a truth constant symbol a for every a ∈ A,
and denote it by PA. When we expand the language PA

further by adding an individual constant symbol cm for
every m ∈M , we will denote it by P〈A,M〉.
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Definition 6 Let P be a predicate language and 〈A,M〉
a P-structure. We define the following sets of P〈A,M〉-
sentences:

ElDiag(A,M) = {σ ↔ a | σ is a sentence of PM, a ∈ A

and ‖σ‖AM] = a},

whereas Diag(A,M) is the subset of ElDiag(A,M) con-
taining all formulas σ ↔ a where σ is quantifier-free.

Following the same lines of the proof of [12, Prop.
32], we can obtain a characterization of strong and el-
ementary embeddings between two P-structures over a
chain A.

Corollary 2 Let 〈A,M〉 and 〈A,N〉 be two P-structures
for PA. The following are equivalent:

1. There is an expansion of 〈A,N〉 that is a model of
Diag(A,M) (ElDiag(A,M), respectively).

2. There is a mapping g : M → N such that 〈IdA, g〉 is
a strong (elementary, respectively) embedding from
〈A,M〉 into 〈A,N〉.

3 Universal Classes

In this section we prove a result on existential amalga-
mation (Proposition 4) from which we extract a Łoś–
Tarski preservation theorem for universal theories (The-
orem 5) and a characterization of universal classes of
structures (Theorem 6). Relevant structures in com-
puter science are axiomatized by sets of universal for-
mulas; one prominent example is the class of weighted
graphs. Particular versions of the above mentioned re-
sults appeared for Ł∀ in [23]. In the context of fuzzy
logic programming, Gerla [16] studied universal formu-
las with relation to Herbrand interpretations.

For the upcoming results, we need to recall the no-
tion of substructure.

Definition 7 (Substructure) Let 〈A,M〉 and 〈B,N〉
be P-structures. We say that 〈A,M〉 is a substructure
of 〈B,N〉 if:

(1) A is a subalgebra of B;

(2) M ⊆ N ;

(3) for any n-ary function symbol F ∈ P and elements
d1, . . . , dn ∈M , we have

FM(d1, . . . , dn) = FN(d1, . . . , dn);

(4) for any n-ary predicate symbol P ∈ P and elements
d1, . . . , dn ∈M , we have

PM(d1, . . . , dn) = PN(d1, . . . , dn).

Remark that 〈A,M〉 is a substructure of 〈B,N〉
if and only if conditions (1)-(3) are satisfied and, in-
stead of (4), the following condition holds: for every
quantifier-free formula ϕ(x1, . . . , xn) and any elements
d1, . . . , dn ∈M ,

‖ϕ(d1, . . . , dn)‖AM = ‖ϕ(d1, . . . , dn)‖BN .

With this notion at hand, we can define a corre-
sponding closure property for classes of structures.

Definition 8 (Class Closed Under Substructures) Let
K be a class of P-structures. We say that K is closed
under substructures if, for any structure 〈A,M〉 ∈ K,

if 〈B,N〉 is a substructure of 〈A,M〉, then 〈B,N〉 ∈ K.

Since our characterizations will be based on axiom-
atizability of classes, we need to recall the definition of
elementary class of structures.

Definition 9 (Elementary Class [4, Def. 2.15]) A class
K of P-structures is an elementary class (or a first-
order class) if there is a set Σ of sentences such that
for every 〈A,M〉,

〈A,M〉 ∈ K if and only if 〈A,M〉 |= Σ.

In this case, K is said to be axiomatized (or defined)
by Σ.

Using a predicate language with only one binary
relation R, the class of weighted undirected graphs is
axiomatized by the following set of universal sentences:

{(∀x)(R(x, x)→ 0), (∀x)(∀y)(R(x, y)→ R(y, x))}.

Notice that the notion of induced weighted undi-
rected subgraph corresponds to the model-theoretic no-
tion of substructure used in MFL.

Definition 10 Let P be a predicate language. We say
that a P-formula ϕ(x1, . . . , xn) is preserved under sub-
structures if for any P-structure 〈A,M〉 and any sub-
structure 〈B,N〉, if ‖ϕ(d1, . . . , dn)‖AM = 1

A for some
d1, . . . , dn ∈ N , then ‖ϕ(d1, . . . , dn)‖BN = 1

B.

The following lemma can be easily proved by induc-
tion on the complexity of universal formulas.

Lemma 3 Let ϕ(x1, . . . , xn) be a universal formula.
Then, ϕ(x1, . . . , xn) is preserved under substructures.

In classical model theory amalgamation properties
are often related in elegant ways to preservation theo-
rems (see e.g. [18]). We will try an analogous approach
to obtain our desired preservation result. The impor-
tance of this idea is that the problem of proving a
preservation result reduces then to finding a suitable
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amalgamation counterpart. This provides us with proofs
that have a neat common structure (such as those of the
main results in this section and the next one).

We will write 〈A,M2,
−→
d 〉 V∃n 〈A,M1,

−→
d 〉 if for

any ∃n-formula ϕ, 〈A,M2〉 |= ϕ[
−→
d ] only if 〈A,M1〉 |=

ϕ[
−→
d ].

Proposition 4 (Existential amalgamation) Let 〈A,M1〉
and 〈A,M2〉 be two structures for PA with a common
part 〈A,M〉 with domain generated by a sequence of
elements

−→
d . Moreover, suppose that

〈A,M2,
−→
d 〉V∃1 〈A,M1,

−→
d 〉.

Then there is a structure 〈A,N〉 into which 〈A,M2〉
can be strongly embedded by 〈f, g〉 while 〈A,M1〉 is
PA-elementarily strongly embedded (taking isomorphic
copies, we may assume that 〈A,M1〉 is just a PA-
elementary substructure). The situation is described by
the following picture:

〈A,N〉

〈A,M〉

〈A,M2,
−→
d 〉 〈A,M1,

−→
d 〉

〈f, g〉 4
V∃1

⊆⊆

Moreover, the result is also true when 〈A,M1〉 and
〈A,M2〉 have no common part.

Proof It is not a difficult to show that ElDiag(A,M1)∪
Diag(A,M2) (where we let the elements of the do-
main serve as constants to name themselves) has a
model, which suffices for the purposes of the result. Sup-
pose otherwise, that is, for some finite Diag0(A,M2) ⊆
Diag(A,M2), we have that

ElDiag(A,M1) � (
∧

Diag0(A,M2))→ a

for the immediate predeccessor a in the lattice order of
A of 1

A.
Quantifying away the new individual constants, we

obtain a set of formulas Diag∗0(A,M2) such that:

ElDiag(A,M1) � (∃−→x )((
∧

Diag∗0(A,M2)))→ a.

Since 〈A,M2,
−→
d 〉V∃1 〈A,M1,

−→
d 〉, then

〈A,M2〉 6|= (∃−→x )(
∧

Diag∗0(A,M2)),

which is a contradiction. Note, moreover, that if

〈A,M2,
−→
d 〉V∃1 〈A,M1,

−→
d 〉,

we also have that whenever ϕ(x̄) is quantifier-free for-
mula of PA, 〈A,M2〉 |= ϕ[

−→
d ] iff 〈A,M1〉 |= ϕ[

−→
d ].

Left-to-right is clear; the contrapositive of the right-to-
left direction follows easily: if 〈A,M1〉 6|= ϕ[

−→
d ], then

〈A,M1〉 6|= ϕ ↔ a[
−→
d ] for some a 6= 1

A, so 〈A,M2〉 |=
ϕ↔ a[

−→
d ], which means that 〈A,M2〉 6|= ϕ[

−→
d ].

Observe that the proof can be similarly carried out,
mutatis mutandi, when 〈A,M1〉 and 〈A,M2〉 have no
common part as well. ut

Now we have the elements to establish an exact ana-
logue of Theorem 5 from [19], Łoś–Tarski preservation
theorem.

Theorem 5 (Łoś–Tarski preservation theorem) Let T
be a PA-theory and Φ(−→x ) a set of formulas in PA.
Then the following are equivalent:

(i) For any models of T, 〈A,M〉 ⊆ 〈A,N〉, we have:
if 〈A,N〉 |= Φ, then 〈A,M〉 |= Φ.

(ii) There is a set of universal PA-formulas Θ(−→x ) such
that: T, Φ � Θ and T,Θ � Φ.

Proof Let us prove the difficult direction (the converse
direction is clear by Lemma 3). Consider (T ∪Φ(−→x ))∀1 ,
the collection of all ∀1 logical consequences of T∪Φ(−→x ).
We need to establish that the only models of (T ∪
Φ(−→x ))∀1 among the models of T are the substructures
of models of Φ(−→x ). Let 〈A,M〉 be a model of (T ∪
Φ(−→x ))∀1 . All we need to do is find a model 〈A,N〉 of
the theory T ∪Φ(−→x ) such that 〈A,M〉V∃1 〈A,N〉 and
then quote the existential amalgamation theorem.

Let U be all ∃1-formulas that hold in in 〈A,M〉. We
claim then that T ∪Φ(−→x )∪U has a model. Otherwise,
by compactness, for

{(∃−→x0)φ0(−→x0), . . . , (∃−→xn)φn(−→xn)} ⊆ U

we have that in all models of T ∪ Φ(−→x ), it holds that

(∃−→x 0)φ0(−→x0) ∧ · · · ∧ (∃−→xn)φn(−→xn)→ a,

where a is the immediate predecessor of 1
A, and by

basic manipulations,

(∃−→x0, . . . ,−→xn)(φ0(−→x0) ∧ · · · ∧ φn(−→xn))→ a,

which is just equivalent to

(∀−→x0, . . . ,−→xn)(φ0(−→x0) ∧ · · · ∧ φn(−→xn)→ a).

The latter formula must be in (T ∪Φ(−→x ))∀1 then, which
is a contradiction. ut

Following a similar proof, we can obtain an algebraic
characterization equivalent to Theorem 5 (as long as we
have truth-constants around).
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Theorem 6 Let K be a class of PA-structures. Then,
the following are equivalent:

(i) K is closed under isomorphisms, substructures, and
ultraproducts.

(ii) K is axiomatized by a set of universal PA-sentences.

The following corollary can be obtained because in
our setting two forms of compactness (that are generally
distinct, in, say, Łukasiewicz logic) collapse, namely (1)
the compactness of the consequence relation and (2)
the compactness of the satisfiability relation. (1) clearly
implies (2) in the presence of 0 in our language. To see
the converse, say that T � ϕ, which amounts to say
that T ∪ {ϕ → a} (where a is the predecessor of 1

A)
does not have a model. Hence, by (2), there is a finite
T0 ⊆ T such that T0 ∪ {ϕ → a} has no model, so, in
fact, T0 � ϕ.

Corollary 7 Let T ∪ {ϕ} be a set of PA-sentences.
Then, ϕ is preserved under substructures of models of
T if, and only if, ϕ is 1-equivalent to a universal PA-
sentence modulo T .

Proof Apply Theorem 5 for Φ = {ϕ}. Consequently,
ϕ is axiomatized by a set of universal PA-sentences.
Then bring it down to a single such formula using A-
compactness for consequence. ut

A natural question is whether Corollary 7 can be
strengthened to strong equivalence in terms of ↔, that
is, whether one can find a universal formula that agrees
with φ on each value in every structure (not just on
value 1

A). Following the lines of the above proof this
would require to show something like, for an arbitrary
model 〈A,M〉,

‖ψ‖AM ≤
A ‖φ‖AM (for all ψ s.t. � φ→ ψ).

Then, one would expect to reduce the left side of the
inequality to a finite set Ψ such that

inf≤A{‖ψ‖AM | ψ ∈ Ψ} ≤
A ‖φ‖AM .

However, this reduction would come from compactness
in the usual argument, but it does not in this one.
This is because compactness is about consequence as
opposed to implication, which are different in a setting
without a deduction theorem such as this. In fact, in [23]
similar results in the framework Łukasiewicz logic are
obtained only for 1-equivalence as well.

Needless to say, the previous results, in particular,
allow to conclude that a class of P-structures (that
is, structures for a language without additional truth-
constants) closed under substructures can be axioma-
tized by universal PA-sentences. One might wonder, of

course, if it is really necessary to resort a universal ax-
iomatization in the expanded language.

Let us present a counterexample showing that, in
general, the base language P does not suffice for The-
orem 6. Let P be the language with only one monadic
predicate P and take two structures over the standard
Gödel chain, 〈[0, 1]G,M〉 and 〈[0, 1]G,N〉. The domain
in both cases is the set of all natural numbers N and the
interpretation of the predicate is respectively defined as:
PM(n) = 3

4 , and PN(n) = 1
2 , for every n ∈ N. First we

show that 〈[0, 1]G,M〉 ≡ 〈[0, 1]G,N〉, that is, that for
any P-sentence ϕ, 〈[0, 1]G,M〉 |= ϕ iff 〈[0, 1]G,N〉 |= ϕ.
Take f as any non-decreasing bijection from [0, 1] to
[0, 1] such that f( 3

4 ) = 1
2 , f(1) = 1, f(0) = 0. It is

easy to check that f is a G-homomorphism preserv-
ing suprema and infima. Then, we can consider the
σ-mapping 〈f, Id〉 and apply [14, Lemma 11] to ob-
tain that 〈[0, 1]G,M〉 ≡ 〈[0, 1]G,N〉. Consider now the
finite subalgebra A of [0, 1]G generated by the sub-
set {0, 12 ,

3
4 , 1}. Clearly, the structures 〈[0, 1]G,M〉 and

〈[0, 1]G,N〉 can be regarded as structures over A. Thus,
we have

〈A,M〉 ≡ 〈A,N〉.

Observe that ‖(∀x)P (x)‖AM = 3
4 and ‖(∀x)P (x)‖AN =

1
2 . Consider the expanded language PA obtained by
adding a constant symbol a for every element a ∈ A. Let
K be the class of P-structures valued on A, whose nat-
ural expansion to PA (that is, the expansion in which
every constant a is interpreted as the corresponding el-
ement a) satisfies the sentence

3

4
→ (∀x)P (x).

Clearly, K is closed under substructures and 〈A,M〉 ∈
K. However 〈A,N〉 /∈ K, because ‖(∀x)P (x)‖AN = 1

2 .
Therefore, K cannot be axiomatized by P-sentences,
and a fortiori, by a set of universal P-sentences, since
it contains 〈A,M〉 but not the elementary equivalent
〈A,N〉. Hence, we have produced an example of a class
of P-structures closed under substructures (and, obvi-
ously, under isomorphisms and ultraproducts) which is
not axiomatizable with universal P-sentences.

Wether constants are necessary for Theorem 5 in
general is an open question, we conjecture that they
are.

4 Universal-existential classes

This section runs quite parallel to the previous one. We
recall the notion of elementary chain of structures and
its corresponding Tarski–Vaught theorem and prove that
universal-existential formulas are preserved under unions
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of chains (Lemma 9). After that, we prove a result
on existential-universal amalgamation (Proposition 10)
and derive from it a Chang–Łoś–Suszko preservation
theorem (Theorem 11).

Consider the class K of all structures in a signature
with a binary function symbol ·, a unary function sym-
bols −1, an individual constant 1, and a unary predicate
G satisfying the following axioms:

(∀x)(∃y)(yn ≈ x) for each n > 2.
(∀x, y)((x · y) · z ≈ x · (y · z))
(∀x)(x · 1 ≈ x)

(∀x)(x · x−1 ≈ 1)

(∀x, y)(x · y ≈ y · x)

(∀x, y)((Gx ∧Gy)→ G(xy))

(∀x)(Gx→ G(x−1))

This is the class of divisible Abelian groups with
a fuzzy subgroup defined by the predicate G (follow-
ing the definition of [21]). By our Chang–Łoś–Suszko
preservation theorem below, K is a class closed under
unions of chains.

Another example of such class be provided by the
class of all weighted graphs where the formula

(∀x)(∃y, z)(y 6≈ z ∧Rxy ∧Rxz)

holds, that is, every vertex has at least two incident
edges. This axiomatizes the class of graphs where every
vertex has degree > 2.

Given an ordinal γ, a sequence {〈A,Mi〉 | i < γ}
of models is called a chain when for all i < j < γ

we have that 〈A,Mi〉 is a substructure of 〈A,Mj〉.
If, moreover, these substructures are elementary, we
speak of an elementary chain. The union of the chain
{〈A,Mi〉 | i < γ} is the structure 〈A,M〉 where M is
defined by taking as its domain

⋃
i<γMi, interpreting

the constants of the language as they were interpreted
in each Mi and similarly with the relational symbols
of the language. Observe as well that M is well defined
given that {〈A,Mi〉 | i < γ} is a chain.

Next we recall a useful theorem that has been es-
tablished and used to construct saturated models in the
context of mathematical fuzzy logic in [1].

Theorem 8 ([1]) (Tarski–Vaught) Let 〈A,M〉 be the
union of the elementary chain {〈A,Mi〉 | i < γ}. Then,
for every sequence

−→
d of elements of Mi and formula ϕ,∥∥∥ϕ(

−→
d )
∥∥∥A
M

=
∥∥∥ϕ(
−→
d )
∥∥∥A
Mi

. Moreover, if the chain is not

elementary, we still have that
∥∥∥ϕ(
−→
d )
∥∥∥A
M

=
∥∥∥ϕ(
−→
d )
∥∥∥A
Mi

for every quantifier free formula.

Therefore, unions of elementary chains preserve the
values of all formulas. It is also interesting to consider
formulas that are preserved by all unions of chains.

Definition 11 We say that a formula ϕ(x1, . . . , xn) is
preserved under unions of chains if whenever we have a
chain of models {〈A,Mi〉 | i < γ} such that for every

i,
∥∥∥ϕ(
−→
d )
∥∥∥A
Mi

= 1
A

(i < γ) for some sequence
−→
d of

elements of M0, then
∥∥∥ϕ(
−→
d )
∥∥∥A
M

= 1
A, where 〈A,M〉

is the union of the chain.

Let a be the element of A immediately above 0
A.

Lemma 9 ∀2-formulas are preserved under unions of
chains.

Proof Let (∀−→x )(∃−→y )φ be a ∀2-formula, 〈A,M〉 be the
union of a chain {〈A,Mi〉 | i < γ}, and −→c some se-
quence of elements of M0. Assume that for every i < γ,
‖(∀−→x )(∃−→y )φ(−→c )‖AMi

= 1
A. Let

−→
d ∈M , we show that∥∥∥(∃−→y )φ(

−→
d ,−→c )

∥∥∥A
M

= 1
A. Let j < γ be such that

−→
d ∈ Mj . Since ‖(∀−→x )(∃−→y )φ(−→c )‖AMj

= 1
A we have∥∥∥(∃−→y )φ(

−→
d ,−→c )

∥∥∥A
Mj

= 1
A. Since 〈A,Mj〉 is ∃-witnessed,

there are −→e ∈ Mj such that
∥∥∥φ(
−→
d ,−→e ,−→c )

∥∥∥A
Mj

= 1
A.

Therefore
∥∥∥φ(
−→
d ,−→e ,−→c )

∥∥∥A
M

= 1
A, because extensions

preserve quantifier-free formulas, and then clearly∥∥∥(∃−→y )φ(
−→
d ,−→c )

∥∥∥A
M

= 1
A
.

We can conclude that for every
−→
d ∈M ,∥∥∥(∃−→y )φ(

−→
d ,−→c )

∥∥∥A
M

= 1
A
,

and, hence, ‖(∀−→x )(∃−→y )φ(−→c )‖AM = 1
A. ut

Next we provide the amalgamation result that will
allow us to prove a version of Chang–Łoś–Suszko theo-
rem for graded model theory.

Proposition 10 (∃2-amalgamation) Let 〈A,M1〉 and
〈A,M2〉 be two structures for PA with a common part
〈A,M〉 with domain generated by a sequence of ele-
ments

−→
d . Moreover, suppose that

〈A,M2,
−→
d 〉V∃2 〈A,M1,

−→
d 〉.

Then, there is a structure 〈A,N〉 into which 〈A,M2〉
can be strongly embedded by 〈f, g〉 preserving all ∀1-
formulas, while 〈A,M1〉 is PA-elementarily strongly
embedded (taking isomorphic copies, we may assume
that 〈A,M1〉 is just a PA-elementary substructure).
The situation is described by the following picture:
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〈A,N〉

〈A,M〉

〈A,M2,
−→
d 〉 〈A,M1,

−→
d 〉

〈f, g〉 4
V∃2

⊆⊆

Moreover, the result is also true when 〈A,M1〉 and
〈A,M2〉 have no common part.

Proof Let Diag∀1(A,M2) be the collection of all ∀1-
formulas in the language of the diagram of 〈A,M2〉
(where we let the elements of the domain serve as con-
stants to name themselves) that hold in said struc-
ture. It is not a difficult to show that ElDiag(A,M1)∪
Diag∀1(A,M2) (where again we let the elements of the
domain serve as constants to name themselves) has a
model, which suffices for the purposes of the result. For
suppose otherwise, that is, for some finite

Diag∀10(A,M2) ⊆ Diag∀1(A,M2),

we have that

ElDiag(A,M1) � (
∧

Diag∀10(A,M2))→ a

for some a 6= 1
A (the supremum of all the values taken

by
∧

Diag∀10(A,M2) in A). Quantifying away the new
individual constants,

ElDiag(A,M1) � (∀−→x )((
∧

Diag∗∀10(A,M2))→ a),

so

ElDiag(A,M1) � (∃−→x )((
∧

Diag∗∀10(A,M2)))→ a

Since 〈A,M2,
−→
d 〉V∃2 〈A,M1,

−→
d 〉, then

〈A,M2,
−→
d 〉 6|= (∃−→x )(

∧
Diag∗∀10(A,M2)),

which is a contradiction. ut

Now we are ready to prove the promised analogue
of [20, Theorem 1.2].

Theorem 11 (Chang–Łoś–Suszko preservation theo.)
Let T be a theory and Φ(−→x ) a set of formulas in PA.
Then, the following are equivalent:

(i) Φ(−→x ) is preserved under unions of chains of models
of T .

(ii) Φ(−→x ) is 1-equivalent modulo T to a set of ∀2-formulas.

Proof Once more, we only deal with the non-trivial di-
rection of the equivalence. Consider (T ∪ Φ(−→x ))∀2 . We
want to show that

T ∪ (T ∪ Φ(−→x ))∀2 � Φ(−→x ),

which will suffice to establish the theorem. The strategy
is establish that any model of T ∪ (T ∪Φ(−→x ))∀2 has an
elementary extension which is a union of ω-many mod-
els of Φ(−→x ), so by hypothesis, Φ(−→x ) will hold there, and
hence back in our original model of T ∪ (T ∪ Φ(−→x ))∀2 .

So we start with 〈A,M0〉 being an arbitrary model
of T∪(T∪Φ(−→x ))∀2 . Now assuming that we have 〈A,Mi〉
which is an elementary extension of 〈A,M0〉. We first
need to find a model 〈A,M′i〉 of the theory T ∪ Φ(−→x )

such that 〈A,Mi〉V∃2 〈A,M′i〉 and then quote the ∃2-
amalgamation theorem to obtain a model 〈A,Ni〉 of
T ∪ Φ(−→x ) into which 〈A,Mi〉 can be strongly embed-
ded in such a way that all ∀1-formulas are preserved by
such strong embedding.

Let U be all ∃2-formulas that hold in 〈A,Mi〉. We
claim then that T ∪ Φ(−→x ) ∪ U has a model. Otherwise
by compactness, for

{(∃−→x 0)(∀−→y 0)φ0(−→x 0,
−→y 0), . . . , (∃−→x n)(∀−→y n)φn(−→x n,−→y n)} ⊆ U

we have that in all models of T , it holds that

(∃−→x 0)(∀−→y 0)φ0(−→x 0,
−→y 0) ∧ · · · ∧ (∃−→x n)(∀−→y n)φn(−→x n,−→y n)→ a

where a is the immediate predecessor of 1
A and by basic

manipulations,

(∃−→x 0, . . . ,
−→x n)(∀−→y 0, . . . ,

−→y n)(φ0(−→x 0,
−→y 0) ∧ · · · ∧ φn(−→x n,−→y n))→ a.

The latter formula must be in (T ∪Φ(−→x ))∀2 then, which
is a contradiction.

Now,〈A,Ni〉 is also such that for a listing
−→
d of all

the elements of 〈A,Mi〉, 〈A,Ni,
−→
d 〉 V∃1 〈A,Mi,

−→
d 〉.

To prove the contrapositive, suppose that

〈A,Mi,
−→
d 〉 |= (∃−→x )ϕ(−→x ,

−→
d )→ a

where a is the immediate predecessor of 1
A in the linear

order of A. But then

〈A,Mi,
−→
d 〉 |= (∀−→x )(ϕ(−→x ,

−→
d )→ a),

so indeed,

〈A,Ni,
−→
d 〉 |= (∀−→x )(ϕ(−→x ,

−→
d )→ a),

and, hence,

〈A,Ni,
−→
d 〉 |= (∃−→x )ϕ(−→x ,

−→
d )→ a.

Now using the existential amalgamation theorem we
can obtain a structure 〈A,Mi+1〉 as an elementary ex-
tension of 〈A,Mi〉 into which 〈A,Ni〉 can be strongly
embedded. Now just take the union 〈A,

⋃
i∈ωMi〉 =

〈A,
⋃
i∈ωNi〉 and apply Theorem 8. ut
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As a consequence, we can again obtain a result for
single formulas, using the compactness of the conse-
quence relation.

Corollary 12 Let T be a theory in PA and ϕ a for-
mula. Then, the following are equivalent:

(i) ϕ is preserved under unions of chains of models of
T .

(ii) ϕ is 1-equivalent modulo T to a set of ∀2-formulas.

5 Conclusions

In this paper we have provided some necessary steps
in the systematic study of syntactic characterizations
of classes of graded structures and their corresponding
preservations theorems. Work in progress in the same
line includes the study of the universal Horn fragment
of predicate fuzzy logics and the classes axiomatized by
sets of Horn clauses. Moreover, in the general endeavor
of graded model theory, we believe that, among others,
future works should focus on the study of types, with
the construction of saturated models and type-omission
theorems, the study of particular kinds of graded struc-
tures that are relevant for computer science applications
and, also, the development of Lindström-style charac-
terization theorems for predicate fuzzy logics that may
lead to the creation of a non-classical abstract model
theory.
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