
ELSEVIER

Available online at www.sciencedirect.com

SCIENCE@DIRECT9

Annals of Pure and Applied Logic I (IBI) 111-111

ANNALS OF
PURE AND
APPLIED LOGIC

www.elsevier.com/locate/apal

Zero, successor and equality in BDDs

Bahareh Badban*, Jaco van de Pol

Department of Software Engineering, Centrum voor Wisk:unde en lnformatica, P.O. Box 94079, 1090 GB,
Amsterdam, The Netherlands

Abstract

We extend BDDs (binary decision diagrams) for plain propositional logic to the fragment of first
order logic, consisting of quantifier free logic with zero, successor and equality. We allow equations
with zero and successor in the nodes of a BDD, and call such objects (0, S, =)-BDDs. We extend
the notion of Ordered BDDs in the presence of zero, successor and equality. (0, S, =)-BDDs can
be transformed to equivalent Ordered (0, S, =)-BDDs by applying a number ofrewrite rules until a
normal form is reached. All paths in these ordered (0, S, =)-BDDs represent satisfiable conjunctions.
The major advantage of transforming a formula to an equivalent Ordered (0, S, =)-BDD is that on
the latter it can be observed in constant time whether the formula is a tautology, a contradiction, or
just satisfiable.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

We investigate the satisfiability and tautology problem for Boolean combinations over
the equational theory of zero and successor in the natural numbers. The atoms are equations
between terms built from variables, zero (0) and successor (S). Formulas are built from
atoms by means of negation (-.) and conjunction (A). The formulas are quantifier-free,
except for the implicit outermost quantifier 01 when considering tautology checking, and
3 when considering satisfiability). The decision problem for plain equational theories in
general is unsolvable already, so we must restrict to particular theories. The decision

"' Corresponding author.
E-mail addresses: Bahareh.Badban@cwi.nl (B.Badban),Jaco.van.de.Pol@cwi.nl (J.C. van de Pol).

0168-0072/$ - see front matter © 2004 Elsevier B. V. All rights reserved.
doi: 10.1016/j.apal.2004.10.005

2 B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (11-.i 111-111

problem for Boolean combinations over equational theories can be approached in several
ways. We shortly review what we will call the DNF-method, the plain BDD-method, the
Encoding method and the EQ-BDD method.

In the DNF-method, the formula is transformed to a propositionally equivalent
Disjunctive Normal Form (DNF). A formula in DNF is satisfiable if and only if at least
one of its disjuncts is satisfiable. Such a disjunct is a conjunction of literals (equations
and negated equations). For many theories, dedicated decision procedures for deciding
satisfiability of conjunctions of (negated) equations exist. Examples include linear and
integer programming for arithmetic over integers or reals, congruence closure algorithms
to deal with uninterpreted functions (i.e. second order variables), and the Fourier-Motzkin
transformation [8] for dealing with linear inequalities. This research was initiated by
Shostak [26] and Nelson and Oppen [19]. See also [23,15]. Current research is devoted
to combining decision procedures for different theories [25].

The DNF-method has a clear bottleneck, because the transformation to disjunctive
normal form is not feasible: the resulting formula may be exponentially bigger than
the original. This is improved by the plain BDD-method. In that method, a formula
is transformed to a propositionally equivalent Ordered Binary Decision Diagram
(OBDD [I l]), which is a binary directed acyclic graph. Each node is labeled with an atomic
proposition, and has a left and a right descendant. The leaves can be either T (true) or J.
(false). A BDD can be viewed as an if-then-else (!TE) tree with shared subterms, where the
tests are atomic propositions. In an ordered BDD, the order of the tests in each path of this
tree is fixed by a total order on atoms. Although in principle OBDD representations are
also exponentially big, it appears that in practice many formulas have a succinct OBDD
representation.

Two propositionally equivalent OBDDs are identical. This means that if all atoms
are propositional symbols then OBDDs are unique representations of Boolean functions.
However, in our case the atoms are equations, and uniqueness is lost. For instance,
the OBDDs ITE(x = y, T, J.) and ITE(y = x, T, J.) are equivalent, although not
propositionally equivalent. Similarly, in the propositional case all paths of an OBDD
represent a satisfiable conjunction, but in the equational case this property is lost. For
instance, the path to J. in ITE(x = y, ITE(y = x, T, J.), T) represents the inconsistent
conjunctionx = y /\ y =Ix. As a result, OBDDs with J.-leaves can still be a tautology.

In order to solve the satisfiability or tautology problem using OBDDs, it must be
checked for each path in the OBDD whether it represents a consistent conjunction with
respect to the underlying equational theory. This is done by applying the aforementioned
decision procedures. If all consistent paths lead to T-leaves, then the BDD is a tautology.
If all consistent paths lead to J.-leaves, then the BDD is a contradiction. Otherwise, it is
just satisfiable. This procedure is both sound and complete, but due to sharing subterms,
an OBDD can have exponentially many paths, so there is still a computational bottleneck.
A typical example of this approach is the DDDs (difference decision diagrams) of [18],
where all atoms are of the form x < y + c, for variables x and y and a constant c (known
as separation predicates [22], or difference logic).

In both the DNF- and the plain BDD-method, the Boolean structure is flattened out
immediately, and the arithmetic part is dealt with in a second step. In the Encoding
method these steps are reversed. First the formula is transformed to a purely propositional

B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I II• •1-111 3

fonnula, which is satisfiable, if and only if the original formula is satisfiable in the
equational theory. In this translation, facts from the equational theory (e.g. congruence
of functions, transitivity of equality and orderings) are encoded into the formula. Then
a finite model property is used to obtain a finite upperbound on the cardinality of the
model. Finally, variables that range over a set of size n are encoded by log(n) propositional
variables. The resulting formula can be checked for satisfiability with any existing SAT
technique, for instance based on resolution or on propositional BDDs. An early example
is Ackermann's reduction [I], by which second order variables can be eliminated. More
optimal versions can be found in [16,21,12]. Recently, this method is applied in [24]
to Boolean combinations over successor, predecessor, equality and inequality over the
integers, in [28] it is applied to separation predicates x < y + c, and in [27], Pressburger
arithmetic for integers, and linear arithmetic for reals are translated into propositional
logic.

In the last approach that we mention, called the EQ-BDD-method (Binary Decision
Diagrams extended with Equality [17]), Boolean and arithmetic reasoning are not
separated, but intertwined. Similar to the plain BOD-approach, an ordered EQ-BDD is
constructed, but during this construction, facts from the equational theory are used to prune
inconsistent paths at an earlier stage. The main technique is a substitution rule, which
allows us to replace ITE(s = t, <p(s), 1/1) by ITE(s = t, <p(t), 1/f). It was shown that the
resulting normal forms always exist, and have the desirable property that all paths in it
represent consistent conjunctions. As a consequence, T and ..L have a unique EQ-OBDD
representation, so tautology, contradiction and satisfiability checking on EQ-OBDDs can
be done in constant time. The resulting EQ-OBDDs are logically equivalent to the original
formula (not just equi-satisfiable, as in the translations to propositional logic), so this
technique can also be used to simplify a given formula. Finally, this technique does not
depend on the finite model property. In [17] only the case of equational logic without any
function symbols is covered.

Contribution and overview. In [17] BDDs have been extended with equality, resulting in
EQ-BDDs. We follow this line of research and extend BDDs to propositional logic with
zero, successor and equality, resulting in (0, S, =)-BDDs. Our goal is to finda terminating
set of rewrite rules on (0, S, =)-BDDs, such that all paths in the normal forms represent
satisfiable conjunctions. These normal forms are called Ordered (0, S, =)-BDDs. As a
result, tautology checking and satisfiability checking on Ordered (0, S, =)-BDDs can be
done in constant time.

In Section 2, we first shortly introduce binary decision diagrams, and then give a formal
syntax and semantics of (0, S, =)-BDDs. In Section 3 a solution is presented, leading
to the set of (0, S, =)-OBDDs (ordered BDDs). First any total and well-founded order
on variables is extended to a total and well-founded order on atomic guards. Then the
rewrite system is presented. Finally, we prove termination and satisfiability over all paths.
Section 4 describes some alternative approaches, most of which are failed attempts. These
are included in order to provide some insight in the subtleties of the method. Finally,
Section 5 concludes with some remarks on implementation and possible applications.

4 B. Badban. J.C. van de Pol I Annals of Pure and Applied Logic I (II-.> IB-111

2. Binary decision diagrams with equality

2.1. Binary decision diagrams

A Binary Decision Diagram [11] (BDD) represents a Boolean function as a finite,
rooted, binary, ordered, directed acyclic graph. The leaves of this graph are labeled J_

and T, and all internal nodes are labeled with Boolean variables. A node with label p, left
child L and right child R represents the formula if p then L else R.

Given a fixed total order on the propositional variables, a BDD can be transformed to an
Ordered binary decision diagram (OBDD), in which the propositions along all paths occur
in increasing order, redundant tests (JTE(p, x, x)) do not occur, and the graph is maximally
shared. For a fixed order, each Boolean function is represented by a unique OBDD.
Furthermore, Boolean operations, such as negation and conjunction, can be computed on
OBDDs very cheaply. Together with the fact that (due to sharing) many practical Boolean
functions have a small OBDD representation, OBDDs are very popular in verification of
hardware design, and play a major role in symbolic model checking.

As it is described in [17], Ordered EQ-BDDs are not necessarily unique, so for our
extension, we will not make any attempt to obtain unique representations.

2.2. Adding zero, successor and equality

In this section, we provide the syntax and semantics of BDDs extended with zero,
successor and equality. For our purpose, the sharing information present in the graph is
immaterial, so we formalize (0, S, =)-BDDs by terms (i.e. trees). We view (0, S, =)-BDDs
as a restricted subset of formulas, and show that every formula is representable as BDD.

Assume V is a set of variables, and define V = V u {O}. We define sets of terms,
formulas, guards and BDDs as follows.

Definition 1. The sets of terms (W), formulas (4>), guards (G) and (0, S, =)-BDDs (B)
are defined as below:

W ::= O IV I S(W)

4> ::= j_ IT I W =WI -.g> I 4> A 4> 1 ITE(4>, 4>, 4>)

G ::= J_ I T I W = W

B ::= j_ IT I ITE(G, B, B).

We now introduce some notational conventions. Throughout this paper = is used to
denote syntactic equality between terms or formulas, in order to avoid confusion with
the =-symbol in guards. Symbols x, y, z, u, ... denote variables; r, s, t, ... will range
over W; <p, 1/f, ... range over 4>; f, g over guards. Furthermore, we will write x =/:- y
instead of -.(x = y) and sm(t) for them-fold application of S to t, so s0(t) = t and
sm+1(t) = S(Sm(t)). Note that each t E W is of the form S"'(u), for some m E N and
u E V.

We will use a fixed interpretation of the above formulas throughout this paper. Terms
are interpreted over the natural numbers (N) and for formulas we use the classical
interpretation over {O, I}. In particular, !TE denotes the If-Then-Else function. Given
a valuation v: V-+ N, we extend v homomorphically to terms and formulas in the

B. Badban, l C. van de Pol I Annals of Pure and Applied Logic I (II-.> •Hll

following way:
v(O) = 0

v(S(t)) = 1 + v(t)

v(..l) = 0

v(T) = 1

v(s = t) = 1, ifu(s) = v(t), 0, otherwise.

v(--.<p) = 1 - v(<p)

v(<p /\ 1/1) = min(v(<p), v(1/f))

v(ITE(<p, 1/f, x)) = v(i/I), ifv(<p) = 1, v(x), otherwise.

5

Given a formula <p, we say it is satisfiable if there exists a valuation v : V --+ N, such
that v(<p) = I; it is a contradiction otherwise. Iffor all v: V--+ N, v(<p) = I, then <p is a
tautology. Finally, if v(<p) = v(i/I) for all valuations v : V --+ N, then <p and 1/1 are called
equivalent.

Lemma 2. Every formula defined above is equivalent to at least one (0, S, =)-BDD.

Proof. First, we can eliminate all !TE symbols by using the equivalence JTE(<p, 1/f, x) -<=?
....., (....., (<p /\ 1/1) /\-. (.....,<p /\ x)). We prove the lemma by induction over the remaining formulas.
ITE(g, T, ..l) is a suitable representation of a formula g when it is a guard. Now suppose
'PI, 'P'2 are two given formulas with representations TI, T2, respectively. Construct a first
(0, S, =)-BDD from TI by substituting T2 for its T symbols and call it T. Construct a
second (0, S, =)-BDD from TI by swapping T and ..l in TI and name it T'. Now T and T'
represent 'PI /\ 'P'2 and -.'PI, respectively. 0

3. Ordered (0, S, =)-BDDs

We now introduce a total ordering on guards. It will be used in the definition of Ordered
Binary Decision Diagrams ((0, S, =)-OBDDs). Next we prove that all (0, S, =)-BDDs
(and hence all formulas) can be transformed to (0, S, =)-OBDDs by rewriting. Finally,
we show that all paths in (0, S, =)-OBDDs represent consistent conjunctions, which make
them well suited for deciding satisfiability and contradiction of propositional formulas over
zero, successor and equality.

3.1. Definition of (0, S, =)-OBDDs

From now on, we use the term "BDD" as an abbreviation for "(0, S, =)-BDD". In
this section, we define the set of Ordered BDDs. To this end an ordering on guards is
needed. The latter is parameterized by a total ordering on the variables. In what follows,
we consider a fixed total and well-founded order on V (for instance x ~ y ~ z).

Definition 3 (Ordering Definition). We extend~ to an order on W:

• 0 ~ u for each element u of V.

• sm (x) ~ Sn (y) iff x ~ y or (x = y and m < n) for each two elements X, y E V.

6 B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (1111) l&-1111

We use term rewriting systems (TRSs), being collections of rewrite rules, in order to
specify reductions on guards and BDDs. The reduction relation induced by such a system
is the closure of the rules under substitution and context. See [3] for a formal definition.
A normal form is a term to which no rule applies. A TRS is terminating if all its reduction
sequences are finite.

The first step to make a BDD ordered, is to simplify all its guards in isolation.
Simplification on guards is defined by the following rules:

Definition 4. Suppose g is a guard. By g ,i. we mean the normal form of g w.r.t. the
following rewrite rules:

x=x -+ T
S(y) = S(x) -+ y=x

S(x) = 0 -+ ..l
sm+l(x) = x -+ ..l for all m EN

r = t -+ t=r for all r, t E W such that r < t.

We call g simplified if it cannot be further simplified, i.e., g = g i. A (0, S, =)-BDD T
is called simplified if all guards in it are simplified. An immediate consequence of the last
definition is the following:

Corollary 5. Each simplified guard has exactly one of the following forms:

• x = sm(O) forsomex E V.
• y=Sm(x) forsomex,yE V,x-<y.
• sm(y) = x forsomex,y E V, x-< y, m > 0.
• T, ..l.

Now consider the following formula: <p := (S3 (y) = x) /\ (y = S(x)). Here we want
that ..l becomes the only OBDD which represents cp. So the question is how we can obtain
..l from a BDD representation of <p in a systematic way. The first answer which comes to
mind might be the substitution of x in y = S(x) by S3(y), or y in S3 (y) = x by S(x).
But none of these two solutions are satisfactory: both substitutions will yield bigger terms
generally, while for our termination arguments we need smaller terms.

Here we solve it by a lifting process which raises the second equation by S3 (.) to obtain
S3 (y) = s4(x), then substitute S3 (y) by x which is the right-hand-side part of the first
equality, So it converts to x = s4(x) which can be simplified to ..l (by Definition 4).
Lifting and substitution are defined below, and we will show later that, in combination
with simplification, these operations result in smaller guards.

Definition 6. Let m E N, terms r, t E W, a variable y E Vanda guard g E G be given.
Then we define:

(r = t)tm := sm(r) = sm(t)

glsm(y)=r := (gtm [Sm(y) := r])i.

As was mentioned before, to impose an ordering on BDDs, first we need a total ordering
on guards. Since we are going to deal with simplified guards, we limit our definition to the
simplified guards.

B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (IHI) Ul-IU 7

Definition 7 (Order on Simplified Guards). We define a total order -< on simplified
guards as below.

• ..L -< T -< g, for all guards g, different from T, ..L.

• (SP(x) = Sq(y))-< (Sm(u) = sn(v)) iff:

(i) x -< u or
(ii) x = u /\ y -< v or
(iii) x = u, y = v, p < m or
(iv) x = u, y = v, p = m, q < n.

According to this definition SP (x) = Sq (y) -< sm (u) = sn (v) iff (x, y, p, q) -<1
(u, v, m, n), in which -<1 is a lexicographic order on quadruples of the total, well-founded
orders (V, -<) x (V, -<) x (.N, <) x (N, <), and therefore it is well-founded and total.

Definition 8. An (0, S, =)-OBDD (ordered (0, S, =)-BDD) is an (0, S, =)-BDD which
is simplified and a normal form w.r.t. to the following rewrite rules:

(1) ITE(T, T1, T2)-+ Ti.
(2) !TE(..L, T1, T2) -+ h
(3) ITE(g, T, T)-+ T.

(4) ITE(g,ITE(g, Ti, T2), T3)-+ ITE(g, Ti, T3).

(5) ITE(g, T1,ITE(g, Ti, T3))-+ ITE(g, T1, T3).

(6) ITE(g1,ITE(g2, T1, T2), T3)-+ ITE(g2,ITE(g1, T1, T3),ITE(g1, T2, T3))
providedg1 >- gi.

(7) ITE(g1, T1,ITE(g2, Ti, T3))-+ ITE(g2,ITE(g1, T1, T2),ITE(g1, T1, T3))
provided g1 >- gi.

(8) For any simplified (0, S, =)-BDD C, g E G, r E W, y E V and m EN:

ITE(Sm(y) =r, C[g], T)-+ ITE(Sm(y) =r, C[glsm(vl=r], T)
provided y occurs in g and sm (y) = r -< g.

Rules 1-7 are the normal rules for simplifying BDDs for plain propositional logic [31],
which remove redundant tests, and ensure that guards along paths occur in increasing order.
Rule 8 allows us to substitute equals for equals. This is needed to take care of transitivity
of equality. Other properties of equality, such as reflexivity, symmetry, and injectivity of
successor, are dealt with by the simplification rules. From now on we talk about OBDDs
instead of (0, S, =)-OBDDs. We show an example of the application of rule 8, and an
example of a larger derivation.

Example 9. Let x -< y -< z (see Fig. I)

ITE(S2(y) = x,ITE(z = y, T, l.), ..L)

~ ITE(S2(y) = x,ITE({(S2 (z) = S2(y))[S2y := x]} .j,, T, ..L), ..L)
- ITE(S2(y) = x,ITE(S2(z) = x, T, ..L), l.).

8 B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I /11-.i ID-111

\

l11
8
~

\
\

[!]

Fig. 1. Example 9.

8
~
m=2

\
\

z=S r=S
I \ G(y);;;;;z=Sy
I \

T rn rn .L l:!J

\
\

' [!!

Fig. 2. Derivation of Example 10.

Example 10. Let x -< y -< z (See Fig. 2)

ITE(z = S(y), ITE(S2 (y) = x, T, 1-), 1-)

~ ITE(S2 (y) = x, ITE(z = S(y), T, 1-),ITE(z = S(y), 1-, 1-))

~ ITE(S2 (y) = x, ITE(z = S(y), T, 1-), 1-)

~ ITE(S2 (y) =x,ITE({S2(z) = S3(y)[S2(y) :=x]}t, T,1-),1-)

subs~tution ITE(S2(y) = x,JTE({S2(z) = S(x)}i, T, 1-), .l)

- ITE(S2 (y) = x, ITE(S(z) = x, T, 1-), 1-).

3.2. Termination

Now we present the first main claim that every BDD with zero, successor and equality
has a normal form with respect to the rewrite system of Definition 8, which implies that

B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (11-.1 BI-Ill 9

each BDD has at least one equivalent OBDD. It suffices to prove termination: we apply
TRS rules to a given BDD, until a normal form is reached after a finite number of steps,
which is guaranteed by termination. The so-derived BDD is an equivalent OBDD.

We prove termination by means of a powerful tool, the recursive path ordering
(-<rpo) [14,30]. This is a standard way to extend a (total) well-founded order on a set of
labels to a (total) well-founded order on trees over these labels. To this end, we view guards
as labels, ordered by Definition 7, and BDDs are viewed as binary trees, so ITE(g, T1, T2)

corresponds to the tree g(T1, T2).

Definition 11 (Recursive Path Order for BDDs). S = f (S1, S2) >-rpo g(T1, T2) = T if
and only if

(I) S1 '.':rpo T or S2 '.':rpo T; or
(II) f >- g and S >-rpo T1, Ti; or

(III) f = g and S >-rpo T1, T2 and either S1 >-rpo T1, or (S1 = T1 and S2 >-rpo T2).

Here x '.':rpo y means that x >-rpo y or x = y, and S >-rpo T1, T2 is shorthand for S >-rpo T1

and S >-rpo T2.

This definition yields an order, as is shown in [30]. In order to prove termination, we will
show that each rewrite rule (of Definition 8) is indeed a reduction rule regarding >-rpo- The
next lemma will be helpful to show that this reduction property really holds.

Lemma 12. Let f = sn(y) = sm (x) and g = Sk(w) = S1 (v). If f -< g and f = ft
andg =gt andy E {v, w} thenglJ-< g.

Proof.

• Case I: y = v. Therefore x -< y = v -< w, since f and g are simplified guards. Now

gl.r - (gtn [Sn(y) := sm(x)]H

- csk+n(w) = s1+m(x)H v=y

-< sk(w) = S1(v) x-< v, Definition 7(ii)

- g.

• Case II: y = w. Hence y = w >- v, since g is a simplified guard. Now

gl.r = (gtn [Sn(y) := sm(x)]H
= csk+m(x) = sz+n(v)H w=y.

And by Definition 7(i), (Sk+m(x) = sl+n(v)) i-< Sk(y) = S1(v), irrespective of
whether x -< v or v -< x, because x -< y and v -< y. 0

Lemma 13. Let f, g be two simplified guards, such that f -< g. and C is a (0, S, =)-EDD.
If g occurs at least once in C then C[g] >-rpo C[f].

Proof. Monotonicity of >-rpo [30]. 0

Lemma 14. All simplified instances of all rewrite rules are contained in >-rpo·

10 8- Badban, J.C. van de Pol I Annals of Pure and Applied Logic I <1• 111-1•
Proof.

(1) T(T1, T2) >-rpo Ti by(I)
(2) Similarly
(3) g(T, T) >-rpo T by (I)
(4) g(g(T1, T2), T3) >-rpo g(T1, T3) by (III) and (I)
(5) Similarly
(6) Assume g1 >- g2 and let S = g1 (g2(T1, T2), T3). Then

• S >-rpo T3 by (I)
• g1(T1, T2) >-rpo T1 by(I)
• S >-rpo T1 by (I)
hence S >-rpo gi (T1, T3) by (III). Similarly S >-rpo gi (Ti, T3). And therefore S >-rpo

g2(g1 (T1, T3), g1 (T2, T3)) by (II)

(7) Similarly
(8) Let/= sm(y) = sn(x). Assumey occurs ing and/-< g, and f andgaresimplified.

We have to show that f (C[g], T) >-rpo /(C[git], T). Now using Lemma 12 we
conclude g >- git, and so C[g] >-rpo C[gltl by Lemma 13. Now, by using (I) twice
and next (III) it is clear that this rule is also contained in >-rpo. 0

Now we are able to prove our first main claim:

Theorem 15. The rewrite system defined in Definition 8 is terminating on simplified
(0, S, =)-BDDs.

Proof. We showed in the previous lemma that all rewrite rules are contained in >-rpo· This
implies termination, because >-rpo is a reduction order, i.e. well-founded, and closed under
substitutions and contexts [30]. 0

This theorem says that by repeated applications of the rewrite rules on an arbitrary
simplified BDD, after finitely many iterations we will obtain the normal form of it, which
is its equivalent ordered form, so

Corollary 16. Every (0, S, =)-BDD is equivalent to at least one OBDD.

3.3. Satisfiability of paths in OBDDs

For a given formula, we can now construct a BDD representation (Lemma 2) and turn
it to an OBDD by rewriting (Corollary 16). We now show the second main claim, stating
that all paths in an ordered BDD represent satisfiable conjunctions. As a consequence it
can be decided whether the formula is a tautology, a contradiction or a consistency.

NOTATION. Leta, fJ, y range over finite sequences of guards and negations of guards. We
write e for the empty sequence, and a.fJ for the concatenation of sequences a and fJ. If the
order of a sequence is unimportant, we sometimes view it as a set, and write g E a, or even
a U fJ. The latter denotes the set of all guards or negations of guards that occur somewhere
on a or fJ.

Definition 17. Literals are guards or negations of guards. Paths are sequences of literals.
We define the set of paths of a BDD T:

B. Badban. J.C. van de Pol I Annals of Pure and Applied Logic I (Ill~ IR-UI

• Pat(T) = Pat(J_) = {e}.

',, \
' ' rn

Fig. 3. A path from Example 18.

• Pat(JTE(g, T1, T2)) = {g.a I a E Pat(T1)} U {-.g.fJ I fJ E Pat(T2)}.

II

A path a is ordered if it is a path in some OBDD. Valuation v : V --+ N satisfies a if
v(g) = 1 for all literals g E a. a is satisfiable if a valuation v that satisfies it exists.

Example 18. Let

T = ITE(x = y, T,ITE(x = S2(0),ITE(z = t, T,ITE(O = y, T, J_)), J_))

then x # y. x = S2 (0). z # t. 0 = y is a path (Fig. 3). Furthermore, let x -< y -< z, then
y = x. z = x is an ordered path, because it is a path in ITE(y = x, ITE(z = x, T, J_), J_),
which is an OBDD.

The following two lemmas give some syntactical properties on OBDDs, which can be
used for proving satisfiability of each path in an OBDD.

Lemma 19. Let a be an ordered path, of the form fJ.(SP(u) = Sq (y)).y Then:

(i) u does not occur in y.
(ii) u does not occur at the right-hand side of any literal in fJ.

(iii) u does not occur in a positive guard in fJ.
(iv) y does not occur at the left-hand side of any literal in y.

Proof.

(i) Since a is ordered, the rewrite rules should not be applicable. If u occurs in g E y,
then either SP(u) = ~(y) -< g, and hence rule 8 will be applicable, or SP(u) =
Sq (y) !:::: g, and one of rules 4-7 will be applicable.

(ii) Because otherwise, if g = Sk(v) = S1(u) occurs in /J, then v >- u, so g >- SP(u) =
Sq (y), which will contradict the orderedness of a.

12 B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (111~ RHll

(iii) Regarding part (ii) above, u can possibly occur only in the left-hand side of a positive
guard like Si (u) = Sj (z) in {3. Therefore two paths /3' and y' will exist, such that
a= {3'.(Si(u) = Sj (z)).y', and SP(u) = Sq(y) will belong toy', but referring to
part (i), this will never happen.

(iv) Similar to part (ii). D

Lemma 20. Suppose that S1(u) = sk(y) and SP(u) =I= Sq(y) are two literals on an

ordered path 8. If v is a valuation on the path which satisfies S1 (u) = Sk(y), then it
will also satisfy SP (u) =/= Sq (y).

Proof.

• If S1(u) = Sk(y) -< SP(u) = Sq(y), then, two paths f3 and y will exist such that
8 = f3.(S1(u) = Sk(y)).y in which SP(u) =I= Sq(y) belongs toy, but according to
Lemma l 9(i), this will never happen.

• If SP (u) = Sq (y) -< S1 (u) = sk (y), then since 8 is ordered, we can limit our inquiry to
the two following cases:

• p < l, and so k = 0:
v(SP(u)) p + v(u)

• p = l and q < k:
v(SP(u))

< I+ v(u)

= k + v(y)

v(y)

< q + v(y)
v(Sq (y)) .

p + v(u)

= I+ v(u)

k + v(y)

> q + v(y)
v(Sq (y)).

v satisfies S1(u) = sk(y)

k=O

p =I
v satisfies s1 (u) = sk(y)

q < k

In both of these two cases v(SP (u)) =I= v(Sq (y)). 0

Definition 21. Supposes = t is a guard and a is a path. Define:

Reverse(s = t) := t = s
a:= a U { Reverse(g) I g E a} U { -,Reverse(g) I -.g E a}.

Definition 22. Suppose a is an ordered path of the form {3.(Sm (z) = sn (x)).y. We define
a set Exa as follows:

Exa = {u E V I SP(u) = ~ (x) E a for some p, q E N}.

Remark 23. According to Definition 22, 0 does not belong to Exa, because SP(u) =
Sq (x) is a simplified guard on the ordered path a, therefore u >- x, but we know that 0
does not have this property.

B. Badhan, J.C. van de Pol I Annals of Pure and Applied Logic I <11-.i IR-lll 13

Intuitively, the set Exa contains all variables from terms that are forced to be equal to x
by path a. So if we want to raise the value of x, we must raise all values in Exa as well.
Note that the value of 0 can not be raised, and raising the value of x could inadvertently
make some negated guards in a true. These considerations are captured by the following
lemma, which shows how a given valuation of a path can be lifted to arbitrarily high values.

Lemma 24. Let Ci be an ordered path of the form f3. (Sm (z) = sn (x)). y, in which x E V
(i.e. x ¥= 0). Let v be a valuation that satisfies this path. Then for each k E N there exist
l > k and a valuation v', such that

(i) v' satisfies a.

(ii) v'(u) = v(u) + l
(iii) v'(y)=v(y)

for each u E Exa U {x}.

foreachy ~ Exa U {x}.

Proof. Let us give some notes, before defining any valuation v'.

Note 1. Supposing SP(u) = Sq (y) is a positive guard on a and y ¥= x, then u will not
belong to Exa U {x}.

Proof.

• u-;/:. x, because otherwise Ci will be of the form µ,.(SP(x) = S'l (y)).8 for some ordered
pathsµ and 8, and Sm(z) = Sn(x) E µ, U 8. Ifit is inµ,, this contradicts Lemma l 9(iii).
Ifit is in 8, this contradicts Lemma l 9(i).

• u ~ Exa. because otherwise Si (u) =Si (x) Ea, for some i, j E N, and this guard will
be different from SP(u) = S'l (y), since y ¥= x. Therefore Si (u) = Si (x) -< SP(u) =
S'l (y) or vice versa. In each case of these two, a contradiction will be derived, regarding
Lemma l 9(i). 0

Note 2. y will not belong to Exa. if SP(u) = S'l (y) occurs positively or negatively in a,
for some u E V and p, q E N.

Proof. Ify E Exa then Si(y) =Si (x) Ea for some i, j E N.y-< u, since SP(u) = S'l (y)
is a simplified guard on the ordered path a, therefore Si (y) = Si (x) -< SP(u) = S'l (y).
This means that the ordered path a = µ,. (Si (y) = Si (x)) .8 for some µ, and 8, in which
SP (u) = S'l (y) or its negation will belong to 8, but this will contradict Lemma l 9(i). D

Now define:

m' = Max{q + v(y) I y =f:. x and3u E {x} u Exa, 3j EN: si(u) =f:. S'l(y) E &}.

Intuitively, m' is bigger than everything distinct from Exa- Using this m', we introduce a
new valuation v' as below:

v'(u) := lv(u) + m' + k + 1 ifu E {x} U Exa
v(u) otherwise

x ¥= 0 by the assumption. Moreover, given u E Exa. u will be nonzero by Remark 23.
Therefore the given definition for v' is well-defined. Now define I := m' + k + 1. Then
requirements (ii) and (iii) of the lemma are obviously met. Below we will show that
requirement (i) holds, i.e. v' satisfies a. Suppose g is a literal on this path:

14 B. Badban, J.C. van de Pol/ Annals of Pure and Applied Logic I (llm.i DI-ID

• Ifg = SP(u) = Sq(y), theneitherofthetwo following cases applies:

. y = x. So that, u E Exa, and hence v'(u) = v(u) + m' + k + 1. Now:

v'(SP(u)) = p+v'(u)

= p + v(u) + m' + k + 1
= v(SP(u))+m'+k+l

= v(Sq (y)) + m' + k + 1
= q + v (x) + m' + k + I
= q + v'(x)

v' (Sq (y))

v'(u) = v(u) + m' + k + 1

v satisfies O!

y=x
v'(x) = v(x) + m' + k + 1

y=:x .

• y =/. x. Now according to the two given notes, u and y will both belong to the last
case of the definition ofv'. Therefore:

v'(SP(u)) = p + v'(u)

= p+v(u) v'(u)=v(u)
v(SP(u))

= v(Sq (y)) v satisfies O!

= q + v(y)

= q + v'(y) v'(y) = v(y)

= v'(Sq(y)).

• If g = SP(u) #Sq (y), then y </. Exa, by Note 2. We distinguish two cases:

u E Exa· Therefore:
If y = x, then, since u E Exa, so Si(u) = Sj(x) E a for some i,j E N,
and according to the previous case, v'(Si(u)) = v'(Sj (x)). Hence v'(SP(u)) #
v' (Sq (x)) by Lemma 20.

If y =/. x, then v' (y) = v (y) because y also does not belong to E xa. Hence:

v'(SP(u)) = v'(u) + p

u '/ Exa· Thus:

v(u) + m' + k + I + p u E Exa
= v(SP(u)) + m' + k +I
> m'
> v(Sq (y))

v'(Sq (y))
definition ofm'

v' (y) = v(y).

If u = x, then y =/. x, since g is simplified. So y belongs to the last case of the
definition of v', because y fj. Exa either, and hence v' (y) = v(y). Now:

v'(SP(u)) v'(SP(x)) u = x

= v'(x) + p
= v(SP(x))+m'+k+l

> m'

u = x, definition on m'
v'(y) = v(y).

B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (Ill~ Ill-ID

(i)

\
\

\
\

L T

/'
/

I

Fig. 4. Theorem 25.

(ii)

Ifu ef:. x, then v'(u) = v(u), since u rf. Exa either. Therefore:

Ify = x, then
v'(SP(u)) v'(u) + p

v(u) + p

\

\

< m' y = x, definition of m'

< v(x) + m' + k + 1

= v'(x)

< v'(Sq (x))

= v'(Sq (y)) y =x.

15

If y ef:. x, then y will also belong to the last case of the definition of v', because
y rf. Exa either. Thus:

v'(SP(u)) v'(u) + p

v(u) + p
= v(SP(u))

v(Sq(y)) v satisfies a, SP(u) # Sq(y) Ea

= q+v(y)

= q + v'(y)
= v'(Sq(y)). 0

Finally, we come to the second main claim of this paper:

Theorem 25. Each path in an OBDD is satiefiable.

Proof. We prove this theorem by induction over OBDDs. Suppose T = ITE(Sm0 (z) =
sno (xo), Ti, T2) is an OBDD, and each path belonging to T1 or T2, is satisfiable. Then we
will show that each path in T is satisfiable as well. Consider a is a satisfiable path, and v
is a valuation which satisfies it.

16 B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (II-' HHU

Supposing ex. belongs to T1 (Fig. 4(i)), we will provide a new valuation, which will
satisfy (smo(z) = sno(xo)).a. Since T is ordered, z does not occur in any literal of ex., by
Lemma I 9(i).

• If xo = 0 : then mo = 0, since smo(z) = sno(xo) is a simplified guard (Corollary 5).
Define:

,) {no ifu=z v (u :=
v(u) otherwise.

v' satisfies (SmO(z) = sno(xo)).a obviously.

• If xo ~ 0 : z does not occur on a, so that (z = xo).cx. is still an ordered path, and without
loss of generality, we can define v(z) := v(xo). Therefore, v will satisfy (z = xo).a.
Using Lemma 24, there will be a valuation v' and a natural number l > mo such that v'
satisfies (z = xo).cx. and v' (xo) = v(xo) + l. Now define:

v"(u) := {v'(xo) +no - mo
v'(u)

ifu =z

otherwise.

v" is well-defined since

v"(z) = v'(xo) +no+ mo

= v(xo) + l + no + mo

= v(xo) +no + (l + mo)

> 0.

v" satisfies a since v' does, moreover

v" csmo (z)) = mo + v"(z)

= v'(xo) +no

= v"(xo) +no

= v"(Sn°(xo))

definition of v" (z)

which means V 11 satisfies smo(z) = sno(xo). Therefore csmo(z) = sno(xo)).O! is
satisfiable.

Supposing a belongs to T2 (Fig. 4(ii)), we will provide a new valuation, which will satisfy
(Smo(z) =f:. sno(xo)).a. Define:

H :=a U {Sm0 (z) =f:. sn°(xo)}

Lz := { Si(y) I 3p EN, 3u E Eza U {z}. SP(u) =f:. Si(y) EH}

k :=Max{ i + v(y) I Si(y) E Lz }.

Either of the two following cases will hold:

• z does not occur at the left-hand side of any positive guard of a. If Eza =f:. 0 then there
is a guard SP(u) = S'l(z) Ea (recall that smo(z) =f:. sno(xo) is a negative literal).

B. Badban, J.C. van de Pol! Annals of Pure and Applied Logic I (11111) 111-1111 17

Applying Lemma 24, on the path a = {3.(SP(u) = Sq (z)).y, with the defined k above
and the supposed valuation v, there is a number l E N and a valuation v', such that:

(i) v' satisfies a.
(ii) v'(u) = v(u) + l

(iii) v' (y) = v(y)

for each u E Eza U {z}.

for each y rt Eza U {z}.

Now define

and

!' := l~ + 1
if Eza =f. 0

otherwise

11 !v(y)+l' ifyEEzaU{z}
v (y) :=

v(y) otherwise.

Below we will show that v" satisfies (smo (z) =f. sno (xo)) .a:
If E za = 0, note that z occurs in negative guards only. Also

II l V (y) + k + 1 if Y :; Z v (y) =
v(y) otherwise.

v" satisfies each literal g which does not include z, since v"(g) = v(g). Now we
will show that it also satisfies every literal like SP (z) =f. Sq (y), which occurs on
au {Sm0 (z) =f. sn°(xo)}:

v'(SP(z)) p + v'(z)

If Eza f. 0, then

= p+v(z)+k+ I
> k
> v(Sq (y))

v'(Sq (y))

11 !v(y)+l ifyEEzaU{z}
v (y) =

v(y) otherwise.

since Sq (y) E L z

v'(y) = v(y).

Therefore v11 (g) = v' (g), for each literal g in a, which means v" satisfies a. Now
for smo (z) -=/= sno (xo): xo rt Eza U {z }, because xo =fa z, and also, by Lemma l 9(ii),
xo </. Eza· Hence

v11 (sm0 (z)) = v(smo(z)) +I

> k (l > k)
> v(sno (xo))

= V11 csno (xo))

sn°(xo) E Lz
XO rt Eza U {z}.

• sm(z) = sn(x) occurs positively on a, for some x E V and some natural numbers m
andn.
. If x = 0: then sm (z) = sn (x) = z = sn (0) since sm (z) = sn (x) is a simplified guard

(Corollary 5). smo(z) = sno(xo) -< sm(z) = sn(x), therefore sm0 (z) = sn°(xo) =
z = sno (0) according to the Definition 7. v satisfies z = sn (0) so it also satisfies
z =f. sno (0), by Lemma 20, so we are finished.

18 B. Badban, J.C. van de Pol/ Annals of Pure and Applied Logic I (II_., •1-111

. If x '/= 0:
- If xo := x then, regarding Lemma 20, v will satisfy 3mo (z) f. sno (xo), because it

satisfies sm(z) = sn(x).
- Ifxo =/;. x: a= {3.(Sm(z) = sn(x).o for some two ordered paths f3 and o. Using

Lemma 24, for a and the given number k, above, and the valuation v, there is a
valuation v' and a natural number I> k, such that v' satisfies a, v'(u) = v(u) +I
ifu E Exa U {x}, and v'(y) = v(y) if y fj. Exa U {x}. We will now show that v' is
suitable.
xo fj. Exa U {x}, because xo '/= x, and forall u E Exa, we have u >- x (by the
definition of Exa) and x >- xo (because sm0 (z) f. sno(xo) -< sm(z) = sn(x) by
Definition 7). Therefore, if xo occurs on a, then, v' (xo) = v(xo) already, otherwise
we can define v' (xo) := v(xo) without loss of generality, because v' still satisfies
a. We will show that v' satisfies sm0 (z) f. sno(xo) too:

v'(SmO(z)) = v'(z) + mo

= v(z) +I+ mo z E Exa
= v(smo(z)) +I

> k l > k
> v(sno (xo)) sn°(xo) E Lz
= v'(sno(xo)). 0

Corollary 26. An immediate consequence of Theorem 25 is

• T is the only tautological OBDD.
• ..L is the only contradictory OBDD.
• Every other OBDD is satisfiable (only).

Proof. Each path in a tautological OBDD should end in a T, because if T is a tautological
OBDD, containing a path a which ends in a ..L, then according to Theorem 25, there is
a valuation v which satisfies a, but then v(T) = 0, which is impossible since T is a
tautology. Therefore, if T has more than one leaf, rule 3 of Definition 8 will be applicable
on a tautological OBDD which is not T, and this contradicts the orderedness. So T = T.
Similarly, for a contradictory one. 0

4. Alternative solutions and failed attempts

As shown in Section 3, our main method is to extend a given ordering on variables to
terms, and then lexicographically to guards, in such a way that we can prove termination
(Theorem 15), which guarantees existence of OBDDs as normal forms, and satisfiability
of paths (Theorem 25), which guarantees that contradictions and tautologies have unique
OBDDs. The lexicographic extension of the term-ordering to the guard-ordering, as well as
rules 1-8, are familiar from [17]. The creative parts are finding a good ordering on the terms
and guards, and the idea of lifting equations. In this section we mention another approach,
and two failed attempts, the first of which has non-terminating rewrite sequences, and the
second one has multiple contradictory OBDDs.

The variables come with a total order, say y >- x. Ifwe know that y = x, then y will be
eliminated in the T -branch, by substituting the representant x for it. The solution that we

B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (II~ ID-Ill 19

have described orders the guards by grouping together the variables to be eliminated. In the
alternative solution, the representant variables are grouped together. This solution is closer
to [l 7]. More precisely, theorderonguards becomes: SP(x) =Sq (y) -< sm (u) = sn(v) iff
(y, q, x, p)(-<, <, -<, <)1ex(v, n, u, m). For this ordering, the same results can be proved,
as we did in a separate technical report [4].

We started our investigations with the ordering of Example 27. It was based on the
observation that terms of the form y = sn (x) are easier to handle than sn (y) = x. In
the former case, all y's can be replaced by sn(x), while in the second case, replacing
occurrences of sn (y) does not remove all occurrences of y (later we solved this by lifting
the equation). So we wanted to make terms with S-syrnbols smaller than terms without
S-syrnbols. Obviously, the resulting ordering on guards is not well-founded. We tried to
give an upperbound of the number of S-syrnbols that occurs in a derivation, but this cannot
be done.

Example 27. Consider the following total ordering on variables and their successors:

... -< S2(x) -< S2(y) -< ... -< S(x) -< S(y) -< ... -< x -< y -< ...

and its lexicographic extension to guards: SP(x) = Sq(y) -< sm(u) = sn(v) iff
(q ,y, p, x)(>, -<, >, -<)1ex(v, n, u, m). Then consider the rewrite system of Definition 8,
over this new ordering. Now look at the formula below:

(y = S2 (x) /\Z = S(y)) v (y # S2 (x) /\ (S2 (z) = y v (S2 (z) # y /\Z = S(y)))).

In Fig. 5 we show the first steps in a non-terminating rewrite sequence starting from this
term. We conjecture that this BDD has no normal form at all.

So, unfortunately, this ordering can not be used, because it leads to non-termination,
and the existence of OBDDs cannot be guaranteed. The first repair that comes into mind is
reversing this order, so that it becomes well-founded. This led to our second try, in which
terms without successors are smaller than terms having S-symbols.

Example 28. Consider an alternative ordering on variables and their successors as below:

x -< y-< ... -< S(x) -< S(y)-< ... -< S2 (x)-< S2 (y)-< ... -< S3(x) -< ..•.

This order is extended lexicographically on guards: SP (x) = ~ (y) -< sm (u) = sn (v)
iff (q ,y, p, x)(<, -<, <, -<)Iex(v, n, u, m). Next, we take rewrite rules 1-8 of Definition 8
w.r.t. to this new ordering. Now look at this formula:

cp := S(y) # x /\ S(x) = z A S2 (y) = z.

<p is equivalent to ..L, but it has an ordered BDD (w.r.t. the new order) as drawn in Fig. 6.
This shows that a contradictory OBDD different from ..L exists. The picture shows a path
to T, which is unsatisfiable, so for this ordering, Theorem 25 would not hold.

Apparently, the occurrences of x in S(y) = x and S(x) = z are closely related, and
should be treated in the same way. So we decided to change the ordering, so that all
terms with x are smaller than all terms with y, etc. This led to the successful definition
in Section 3. The price for also allowing terms of the form sn (y) = x is that, in the

20 B. Badban, J.C. van de Pol I Annals of Pure and Applied logic I (II~ 111-111

y=s2x

8,6 --'
T [!]

. ?· ...
' [!] ', 8,6,8,2

=s2z
T

T [!) [TI (!]

T

. r .. \ ~
QJ[!J ',

T [!j

Fig. 5. Example 27.

22 B. Badhan, J.C. van de Pol I Annals of Pure and Applied Logic I (11..i 111--111

Other interesting extensions are the incorporation of addition (+), or an investigation of
other free algebras (such as LISP-list structures based on null and cons). Another useful
extension with only unary constructors would be the binary encoding of the positive natural
numbers, based on the free algebra over (1 : N, x2p0 : N -+ N,x2pl : N -+ N).
Here x2p0 is interpreted as times 2 plus 0 and x2pl as times 2 plus 1. Our results do
not immediately apply to such extensions; for each case, we have to define an appropriate
order on atoms, a notion of ordered BDDs, and prove that paths in ordered BDDs represent
satisfiable conjunctions.

Possible applications. Although the equational fragments that we considered are rather
weak (in particular they do not even include addition), many proof obligations in hardware
and software verification can be stated in these logics. In [22), Pratt already noticed the
relevance of separation formulas of the form x < y + c. A similar fragment is also used in
real-time model checking as in Uppaal [7,6).

Propositional logic with equality and uninterpreted functions (EUF) has been proposed
for verifying the correctness of hardware designs [13). Also the techniques of [12) are
applied to proving equivalence of hardware designs. In [21], similar techniques are applied
to the verification of the correctness of compiler optimization results.

These kind of decision procedures are built into many modem interactive theorem
provers, such as PVS [20) and SVC [5). In this interactive context, the ability to simplify
a formula, without deciding it completely, may be a convenient feature. The automated
theorem prover of the µ.CRL toolset [9,29) is based on EQ-BDD ideas, and applied in the
verification of distributed systems [l 0).

Acknowledgement

We would like to thank Hans Zantema for his helpful idea to use valuations to prove
satisfiability and showing us a preliminary version of his paper [30] on termination of term
rewriting.

References

[l] W. Ackermann, Solvable cases of the decision problem, in: Studies in Logic and the Foundations of
Mathematics, North-Holland, Amsterdam, 1954.

[2] H.R. Andersen, H. Hulgaard, Boolean expression diagrams, in: Twelfth Annual IEEE Symposium on Logic
in Computer Science, Warsaw, Poland, IEEE Computer Society, 1997, pp. 88-98.

[3] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[4] B. Badban, J.C. van de Pol, Two solutions to incorporate zero, successor and equality in binary decision

diagrams, Technical Report SEN-R0231, Centrum voor Wiskunde en Informatica, Amsterdam, December
2002.

[S] C. W. Barrett, D.L. Dill, J.R. Levitt, Validity checking for combinations of theories with equality,
in: M.K. Srivas, A. Camilleri (Eds.), Proceedings of Formal Methods in Computer-Aided Design, FMCAD,
LNCS, vol. 1166, Springer, 1996, pp. 187-201.

[6] G. Behrmann, K.G. Larsen, J. Pearson, C. Weise, W. Yi, Efficient timed reachability analysis using clock
difference diagrams, in: Proc. ofllth Computer Aided Verification, 1999, pp. 341-353.

[7] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, W. Yi, UPPAAL: a tool suite for the automatic
verification of real-time systems, in: R. Alur, T.A. Henzinger, E.D. Sontag (Eds.), Hybrid Systems III,
LNCS, vol. 1066, Springer, 1996, pp. 232-243.

B. Badban, J.C. van de Pol/ Annals of Pure and Applied Logic I (111.i llHll

' \

Fig. 6. Unsatisfiable path for Example 28.

21

substitution, we have to lift all occurrences of y to sn (y). This slightly complicates the
formulation of rewrite rule 8.

5. Conclusion

We developed the theoretical basis for a decision procedure for Boolean combinations
of equations with zero and successor. First, a formula is transformed into an (0, S, =)
BDD. A rewrite system on (0, S, =)-BDDs has been presented, which yields OBDDs (by
definition). The system is proved to be terminating, and the normal forms have the desirable
property that all paths are satisfiable. As a consequence, if a formula cp is a contradiction
(i.e. equivalent to 1-), then it reduces to 1-. Similarly for tautologies. Therefore, our method
can be used to decide tautology and satisfiability. Because the resulting OBDD is logically
equivalent to the original formula, our method can also be used to simplify a formula.
Although the resulting OBDDs are not unique, our method can also be used to check
equivalence of formulas. In order to check whether cp and if! are equivalent, we can check
whether cp ~ if! is a tautology.

Towards an implementation. The basic procedure is presented as a term rewrite system.
This is still a non-deterministic procedure, because a term can have more than one redex.
By proving termination, we established that every strategy will yield an OBDD. However,
some strategies might be more effective than others. In [31] rewrite strategies are studied
to compute OBDDs for plain propositional logic. In particular, it is shown how the usual
efficient OBDD algorithms can be mimicked by a rewrite strategy. Already in [2], various
strategies to normalize BEDs (Boolean Expression Diagrams) are described. In [17] a
concrete algorithm for EQ-BDDs was presented and proved correct. We have not yet
studied particular strategies in the presence of zero and successor, nor implemented the
procedure. We view this as important future work. It could be used to evaluate various
methods (such as various orderings) by practical examples.

Another line of future research would be the extension of our result to other algebras.
An interesting extension would be the incorporation of uninterpreted functions directly
(they can already be dealt with by first eliminating them by Ackermann 's reduction [1,24]).

B. Badban, J.C. van de Pol I Annals of Pure and Applied Logic I (llQl 111-111 23

(81 A.J.C. Bile, H.A.G. Wijshoff, Implementation of Fourier-Motzkin elimination, Technical Report 94-42,
Dept. of Computer Science, Leiden University, Leiden, The Netherlands, 1994.

[9] S.C.C. Blom, WJ. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, J.C. van de Pol, µ.CRL: A toolset
for analysing algebraic specifications, in: G. Berry, H. Comon, A. Finkel (Eds.), Proc. of CAY 2001, July,
LNCS, vol. 2102, Springer, 2001, pp. 250-254.

[10] S.C.C. Blom, J.C. van de Pol, State space reduction by proving confluence, in: E. Brinksma, K.G. Larsen
(Eds.), Proc. of Computer-Aided Verification, CAV, LNCS, vol. 2404, Springer, 2002, pp. 596-609.

[ll] R.E. Btyant, Symbolic boolean manipulation with ordered binary-decision diagrams, ACM Computing
Surveys 24 (3) (1992) 293-318.

[12] R.E. Btyant, S. German, M.N. Velev, Processor verification using efficient reductions of the logic of
uninterpreted functions to propositional logic, ACMTCL: ACM Transactions on Computational Logic 2
(2001).

[13] J.R. Burch, D.L. Dill, Automatic verification of pipelined micro-processors control, in: D.L. Dill (Ed.),
Proceedings of Computer Aided Verification, CAV'94, LNCS, vol. 818, Springer, 1994, pp. 68-80.

[14] N. Dershowitz, Termination ofrewriting, Journal of Symbolic Computation 3 (1-2) (1987) 69-115.
[15] H. Ganzinger, Shostak light, in: A. Voronkov (Ed.), Automated Deduction - CADE-18, LNCS, vol. 2392,

Springer, 2002, pp. 332-346.
[16] A. Goel, K. Sajid, H. Zhou, A. Aziz, BOD based procedures for a theoty of equality with uninterpreted

functions, in: Proc. of Computer Aided Verification, CAV'98, LNCS, vol. 1427, Springer, 1998,
pp. 244-255.

[17] J.F. Groote, J.C. van de Pol, Equational binaty decision diagrams, in: M. Parigot, A. Voronkov (Eds.), Proc.
ofLPAR 2000, LNAI, vol. 1955, Springer, 2000, pp. 161-178.

[18] J. Meller, J. Lichtenberg, H.R. Andersen, H. Hulgaard, Difference decision diagrams, in: Computer Science
Logic, Denmark, September, 1999.

[19] G. Nelson, D.C. Oppen, Fast decision procedures based on congruence closure, Journal of the ACM 27 (2)
(1980) 356-364.

[20] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, M.K. Srivas, PVS: Combining specification, proof checking,
and model checking, in: R. Alur, T.A. Henzinger (Eds.), Proceedings of Computer Aided Verification,
CAV'96, LNCS, vol. 1102, Springer, 1996, pp. 411-414.

[21] A. Pnueli, Y. Rodeh, 0. Shtrichman, M. Siegel, Deciding equality formulas by small domains instantiations,
in: N. Halbwachs, D. Peled (Eds.), Proc. of Computer Aided Verification, CAV'99, LNCS, vol. 1633,
Springer, 1999.

[22] V. Pratt, Two easy theories whose combination is bard, Technical Report, Massachusetts Institute of
Technology, Cambridge, MA, 1970.

[23] H. Ruess, N. Shankar, Deconstructing Shostak, in: 16th Ann. IEEE Symp. on Logic in Computer Science,
LICS'Ol, IEEE, 2001, pp. 19-28.

[24] S.A. Seshia, S. Lahiri, R.E. Bryant, Modeling and verifying systems using a logic of counter arithmetic with
lambda expressions and uninterpreted functions, in: E. Brinksma, K.G. Larsen (Eds.), Proc. of Computer
Aided Verification, CAY, LNCS, vol. 2404, Springer, 2002, pp. 78-92.

[25] N. Shankar, H. RueB, Combining Shostak theories, in: S. Tison. (Ed.), Rewriting Techniques and
Applications, RTA, LNCS, vol. 2378, Springer, 2002, pp. 1-18.

[26] R.E. Shostak, An algorithm for reasoning about equality, Communications of the ACM 21 (7) (1978)
583-585.

[27] 0. Strichman, On solving Presburger and linear arithmetic with SAT, in: M.D. Aagaard, J.W. O'Leary
(Eds.), Formal Methods in Computer-Aided Design, FMCAD, LNCS, vol. 2517, 2002, pp. 160-170.

[28] 0. Strichman, S.A. Seshia, R.E. Bryant, Deciding separation formulas with SAT, in: E. Brinksma,
K.G. Larsen (Eds.), Proc. of Computer-Aided Verification, CAV, LNCS, vol. 2404, Springer, 2002,
pp. 209-222.

[29] J.C. van de Pol, A prover for the µ.CRL toolset with applications-Version 0.1, Technical Report SEN
R0106, CW!, Amsterdam, 2001.

[30] H. Zantema, Termination of term rewriting, in: M.A. Bezem, J.W. Klop, R.C. de Vrijer (Eds.), Term
Rewriting Systems, Cambridge University Press, 2003 (Chapter 6).

[31] H. Zantema, J.C. van de Pol, A rewriting approach to binaty decision diagrams, Journal of Logic and
Algebraic Programming 49 (1-2) (2001) 61-86.

