Skip to main content
Log in

Division Algebras and Quantum Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’. It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly ‘complex’ representations), those that are self-dual thanks to a symmetric bilinear pairing (which are ‘real’, in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are ‘quaternionic’, in that they are the underlying complex representations of representations on quaternionic Hilbert spaces). This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics. More generally, Hilbert spaces of any one of the three kinds—real, complex and quaternionic—can be seen as Hilbert spaces of the other kinds, equipped with extra structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed categories. In: Proceedings of CALCO 2005. Lecture Notes in Computer Science, vol. 3629, pp. 1–31. Springer, Berlin (2005). Also available at http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/calco05.pdf

    Google Scholar 

  2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. Available at arXiv:quant-ph/0402130

  3. Adams, J.F.: Lectures on Lie Groups. Benjamin, New York (1969)

    MATH  Google Scholar 

  4. Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  5. Amemiya, I., Araki, H.: A remark on Piron’s paper. Publ. Res. Inst. Math. Sci. 2, 423–427 (1966/67)

    Article  MathSciNet  Google Scholar 

  6. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer, Berlin (1998)

    Google Scholar 

  7. Arnold, V.I.: Symplectization, complexification and mathematical trinities. In: Bierstone, E., Khesin, B., Khovanskii, A., Marsden, J.E. (eds.) The Arnoldfest: Proceedings of a Conference in Honour of V.I. Arnold for His Sixtieth Birthday. AMS, Providence (1999)

    Google Scholar 

  8. Baez, J.: Higher-dimensional algebra II: 2-Hilbert spaces. Adv. Math. 127, 125–189 (1997). Also available as arXiv:q-alg/9609018

    Article  MathSciNet  MATH  Google Scholar 

  9. Baez, J.: The octonions. Bull. Am. Math. Soc. 39, 145–205 (2002). Errata in Bull. Am. Math. Soc. 42, 213 (2005). Also available as arXiv:math/0105155

    Article  MathSciNet  MATH  Google Scholar 

  10. Baez, J.: Quantum quandaries: a category-theoretic perspective. In: French, S., Rickles, D., Saatsi, J. (eds.) Structural Foundations of Quantum Gravity, pp. 240–265. Oxford University Press, Oxford (2006). Also available as arXiv:quant-ph/0404040

    Chapter  Google Scholar 

  11. Baez, J., Huerta, J.: Division algebras and supersymmetry I. In: Doran, R., Friedman, G., Rosenberg, J. (eds.) Superstrings, Geometry, Topology, and C*-Algebras. Proc. Symp. Pure Math., vol. 81, pp. 65–80. AMS, Providence (2010). Also available as arXiv:0909.0551

    Google Scholar 

  12. Baez, J., Huerta, J.: Division algebras and supersymmetry II. Available as arXiv:1003.3436

  13. Baez, J., Lauda, A.: A prehistory of n-categorical physics. In: Halvorson, H. (ed.) Deep Beauty: Mathematical Innovation and the Search for an Underlying Intelligibility of the Quantum World. Cambridge University Press, Cambridge (2011). Also available as arXiv:0908.2469

    Google Scholar 

  14. Baez, J., Stay, M.: Physics, topology, logic and computation: a Rosetta Stone. In: Coecke, B. (ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 95–174. Springer, Berlin (2000). Also available as arXiv:0903.0340

    Chapter  Google Scholar 

  15. Barnum, H., Wilce, A.: Ordered linear spaces and categories as frameworks for information-processing characterizations of quantum and classical theory. Available as arXiv:0908.2354

  16. Barnum, H., Duncan, R., Wilce, A.: Symmetry, compact closure and dagger compactness for categories of convex operational models. Available as arXiv:1004.2920

  17. Barnum, H., Gaebler, C.P., Wilce, A.: Ensemble steering, weak self-duality, and the structure of probabilistic theories. Available as arXiv:0912.5532

  18. Bartels, T.: Functional analysis with quaternions. Available at http://tobybartels.name/notes/#quaternions

  19. Bourbaki, N.: Elements of Mathematics. Springer, Berlin (2008). Chapter VIII, Sect. 7, Prop. 12

    Google Scholar 

  20. Bourbaki, N.: Elements of Mathematics. Springer, Berlin (2008). Chapter IX, Appendix II, Prop. 4

    Google Scholar 

  21. Budinich, P., Trautman, A.: The Spinorial Chessboard. Springer, Berlin (1988)

    Book  Google Scholar 

  22. Coecke, B.: New Structures for Physics. Lecture Notes in Physics, vol. 813. Springer, Berlin (2000)

    Google Scholar 

  23. Corrigan, E., Hollowood, T.J.: The exceptional Jordan algebra and the superstring. Commun. Math. Phys. 122, 393–410 (1989). Also available at Project Euclid

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Dyson, F.: The threefold way: algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Feynman, R.: The reason for antiparticles. In: Elementary Particles and the Laws of Physics: the 1986 Dirac Memorial Lectures, pp. 1–60. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  26. Frobenius, F.G., Schur, I.: Über die reellen Darstellungen der endlichen Gruppen. Sitz. Akad. Preuss. Wiss. 186–208 (1906)

  27. Hardy, L.: Quantum theory from five reasonable axioms. Available at arXiv:quant-ph/0101012

  28. Holland, S.S. Jr.: Orthomodularity in infinite dimensions; a theorem of M. Solèr. Bull. Am. Math. Soc. 32, 205–234 (1995). Also available as arXiv:math/9504224

    Article  MathSciNet  MATH  Google Scholar 

  29. Hurwitz, A.: Über die Composition der quadratischen Formen von beliebig vielen Variabeln. Nachr. Ges. Wiss. Gött. 309–316 (1906)

  30. Jordan, P.: Über eine Klasse nichtassociativer hyperkomplexer Algebren. Nachr. Ges. Wiss. Gött. 569–575 (1932)

  31. Jordan, P., von Neumann, J., Wigner, E.: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29–64 (1934)

    Article  Google Scholar 

  32. Koecher, M.: Positivitätsbereiche in ℝn. Am. J. Math. 79, 575–596 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koecher, M.: In: Krieg, A., Walcher, S. (eds.) The Minnesota Notes on Jordan Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1710. Springer, Berlin (1999)

    Google Scholar 

  34. McCrimmon, K.: A Taste of Jordan Algebras. Springer, Berlin (2004)

    MATH  Google Scholar 

  35. Ng, C.-K.: Quaternion functional analysis. Available as arXiv:math/0609160

  36. Okubo, S.: Introduction to Octonion and Other Non-Associative Algebras in Physics. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  37. Piron, C.: Foundations of Quantum Physics. Benjamin, New York (1976)

    MATH  Google Scholar 

  38. Piron, C.: “Axiomatique” quantique. Helv. Phys. Acta 37, 439–468 (1964)

    MathSciNet  MATH  Google Scholar 

  39. Polchinski, J.: More on states and operators. In: String Theory, vol. I. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  40. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005), pp. 139–163. Amsterdam, Elsevier (2007). Also available at http://www.mscs.dal.ca/~selinger/papers/#dagger

    Google Scholar 

  41. Solèr, M.P.: Characterization of Hilbert spaces by orthomodular spaces. Commun. Algebra 23, 219–243 (1995)

    Article  MATH  Google Scholar 

  42. Urbanik, K., Wright, F.B.: Absolute-valued algebras. Proc. Am. Math. Soc. 11, 861–866 (1960). Freely available online from the AMS

    Article  MathSciNet  Google Scholar 

  43. Van Steirteghem, B., Stubbe, I.: Propositional systems, Hilbert lattices and generalized Hilbert spaces. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures: Quantum Structures. Elsevier, Amsterdam (2007)

    Google Scholar 

  44. Varadrajan, V.S.: Geometry of Quantum Theory. Springer, Berlin (1985)

    Google Scholar 

  45. Vicary, J.: Completeness of dagger-categories and the complex numbers. Available as arXiv:0807.2927

  46. Vinberg, E.B.: Homogeneous cones. Sov. Math. Dokl. 1, 787–790 (1961)

    MathSciNet  Google Scholar 

  47. Zelmanov, E.I.: On prime Jordan algebras. II. Sib. Mat. Zh. 24, 89–104 (1983)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Baez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baez, J.C. Division Algebras and Quantum Theory. Found Phys 42, 819–855 (2012). https://doi.org/10.1007/s10701-011-9566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9566-z

Keywords

Navigation