
Research Article
Attribute Reduction Based on Consistent Covering Rough Set
and Its Application

Jianchuan Bai,1,2 Kewen Xia,1,2 Yongliang Lin,1,2 and Panpan Wu1,2

1School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, China
2Key Lab of Big Data Computation of Hebei Province, 5340 Xiping Road, Tianjin 300401, China

Correspondence should be addressed to Kewen Xia; kwxia@hebut.edu.cn

Received 30 March 2017; Revised 25 June 2017; Accepted 24 August 2017; Published 2 October 2017

Academic Editor: Paolo Gastaldo

Copyright © 2017 Jianchuan Bai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As an important processing step for rough set theory, attribute reduction aims at eliminating data redundancy and drawing useful
information. Covering rough set, as a generalization of classical rough set theory, has attracted wide attention on both theory and
application. By using the covering rough set, the process of continuous attribute discretization can be avoided. Firstly, this paper
focuses on consistent covering rough set and reviews some basic concepts in consistent covering rough set theory.Then, we establish
the model of attribute reduction and elaborate the steps of attribute reduction based on consistent covering rough set. Finally, we
apply the studiedmethod to actual lagging data. It can be proved that ourmethod is feasible and the reduction results are recognized
by Least Squares Support Vector Machine (LS-SVM) and Relevance Vector Machine (RVM). Furthermore, the recognition results
are consistent with the actual test results of a gas well, which verifies the effectiveness and efficiency of the presented method.

1. Introduction

Attribute reduction has become an important step in pattern
recognition and machine learning tasks [1, 2]. The main goal
of attribute reduction is to remove redundant information
in datasets and draw useful information so as to improve
classification ability [3]. The theory of classical rough set, as
proposed by Pawlak in 1982, has been used as a mathematical
tool to deal with various types of insufficient and imperfect
data [4]. Rough set theory, which provides a popular math-
ematical framework for knowledge discovery, feature selec-
tion, datamining, and rule extraction, has been concerned by
many research scholars since it was first proposed. Generally
speaking, the traditional rough set theory can partition the
objects of a universe into mutually exclusive equivalence
classes, which was based on equivalence relations. The data
table that needs to be analyzed by rough set theory is called an
information system. Information system, as a mathematical
model in artificial intelligence, is deemed as an important
application of rough sets [5, 6]. Over the last decades, there
has been much work on information systems with rough set,
including some successful applications in machine learning,
decision analysis, and knowledge discovery.Therefore, rough

set theory has been playing a significant role in the unpre-
dictable and uncertain information systems [7, 8].

A drawback of attribute reduction in traditional rough
sets is that it can only deal with discrete databases.Therefore,
the continuous databases need to be discretized before
attribute reduction. Presently, the existing discretization
methods can be roughly classified into two categories: super-
vised discretization method and unsupervised discretization
method [9]. Supervised discretization methods generally
include discretization based on information entropy and
discretization based on ChiMerge algorithm [10], while
unsupervised discretization methods arguably include box
method for equal frequency or equal width, intuitive division
discretization, and discretization based on cluster analysis [11,
12]. There are two limitations in traditional attribute reduc-
tion based on rough set theory: (1) databases are numerical
in the real world, so that they cannot be handled directly by
traditional rough set theory; (2) numerical data have to be
discretized before attribute reduction, which inevitably leads
to information loss. Therefore, it is desirable to develop an
efficient method which can deal with numerical databases
directly. The covering rough set theory was proposed to
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Figure 1: Diagram of approximation relation.

solve this problem efficiently and it avoids the attribute
discretization [13].

Covering rough set theory is a generalization of tra-
ditional rough set theory, which can deal directly with
numerical data. Once launched, covering rough set was of
great concern. So far, many researchers conducted studies
on the approximation problems based on covering rough
set [14–17]. However, to the best of the authors’ knowledge,
there are relatively few results published on the attribute
reduction of covering rough sets and simultaneously its
practical application, which motivates the present study.

In this paper, we will first review the theory of traditional
rough set and upper-lower approximations, present some
basic concepts of consistent covering rough set theory, and
establish a model of attribute reduction. Then, the attribute
reduction based on consistent covering rough set will be
presented and further generalized, which will be compared
with attribute reduction based on traditional rough set.
Finally, we will apply the studied attribute reduction method
to actual logging gas data. LS-SVM and RVM algorithms
will be used to recognize the reduction results to confirm its
validity.

2. Basic Theory Relate to Rough Set

2.1. Pawlak’s Rough Sets. In rough set theory, the quadruplet𝑆 = ⟨𝑈,𝐴, 𝑉, 𝑓⟩ is called an information system, where 𝑈 ={𝑥1, 𝑥2, . . . , 𝑥𝑛} is a nonempty set of samples, called a universe
or a sample space. And 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} is a nonempty
set of attributes or features, which is divided into the set 𝐶
of conditional attributes and the set 𝐷 of decision attributes,𝐴 = 𝐶 ∪ 𝐷. Every subset 𝐵 of attributes can induce binary
relation Ind(𝐵), also called 𝐵-indiscernibility relation and
defined as Ind(𝐵) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 : 𝑎(𝑥) = 𝑎(𝑦), ∀𝑎 ∈ 𝐵}.𝑉 = ⋃𝑎∈𝐴𝑉𝑛, 𝑉𝑛 is the range of 𝑎 ∈ 𝐴; 𝑓 is a mapping
function of 𝑈 × 𝐴 → 𝑉; it gives an attribute value for each
object, where ∀𝑎 ∈ 𝐴, 𝑥 ∈ 𝑈, 𝑓(𝑥, 𝑎) ∈ 𝑉. For 𝑋 ⊆ 𝑈, 𝐵-
upper approximation and𝐵-lower approximation are defined
as follows: 𝐵(𝑥) = pos𝐵(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐵 ⊆ 𝑋},
𝐵(𝑥) = {𝑥 ∈ 𝑈 : [𝑥]𝐵 ∩ 𝑋 ̸= ⌀}, 𝐵𝑛(𝑋) = 𝐵(𝑋) − 𝐵(𝑋), and
neg𝐵(𝑋) = 𝑈 − 𝐵(𝑥). Figure 1 intuitively shows the 𝐵-upper
approximation, 𝐵-lower approximation, and the boundary
area.

An attribute 𝑎 ∈ 𝐵 (𝐵 ⊆ 𝐴) is called relatively dispensable
in𝐵 if Pos𝐵(𝐷) = Pos𝐵−{𝑎}(𝐷); otherwise, 𝑎 is indispensable in𝐵.The set of all indispensable attributes in𝐴 is called the core
of (𝑈, 𝐴), denoted as Core(𝐵). If𝐵 is relatively independent in(𝑈, 𝐴,𝐷) and Pos𝐵(𝐷) = Pos𝐴(𝐷), 𝐵 is called a reduction of(𝑈, 𝐴).
2.2. Basic Nations Related to Covering Rough Set

Definition 1 (see [18]). Let𝑈 be a universe of discourse and𝐶
be a family of subsets of 𝑈. Then, 𝐶 is called a covering of 𝑈
if no subset in 𝐶 is empty and⋃𝐶 = 𝑈.

It is obvious that a partition of𝑈 is certainly a covering of𝑈 and the concept of a covering is an extension of a partition.
In [19, 20] the notion of coverings was used to construct lower
and upper approximation operators and to study properties
of these operators.

Definition 2 (see [21]). Let𝐶 = {𝐾1, 𝐾2, . . . , 𝐾𝑛} be a covering
of 𝑈. For every 𝑥 ∈ 𝑈, let 𝐶𝑥 = ⋂{𝐾𝑖 : 𝑥 ∈ 𝐾𝑖 ∧ 𝐾𝑖 ∈ 𝐶},
cov(𝐶) = {𝐶𝑥 : 𝑥 ∈ 𝑈} is also a covering of 𝑈, and 𝐶𝑥 is
the minimal set including 𝑥 in cov(𝐶); one calls cov(𝐶) the
induced covering of 𝐶.

For every 𝑥 ∈ 𝑈, 𝐶𝑥 is the minimal set including 𝑥 in
cov(𝐶). Every element in cov(𝐶) cannot be written as the
union of other elements in cov(𝐶). cov(𝐶) = 𝐶 if and only
if 𝐶 is a partition. For any 𝑥, 𝑦 ∈ 𝑈, if 𝑦 ∈ 𝐶𝑥 then 𝐶𝑥 ⊇ 𝐶𝑦;
so if 𝑦 ∈ 𝐶𝑥 and 𝑥 ∈ 𝐶𝑦, then 𝐶𝑥 = 𝐶𝑦.
Definition 3 (see [21]). Let Δ = {𝐶𝑖 : 𝑖 = 1, . . . , 𝑚} be a family
of coverings of 𝑈. For every 𝑥 ∈ 𝑈, let Λ 𝑥 = ⋂{𝐶𝑖𝑥 : C𝑖𝑥 ∈
cov(𝐶𝑖), 𝑖 = 1, 2, . . . , 𝑚}, and cov(Δ) = {Λ 𝑥 : 𝑥 ∈ 𝑈} is then
also a covering of 𝑈; Λ 𝑥 is the intersection of all coverings
including 𝑥 in Λ.

ObviouslyΛ 𝑥 is the intersection of all coverings including𝑥 in Δ. So, for every 𝑥 ∈ 𝑈, Λ 𝑥 is the minimal set including𝑥 in cov(Δ). cov(Δ) can be viewed as the intersection of
coverings in Δ. Every element in cov(Δ)cannot be written
as the union of other elements in cov(Δ). If every covering
in Δ is a partition, then cov(Δ) is also a partition and Λ 𝑥 is
the equivalence class that includes 𝑥. For every 𝑥, 𝑦 ∈ 𝑈, if𝑦 ∈ Λ 𝑥, then Λ 𝑥 ⊇ Λ 𝑦, so if 𝑦 ∈ Λ 𝑥 and 𝑥 ∈ Λ 𝑦, thenΛ 𝑥 = Λ 𝑦.
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Table 1: Weather information table.

No. c1 c2 c3 c4 c5 D
1 30000 lux 21∘C 35% 5.4m/s 2 points Yes
2 3000 lux 12∘C 45% 8.9m/s 23 points Yes
3 120000 lux 35∘C 17% 1.4m/s 9 point No
4 450 lux 6∘C 76% 17.5m/s 54 points No
5 8000 lux 17∘C 62% 0.2m/s 35 points Yes
6 90000 lux 29.5∘C 22% 3.7m/s 3 points Yes

Definition 4 (see [21]). Let Δ = {𝐶𝑖 : 𝑖 = 1, . . . , 𝑚} be a
family of coverings of𝑈. For any𝑋 ⊆ 𝑈, the lower and upper
approximations of 𝑋 with respect to cov(Δ) are defined as
follows: 𝑃𝑋 = {𝑥 ∈ 𝑈 : Λ 𝑥 ⊆ 𝑋}, 𝑃𝑋 = {𝑥 ∈ 𝑈 : Λ 𝑥 ∩ 𝑋 ̸=⌀}.

The positive domain, negative domain, and boundary
domain of 𝑋 relative to Δ are, respectively, computed by the
following formulas: 𝑃𝑋 = posΛ(𝑋), negΛ(𝑋) = 𝑈 − 𝑃𝑋, and𝐵𝑛(𝑋) = 𝑃𝑋 − 𝑃𝑋.
3. Attribute Reduction
and Simulation Experiment

3.1. Attribute Reduction Based on Traditional Rough Set. In
an information system, attribute reduction is an important
application of rough set theory. The key idea is to reduct
redundant information while maintaining the indiscerni-
bility relation. Then, traditional reduction methods, such
as attribute reduction based on discernibility matrix [22],
attribute reduction based on heuristic information [23], and
attribute reduction based on evolutionary computation [24],
can be used to obtain the attribute reduction results. In the
following, we take the particle swarm optimization (PSO)
algorithm as an example to study attribute reduction based
on an evolutionary algorithm.

3.1.1. Attribute Reduction Based on PSO Algorithm. The basic
concepts of attribute reduction in rough set theory and
the ideas of particle swarm optimization (PSO) are briefly
combined to construct attribute reduction algorithm based
on PSO. It reduces algorithm complexity effectively.The steps
of its algorithm are as follows.

Step 1. Discretize data in original information table (the
discretization method is attribute discretization based on
curve inflection points) [25].

Step 2. Initialize the particle swarm randomly.

Step 3. Construct the fitness function: 𝑓(𝑥) = 𝛼(1 − card(𝑥)/𝑚) + (1 − 𝛼)(𝛾𝑎(𝐷)/𝛾𝑏(𝐷)); calculate the fitness value of each
particle swarm.

Step 4. For each particle swarm, set current fitness value as
the new 𝑝𝑏𝑒𝑠𝑡, if the current fitness value is better than the
past one. Select the best 𝑝𝑏𝑒𝑠𝑡 as 𝑔𝑏𝑒𝑠𝑡, and continue to
update the position.

Table 2: Discrete results based on curve inflection points.

No. c1 c2 c3 c4 c5 D
1 1 1 0 1 0 1
2 0 0 1 1 1 1
3 1 1 0 0 0 0
4 0 0 1 1 1 0
5 0 0 1 0 1 1
6 1 1 0 0 0 1

Step 5. Determine whether the termination condition is
satisfied; if yes, go to Step 6. Otherwise, return to Step 2 (or
take the iteration times as termination condition).

Step 6. Test each particle by using the reduction definition,
get all the candidate reduction sets, remove the redundant
attributes, and then get the final reduction sets.

3.1.2. Classic Example Simulation and Comparative Analysis.
Table 1 is weather information of a city during daytime.
And “No.” shows the number of tested days. There are
5 condition attributes which are “c1” (luminosity), “c2”
(temperature), “c3” (relative humidity), “c4” (wind speed),
and “c5” (precipitation), respectively. “D” is decision attribute
which represents travel condition.

After discretization based on curve inflection points [25],
see Table 2.

After attribute reduction based on PSO algorithm, the
reduction result is 𝑈 = {c2, c4, c5}, which means that
the condition attributes c1 and c3 are redundant. And 3
key attributes determine the travel condition, which are
c2 (temperature), c4 (wind speed), and c5 (precipitation),
respectively.

However, if we apply discretization based on information
entropy, see Table 3.

After the same reduction method based on PSO algo-
rithm but not same discretization method, the reduction
result is 𝑈 = {c1, c3, c4, c5}. Apparently, 4 key attributes
determine travel condition. They are c1 (luminosity), c3
(relative humidity), c4 (wind speed), and c5 (precipitation),
respectively.

We examine that the numerical data have to be discretized
through traditional rough set theory in real life. However, it
should be pointed out that attribute discretization destroys
indiscernibility relations between condition attributes and
decision attributes to some extent, and it also leads to lack of
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Table 3: Discrete results based on information entropy.

No. c1 c2 c3 c4 c5 D
1 2 2 2 2 1 1
2 1 1 2 2 1 1
3 2 2 1 1 1 0
4 1 2 2 2 2 0
5 1 1 2 1 2 1
6 2 2 1 1 1 1

information and different reduction results. As a result, the
accuracy of attribute reduction is affected. In order to solve
the complexity of continuous attribute discretization, we will
present a method of attribute reduction based on consistent
covering rough set. And the present method can be used
to greatly improve the accuracy and efficiency of attribute
reduction.

3.2. Attribute Reduction Based on Consistent
Covering Rough Set

3.2.1. Basic Definitions and Principles. In practical applica-
tions, a large number of databases cannot be directly handled
by classical rough sets. For this reason, neighborhood rough
sets and similarity relation rough sets were developed. These
models induce coverings of a universe instead of partitions
and can thus be categorized into covering rough sets. In the
following, we review some definitions of consistent covering
rough sets.

Definition 5 (see [26]). Let Δ = {𝐶𝑖 : 𝑖 = 1, 2, . . . , 𝑚} be a
family of coverings of 𝑈. 𝐷 is a decision attribute set. 𝑈/𝐷 is
a decision division on 𝑈.

If, ∀𝑥 ∈ 𝑈, ∃𝐵𝑗 ∈ 𝑈/𝐷 such that Δ 𝑥 ⊆ 𝐷𝑗, then
decision system (𝑈, Δ,𝐷) is called a consistent covering
decision system and donated as cov(Δ) ≤ 𝑈/𝐷. The
positive region of 𝐷 relative to Δ is defined as PosΔ(𝐷) =⋃𝑋∈𝑈/𝐷Δ(𝑋). Otherwise, (𝑈, Δ,𝐷) is called an inconsistent
covering decision system.

Definition 6. Let (𝑈, Δ,𝐷 = {𝑑}) be a consistent cov-
ering decision system. Supposing 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑛},
by 𝑀(𝑈, Δ,𝐷) we donate 𝑛 × 𝑛 matrix (𝑐𝑖𝑗), called the
discernibility matrix of (𝑈, Δ,𝐷) and defined as follows.

(1) when 𝑑(Δ 𝑥𝑖) ̸= 𝑑(Δ 𝑥𝑗),
𝑐𝑖𝑗 = {𝐶 ∈ Δ : (𝐶𝑥𝑖 ̸⊂ 𝐶𝑥𝑗) ∧ (𝐶𝑥𝑗 ̸⊂ 𝐶𝑥𝑖)} ∪ {𝐶𝑠
∧ 𝐶𝑡 : ((𝐶𝑠)𝑥𝑖 ⊂ (𝐶𝑠)𝑥𝑗) ∧ ((𝐶𝑡)𝑥𝑗 ⊂ (𝐶𝑡)𝑥𝑖)} .

(1)

(2) When 𝑑(Δ 𝑥𝑖) = 𝑑(Δ 𝑥𝑗),
𝑐𝑖𝑗 = Δ. (2)

If 𝐶 ∈ 𝑐𝑖𝑗 for 𝑑(Δ 𝑥𝑖) ̸= 𝑑(Δ 𝑥𝑗), 𝐶 is one of the covers to
maintain the relation between 𝑥𝑖 and 𝑥𝑗 with respect to Δ.

Here we should point out that if 𝑐𝑖𝑗 = {𝐶𝑠 : 𝑠 = 1, . . . , 𝑙},
the relations between elements in 𝑐𝑖𝑗 are a disjunction; if 𝑐𝑖𝑗 ={𝐶, 𝐶𝑠 ∧ 𝐶𝑡 : 𝑠, 𝑡 ≤ 𝑛}, we mean it is conjunction between 𝐶𝑠
and 𝐶𝑡, 𝑠0, 𝑡0, 𝑠1, 𝑡1 ≤ 𝑛. Since𝑀(𝑈, Δ,𝐷) is symmetric and𝑐𝑖𝑖 = Δ, for 𝑐𝑖𝑖 = Δ𝑖 = 1, . . . , 𝑛, we represent𝑀(𝑈, Δ,𝐷) only
by elements in the lower triangle of𝑀(𝑈, Δ,𝐷).
Theorem 7. Let (𝑈, Δ,𝐷 = {𝑑}) be a consistent covering
decision system, 𝑀(𝑈, Δ,𝐷) = (𝑐𝑖𝑗 : 𝑖, 𝑗 ≤ 𝑛) is
the discernibility matrix of (𝑈, Δ,𝐷), and the discernibility
function is as follows:

𝑓 (𝑈, Δ,𝐷) =
𝑛⋀
𝑖,𝑗=1

(⋁𝑐𝑖𝑗) , (𝑐𝑖𝑗 ̸= ⌀) (3)

where ⋁𝑐𝑖𝑗 means, for every 𝑐𝑖𝑗, 𝐶 or 𝐶𝑠 ∧ 𝐶𝑡 conducts a
disjunctive operation. Make 𝑓(𝑈, Δ,𝐷) = ⋁𝑙𝑘=1(⋀Δ 𝑘) (Δ 𝑘 ⊆Δ); then the set {Δ 𝑘 : 𝑘 ≤ 𝑙} is the collection of all the reductions
of the system.

3.2.2. Classic Example Simulation. In order to further validate
the feasibility of the algorithm, illustrative example is applied
for simulation analysis.

Table 4 is logging dataset of a typical well, where “No.”
represents the number of wells. “c1” represents acoustic time,
“c2” represents caliper, “c3” represents natural gamma, “c4”
represents plate radius, “c5” represents induction resistivity,
and “c6” represents flushed zone resistivity. “D” is the type of
a well, “0” represents dry well, and “1” represents oil well [27].

Obviously, all the condition attributes are numerical data
in Table 4. So data have to be discretized and they cannot
be directly handled by traditional rough sets. Therefore,
consistent covering rough set can be applied to deal with the
data in Table 4 so that the lack of information by traditional
rough set theory is avoided.

According to the definition of covering rough set, 𝐶𝑖≤7 ={(𝐴 𝑖)𝑏(𝑗) : 𝑗 = 1, 2, . . . , 7} is a covering of sample set𝑈 = {1, 2, . . . , 7}. Therefore, Δ = {𝐶1, 𝐶2, 𝐶3, 𝐶4} constitutes
4 coverings of sample 𝑈. In decision attribute table, for
every condition attribute, the “descending order” is used to
establish the equivalence relation. So we can get Δ 1 = {1},Δ 2 = {2}, Δ 3 = {3}, Δ 4 = {4}, Δ 5 = {5}, Δ 6 = {6}, Δ 7 = {7}.
The sample 𝑈 can be divided into two categories which are𝐷1, 𝐷2 according to decision attribute 𝐷, and 𝐷1 = {1, 2, 3},𝐷2 = {4, 5, 6, 7}. Obviously, PosΔ(𝐷) = ⋃𝑋∈𝑈/𝐷Δ(𝑋) =Δ(𝐷1) ∪ Δ(𝐷2) due to the definition of consistent covering
rough set. And Δ(𝐷1) = 𝑅𝑠(1) ∪ 𝑅𝑠(3) ∪ 𝑅𝑠(6) = {1, 2, 3},Δ(𝐷2) = 𝑅𝑠(2) ∪ 𝑅𝑠(4) ∪ 𝑅𝑠(5) = {4, 5, 6, 7}. Therefore, the
discernibility matrix of (𝑈, Δ,𝐷) is as follows:

[[[[[[[[[[[
[

Δ Δ Δ Δ 14 Δ 15 Δ 16 Δ 17
Δ Δ Δ Δ 24 Δ 25 Δ 26 Δ 27
Δ Δ Δ Δ 34 Δ 35 Δ 36 Δ 37
Δ Δ Δ Δ Δ Δ Δ
Δ Δ Δ Δ Δ Δ Δ
Δ Δ Δ Δ Δ Δ Δ

]]]]]]]]]]]
]

. (4)
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Table 4: Logging data set.

No. c1 c2 c3 c4 D
1 341.919 30.6871 28.7472 7.67827 0
2 330.67 22.2717 27.4297 6.68225 0
3 384.480 22.1349 32.9302 8.72574 0
4 331.969 30.7547 25.1362 5.4875 1
5 299.244 31.5446 30.8018 5.32932 1
6 267.413 32.3739 31.9981 3.45624 1
7 277.413 22.2649 29.9981 4.45624 1

For every Δ, calculation results are as follows:

Δ 14 = Δ 34 = Δ 35 = Δ 36 = Δ 37
= {𝐶1 ∧ 𝐶2, 𝐶2 ∧ 𝐶3, 𝐶2 ∧ 𝐶4}

Δ 15 = Δ 16 = Δ 25 = Δ 26
= {𝐶1 ∧ 𝐶2, 𝐶1 ∧ 𝐶3, 𝐶2 ∧ 𝐶4, 𝐶3 ∧ 𝐶4}

Δ 17 = Δ 27 = {𝐶1 ∧ 𝐶3, 𝐶2 ∧ 𝐶3, 𝐶3 ∧ 𝐶4}
Δ 24 = {𝐶1 ∧ 𝐶3, 𝐶1 ∧ 𝐶4, 𝐶1 ∧ 𝐶6, 𝐶2 ∧ 𝐶3, 𝐶2 ∧ 𝐶4}
Δ = 𝐶1 ∨ 𝐶2 ∨ 𝐶3 ∨ 𝐶4.

(5)

Reduction results based on discernibility function are as
follows:

𝑓 (𝑈, Δ,𝐷) =
𝑛⋀
𝑖,𝑗=1

(⋁𝑐𝑖𝑗) = Δ ∧ ((𝐶1 ∧ 𝐶2)

∨ (𝐶2 ∧ 𝐶3) ∨ (𝐶2 ∧ 𝐶4) ∨ (𝐶1 ∧ 𝐶3) ∨ (𝐶1 ∧ 𝐶4)
∨ (𝐶2 ∧ 𝐶4)) ∧ ((𝐶1 ∧ 𝐶3) ∨ (𝐶1 ∧ 𝐶4)
∨ (𝐶2 ∧ 𝐶3) ∨ (𝐶2 ∧ 𝐶4)) ∧ ((𝐶1 ∧ 𝐶2)
∨ (𝐶1 ∧ 𝐶3) ∨ (𝐶2 ∧ 𝐶4) ∨ (𝐶3 ∧ 𝐶4))
∧ ((𝐶1 ∧ 𝐶3) ∨ (𝐶2 ∧ 𝐶3) ∨ (𝐶3 ∧ 𝐶4)) = (𝐶1 ∧ 𝐶2
∧ 𝐶3) ∨ (𝐶2 ∧ 𝐶3 ∧ 𝐶4) .

(6)

According to the results, there are two reduction results
in this decision system, which are (𝐶1 ∧ 𝐶2 ∧ 𝐶3), (𝐶2 ∧ 𝐶3 ∧𝐶4), respectively. Apparently, the condition attributes 𝐶1, 𝐶2,
are the key information to distinguish between “dry well” and
“oil well,” so Core(Δ) = {𝐶1, 𝐶2}.
4. Algorithm Description Based on Consistent
Covering Rough Set

Attribute reduction is a core application of rough set. In this
paper, the main emphasis is laid on the attribute reduction
based on consistent covering rough set. For consistent cov-
ering decision system, the essence of attribute reduction is
to ensure the minimum subset of conditional attribute so as
to achieve the purpose of attribute reduction [28]. According

End

Read successfully

No

Yes

Sort sample data as descending
order; build the coverings

Build discernibility matrix

Discernibility function

Get reduction results

Ensure coverings are 
consistent

Read sample 
data

Start

Figure 2: Flow chart of reduction based on consistent covering
rough set.

to the above classic example (Section 3.2.2), the flow chart of
attribute reductionmodel based on consistent covering rough
set is provided in Figure 2.

According to Figure 2, algorithm steps are designed as
follows. Furthermore, the algorithm of attribute reduction
based on consistent rough set is programmed in this paper.

Step 1. Read sample data in decision information table.

Step 2. Sort sample data as descending order, and build
coverings of the sample.

Step 3. Ensure the decision system is consistent; then run
Step 4 (we only consider consistent covering decision system
in this paper).
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Step 4. Build discernibility matrix 𝑀(𝑈, Δ,𝐷), that is, (𝑐𝑖𝑗),1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛.
Step 5. Write discernibility function:𝑓(𝑈,Δ,𝐷)=⋀𝑛𝑖,𝑗=1(⋁ 𝑐𝑖𝑗),(𝑐𝑖𝑗 ̸= 𝜑) according to discernibility matrix.

Step 6. Get the reduction set {Δ 𝑘 : 𝑘 ≤ 𝑙} through conjunctive
and disjunctive forms; that is, Red𝐷(Δ) = {Δ 𝑘 : 𝑘 ≤ 𝑙}.
5. Practical Application
and Experimental Analysis

In order to validate the effectiveness of the studied method
for attribute reduction based on consistent covering rough
set, we adopt the logging data of a gas well named “Su6”
in Xinjiang (China) as showed in Table 5 and conduct a
comparative analysis. All condition attributes are numerical.
Moreover, 200 experimental sample data types (well depth
3000m–3400m) are selected instead of all logging data in
order to maintain confidentiality. Among them, they are 80
gas layer points and 120 nongas layer points according to
the actual test results. There are 13 condition attributes in
Table 5, which are GR (natural gamma), DT (acoustic time),
SP (spontaneous potential), WQ (flush zone resistivity), LLD
(deep investigated double lateral resistivity), LLS (shallow
investigated double lateral resistivity), DEN (density), NPHI
(compensated neutron), PE (photoelectric absorption index),
U (uranium), TH (thorium), K (potassium), andCALI (bore-
hole diameter).The decision attributes of sample information
are the nongas layer and the gas layer, the decision attributes
are denoted by 𝐷1, 𝐷2, respectively. And “0” is for nongas
layer; “1” is for gas layer. (Note: gas field is abbreviated as
natural gas field that is rich in natural gas. Typically, organic
matter is buried between 1 and 6 km depth, and oil will
be produced with temperatures between 65 and 150 degrees
Celsius. Natural gas will be produced while deeper.)

According to the definition of consistent covering rough
set, PosΔ(𝐷) = ⋃𝑋∈𝑈/𝐷Δ(𝑋) = Δ(𝐷1) ∪ Δ(𝐷2). Obvi-
ously, logging data in Table 5 is consistent decision system.
The data in Table 5 are input to the program of attribute
reduction based on consistent covering rough set. Then,
reduction results are {GR,DT, SP, LLD, LLS,DEN,K}. The
two different traditional reduction methods of the rough set,
which are attribute reduction based on identification matrix
and particle swarm optimization- (PSO-) based attribute
reduction of rough set, are used to deal with the data
in Table 5 for comparison and analysis. Reduction results
are shown in Table 6.

According to reduction results and running time in
Table 6, we know that reduction method based on consistent
covering rough set has advantages of fewer reduction
attributes and shorter running time.

In order to further validate the effectiveness of attribute
reduction based on consistent covering rough set, the reduc-
tion results are recognized by Least Squares Support Vector
Machine (LS-SVM) [29] and Relevance Vector Machine
(RVM) [30]. Recognition results are shown in Table 7. The
recognition results show that recognition accuracies of the
studied algorithm are 94.2% (LS-SVM) and 91.5% (RVM),
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Figure 3: The actual gas distribution.
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Figure 4: LS-SVM recognition result.

respectively, which are higher than the other two reduction
algorithms.

Figure 3 shows the actual gas distribution, Figure 4 shows
that recognition results of the studied algorithm by LS-
SVM, and the recognition accuracy is 94.2%. Figure 5 shows
recognition results of the studied algorithm by RVM and the
recognition accuracy is 91.5%.

According to a comparison of recognition results in
Figures 3, 4, and 5, we know both recognition accuracies of
the studied algorithm by LS-SVM and RVM go up to 90%.
It can effectively reduce the tedious work in gas recognition
and improve the recognition accuracy. Figures 6 and 7 show
classification of the studied algorithm by LS-SVM and RVM,
respectively. Among them, the red line indicates classification
line, the green points indicate gas layer points, and the black
asterisks indicate nongas layer points.

The proposition of attribute reduction based on con-
sistent covering rough set is of great significance. On one
hand, it avoids the tedious steps of continuous attribute
discretization and reduces the lack of important information
in decision information table. For these reasons, the accuracy
and efficiency of attribute reduction based on traditional
rough set can be improved largely. On the other hand, the
proposed algorithm can directly handle the numerical data
in the real world and significantly reduce the workload
compared with traditional attribute reduction.The presented
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Table 6: Comparison of reduction results.

Reduction algorithm Reduction results Running time
Attribute reduction based on consistent covering rough set {GR,DT, SP, LLD, LLS,DEN,K} 2.67 s
Attribute reduction based on identification matrix {GR, SP, LLD,DEN,NPHI,PE,U,TH,CALI} 3.61 s
PSO-based attribute reduction of rough set {GR, SP,WQ, LLD,DEN,NPHI,PE,TH,K} 2.98 s

Table 7: Comparison of recognition accuracy.

Reduction algorithm LS-SVM RVM
Attribute reduction based on
consistent covering rough set 94.2% 91.5%

Attribute reduction based on
identification matrix 87.3% 83.6%

PSO-based attribute reduction of
rough set 89.1% 86.7%
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Figure 5: RVM recognition result.

method was applied to actual lagging data; it proved that
gas exploration is effective and the recognition accuracy is
high. The presented method is feasible and reasonable and it
has important theoretical significance and practical value for
artificial intelligence and data mining.

6. Conclusion

An efficient attribute reduction algorithm on the basis of
consistent covering rough set has been presented.The knowl-
edge of traditional rough set and covering rough set has
been analyzed.Thedrawbacks of attribute reduction based on
traditional rough set and the advantages of covering rough set
have been also discussed. The actual logging data have been
applied to test the feasibility and efficiency of the presented
algorithm. The experimental results have shown that the
studied reduction method can effectively handle numerical
data and is much more efficient than traditional rough set
theory.The reduction results have been comparedwith actual
recognition results by LS-SVM and RVM algorithm so as
to validate the algorithm's effectiveness. It has been demon-
strated that the proposed recognition results are consistent
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Figure 6: Classification of sample data by LS-SVM.
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Figure 7: Classification of sample data by RVM.

with the actual gas distribution and the recognition accuracy
is high.
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