Condensed Matter Physics
and the Nature of Spacetime

This essay considers the prospects of modeling spacetime as a phenomenon that emerges in the low-energy
limit of a quantum liquid. It evaluates three examples of spacetime analogues in condensed matter
systems that have appeared in the recent physics literature, and suggests how they might lend credence to
an epistemological structural realist interpretation of spacetime that emphasizes topology over symmetry
in the accompanying notion of structure.
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1. Introduction

In the philosophy of spacetime literature not much attention has been given to concepts
of spacetime arising from condensed matter physics. This essay attempts to address
this. I look at analogies between spacetime and a quantum liquid that have arisen from
effective field theoretical approaches to highly correlated many-body quantum systems.
Such approaches have suggested to some authors that spacetime can be modeled as a
phenomenon that emerges in the low-energy limit of a quantum liquid with its contents
(matter and force fields) described by effective field theories (EFTs) of the low-energy
excitations of this liquid. While directly relevant to ongoing debates over the
ontological status of spacetime, this programme also has other consequences that should
interest philosophers of physics. It suggests, for instance, a particular approach towards
quantum gravity, as well as an anti-reductionist attitude towards the nature of
symmetries in quantum field theory. Moreover, while the topic of EFTs in the
philosophy of quantum field theory literature has been given some attention (e.g.,
Castellini 2002, Hartmann 2001, Huggett and Weingard 1995), surprisingly little has
been said about how EFTs arise in condensed matter systems.

The plan of the essay is as follows. Section 2 sets the stage by describing the nature of
EFTs in condensed matter systems. Section 3 looks at three examples of spacetime
analogues in condensed matter systems that have appeared in the physics literature:
analogues of general relativistic spacetimes in superfluid Helium 4 associated with the
"acoustic" spacetime programme (e.g., Barcel6 et al. 2005), analogues of the Standard
Model of particle physics in superfluid Helium 3 (Volovik 2003), and twistor analogues



of spacetime in 4-dimensional quantum Hall liquids (Sparling 2002). Section 4 examines
the notion of low-energy emergence that some authors have associated with these
examples, indicating how it is distinct from a "received view" of emergence associated
with phase transitions in condensed matter systems, and situating it in the general
debate over the concept of emergence in the philosophy of science literature. The key
claim is that low-energy emergence is minimally epistemological in nature. Finally,
Section 5 examines the notion of universality associated with the above examples and
indicates how it can inform a concept of dynamical structure that might provide the
basis for an epistemological structural realist interpretation of spacetime. A key
characteristic of this interpretation is that it emphasizes topology over symmetry in the
accompanying notion of structure.

2. Effective Field Theories in Condensed Matter Systems

The condensed matter systems to be discussed below are highly-correlated quantum
many-body systems; that is, many-body systems that display macroscopic quantum
effects. Typical examples include superfluids, superconductors, Bose condensates, and
quantum Hall liquids. In general, an effective field theory of such a system describes the
dynamics of the states with energy close to zero. These low-energy states can take the
following forms (Volovik 2003, pg. 4):

(i) Bosonic collective modes of the ground state of the system.

(ii) Fermionic excitations of the system above its ground state, referred to as
“quasiparticles”.

(iii) Topological defects of the ground state, the simplest taking the form of vortices.

Intuitively, one considers the system in its ground state and tickles it with a small
amount of energy. The ripples that result then take one of the above three forms. An
effective field theory of such low-energy states is obtained by constructing a low-energy
approximation of the original theory. In the Lagrangian formalism, one can expand the
Lagrangian of the system in small fluctuations in the field variables about their ground
state values, and then integrate out the high-energy fluctuations. An example of this
will be the EFT for superfluid Helium 4 below. Alternatively, in the Hamiltonian
formalism, one can linearize the energy of the system about the points where it vanishes,

and then construct the corresponding low-energy Hamiltonian. An example of this will
be the EF'T for superfluid Helium 3.

As will be readily apparent below, the Lagrangian (or Hamiltonian) of an EFT (the
"effective Lagrangian") will typically differ formally from the Lagrangian of the original
theory to the extent that the former cannot be embedded in the latter in the sense of a



sub-theory (in arguably either syntactic or semantic senses of the latter). Informally,
the EFT will entail different dynamical laws. Thus under typical notions of reduction,
an EFT cannot be said to reduce to the original theory. This will be important in the
discussion of the associated notion of low-energy emergence in Section 4.

Note finally that not all systems will admit low-energy approximations. Whether an
EFT for a given system can be constructed is a contingent matter and depends on the
system's dynamics. For fermionic systems, it turns out that the existence and type of
an EFT in particular depends on the topology of the system's momentum space. This is
related to techniques used in renormalization group theory and will be explained in
more detail in Section 5 below where it will inform a notion of dynamical structure.

3. Spacetime Analogues in Superfluid Helium and Quantum Hall
Liquids

This section critically reviews three examples of spacetime analogues in condensed

matter systems. The first concerns acoustic spacetimes in superfluid Helium 4, the

second concerns the Standard Model and superfluid Helium 3, and the last concerns
twistors and quantum Hall liquids.

3.1. "Acoustic" Spacetimes and Superfluid Helium 4

The ground state of superfluids and conventional superconductors is believed to be a
Bose condensate. In the case of superfluid Helium 4, this condensate consists of *He
atoms (Helium isotopes with four nucleons) and can be characterized by an order
parameter that takes the form of a “macroscopic” wavefunction ¢, = (p,)”“e” with
condensate particle density p, and coherent phase 6 (the latter can be viewed as a
measure of how correlated the constituents of the condensate are). An appropriate
Lagrangian describes non-relativistic neutral bosons (viz., ‘He atoms) interacting via a
spontaneous symmetry breaking potential with coupling constant o’ (see, e.g., Zee 2003,
pp. 175, 257),

, 1 .
Ly = ip'0p — %&-@3#) + el — a’('e)? i=1,2,3. (1)

Here m is the mass of a ‘He atom, and the term involving the chemical potential y
enforces particle number conservation. This is a thoroughly non-relativistic Lagrangian
invariant under Galilean transformations. Importantly, it encodes both the normal



state of the liquid and the superfluid state, as well as the phase transition between these
two states accompanied by the spontaneously broken symmetry.

A low-energy approximation of (1) can be obtained in a two-step process':

(a) One first writes the field variable ¢ in terms of density and phase variables, ¢ =
(p)”“e”, and expands the later linearly about their ground state values, p = p, + 8p,
0 = 0, + 60 (where 6p and 66 represent fluctuations in density and phase above the
ground state).

(b) After substituting back into (1), one identifies and integrates out the high-energy
fluctuations.

Since the ground state (as given by the macroscopic wavefunction of the condensate) is
a function only of the phase, low-energy excitations take the form of phase fluctuations
08. To remove the high-energy density fluctuations dp, one “integrates” them out: One
way to do this is by deriving the Euler-Lagrange equations of motion for the density
variable, solving for dp, and then substituting back into the Lagrangian. The result
schematically is a sum of two terms: L, = L[py, 0] + L'14.[60], where the first term
describes the ground state of the system and is formally identical to (1), and the second
term, dependent only on the phase fluctuations, describes low-energy fluctuations above
the ground state. This second term represents the effective field theory of the system
and is generally referred to as the effective Lagrangian. To second order in 660, it takes
the following explicit form:

Ll = 2500 +00.0F = 2001 | )

« 2m
with 66 replaced by 6 for the sake of notation. Here the second order term depends
explicitly on the superfluid velocity v, = (1/m)d#. One now notes that (2) is formally

identical to the Lagrangian that describes a massless scalar field in a (341)-dim curved
spacetime:

17
‘C4/He = 5 _gguyaugaue ’ My, V= 07 ]-7 27 3 (3)

where the curved effective metric depends explicitly on the superfluid velocity v,

ds = g, da"dr’ = (p/em)[—df + 6,(dd — v'dt)(da’ — Vdt)] , (4)

' The following draws on Wen (2004, pp. 82-83) and Zee (2003, pp. 257-258).
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where (—g)* = p°/m’c, and ¢ = 2a’p/m (see, e.g., Barcel6 et al. 2001, pp. 1146-1147).
One initial point to note is that, if the original Lagrangian had been expanded to 1st
order in 66, the second order term dependent on v, would vanish in both the effective
Lagrangian and the effective metric, and the latter would be formally identical to a flat
Minkowski metric (up to conformal constant). This suggests an interpretation of the
effective metric (4) as representing low-energy curvature fluctuations (due to the
superfluid velocity) above a flat Minkowski background. This is formally similar to the
linear approximation of solutions to the Einstein Equations in general relativity, which
can likewise be approximated by low-energy fluctuations in curvature above a flat
Minkowski background metric. This formal equivalence has been exploited to probe the
physics of black holes and the nature of the cosmological constant.

(i) Acoustic Black Holes. The general idea is to identify the speed of light in the
relativistic case with the speed of low-energy fluctuations, generically referred to as
sound modes, in the condensed matter case; hence the terms "acoustic" spacetime and
"acoustic" black hole. In general, acoustic black holes are regions in the background
condensate from which low-energy fluctuations traveling at or less than the speed of
sound cannot escape. This can be made more precise with the definitions of acoustic
versions of ergosphere, trapped region, and event horizon, among others. A growing
body of literature seeks to exploit such formal similarities between relativistic black hole
physics and acoustic “dumb” hole physics (see, e.g., Barceld, et al. 2005). The primary
goal is to provide experimental settings in condensed matter systems for relativistic
phenomena such as Hawking radiation associated with black holes.

(ii) The Cosmological Constant. Volovik (2003) has argued that the analogy between
superfluid Helium and general relativity provides a solution to the cosmological constant
problem. The latter he takes as the conflict between the theoretically predicted value of
the vacuum energy density in quantum field theory (QFT), and the observationally
predicted value: The QFT theoretical estimate is 120 orders of magnitude greater than
the observational estimate. Volovik sees this as a dilemma for the marriage of QFT
with general relativity. If the vacuum energy density contributes to the gravitational
field, then the discrepancy between theory and observation must be addressed. If the
vacuum energy density is not gravitating, then the discrepancy can be explained away,
but at the cost of the equivalence principle. Volovik’s preferred solution is to grab both
horns by claiming that both QFT and general relativity are EFTs that emerge in the
low-energy sector of a quantum liquid.

(a) The first horn is grasped by claiming that QFTs are EFTs of a quantum liquid.
As such, the vacuum energy density of the QFT does not represent the true
“trans-Planckian” vacuum energy density, which must be calculated from the



microscopic theory of the underlying quantum liquid. At T = 0, the pressure of
such a liquid is equal to the negative of its energy density (Volovik 2003, pg. 14,
26). This relation between pressure and vacuum energy density also arises in
general relativity if the vacuum energy density is identified with the cosmological
constant term. However, in the case of a quantum liquid in equilibrium, the
pressure is identically zero; hence, so is the vacuum energy density. Moreover, if
the liquid is in the form of a droplet, the pressure is not zero, but scales as an
inverse power of the droplet size, and this models the cosmological constant term
in the Einstein equations, which scales as the inverse square of the size of the
universe.

(b) The second horn is grasped simply by claiming that general relativity is an EFT.
Thus, we should not expect the equivalence principle to hold at the “trans-
Planckian” level, and hence we should not expect the true vacuum energy density
to be gravitating.

Interpretation

What do the acoustic spacetime program and Volovik's related solution to the
cosmological constant problem have to say about the ontological status of spacetime?
Note first that the acoustic metric arises in a background-dependent manner. The
acoustic metric (4) is obtained ultimately by imposing particular constraints on prior
spacetime structure; it is not obtained ab initio.> A natural question then is (i) What
should be identified as the background structure of acoustic spacetimes? Second, the
implicit claim associated with both the acoustic black hole program and Volovik's
solution to the cosmological constant is that acoustic spacetimes can be considered
analogues of general relativistic spacetimes. A second question then is (ii) 7o what
extent are acoustic spacetimes analogues of general relativistic spacetimes? Evidently,
the answer to the first question will have implications for the answer to the second.

In regard to the first question, one option is to identify Minkowski spacetime as the
background structure of acoustic spacetimes. This might be motivated by the explicit
form of the acoustic metric (4). As indicated above, it can be interpreted as describing
low-energy curvature fluctuations, due to the superfluid velocity, above a flat Minkowski
background metric. In particular, (4) can be written in the suggestive form g, dz,dz, =
N,dx,dz, + ¢',dz,dr,, where the first term on the right is independent of the superfluid
velocity and is identical to a Minkowski metric, and the second term depends explicitly

2 For the moment I will leave aside the question of how this structure can be interpreted. In particular,
as will be made explicit below, background-dependence of a spacetime theory does not necessarily imply a
substantivalist interpretation, any more than background-independence necessarily implies a relationalist
interpretation.



on the superfluid velocity. (The issue of general covariance will be addressed in the
subsequent discussion below.)

A second option, however, is to identify the background structure of acoustic spacetimes
with (Galilei-invariant) Neo-Newtonian spacetime. This is motivated by paying
attention to the procedure by which the acoustic metric was derived. This starts with
the Galilei-invariant Lagrangian (1). Low energy fluctuations of the ground state to
first order obey the Poincaré symmetries associated with Minkowski spacetime, and low
energy fluctuations to second order obey the symmetries of the curved acoustic metric
(4). From this point of view, the relation between acoustic spacetimes and Minkowski
spacetime is one in which both supervene over a background Neo-Newtonian spacetime.
This second option seems the more appropriate: If acoustic metrics are to be
interpreted as low-energy fluctuations above the ground state of a condensate, then the
background structure of such spacetimes should be interpreted as the rest frame of the
condensate ground state, which obeys Galilean symmetries.

This response has implications for the second question posed above; namely, to what
extent are acoustic spacetimes analogues of general relativistic spacetimes? Note first
that acoustic metrics are not obtained as solutions to the Einstein equations; they are
derived via a low-energy approximation from the Lagrangian (1) (and similar
Lagrangians for other types of condensed matter systems). As noted above, this
approximation results schematically in the expansion £,,, = L[p,, 0, + L£'14.[60]. To
make contact with the Lagrangian formulation of general relativity, Volovik (2003, pg.
38) interprets L, as comprised of a “gravitational” part £, describing a background
spacetime expressed in terms of the variables 6,, p,, with gravity being simulated by the
superfluid velocity, and a “matter” part L',,,, expressed in terms of the variable 660. To
obtain the “gravitational” equations of motion, one can proceed in analogy with general
relativity by extremizing L, with respect to 6,, p,. This results in a set of equations
that are quite different in form from the Einstein equations (Volovik 2003, pg. 41), and
this indicates explicitly that the dynamics of acoustic spacetime EFTs does not
reproduce general relativity. Hence acoustic spacetimes cannot be considered dynamical
analogues of general relativistic spacetimes.

While acknowledging that acoustic spacetimes do not model the dynamics of general
relativity, some authors have insisted, nonetheless, that acoustic spacetimes account for
the kinematics of general relativity:

... the features of general relativity that one typically captures in an “analogue
model” are the kinematic features that have to do with how fields (classical or

? Whether or not (4) exhibits non-trivial symmetries will depend on the explicit form of the superfluid
velocity.



quantum) are defined on curved spacetime, and the sine qua non of any analogue
model is the existence of some “effective metric” that captures the notion of the
curved spacetimes that arise in general relativity. (Barceld, et al 2005, pg. 10.)

The acoustic analogue for black-hole physics accurately reflects half of general
relativity -- the kinematics due to the fact that general relativity takes place in a
Lorentzian spacetime. The aspect of general relativity that does not carry over to
the acoustic model is the dynamics -- the Einstein equations. Thus the acoustic
model provides a very concrete and specific model for separating the kinematic
aspects of general relativity from the dynamic aspects. (Visser 1998, pg. 1790.)

Caution should be urged in evaluating claims like these. First, if the kinematics of
general relativity is identified with Minkowski spacetime, as linear approximations to
solutions to the Einstein equations might suggest, then arguably acoustic spacetimes
cannot be considered kinematical analogues of general relativity. And this is because, as
argued above, the background structure of acoustic spacetimes should be identified with
Neo-Newtonian spacetime and not Minkowski spacetime. More importantly, just what
the kinematics of general relativity consists of is open to debate. If we look beyond the
linear approximation and consider solutions to the Einstein equations in their full
generality, then just what the kinematics of such solutions amounts to is hard to
identify, since what normally counts as the kinematics of a field theory (i.e., those
variables that describe the field in the absence of external forces), is dynamic in general
solutions to the Einstein equations. This simply points to the fact that diffeomorphism
invariance is essential for modeling general relativity (both dynamically and
kinematically), and the low-energy EFT (2) is not diffeomorphism-invariant.! At this
point it might be instructive to compare acoustic spacetimes as EFTs with the typical
EFT that results from taking the low-energy limit of general relativity (see, e.g.,
Donoghue 1995). The latter is constructed by explicitly imposing diffeomorphism
invariance from the outset. One first notes that the Einstein-Hilbert Lagrangian density
that produces the Einstein equations is proportional to the scalar curvature, and as such
is the simplest diffeomorphism-invariant Lagrangian density that contains derivatives of
the metric (which must be included for the metric to be a dynamical field in the
theory). The effective Lagrangian density is constructed by including all other powers
of the curvature, consistent with diffeomorphism invariance. These extra terms then
serve to cancel infinities at all orders that arise in the quantization process.

The suggestion then is that acoustic spacetimes provide neither dynamical nor
kinematical analogues of general relativity. In fact this sentiment has been expressed in
the literature. Barceld, et al (2004) suggest that acoustic spacetimes simply

* More precisely, the low-energy EFT (2) does not obey "substantive" (as opposed to "formal") general

covariance in Earman's (2006) sense; i.e., diffeomorphisms are not a local gauge symmetry of (2).
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demonstrate that some phenomena typically associated with general relativity really
have nothing to do with general relativity:

Some features that one normally thinks of as intrinsically aspects of gravity, both at
the classical and semiclassical levels (such as horizons and Hawking radiation), can
in the context of acoustic manifolds be instead seen to be rather generic features of
curved spacetimes and quantum field theory in curved spacetimes, that have nothing
to do with gravity per se. (Barcel6 et al 2004, pg. 2.)

This takes some of the initial bite out of Volovik’s solution to the cosmological constant
problem. If acoustic spacetimes really have nothing to do with general relativity, their
relevance to reconciling the latter with QFT is somewhat diminished. On the other
hand, Volovik’s solution to the cosmological constant problem is meant to carry over to
other analogues of general relativity besides superfluid *He. In particular, it can be run
for the case of the superfluid *He-A, which differs significantly from *He in that fields
other than massless scalar fields arise in the low-energy limit. The fact that these fields
model aspects of the dynamics of the Standard Model perhaps adds further plausibility
to Volovik’s solution. To investigate further, I now turn to *He.

3.2. The Standard Model and Superfluid Helium 3

The second example of a spacetime analogue in a condensed matter system concerns the
Standard Model of particle physics and the A-phase of superfluid Helium 3. Since *He
atoms contain 3 nucleons and hence are fermions, in order for them to form a Bose
condensate, pairs must be considered. These pairs are similar to the electron Cooper
pairs described by the standard Bardeen-Cooper-Schrieffer (BCS) theory of conventional
superconducters. Such electron Cooper pairs are all of one type, characterized by a spin
singlet (S = 0) state with s-wave (I = 0) orbital symmetry. °He Cooper pairs have
additional spin and orbital angular momentum degrees of freedom, characterized by spin
triplet (S = 1) states with p-wave (I = 1) orbital symmetry. There are thus nine
distinct types of * He Cooper pairs, characterized by 3 spin (S, = 0, 1) and 3 orbital (I,
= 0, 1) momentum eigenvalues. This allows for a number of distinct superfluid
phases. The A-phase is characterized by the absence of S, = 0 substates, and by the
zero spin axis d parallel or anti-parallel to the orbital momentum axis [. One can thus
think of a *He-A Cooper pair as consisting of two *He atoms spinning about anti-parallel
axes that are perpendicular to the plane of their orbit.

An appropriate Hamiltonian that describes such *He-A Cooper pairs takes the following
form (Volovik 2003, pg. 82),
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H3H€:A = Z XTu{J’ (]Z) (<€A: - IU’)U3 + CL(g . d) (m : EO—I - ﬁ ' ]20-2)) X(.vﬂ(];) ° (5)

k.o,

Here the x’s are non-relativistic SU(2) 2-spinors consisting of creation and annihilation

operators for *He atoms with momentum k (a, (B being spin indices). The first term in
the brackets describes the kinetic energy of a *He atom (with the chemical potential
enforcing particle number conservation). The second term describes the particular
interaction between two *He atoms that produces a *He-A Cooper pair. In this term,
the unit vectors m, n are such that mxn = l. Finally, the o’s are Pauli matrices, and
¢, = Ay/ky, where ky is the Fermi momentum and A, is a constant.’

This Hamiltonian can be diagonalized to obtain the energy E*(k) = (KB/m — p)’ +

cf(l; X Z)z The energy can now be linearized about the two points k= qkpi, q= *1,

where it vanishes.® Volovik refers to these points as "Fermi points". To second order,
one obtains

EQ(kz) ~ 2<C\|lz'(ki - qu‘))Q + 2(CLmi(ki - qu‘))2 + 2(%”1‘(&' - qu‘)>2

= glj(kz _qu7)(k] _qu) ’ ia ] = ]-7 25 37

where A; = kgl, suggests a vector potential, and ¢, = kp/m. In the second line the
notation has been simplified by the introduction of the quantity ¢” = ¢ I' + ¢,*(¢8” —
I'V) = e/e) (b =1, 2, 3) for the “dreibein” e,' = 2¢,m,, &' = —2¢,n, &' = ¢,¢l, (Volovik
2003, pg. 106). Volovik interprets ¢” as the spatial part of an effective metric ¢
describing the *He-A superflow, with ¢° = —1, ¢" = —¢/, and inverse given by

ds = g, da"de’ = —dt’ + g,(da’ — vdt)(dd — v'dt) , w,v=0,1,2,3. (7)
This is similar to the metric arising in *He, except that it is anisotropic, depending on
the direction [, and contains two velocity components, ¢, and ¢, representing the

velocities of quasiparticles in motion transverse to, and parallel to [, respectively.

The low-energy Hamiltonian corresponding to (6) is given by (Volovik 2003, pg. 105),

’ (5) is a modification of the BCS Hamiltonian for conventional superconductors to take into account the
extra degrees of freedom of *He-A Cooper pairs. The Fermi momentum k; is the value of the momentum
at the Fermi surface in momentum space that separates occupied states from unoccupied states. In the
BCS theory, A, represents a constant gap in the energy spectrum for quasiparticle excitations above the
Cooper pair condensate.

% More precisely, the energy vanishes at these points near the Fermi surface where yu = k;*/2m.
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ko, 3
and the corresponding Lagrangian can be written as,
Llygs = VA9, — qA ), p=0,1,2,3 (9)

where v = ¢/'e) (0, ® 0;) (0, being the 2 x 2 identity) are Dirac 7-matrices, the U’s are
relativistic Dirac 4-spinors (constructed from pairs of the x 2-spinors), and the temporal
component of the potential field is given by A, = kglv,. This describes massless Dirac
fermions interacting with a 4-vector potential A, in a curved spacetime with metric g,,.
Note that this effective Lagrangian is thoroughly relativistic. It is similar to the
Lagrangian for massless quantum electrodynamics (QED), except for the fact that it
does not have a term describing the Maxwell field (i.e., the gauge field associated with
the potential A4 ).

It turns out that a Maxwell term arises naturally as a vacuum correction to the coupling
between the quasiparticle matter field ¥ and the potential field A,. This is
demonstrated by applying the low-energy approximation to the potential field variable:
One expands (9) in small fluctuations in A, about its ground state value, and then
integrates out the high-energy fluctuations. The result is a term that takes the form of

the Maxwell Lagrangian in a curved spacetime £, = (48) 'y—g9" g’ F,.F;, where g"
is the *He-A effective metric, F,, = 0,4, — 9,4, with A, the function of [, and v, given

1112 wtty vt
above, and 3 is a constant that depends logarithmically on the cut-off energy.’
Combining this with (9), the effective Lagrangian for *He-A then is formally identical to

the Lagrangian for (3+1)-dim QED in a curved spacetime.

Volovik (2003, pp. 114-115) now indicates how this can be extended to include SU(2)
gauge fields, and, in principle, the relevant gauge fields of the Standard Model. The
trick is to exploit an additional degree of freedom associated with the quasiparticles
described by (9). In addition to their charge g, such quasiparticles are also
characterized by the value of their spin projection onto d given by & d==+1 , which
determines the spin orientation of the underlying *He atoms. This can be interpreted as
a quasiparticle SU(2) isospin symmetry and incorporated explicitly into (9) by coupling
U to a new effective field W', identified as an SU(2) potential field (analogous to the
potential for the weak force). Expanding this modified Lagrangian density in small
fluctuations in the W-field about the ground state then produces to second order a

7 See, e.g., Volovik (2003, pg. 112). A detailed derivation is given in Dziarmaga (2002). This method of
obtaining the Maxwell term as the second order vacuum correction to the coupling between fermions and
a potential field was proposed by Zeldovich (1967).
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Yang-Mills term. The general moral is that discrete degeneracies in the Fermi point
structure of the energy spectrum induce local symmetries in the low-energy sector of the
background liquid (Volovik 2003, pg. 116). For the discrete two-fold (Z,) symmetry

associated with & - c?, we obtain a low-energy SU(2) local symmetry; and in principle for
larger discrete symmetries Zy, we should obtain larger local SU(N) symmetry groups.

In this way the complete local symmetry structure of the Standard Model could be
obtained in the low-energy limit of an appropriate condensed matter system.®

A similar low-energy treatment of the effective metric does not produce the Einstein-
Hilbert Lagrangian of general relativity, however. Under this treatment, one expands
the Lagrangian density in small fluctuations in the effective metric g, about the ground
state and then integrates out the high-energy terms. This follows the procedure of what
is known as “induced gravity”, after Sakharov’s (1967) derivation of the Einstein-
Hilbert Lagrangian density as a vacuum correction to the coupling between quantum
matter fields and the spacetime metric. In Sakharov’s original derivation, the metric
was taken to be Lorentzian, and the result included terms proportional to the
cosmological constant and the Einstein-Hilbert Lagrangian density (as well as higher-
order terms). In the case of the *He-A effective metric, the result contains higher-order
terms dependent on the superfluid velocity v;, and these terms dominate the Einstein-
Hilbert term.” These contaminating terms are not diffeomorphic invariant, which is
understandable, stemming, as they do, ultimately from the non-relativistic Galilei-
invariant superfluid Lagrangian density. Volovik (2003, pg. 130) indicates that such
terms originate from integrating over quasiparticles far from the Fermi points. The
mechanism that would enforce diffeomorphism invariance in the EFT would thus be one
that constrains the integration over quasiparticles to regions close to the Fermi points,
where the effective metric is Minkowskian. To investigate such a mechanism, Volovik
(2003, pg. 132) considers the limit m — oo, v; — 0, interpreted as an “inert vacuum”.
In this limit, it turns out that vacuum fluctuations of the effective metric do induce the
Einstein-Hilbert term without contamination. Since this limit involves no superfluidity,
Volovik’s (2003, pg. 113) conclusion is that our “physical vacuum” cannot be completely
modeled by a superfluid.

® There are complications to this program, however. The Standard Model has gauge symmetry SU(3) ®
SU(2) ® U(1) with electroweak sector given by SU(2) @ U(1). The electroweak gauge fields belong to
non-factorizable representations of SU(2) ® U(1), and hence cannot be simply reconstructed from
representations of the two separate groups. (Thanks to an anonymous referee for making this point
explicit.)

) See, e.g., Volovik (2003, pg. 113). Sakharov’s original procedure results in a version of semiclassical
quantum gravity, in so far as it describes quantum fields interacting with a classical, unquantized
spacetime metric. In the condensed matter context, the background metric is not a classical background
spacetime, but rather arises as low-energy degrees of freedom of a quantized non-relativistic system (the
superfluid). Hence one could argue this condensed matter version of induced gravity is not semiclassical.
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Interpretation

This approach to general relativity and the Standard Model views both as theories of
low-energy phenomena induced by the ground state of a condensed matter system,
although perhaps not a superfluid. It is a background-dependent approach, the
background being the Galilei-invariant rest frame of the condensate. Under a literal
interpretation, the relativistic matter fields and gauge potential fields of the Standard
Model are interpreted as low-energy quasiparticle and collective bosonic excitations of
the ground state of the condensate, with gauge fields interpreted as induced ground
state corrections to the interactions between matter fields and potential fields. This
interpretation is intended to extend to a treatment of the spacetime metric as described
by general relativity. This metric, viewed as a gauge potential field, is interpreted as a
low-energy collective bosonic excitation of the ground state of the condensate, with the
Riemann curvature tensor (its associated gauge field) interpreted as an induced ground
state correction to the interaction between matter fields and the metric field. The
viability of this interpretation rests on the viability of Volovik’s inert vacuum system.
Given the nature of the m — oo limit, it may appear doubtful that there are physical
examples of condensed matter systems for which the Einstein-Hilbert term (that
describes the Riemann curvature tensor) can be induced in the low-energy limit. Even
apart from this problem, there is the question of whether all the symmetries of the
Standard Model can be expressed in such systems. From a more constructive point of
view however, Volovik’s discussion indicates that any system purporting to reproduce
general relativity and the Standard Model in the low-energy limit minimally must have
Fermi points in its energy spectrum, and in order to avoid superfluidity, such Fermi
points should not be the consequence of symmetry breaking.

In Section 4 below I will return to the issue of viability. There, I will indicate that this
background-dependent condensed matter approach to general relativity and the
Standard Model can be viewed as one approach to quantum gravity, and thus warrants
further consideration. With this in mind, we may ask what it suggests about the
ontological status of spacetime. Arguably, it is compatible with both relationalist and
substantivalist interpretations of spacetime. A relationalist might claim that the fixed
Neo-Newtonian background structure is embodied in the condensate itself in the form of
Galilean symmetries, with no need to posit an independently existing Neo-Newtonian
substantival spacetime. Relativistic spacetime symmetries (Poincaré and/or those
associated with a dynamic spacetime metric) are then properties of low-energy
phenomena; namely, matter fields and gauge potential fields. Alternatively, there are at
least three possible substantivalist interpretations. The first would interpret spacetime
as given once and for all by a fixed background Neo-Newtonian spacetime. This
substantivalist would tell a story similar to the relationalist concerning the low-energy
origins of relativistic matter and gauge fields, including the gravitational field. In
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particular, such a substantivalist would view relativistic spacetime structure as
properties of physical fields, and not as properties of a substantival spacetime. A more
intrepid substantivalist might attempt to treat relativistic spacetimes as low-energy
phenomena in their own right, independent of both the fixed background and low-
energy matter and gauge fields. This intrepid substantivalist might claim relativistic
spacetimes are ontologically just as real as the fixed background Neo-Newtonian
spacetime of the fundamental condensate, but are "generated" in a different manner;
perhaps through a process of low-energy "emergence". Just what this might entail will
be the topic of Section 4 below. A third type of substantivalist might interpret
spacetime simply as the condensate itself. For this "super-substantivalist", matter fields
and gauge fields would appear as low-energy aspects of spacetime itself. Arguably, such
a super-substantivalist would be hard-pressed to distinguish herself from the
relationalist in this context. Both make the same ontological claims, differing only on
terminology.

3.3. Twistors and Quantum Hall Liquids

A final example of a spacetime analogue in a condensed matter system involves the
twistor formalism and 4-dimensional quantum Hall liquids. Quantum Hall liquids
initially arose in explanations of the 2-dimensional quantum Hall effect (QHE). In the
following, I will first review the low-energy field theory of the 2-dim QHE and then
indicate how a spacetime analogue can be associated with a twistorial formulation of a
4-dim extension of it.

2-dim Quantum Hall Liquids

The set-up for the 2-dim QHE consists of current flowing in a 2-dim conductor in the
presence of an external magnetic field perpendicular to its surface. The classical Hall
Effect occurs as the electrons in the current are deflected towards the edge by the
magnetic field, thus inducing a transverse voltage. In the steady state, the force due to
the magnetic field is balanced by the force due to the induced electric field and the Hall
conductivity oy is given by the ratio of current density to induced electric field. The
quantum Hall effect occurs in the presence of a strong magnetic field, in which o
becomes quantized in units of the ratio of the square of the electron charge e to the
Planck constant h:

oy=vXx (e/h), (10)

where v is a constant. The Integer Quantum Hall Effect (IQHE) is characterized by
integer values of v, and the Fractional Quantum Hall Effect (FQHE) is characterized by
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values of v given by odd-denominator fractions."” Two properties experimentally
characterize the system at such quantized values: The current flowing in the conductor
becomes dissipationless, as in a superconductor; and the system becomes incompressible.

These effects can be encoded in a Lagrangian that initially describes non-relativistic 2-
dim electrons coupled to magnetic and electric fields:

‘CQHE = ¢T(ihao - erm)lb - %@Z’T(_m&: - eAim)2¢ + V[@bwj] + Lpy,i=1,2, (11)

where A,", A" are potentials for the magnetic and electric fields, V is an appropriate
interaction potential, and L, is the (non-relativistic) electromagnetic Lagrangian
density. At low energies, this fermionic Lagrangian can be shown to be equivalent to a
bosonic Lagrangian that describes bosons coupled to a magnetic, an electric, and a
Chern-Simons field (see, e.g., Zhang 1992, pg. 32):

‘CQHE = '(ih0, — eAy)p — %@l(_hzai - eAi)Qgp + V[SD'SD] + L - (12)

Here Ay = a, + A", A, = a, + A", where (g, ;) = a, is a Chern-Simons (CS)
potential field described by the term L4 = (e/ 2p¢0)6’”’Aaﬂ@,am where ¢, is the quantum
of magnetic flux (see footnote 10) and p is an odd integer. At low energies, one can
show that this term dominates the £, term in (11). The effect of coupling the bosons
to the Chern-Simons field can be interpreted as attaching p quanta of magnetic flux to
each boson, and this effectively modifies their exchange statistics to mimic the Fermi-

Dirac statistics of the electrons of (11)."

' The constant v is called the filling factor and is given by v = p,/pg, where p, is the electron density and
pp = B /¢, is the density of the external magnetic field flux. In the latter expression ¢, = h/e is the
quantum of magnetic flux (in units in which ¢ = 1).

" This can be demonstrated explicitly by extremizing (12) with respect to a,. The result gives the curl of
the CS field, Oxd = pP,p,(z)z, where Z is the direction of the external magnetic field (Zhang 1992, pg.
35). Integrating this yields an expression § a-di = pg, for the flux of the CS field through the area

containing a boson of unit charge located at the origin (Zhang 1992, pg. 28; one assumes that the density
of composite bosons is identical to that of the original electrons). When two such bosons are exchanged,

they pick up an Aharonov-Bohm phase equal to exp (ie /h f - di:') = —1, mimicking Fermi-Dirac

0
statistics. Note that this statistical transmutation for point particles only works in 2-dim: In 1-dim,
point particles cannot be exchanged, and for dim > 3, any closed, continuous exchange path taken by two
point particles can be continuously deformed into a point; hence such paths cannot be distinguished by

means of winding numbers.

15



One can now show that the combined external and CS magnetic field felt by the
composite bosons vanishes when the constant v in (10) is given by 1/p, corresponding to
the FQHE."” At such values, the bosons feel no net magnetic field, and hence can form
a condensate at zero temperature. This condensate, consisting of charged bosons, is
referred to as a quantum Hall (QH) liquid, and can be considered to have the same
properties as a superconductor; namely, dissipationless current flow and the expulsion of
magnetic fields from its interior (what's called the Meissner effect). The latter entails
there is no net internal magnetic field in the QH liquid; hence, in so far as the internal
CS magnetic field is determined by the particle density (see footnote 11), this entails
that the particle density is constant. Thus the QH liquid is incompressible.

The fact that the QH liquid is incompressible entails that there is a finite energy gap
between the ground state of the condensate and the first allowable energy states. This
means a low energy approximation about zero modes cannot be taken; hence a low
energy EFT cannot be constructed for the bulk liquid. Such a low-energy EFT can,
however, be constructed for the 1-dim edge of the liquid. Wenn (1990) assumed edge
excitations take the form of low-energy surface waves obeying a linear dispersion
relation (hence they can be made arbitrarily small, thus facilitating a low-energy
approximation) and demonstrated that the effective Lagrangian for the edge states
describes massless chiral fermion fields in (141)-dim Minkowski spacetime:

‘C/edge = ZwT(at - 'Uax)zp ) (13)
where v is the electron drift velocity.

4-dim Quantum Hall Liquids

The (1+1)-dim edge Lagrangian (13) tells us little about the ontology of (3+1)-dim
spacetime. However, it suggests that (3+1)-dim massless relativistic fields may be
obtainable from the edge states of a 4-dim QH liquid, and this is in fact borne out.
Zhang and Hu (2001) provided the first extension of the 2-dimensional QHE to 4-
dimensions. In rough outline, they replaced the 2-dim quantum Hall liquid with a 4-dim
quantum Hall liquid and then demonstrated that the EFT of the 3-dim edge describes
massless fields in (3+1)-dim Minkowski spacetime.

In slightly more detail, Zhang and Hu made use of a formulation of the 2-dim QHE in
terms of spherical geometry first given by Haldane (1983). Haldane considered an
electron gas on the surface of a 2-sphere S* with a U(1) Dirac magnetic monopole at its

2 The magnitude of the combined external and CS magnetic field is given by |5 x (@ + E”) | = |pdop. —

B, which vanishes when ¢yp,/B™ = v = 1/p, where v is the filling factor given in footnote 10.
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center. The radial monopole field serves as the external magnetic field of the original
setup. By taking an appropriate thermodynamic limit, the 2-dim QHE on the 2-plane is
recovered. Zhang and Hu’s extension to 4-dimensions is based on the geometric fact
that a Dirac monopole can be formulated as a U(1) connection on a principle fiber
bundle S* — S?, consisting of base space S* and bundle space S* with typical fiber S' =~
U(1) (see, e.g., Nabor 1997). This fiber bundle is known as the 1st Hopf bundle and is
essentially a way of mapping the 3-sphere onto the 2-sphere by viewing S° as a
collection of “fibers”, all isomorphic to a “typical fiber” S', and parameterized by the
points of S?. There is also a 2nd Hopf bundle S — S§*, consisting of the 4-sphere S* as
base space, and the 7-sphere S” as bundle space with typical fiber S* =~ SU(2). The
SU(2) connection on this bundle is referred to as a Yang monopole. Zhang and Hu’s 4-
dim QHE then consists of taking the appropriate thermodynamic limit of an electron
gas on the surface of a 4-sphere with an SU(2) Yang monopole at its center."

Some authors have imbued the interplay between algebra and geometry in the 4-dim
QHE extension with ontological significance. These authors note that there are only
four normed division algebras: the real numbers R, the complex numbers C, the

quaternions H, and the octonions ©."* It is then observed that these may be associated
with the four Hopf bundles, S* — S§*, §* — §% 8" — §* S% — $® in so far as the base
spaces of these fiber bundles are the compactifications of the respective division algebra
spaces R', R?, R*, R®. Finally, one notes that the typical fibers of these Hopf bundles
are Z,, U(1) = S', SU(2) = S°, and SO(8) = S7, respectively. These patterns are then

linked with the existence of quantum Hall liquids:

One , two, and four dimensional spaces have the unique mathematical property that
boundaries of these spaces are isomorphic to mathematical groups, namely the
groups Z,, U(1) and SU(2). No other spaces have this property. (Zhang and Hu

2001, pg. 827.)

The four sets of numbers [viz., R, C, H, O] are mathematically known as division

algebras. The octonions are the last division algebra, no further generalization being
consistent with the laws of mathematics... Strikingly, in physics, some of the

A low-energy Chern-Simons field theory for such 4-dim QH liquids analogous to (12) was constructed
by Bernevig et al. (2002). This theory is based on statistical transmutations for extended objects
(“branes”), as opposed to point particles, and thus side-steps the dimensional restrictions of the 2-dim
Chern-Simons QHE theory (12) mentioned in footnote 11.

" A normed division algebra A is a normed vector space, equipped with multiplication and unit element,
such that, for all a, b € A, if ab =0, then a =0 or b = 0. R, C, and H are associative, whereas O is non-

associative (see, e.g., Baez 2001, pg. 149).
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division algebras are realized as fundamental structures of the quantum Hall effect.
(Bernevig et al. 2003, pg. 236803-1.)

Our work shows that QH liquids work only in certain magic dimensions exactly
related to the division algebras... (Zhang 2004, pg. 688.)

Before we see nature unfolding its secrets in the forms of division algebras and Hopf
bundles, we should pause and take stock. Note first that Zhang and Hu’s statement
should be restricted to the spaces S*, §%, $*, and should include S® as well, the
boundary of S® being S”. Furthermore, the statements of Bernevig et al. and Zhang
should refer to normed division algebras. Baez (2001, pg. 149) carefully distinguishes
between R, C, H, O as the only normed division algebras, and division algebras in
general, of which there are other examples. Baez (2001, pp. 153-156) indicates how the
sequence R, C, H, O can in principle be extended indefinitely by means of the Cayley-

Dickson construction. Starting from an n-dim *-algebra A (i.e., an algebra A equipped
with a conjugation map ), the construction gives a new 2n-dim *-algebra A’." The
next member of the sequence after O is a 16-dim *-algebra referred to as the

“sedenions”. The point here is that the sedenions and all subsequent higher-dimensional
constructions do not form division algebras; in particular, they have zero divisors. The
question therefore should be whether the absence of zero divisors in a normed *-algebra
has physical significance when it comes to constructing QH liquids.

Zhang (2004, pg. 687) implicitly suggests it does. He identifies various quantum liquids
with each Hopf bundle: 1-dim Luttinger liquids'® with §' — S§', 2-dim QH liquids with
S§* — 8% and 4-dim QH liquids with S™ — S*. Bernevig et al. (2003) complete the
pattern by constructing an 8-dim QH liquid as a fermionic gas on S§* with an SO(8)
monopole at its center. But whether this pattern is physically significant remains to be
seen. It is not entirely clear, for example, how the bundle S' — S’ is essential in the
construction of Luttinger liquids in general. In particular, while Luttinger liquids are
necessarily 1-dim, it’s not clear what role, if any, the trivial Z, monopole associated with

S' — S! plays in their construction. Moreover, while Luttinger liquids arise at the edge
of 2-dim QH liquids, this pattern does not carry over to higher dimensions: it is not the
case that 2-dim QH liquids arise at the edge of 4-dim QH liquids, nor is it the case that
4-dim QH liquids arise at the edge of 8-dim QH liquids. Furthermore, and more

' The elements of A’ are defined as pairs of elements of A, with multiplication in A’ given by (a, b)(¢, d)
= (ac — db*, a*d + cb), and conjugation in A’ given by (a, b)* = (a*, =), for a, b € A.

' In Wenn's (1990) derivation of the EFT (13) of the edge of a 2-dim QH liquid, the ground state of the
edge was identified as a Luttinger liquid. A Luttinger liquid is comprised of electrons, but differs from a
standard Fermi liquid mathematically in the form of the electron propagator: a Luttinger liquid is
characterized by a propagator with non-trivial exponents. See Wen (2004, pp. 314-315) for discussion.
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importantly, Meng (2003) demonstrates that higher-dimensional QH liquids can in
principle be constructed for any even dimension, and concludes that the existence of
division algebras is not a crucial aspect of such constructions (see, also Karabali and
Nair 2002). Hence, while the relation between Hopf bundles and normed division
algebras on the one hand, and quantum liquids on the other, is suggestive, it perhaps
should not be interpreted too literally.

So far in this discussion no mention of spacetime has been made. To see where
spacetime comes in, we need to move to the edges.

FEdge States for 4-dim QH Liquids and Twistors

The low-energy edge states of a 2-dim QH liquid take the form of (1+1)-dim relativistic
massless fields described by (13). It turns out that edge excitations can be viewed as
particle-hole dipoles formed by the removal of a fermion from the bulk to outside the
QH droplet, leaving behind a hole (see, e.g., Stone 1990). If the particle-hole separation
remains small, such dipoles can be considered single localized bosonic particle states.
The stability of such localized states is affected by the uncertainty principle: a stable
separation distance entails a corresponding uncertainty in relative momentum, which
presumably would disrupt the separation distance. In 1-dim it turns out that the
kinetic energy of such dipoles is approximately independent of their relative momentum,
hence they are stable. In the case of the 3-dim edge of the 4-dim QH liquid, Zhang and
Hu (2001) determined that there is a subset of dipole states for which the isospin
degrees of freedom associated with the SU(2) monopole counteract the uncertainty
principle. Their main result was to establish that these stable edge states satisfy the
(3+1)-dim zero rest mass field equations for all helicities, and hence can be interpreted
as zero rest mass relativistic fields (see, also, Hu and Zhang 2002). These include, for
instance, spin-1 Maxwell fields and spin-2 graviton fields satisfying the vacuum
linearized Einstein equations, as well as massless fields of all higher helicities.

By itself, this recovery of (3+1)-dim relativistic zero rest mass fields has limited
applicability when it comes to questions concerning spacetime ontology. As with the
examples in superfluid Helium, we would like to recover general relativity and the
Standard Model in their full glory. This is where twistor theory makes its appearance,
the goal of which is to recover general relativity and quantum field theory from the
structure of zero rest mass fields. Sparling’s (2002) insight was to see that Zhang and
Hu's stable dipole states correspond to twistor representations of zero rest mass fields.
In particular, Sparling demonstrated that the edge of a 4-dim QH liquid can be
identified with a particular region of twistor space T. T is the carrying space for matrix
representations of SU(2, 2) which is the double covering group of SO(2, 4). Elements 2"
of T are called twistors and are thus spinor representations of SO(2, 4). T contains a

Hermitian 2-form X, (a “metric”) of signature (++——). This 2-form splits T into
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three regions T, T, N, consisting of twistors Z" satisfying EaﬂZ‘*Zﬁ > 0, ZaﬂZaZﬁ < 0,
and EaﬂZaZﬁ = 0, respectively. The connection to spacetime is based on the fact that
SO(2, 4) is the double covering group of C(1, 3), the conformal group of Minkowski
spacetime. This allows a correspondence to be constructed under which elements of N,

“null” twistors, correspond to null geodesics in Minkowski spacetime, and 1-dim
subspaces of N (i.e., twistor “lines”) correspond to Minkowski spacetime points."”

To make the identification of the edge of a 4-dim QH liquid with N plausible, note that

the symmetry group of the edge is SO(4) =~ S* and that of the bulk is SO(5) =~ S*. The
twistor group SO(2, 4) has SO(4) in common with SO(5). Intuitively, the restriction of
SO(2, 4) to SO(4) can be induced by a restriction of twistor space T to N."* With the

edge identified as N, edge excitations are identified as deformations of N (in analogy

with Wenn's treatment of the edge in the 2-dim case). In twistor theory, such
deformations take the form of elements of the first cohomology group of projective null
twistor space PN, and these are in fact solutions to the zero rest mass field equations of

all helicities in Minkowski spacetime (Sparling 2002, pg. 25).

Interpretation

Sparling’s twistorial formulation of the 4-dim QHE suggests an interpretation of
twistors as low-energy excitations of the edge of a 4-dim quantum Hall liquid, with
spacetime subsequently being derivative of twistors. This interpretation comes with two
caveats. The first involves a technical question concerning the nature of the
thermodynamic limit in the twistor formulation, which is still unknown at present
(Sparling 2002, pg. 27). The second concerns the approach to spacetime in the twistor
formalism in general. Even granted that the 4-dim QHE admits a thoroughly twistorial
formulation down to the thermodynamic limit, there is still the question of whether
spacetime as currently described by general relativity and quantum field theory can be
recovered. It turns out that no consistent twistor descriptions have been given for
massive quantum fields, or for field theories in generally curved spacetimes with matter
content. In general, only conformally invariant field theory, and those general
relativistic spacetimes that are conformally flat, can be completely recovered in the

7 More precisely, the correspondence is between PN, the space of null twistors up to a complex constant
(i.e., “projective” null twistors), and compactified Minkowski spacetime (i.e., Minkowski spacetime with a
null cone at infinity). This is a particular restriction of a general correspondence between projective
twistor space PT and complex compactified Minkowski spacetime. For more details, and a general
discussion of the relevance of the twistor formalism to philosophy of spacetime, see Bain (2006).

18 Technically, this restriction corresponds to a foliation of the 4-sphere with the level surfaces of the
SO(4)-invariant function f(Z") = ¥£,,2"Z°. These surfaces are planes spanned by null twistors (Sparling
2002, pp. 18-19, 22).
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twistor formalism. This is not to say that the twistor connection with the QHE is not a
significant achievement. Advocates view twistors as a route to quantum gravity. As
such, the twistor formulation of the 4-dim QHE points to similarities between two
approaches to quantum gravity, via twistors and via condensed matter systems, that
were previously seemingly unrelated."

4. Low-Energy Emergence and Emergent Spacetime

The preceding examples have suggested to some authors that novel phenomena (fields,
particles, symmetries, spacetime, twistors, etc.) "emerge" in the low-energy sector of
certain condensed matter systems. In their review of models of analogue gravity,
Barcelo, et al. (2005) speak of "emergent gravitational features in condensed matter
systems" (pg. 84), and "emergent spacetime symmetries" (pg. 89); Dziarmaga (2002, pg.
274) describes how "... an effective electrodynamics emerges from an underlying
fermionic condensed matter system"; Volovik (2003) in the preface to his text on low-
energy properties of superfluid helium, lists "emergent relativistic quantum field theory
and gravity" and "emergent non-trivial spacetimes" as topics to be discussed within;
Zhang (2005) provides "examples of emergence in condensed matter physics", including
the 4-dim quantum Hall effect; and Zhang and Hu (2001, pg. 825) speak of the
"emergence of relativity" at the edge of 2-dim and 4-dim quantum Hall liquids. The
purpose of this section is to indicate the nature of this notion of low-energy emergence
and to situate it in discussions of emergence that have appeared in the philosophy of
science literature.

Whatever else emergence is, minimally it is a relation. Coming to grips with it thus
requires identifying the relata, and identifying the relation itself. In the philosophy of
science literature, approaches to the first task divide into two camps: those who view
the relata as properties (or entities, phenomena, etc; in general, real world items), versus
those who view the relata as theories (or, in general, representational items) (see, e.g.,
Silberstein 2002, pg. 90). Approaches to the second task typically appeal to two
additional relations -- reduction and supervenience -- and describe emergence as the
denial of either or both of them.” Silberstein (2002), for instance, considers ways of

' Note further that the twistor emphasis on conformal invariance is not as restrictive as might first be
thought, in so far as the verdict is still out on whether quantum field theory can be reformulated in a
conformally invariant way. In general, the route to quantum gravity that stresses conformal structure
over metrical structure should not be ignored by philosophers of spacetime.

% For the purposes of this essay, it will not be necessary to review all the myriad proposals for definitions
of reduction and supervenience that have appeared in the philosophical literature. Traditionally,
reduction has been taken as a nomic relation between theories, whereas supervenience has been taken as a
weaker relation between properties. See, e.g., Butterfield & Isham (1999, pp. 115-125).
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denying both, while Howard (preprint) adopts the denial of supervenience. Note that
these tasks are not unrelated. How one defines emergence will evidently depend, in this
context, on one's prior convictions concerning reduction and/or supervenience, and such
convictions may decide the issue of identifying the relata. Howard (preprint), for
instance, takes supervenience to be an ontic relation between properties. Emergence as
the denial of supervenience then entails that the relata of emergence are properties. To
add further confusion to the topic, there is yet a third cut along which notions of
emergence may fall: that between ontological emergence and epistemological emergence.
Ontological emergence is the claim that the emergent relata are ontologically distinct
from the "host" relata; perhaps in the sense of higher-level, collective phenomena.
Epistemological emergence is the claim that the emergent relata are epistemically
distinct from the host relata, in so far as knowledge of the latter does not suffice to
ground knowledge of the former.”

Of particular relevance to the topic of this essay is Butterfield and Isham's (1999)
analysis of emergence in the context of notions of (space)time in quantum gravity.

They consider theories as the relata and suggest that to define emergence in terms of
reduction and/or supervenience is simply to define one obscure concept in terms of other
equally obscure ones. (For instance, they indicate that the standard definition of
reduction in terms of definitional extension (see below) does not suffice to distinguish
reduction from supervenience.) Ultimately, they suggest a heterogeneous approach to
the concept of emergence as a relation between theories, given that there are many ways
two theories can be related. The suggestion then is that, rather than engage in debate
over the best way to formally define emergence, we should instead consider concrete
examples of instantiations of the various ways theories can be related. On the surface
this attitude meshes nicely with the above claims concerning low-energy emergence, for
all of these claims minimally concern the relation between two theories -- a given theory
T and its low-energy EFT, call it 7". In the following I will suggest that, in so far as T
and 7’ differ on their dynamical laws, low-energy emergence is minimally
epistemological in nature. Whether in addition, it is an ontological claim will depend on
how T and T' are interpreted.

*! Silberstein (2002, pg. 90) equates ontological emergence just with the properties view of the First Task,
and epistemological emergence with the theories view. On the surface, this seems a bit problematic: On
the one hand, one could claim that properties are emergent in an epistemological sense; i.e., such
epistemologically emergent properties cannot be predicted on the basis of the host theory. On the other
hand, one could also hold that one theory emerges from another in an ontological sense (in terms of the
ontology of the former emerging from that of the latter). To be fair, Silberstein does explicitly warn the
reader that the ontological and epistemological versions of emergence, as he construes them, are not
independent of each other.
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To further characterize low-energy emergence, it is perhaps best to say what it is not.
In particular, it is not what might be called the "received view" of emergence in
condensed matter systems. Under this view, emergent phenomena are associated with
phase transitions. For example, the macroscopic correlations exhibited by superfluids
and superconductors are due to a phase transition at which the correlation length
(roughly, the measure of the correlation between spatially separated states) becomes

* The highly correlated phenomena that result from such phase transitions have

infinite.
been called emergent (see, e.g., Howard preprint, Humphreys 1997). Such phenomena
should not be associated with low-energy emergence. To make this point clear, consider
the example of superfluid Helium. Above a critical temperature, the system consists of
a non-relativistic normal liquid. As the temperature is lowered below the critical value,
a phase transition occurs (in this case accompanied by a spontaneously broken
symmetry), and the system enters the superfluid phase. If the temperature is lowered
further; 7.e., if we take a low-energy approximation, we obtain a relativistic system. It
is this latter relativistic system that should be identified as low-energy emergent, and
not the phenomena of superfluidity that result from the phase transition. Importantly,
both the normal liquid and the superfluid, as well as the phase transition and the
spontaneously broken symmetry, are all encoded in a single Lagrangian (see, e.g., (1) for
the case of superfluid ‘He). In so far as distinct theories may be associated with distinct
Lagrangians, all of these states and processes are described by a single theory. On the
other hand, the low-energy relativistic system is encoded in the effective Lagrangian,
which is formally distinct from the initial Lagrangian; hence, the low-energy system is
described by a different theory than the highly correlated phenomena of the initial
system (Figure 1).

non-relativistic lower temp non-relativistic lower temp relativistic
liquid Helium (phase transition) superfluid Helium (low energy limit) system
v —_—
initial Lagrangian effective Lagrangian

Figure 1. The relation between the initial Lagrangian and the effective Lagrangian.

Importantly, the relation between the initial theory 7 and its EFT 7" consists of a low-
energy approximation. This relation involves a larger gap between T and 7' than

2 Tn some systems, such phase transitions are accompanied by spontaneously broken symmetries, but this
is not always the case: topological phase transitions can occur between states of a system that share the
same symmetries, but differ topologically. The standard example is the Kosterlitz-Thouless phase
transition in which vortex fluctuations in a bosonic superfluid film are responsible for a discontinuous
change in the correlation length (see, e.g., Wenn 2004, pp. 102-104).
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typical notions of reduction. On the standard (Nagelian) account of reduction, for
instance, a necessary condition for 7" to reduce to T is that T" be a definitional
extension of T (see, e.g., Butterfield and Isham 1999, pg. 115). This requires first that
T and T" admit formulations as deductively closed sets of sentences in a formal language
(i.e., it assumes a syntactic conception of theories), and second that an extension T* of
T can be constructed such that the theorems of 7" are a sub-set of the theorems of T*
(i.e., T"is a sub-theory of T*). Formally, T*is constructed by adding to T a definition
of each of the non-logical symbols of 7". That this cannot be done in the case of a
theory T and its EFT should be clear from the examples above, in which the
Lagrangian (or Hamiltonian) of the original theory differs formally from that of the
EFT. In the Lagrangian formalism, a difference in the form of the Lagrangian entails a
difference in dynamical laws; namely, a difference in the Euler-Lagrange equations for
the various dynamical variables. And a difference in dynamical laws entails a difference
in "theorems" derived from these laws. (The same holds true in the Hamiltonian
formalism.) Hence the relation between a theory and its EFT cannot be described in
terms of syntactic notions of reduction based on definitional extension.”

Arguably the distinction between T and 7" is such that it cannot be made under more
generous notions of reduction, either syntactic or semantic. For instance, under
syntactic notions of reduction based on limit procedures (see, e.g., Batterman's (2002,
pg. 78) "physicists' sense" of reduction), 7" cannot be said to reduce to 7. While
condensed matter physicists like to talk about taking the low-energy "limit",
mathematically, such a thing does not exist. The approximation scheme from which 7’
is obtained from T does not involve a formal limit. Moreover, under a semantic
conception of theories, one generally claims that a theory reduces to another just when
models of the first can be embedded in models of the second. However, this will not
suffice to reduce T to T so long as the embedding is required to preserve dynamical
laws; and if it is not, then it is unclear whether the term "reduction" for such an
embedding is appropriate (assuming, whatever else reduction amounts to, it is
essentially nomic in nature).

These considerations suggest another way in which low-energy emergence and the
"received view" are distinct. Under the latter, emergence is typically ontological in
character. The highly correlated phenomena of superfluidity and superconductivity, for
example, are typically interpreted as arising from ontologically emergent properties
associated with entangled quantum states (see, e.g., Howard preprint, Silberstein 2002,
Humphreys 1997). But the received veiw is also an epistemological thesis about the

* Butterfield and Isham (1999, pg. 122) observe that the standard defintion of supervenience can be
characterized in terms of an infinitistic definitional extension; thus neither can it be said that an EFT
supervenes (in this sense) on the original theory.
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novelty of these phenomena. In particular, such phenomena, it is claimed, cannot be
explained in terms of the "host" system, nor can they be reduced to the host, nor
predicted from knowledge of the host. Of course this thesis depends on prior
convictions concerning the concepts of explanation, reduction, and prediction, which are
heady topics in philosophy of science in their own rights.. Such concepts will be all the
more difficult to articulate in this particular context in which both host system and
emergent system derive from the same theory. The situation is a bit more clear in the
low-energy case, however, and herein lies the second way in which the latter case differs
from the received view. In the low-energy case, as argued above, we have distinct
theories, and this might provide the epistemological emergentist the where-with-all on
which to base epistemic distinctions. For instance, given that the relation between a
theory and its EFT cannot be described in terms of definitional extension, the low-
energy emergent structure cannot be reduced (in a Nagelian sense) to the host, nor can
it be predicted on the basis of the host; nor can it be explained (in a Deductive-
Nomological sense) in terms of the host. Of course, concepts of reduction, prediction,
and explanation based on definitional extension are certainly wanting; but the intuition
hopefully stands: There is a wider epistemic "gap" between the relata of low-energy
emergence than between the relata of the received view.

Minimally, then, low-energy emergence can be characterized as an epistemological claim.
Again, what makes the relata of low-energy emergence distinct is that they subscribe to
different dynamical frameworks, and since such dynamical frameworks prefigure the
kinds of epistemic claims we can make about their constituents, distinct frameworks will
prefigure distinct claims. Additional ontological theses may be draped over such
frameworks, depending on one's proclivities (be they substantivalist or relationalist, for
instance), however nothing essential to low-energy emergence dictates the form such
theses must take. In the next section I will suggest one such thesis that, while not so-
dictated, nevertheless seems particularly well-suited, given low-energy emergentism's
minimalist epistemological trappings. In the remainder of this section, I will review the
formal prospects for any such emergentist interpretation of spacetime.

Emergent Spacetime: Prospects

It is in a minimally epistemological sense of low-energy emergence that an interpretation
of spacetime as an emergent phenomenon in condensed matter systems is to be initially
understood. The viability of such a minimalist interpretation, and any more
ontologically robust interpretation based on it, depends in particular on the type of
condensed matter system, and on prior convictions on how best to model spacetime.

For instance, an interpretation of spacetime as emergent in superfluid Helium 4 might
be motivated by a desire to model spacetime as (some aspect of) the solutions to the
Einstein equations in general relativity. In Section 3.1, we saw that the prospects for
such an interpretation are limited: The effective Lagrangian for superfluid Helium 4

25



lacks both the dynamics associated with general relativity and, arguably, the
kinematics. An interpretation of spacetime as emergent in superfluid Helium 3 might be
motivated by a desire to model spacetime as the ground state for quantum field theories
of matter, gauge, and metric fields. In Section 3.2, we saw that the prospects here are
also limited: While the effective Lagrangian for superfluid *He-A does reproduce
relevant aspects of the Standard Model, it does not fully recover general relativity.
Moreover, the verdict is still out on whether physical systems exist that could produce
the Einstein-Hilbert term in a low-energy approximation. Finally, an interpretation of
spacetime as emergent from the edge of a 4-dimensional quantum Hall liquid might be
motivated by a desire to derive spacetime from twistors. Here the prospects as noted in
Section 3.3 are limited primarily by the limitations of the twistor programme: Twistor
formulations of general solutions to the Einstein equations, and massive interacting
quantum fields, have yet to be constructed.

These results suggest that currently an interpretation of spacetime as a low-energy
emergent phenomenon cannot be fully justified. However, such an interpretation should
nevertheless still be of interest to philosophers of spacetime. Each of the examples
above may be considered part of a general research programme in condensed matter
physics; namely, to determine the appropriate condensed matter system that produces
the relevant matter, gauge and metric fields in a low-energy approximation. This
research programme may be seen as one path to quantum gravity in competition, for
instance, with the background-independent canonical loop approach, and background-
dependent approaches like string theory.” Thus to the extent that philosophers of
spacetime should consider notions of spacetime associated with approaches to quantum
gravity, they should be willing to consider low-energy emergentist interpretations of
spacetime. The remainder of this section indicates how the condensed matter approach
to quantum gravity compares conceptually with the two other primary approaches.

(a) The condensed matter approach is distinct from the canonical loop approach, in so
far as it is a background-dependent approach, the background being the frame of the
fundamental condensate. Moreover, while both the condensed matter approach and the
loop approach predict violations of Lorentz invariance, these predictions differ in their
details. First, the condensed matter approach predicts such violations at low energies,
whereas the loop approach predicts violations at high energies (scales smaller than the
Planck scale) at which it predicts spacetime becomes discrete. Second, the condensed
matter approach explains the violation of Lorentz invariance in terms of the existence of
a preferred frame; namely the condensate frame, whereas the loop approach explains the

# See, e.g., Smolin (2003, pp. 57-58). More precisely, the condensed matter programme is an approach to
reconciling general relativity and quantum theory. Ultimately it suggests gravity need not be quantized,
since it claims that gravity emerges in the low energy limit of an already quantized system.
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violation in terms of background-independence: at the Planck scale, there are no
preferred frames, whether Lorentzian or otherwise.”

(b) The condensed matter approach differs from background-dependent approaches like
string theory in three general respects. First, as is evident in the previous sections, the
condensed matter approach differs from string theory in that the structure it attributes
to the background is not Minkowskian: Given that the fundamental condensate is a
non-relativistic quantum liquid, the background will be Neo-Newtonian. Second, while
background-dependent approaches that are ultimately motivated by quantum field
theory (as string theory is) typically view QFTs as low-energy EFTs of a more
fundamental theory, such approaches view the latter as a theory of high-energy
phenomena (strings, for example). The phenomena of experience, as described by
current QFTs, are then interpreted as emerging via a process of symmetry breaking.
The condensed matter approach, on the other hand, views QFTs and general relativity
as EFTs of a more fundamental low-energy theory, and the process by which the former
arise is a low-energy emergent process that, again, is not to be associated with
symmetry breaking. Finally, in general, the condensed matter approach can be
characterized by placing less ontological significance on the notion of symmetry than
background-dependent approaches in at least three ways.

e First, background-dependent approaches that view QFTs as EFTs describe the
phenomena of experience as obeying "imperfect" (gauge) symmetries that result from a
process of symmetry breaking of a "more perfect" fundamental symmetry.
Mathematically, the more perfect fundamental symmetry is hypothesized as having the
structure of a single compact Lie group with a minimum of parameters. This is then
broken into imperfect symmetries that are characterized by product group structure and
relatively many parameters. In particular, the gauge field group structure of the
Standard Model, below electroweak symmetry breaking, is given by U(1) ® SU(2) ®
SU(3). In the condensed matter approach, the fundamental condensate is not expected
to have symmetries described by a single compact Lie group. In the case of superfluid
Helium 3, for instance, the "fundamental" symmetries already have a "messy" product
group structure U(1) ® SO(3) ® SO(3), reflecting the spin and orbital angular
momentum degrees of freedom of the *He Cooper pairs. Moreover, in terms of
spacetime symmetries in the condensed matter approach, there are also senses in which
the emergent relativistic (viz., Poincaré) symmetries are more perfect than the
fundamental Galilean spacetime symmetries. Note first that the Poincaré group can be
characterized as leaving invariant a single Lorentzian spacetime metric, whereas the

% Smolin (2003, pg. 20) indicates that current experimental data on the violation of Lorentz invariance
place very restrictive bounds on preferred frame approaches. Nevertheless he suggests the condensed
matter approach may provide key information on the way spacetime might emerge in other scenarios;
spin foams, for instance.
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Galilei group cannot; the latter leaves separate spatial and temporal metrics invariant.
Moreover, the Galilei group does not admit unitary representations, whereas the
Poincaré group does.”

e The second way in which the condensed matter approach de-emphasizes the
ontological status of symmetries involves viewing it as an alternative logic of nature to
the logic of the Gauge Argument, which typically finds adherents in quantum field
theory. According to the Gauge Argument, matter fields are fundamental and imposing
local gauge invariance on a matter Lagrangian requires the introduction of interactions
with potential gauge fields. The emphasis here is on the fundamental role of local
symmetries in explaining the origins of gauge fields (see Martin 2002 for a critique of
this argument). According to the condensed matter approach, symmetries, both local
and global, as well as matter and potential fields, are low-energy emergent phenomena
of the fundamental condensate. In particular, local symmetries do not play a
fundamental role in the origin of gauge fields.

e Finally, as will be discussed in the next section, the condensed matter approach can
be associated with a notion of structure that is defined in terms of topology as opposed
to symmetry.

5. Universality, Dynamical Structure, and Structural Realism

There is a notion of universality associated with the examples discussed above that can
be used to inform a concept of dynamical structure, which subsequently might provide a
basis for a structural realist interpretation of spacetime. In this last section, I will
indicate how this goes. Ultimately, given the minimal epistemological nature of low-
energy emergence, [ will suggest that this structural realist interpretation is an
appropriate way to understand the notion of spacetime as a low-energy emergent
phenomenon from an ontological point of view.

Universality and Topology

To motivate the notion of universality, consider the question of why superfluid *He-A
reproduces relevant aspects of the Standard Model in the low-energy approximation.
Briefly, it turns out that the ground states of *He-A and the Standard Model belong to

%0 Of course these senses depend on a more nuanced characterization of "perfection" in group-theoretic
terms than in the case of gauge symmetries. Technically, the second sense is based on the fact that the
Galilei group has non-trivial exponents, whereas the Poincaré group does not. Unitary representations of
the Galilei group up to a phase factor can be constructed (so-called projective representations). The
importance of unitary representations comes with implementing spacetime symmetries in the context of
quantum theory.
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the same universality class. This class characterizes the ground state of all fermionic
systems with momentum spaces that contain Fermi points; i.e., topologically stable
point defects where the quasiparticle energies vanish. This is a topological property of
momentum space; hence it provides a topological characterization of the universality
class. Now the same ground state universality class entails the same low-energy
dynamics; hence we have a topological characterization of low-energy dynamics that is
independent of the "phenomenological" makeup of a system. This suggests a topological
notion of dynamical structure.

In a bit more detail, the notion of a universality class of ground states is given a formal
treatment in renormalization group (RG) theory. In RG theory, the low-energy
behavior of a system can be exhibited by imposing an energy (or momentum) cutoff and
then observing how the parameters of the theory evolve as the cutoff is reduced.”” This
involves a two-step procedure in which one first integrates out high-energy modes of the
dynamical variables (i.e., modes with energies greater than the cutoff), and then masks
the result by rescaling the theory's parameters. Doing this successively generates a flow
in parameter (or coupling constant) space. Such a flow may be characterized by a fixed
point: a point at which the energy scales smoothly to zero and that is invariant under
further rescaling. Such a fixed point may be associated with an EFT.”* Furthermore, in
the space of all coupling constants, more than one flow line may terminate in the same
fixed point. A fixed point thus also represents a universality class; namely, it
characterizes the low-energy properties of all systems that flow into it. All systems that
flow into the same fixed point are thus characterized by the same low-energy EFT.

It turns out that universality classes of fermionic systems can be characterized by their
momentum space topology (Horava 2005, Volovik 2003). For such systems, an RG
analysis requires that the momentum cutoff be reduced towards the Fermi surface, as
opposed to the origin.* Technically this rescaling of momenta is only done for

7 Technically, this is Wilson's version of RG theory as applied to condensed matter systems. RG theory
can also be applied to quantum field theories in particle physics with slight modification of the
terminology above. See, e.g., Polchinski (1992) and Shankar (1994).

B A necessary condition for the existence of an EFT, so characterized, is that the associated system
exhibit gapless excitations; i.e., low-energy excitations arbitrarily close to the ground state. This makes
possible a low-energy linear approximation. This notion of an EFT is that described by Polchinski (1992)
and Weinberg (1996, pg. 145). For Polchinski, an EFT must be "natural" in the sense that all mass terms
should be forbidden by symmetries. Mass terms correspond to gaps in the energy spectrum in so far as
such terms describe excitations with finite rest energies that cannot be made arbitrarily small. For
Weinberg, RG theory should only be applied to EFTs that are massless or nearly massless. (Note that
this does not entail that massive theories have no EFTs in so far as mass terms that may appear in the
high-energy theory may be encoded as interactions between massless effective fields).

» For interacting fermionic systems, the Fermi surface separates the energies of bound (viz., interacting)
states from unbound states. In the corresponding EFT (when it exists), the Fermi surface becomes the
surface on which quasiparticle energies vanish. An example of a fermionic EFT is Landau's theory of
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components of momenta perpendicular to the Fermi surface, allowing transverse
components to remain arbitrarily large. This feature makes possible topolgoically
interesting regions in momentum space where the quasiparticle energy vanishes, viz.,
zero modes. To investigate the stability of such modes, one perturbs the system about
its fixed point EFT. If the perturbed system maps back to the fixed point under the
RG flow, the zero modes are dynamically stable. This dynamical stability can be
characterized topologically by noting that a perturbation of the system corresponds to a
continuous deformation of its momentum space. Hence dynamically stable zero modes
correspond to zero modes in momentum space that are stable under continuous
deformations. Such zero modes are said to be topologically stable and can be
characterized by homotopy groups in the same way that topologically stable defects in
coordinate (i.e., real) space can be.

We now have the resources to answer the question posed at the beginning of this
section; namely, Why does superfluid *He-A reproduce relevant aspects of the Standard
Model in the low-energy limit? The short answer is that superfluid *He-A and the
Standard Model have ground states characterized by the same momentum space
topology; hence these ground states belong to the same universality class, which implies
that the low-energy dynamics of both systems is characterized by the same EFT. This
short answer needs three qualifications. First, the common momentum space topology
involves the existence of stable point defects, viz., Fermi points. Second, strictly
speaking, it is only the sector of the Standard Model above electroweak symmetry
breaking, characterized by massless Weyl fermion fields, that has such Fermi point
topology. Finally, the relation between this sector and superfluid *He-A is that the
latter is the high-energy, short-distance fundamental theory with respect to which the
former is a low-energy approximation. In other words, the sector of the Standard Model
above electroweak symmetry-breaking is an EFT of superfluid *He-A.”

Dynamical Structure and Structural Realism

This suggests the following notion of dynamical structure. For fermionic systems, the
same momentum space topology entails the same low-energy dynamics (i.e., the same
EFT), and this is regardless of the microscopic details of the systems. Such details
include the values of parameters that appear in the theories describing the systems, for
instance, such as the speed of propagation, mass values, and coupling constants. These
parameters are theory-specific but, if the given theory belongs to a universality class of

Fermi liquids (Polchinski 1992, Shankar 1994). This theory describes the strongly interacting electrons in
conductors in terms of an EFT that describes a sea of free "dressed" electrons (quasiparticles).

0 Interpreting the Standard Model as an EFT is arguably justifiable in so far as its "quasiparticle"
energies (the energies of the fermion fields that appear in it) are extremely small compared to its cut-off
energy (viz., the Planck energy).
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ground states, can always be rescaled without affecting the low-energy dynamics. Hence
(a particular sector of) the Standard Model, superfluid *He-A, and any condensed
matter system with ground state momentum space topology characterized by Fermi
points, all possess the same low-energy dynamics. One might say they all possess the
same low-energy dynamical structure. This structure is independent of the values of
parameters specific to any member of the universality class. Moreover, it is
characterized in terms of topology, as opposed to symmetry.

This notion of low-energy dynamical structure suggests a structural realist
interpretation of the condensed matter approach to general relativity and the Standard
Model. In general, structural realists interpret theories as referring to structure, but
just how they do this has been a matter of some discussion in the recent philosophy of
science literature. Epistemological structural realists (ESRers) claim that theories
provide knowledge only of the structural features of the theoretical entities they posit,
whereas ontological structural realists claim that theories refer directly to structure and
only to structure (and in particular, not to "individual-based ontologies").” ESRers
typically have faced difficulties in articulating how knowledge of structure can be made
non-trivially distinct from (i.e., independent of) knowledge of "individuals". OSRers
typically have faced difficulties in articulating exactly what structure amounts to, and
how a given theory can be said to refer to it.*> This essay will make no attempt to
plumb the depths of these debates. However, the suggestion below will be that the
condensed matter approach, with the associated notions of low-energy EFTs and
dynamical structure, provides an example of a theory (scheme) that is eminently
amenable to a structural realist interpretation that addresses both the concerns of the
ESRer and the OSRer.

A structural realist interpretation of the condensed matter approach can be based on
the following claims:

1. The phenomena of experience, as described by general relativity and the Standard
Model, are low-energy emergent.

2. Theories of such phenomena are EFTs of a "fundamental” theory T that describes a
fundamental condensate.

3. As EFTs such theories only provide us with knowledge of the low-energy structure of
the fundamental condensate. They only provide us with knowledge of the
universality class of which T is a member.

o Ladyman (1998) provides a general introduction into the literature on this distinction. In both
versions, the claims concerning structure are restricted to in-principle unobservable aspects of a theory's
ontology. This can, but does not have to, be based on a distinction in a theory's vocabulary between
observational and theoretical predicates, with the referants of the latter being in-principle unobservable.

2 For a recent review of these problems, see Pooley (preprint).
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Given Volovik's analysis of the condensed matter approach (Section 3.2 above), any
condensate that purports to reproduce general relativity and the Standard Model must
be fermionic (in particular, it must possess Fermi points), hence the dynamical structure
of the fundamental condensate will be characterized topologically. Moreover, it is well-
defined in the sense of being a universality class. And the relation between a
universality class of systems and the systems themselves is also well-defined from a
renormalization group-theoretic point of view. Hence this notion of structure arguably
addresses the concerns that have been directed towards ontological structural realist
interpretations of theories. Given claim (2) above, the dynamical structure associated
with a theory just is the universality class to which it belongs.*

On the other hand, the above structural realist interpretation also expressly addresses
concerns with epistemological structural realist interpretations of theories. In particular,
claim 3 allows that we are directly acquainted with the phenomena of experience.
However, in so far as these phenomena are low-energy emergent from a fundamental
condensate, we have knowledge only of the structure of the fundamental nature of the
world as explicitly exhibited by the universality class of the fundamental condensate.
The epistemological nature of low-energy emergence plays an essential role here. Again,
in so far as the phenomena of experience are low-energy emergent in the epistemological
sense, we cannot make inferences from them to the phenomenological properties of the
fundamental theory (properties like exact values of parameters, etc.). At most, we can
only make inferences to structural properties of the fundamental theory; namely, those
universal properties that characterize the universality class it belongs to. Note that this
is not to say that the nature of the fundamental condensate is purely structural, as an
ontological structural realist might claim; rather, it is compatible with the claim that
the fundamental condensate is describable by means of an "individuals-based" ontology;
i.e., it is some particular condensate of particles, say. Hence, while it does provide an
explicit notion of structure and how a theory relates to the structure it exhibits, the
above structural realist interpretation is minimally epistemological in nature.

Note that, as such, it is distinct from typical versions of epistemological structural
realism that claim that a theory refers to structure by means of its Ramsey sentence.™

% Saunders (2003) also suggests that dynamical structure can be associated with universality classes, but
in a more general setting.

H See, e.g., Pooley (preprint). Recall that the Ramsey sentence of a theory T formulated as a sentence S
in a formal language L is obtained by replacing some subset of L-terms that occur in S with variables and
then existentially quantifying over these variables. Suppose these L-terms are given by R, ..., R,. Then
the Ramsey sentence of S(Ry, ..., R;) is given by 3z, ... 35,5(x, , ... ;).
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Such versions are hard pressed to avoid the following dilemma:* On the one hand, if all
predicates of a theory are Ramseyfied, then the Ramsey sentence is trivially true up to a
cardinality claim about the domain of individuals, and hence has no empirical content
beyond the latter. On the other hand, if some subset of predicates is deemed
observational and exempted from Ramseyfication, then the Ramsey sentence will be true
if and only if the statements involving these observational predicates are true. Thus the
claim that the Ramsey sentence provides knowledge only of the structure of the
referants of theoretical predicates appears to be unsubstantiated, and this variant of
structural realism risks becoming indistinguishable from constructive empiricism. This
dilemma is easily avoided by the above emergentist epistemological structural realism.
Simply put, the notion of low-energy emergent dynamical structure based on
universality classes cannot be articulated in terms of a Ramseyfication of a single
theory. Rather, such structure is obtained by means of a low-energy approximation
relation between two different theories. Now this would be beside the point if this
relation could be fleshed out in terms of the EFT being embeddable in the original
theory, which would allow the construction of a single Ramsey sentence encompassing
both. However, from Section 4, this is not the case: the relation of low-energy
approximation cannot be described in terms of definitional extension (either finitistic or
infinitistic). Hence there is a "larger gap" between the structure of the fundamental
theory and phenomenological EFTs than can be described by notions of structure based
on Ramsey sentences.

The above structural realist interpretation of the condensed matter approach suggests
the following structural realist interpretation of spacetime.

1. The spatiotemporal aspects of the phenomena of experience are low-energy emergent.
Such aspects in particular include the spacetime symmetries of the Standard Model
and general relativity, our current best theories of matter and gravity.

2. The spatiotemporal aspects of the fundamental condensate are structural. Since the
fundamental condensate can only be known structurally, through its low-energy
EFTs, its spatiotemporal aspects can only be known structurally. And these aspects
are just those spatiotemporal properties of the universality class to which the
fundamental condensate belongs.

Such a structural realist interpretation of spacetime, as we've seen, comes with a major
qualification; namely, that the universality class that best describes spacetime structure
is unknown at present. It certainly cannot be identified with the universality class of
superfluid *He-A and the Standard Model, in so far as neither can recover the dynamics
of general relativity. Again, however, on a positive note, such a structural realist

¥ In it's original form, this is due to an objection given by Newman in 1928 to a version of epistemological

structural realism briefly advocated by Russell.
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interpretation can be linked with a definite research programme in condensed matter
physics, and for this reason alone should be given due consideration.
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