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Abstract We propose simple behavioral definitions of comparative uncertainty aver-
sion for a single agent towards different sources of uncertainty. Our definitions allow
for the comparison of utility curvature for different sources if the agent’s choices sat-
isfy subjective expected utility towards each source. We discuss how our definitions
can be applied to investigate ambiguity aversion in Klibanoff et al.’s (Econometrica
73(6):1849–1892, 2005) smooth ambiguity model, to study the effects of learning and
situational factors on uncertainty preferences, and to compare uncertainty preferences
between different agents.
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1 Introduction

We often do not know the probabilities of uncertain events when making decisions.
Research has shown that attitudes towards uncertainty do not just differ between
individuals, but also depend on the source of the uncertainty (Abdellaoui et al. 2011).
For example, people prefer to bet on sources for which they feel competent rather
than on sources for which they feel incompetent (Heath and Tversky 1991; Keppe
and Weber 1995; Tversky and Fox 1995; de Lara Resende and Wu 2010). It has been
argued that such a preference can partially explain the home bias in financial markets,
defined as the tendency of investors to hold nearly all their wealth in domestic assets
despite the benefits of international diversification (French and Poterba 1991; Kilka
and Weber 2000; Uppal and Wang 2003).

Preferences over different sources of uncertainty can be modeled through source-
dependent utility functions, as axiomatized by Cappelli et al. (2016). Chew et al.
(2008) investigated and found support for source-dependent utility in a neuroimaging
experiment. Various models have been proposed in which the agent faces two con-
secutive stages of uncertainty and has a different utility function for each stage (Nau
2006; Ergin and Gul 2009; Strzalecki 2011).

In the present paper,we propose simple behavioral definitions of comparative uncer-
tainty aversion of a single agent towards different sources of uncertainty.1 We build
on Yaari’s (1969) seminal definition of comparative uncertainty aversion and purely
rely on the agent’s willingness to accept bets under each source.2 Our definitions do
not require that the agent’s choices satisfy subjective expected utility (SEU), but allow
for comparative statements regarding the agent’s utility curvature if they do.

Our results follow directly from Yaari’s mathematical result. Conceptually, how-
ever, they remove two fundamental limitations. Yaari’s condition allows for the
comparison of uncertainty aversion of a single agent across different situations, but
only if the agent (1) faces the exact same events and (2) holds the samebeliefs regarding
the likelihood of these events across the two situations. These limitations make Yaari’s
definition inapplicable for most studies of source preference, which typically involve
different events or different information levels about these events. By removing these

1 We use the term risk aversion for preferences regarding acts with known probabilities, and uncertainty
aversion for preferences regarding acts with unknown probabilities. The term uncertainty aversion is some-
times used to refer to the preference for acts with unknown probabilities over acts with known probabilities.
We use the term ambiguity aversion for such preferences.
2 A large body of work has used Yaari’s definition or has expanded upon it by constructing comparative
definitions of revealed risk aversion, ambiguity aversion, and loss aversion (Kihlstrom and Mirman 1974;
Roth 1985; Epstein 1999; Ghirardato and Marinacci 2002; Nau 2003; Köbberling and Wakker 2005; Nau
2006; Olszewski 2007; Blavatskyy 2011; Jewitt and Mukerji 2011; Bommier et al. 2012; Chambers and
Echenique 2012; Heufer 2014).
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Comparing uncertainty aversion towards different sources 3

two limitations, our conditions not only allow for the comparison of uncertainty aver-
sion of a single agent towards different sources, they also open up further possibilities
to investigate the effects of learning and situational factors on uncertainty preferences,
and to compare uncertainty aversion between agents.

The paper is organized as follows. Section 2 introduces the theoretical framework
and presents our main definition for binary acts. Section 3 extends our definition
to general acts. Section 4 shows how our definitions can be applied to investigate
ambiguity aversion in Klibanoff et al.’s (2005) smooth ambiguity model, to study
the effects of learning and the decision situation on uncertainty preferences, and to
compare preferences between agents. Section 5 concludes.

2 Main result

We compare an agent’s uncertainty aversion to two sources indexed by j ∈ {A, B}.
Let a source of uncertainty S j be a finite or infinite state space containing all states
of nature s pertaining to j . The agent does not know which state of S j is true. It is
possible to consider a compound state space SA × SB , but we do not need it for our
main results. An event E is a subset of S j . Let the set of events of S j considered
by the agent be a sigma-algebra denoted as � j . The complementary event of E is
denoted as Ec. The outcome set is X , an open interval of the reals. The agents can
choose between acts, which are finite � j -measurable mappings from S j to X . Acts
are typically denoted f or g and the set of all acts on S j isF j . The bet xE y is a binary
act yielding outcome x , if event E occurs, and y, otherwise. When x > y, we call
xE y a bet on E and yE x a bet against E . Acts that yield the same outcome z for all
s ∈ S j are referred to as z.

The agents have preferences� j overF j , with∼ j ,� j ,≺ j , and� j defined as usual.
We will say that� j is represented by subjective expected utility (SEU) if there exists a
countably additive subjective probabilitymeasure Pj and a utility function u j uniquely
defined up to an affine transformation such that f � j g ⇔ ∫

S j
Pj (s)u j ( f (s))ds ≥

∫
S j

Pj (s)u j (g(s))ds. Throughout, we assume that the utility is continuous and strictly
increasing.We say that uA ismore concave than uB if there exists a concave function ϕ

such that uA = ϕ◦uB . Finally, Pj is nonatomic if for all E ∈ � j such that Pj (E) > 0,
there exists F ∈ � j such that F ⊂ E and 0 < Pj (F) < Pj (E). Nonatomicity is
guaranteed by Savage’s (1954) axiomatization of SEU.

Yaari (1969) defined comparative uncertainty aversion in terms of the agent’s will-
ingness to accept bets. His definition states that an agent is more uncertainty-averse in
one situation than in another, if her acceptance set in the former situation is a subset
of her acceptance set in the latter. Under SEU, this implies that the agent has more
concave utility in the former situation than in the latter. For this definition to be mean-
ingful, it is necessary that the agent (1) faces the same events and (2) holds the same
beliefs regarding the likelihood of these events across the two situations. We propose
an alternative way to compare uncertainty attitudes, which removes these constraints.
The main point of our result is simple: to compare uncertainty aversion, one should
not only consider bets on events, but also bets against them.
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4 A. Baillon et al.

Consider two events: E ∈ �A and F ∈ �B . Imagine that the agent is willing to
accept a bet on E (xE y), but not on F (xF y). This can either be because the agent is
more uncertainty-averse towards source SB than she is towards source SA, or because
she believes that event E is more likely than event F . Beliefs, however, are unable to
explain why the agent would simultaneously prefer bets on E to bets on F and prefer
bets on Ec to bets on Fc. This logic leads to the following condition for the agent
to be more uncertainty-averse towards source SB than towards source SA: whenever
the agent would reject a bet xE y and its symmetric bet yE x , she should always reject
either xF y or yF x , possibly both.

Theorem 1 Assume that�A defined overFA and�B defined overFB are represented
by subjective expected utility. The following statement (i) is necessary for statement (ii).
It is also sufficient if there exist E ∈ �A and F ∈ �B such that PA(E) = PB(F) = 1

2 .

(i) ∀ E ∈ �A, F ∈ �B, and x, y, and z in X,

(z �A xE y and z �A yE x) ⇒ (z �B xF y or z �B yF x).
(ii) uB is more concave than uA.

Statement (i) is necessary and sufficient to compare the agent’s utility towards two
sources of uncertainty if there is at least one event under each source to which the agent
assigns probability 1

2 . Using Ramsey’s (1931) concept of ethically neutral events, we
only need one ethically neutral event under each source. This richness condition is
automatically satisfied if PA and PB are nonatomic, as follows from Savage’s (1954)
axiomatization.

Corollary 1 If, in Theorem 1, PA and PB are nonatomic, then (i) is equivalent to (ii).

Ergin and Gul (2009) and Strzalecki (2011) call being more uncertainty-averse
to one source than to another second-order risk aversion and propose preference
conditions to characterize it. Unlike in Ergin and Gul (2009), our condition does not
use concepts from the representation we assume. Unlike in Strzalecki (2011), our
condition does not require the existence of acts whose outcomes depend on both
sources of uncertainty.

Cappelli et al. (2016) proposed a condition for source preference based on utility
midpoints. Such endogenous midpoints can be measured by techniques proposed by
Abdellaoui et al. (2007), Fishburn and Edwards (1997), Ghirardato et al. (2003),
Harvey (1986), Köbberling and Wakker (2003), and Vind (2003). Yet, they are more
complex than the modification of Yaari’s intuitive technique proposed here.

Kopylov (2016) proposed a condition with the same structure as condition (i) in
Theorem 1 but in a (Anscombe–Aumann) setting where acts are mappings from the
state space to lotteries. His condition drops the second limitation of Yaari’s condition
(same beliefs), but still suffers from the first limitation by requiring that the same events
are considered before and after the implication symbol. Condition (i) generalizes it
such that the events can differ and potentially stem from different sources.

Our definition allows for the ranking of sources of uncertainty on the basis of
the agent’s uncertainty aversion towards each source. It allows for comparing utility
between different sources and, thereby, complements the definitions of Tversky and
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Comparing uncertainty aversion towards different sources 5

Wakker (1995), which allowed for comparing decision weights between sources in
non-expected utility models.3

3 Extensions to general acts

To extend the definition from bets to general acts, we can consider what happens to
two events only for each agent and keep everything else (what happens on the other
events) constant. Theorem 2 applies this approach. We denote xE yF f the act yielding
x on E , y on F , and f (s) for all s /∈ E ∪ F .

Theorem 2 Assume that�A defined overFA and�B defined overFB are represented
by subjective expected utility. The following statement (i) is necessary for statement (ii).
It is also sufficient if there exist E, F ∈ �A andG, H ∈ �B such that PA(E) = PA(F)

and PB(G) = PB(H).

(i) ∀ E, F ∈ �A, G, H ∈ �B, f ∈ FA, g ∈ FB, and x, y, and z in X,

(zE∪F f �A xE yF f and zE∪F f �A yE xF f )
⇒ (zG∪Hg �B xG yH g or zG∪Hg �B yGxH g).

(ii) uB is more concave than uA.

Note that we have weakened the richness requirement on the state spaces: it is
still necessary that there are two events that the agent finds equally likely under each
source, but these events no longer have to be complementary.

In statement (i) of both Theorems 1 and 2, we permuted two outcomes. We can
also permute all outcomes of the act. Consider f ∈ FA and g ∈ FB , with f = (E1 :
x1, . . . , En : xn) and g = (F1 : x1, . . . , Fn : xn). Hence, f and g yield the same n
outcomes, but need not assign these outcomes to the same events. Let �(x1, . . . , xn)
denote a permutation of (x1, . . . , xn). For simplicity, we use the�( f ) to denote the act
assigning �(x1, . . . , xn) to (E1, . . . , En) and �(g) to denote the same permutation
of the outcome of g.

Theorem 3 Assume that�A defined overFA and�B defined overFB are represented
by subjective expected utility. The following statement (i) is necessary for statement
(ii). It is also sufficient if there exist, for some integer n, an n-fold partitions {Ei }n
of SA and an n-fold partition {Fi }n of SB, such that PA(Ei ) = PB(Fi ) = 1

n for all
i ∈ {1, . . . , n}.
(i) ∀ f ∈ FA and g ∈ FB yielding the same outcomes (x1, . . . , xn) and for all

z ∈ X,

(z �A �( f ) ∀�) ⇒ (∃� such that z �B �(g)).
(ii) uB is more concave than uA.

We can also decide not to consider all permutations, but only a subset of per-
mutations that “maximally differ” from each other. We can do so by using a type
of permutation that we will call cyclic. Consider an act f = (E1 : x1, E2 :

3 See Baillon et al. (2012) for a discussion of the descriptive appropriateness of utility to capture source
preference.
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6 A. Baillon et al.

x2, . . . , En−1 : xn−1, En : xn). Let π be a cyclic permutation function, defined as
π( f ) = (E1 : x2, E2 : x3, . . . , En−1 : xn, En : x1). It moves each outcome one event
to the left. We denote πm the compound function that applies π m times. For instance,
π3 = π ◦ π ◦ π .

Theorem 4 Assume that�A defined overFA and�B defined overFB are represented
by subjective expected utility. The following statement (i) is necessary for statement
(ii). It is also sufficient if there exist, for some integer n, an n-fold partitions {Ei }n
of SA and an n-fold partition {Fi }n of SB, such that PA(Ei ) = PB(Fi ) = 1

n for all
i ∈ {1, . . . , n}.
(i) ∀ f ∈ FA and g ∈ FB yielding the same outcomes (x1, . . . , xn) and for all

z ∈ X,

(z �A πm( f ) ∀m ∈ {1, . . . , n}) ⇒ (∃m ∈ {1, . . . , n} such that z �B πm(g)).
(ii) uB is more concave than uA.

In Theorems 3 and 4, the additional requirement for (i) to be sufficient for (ii) is
stronger than that of Theorem 2. The approach of Theorem 2 is, therefore, the least
demanding in terms of richness of the state spaces and beliefs of the agents. For all
the three theorems, the requirements are trivially satisfied by nonatomic probability
measures.

Corollary 2 If, in Theorems 2, 3, and 4, PA and PB are nonatomic, then (i) is equiv-
alent to (ii).

4 Further applications

Until now, our theory has focused on a single agent facing different sources of uncer-
tainty. Our results, however, also open up further possibilities to investigate ambiguity
aversion in Klibanoff et al.’s (2005) smooth ambiguity model, to study the effect of
learning on uncertainty preferences, to study how the decision situation affects prefer-
ences, and to compare preferences between agents. Here, we will briefly discuss these
applications.

4.1 Application 1: Smooth ambiguity model

Ambiguity aversion can be seen as a special case of source preference. If one of the
two sources of uncertainty that an agent faces is risky (known probabilities), then
ambiguity aversion can be defined as being more averse towards the uncertain source
than to the risky one. In his seminal work, Ellsberg (1961) provides convincing exam-
ples suggesting that individuals will prefer to bet on risk rather than uncertainty. In
his simplest example, people prefer to bet on an urn with 50 red and 50 black balls
over an urn containing a 100 balls that are either red or black in unknown proportions,
irrespective of the winning color. While Ellsberg presented this as a thought experi-
ment, subsequent work has convincingly shown his intuition to be correct (Camerer
and Weber 1992).
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Comparing uncertainty aversion towards different sources 7

We now show how our condition can be applied to study ambiguity aversion in
the smooth ambiguity model introduced by Klibanoff et al. (2005). In their setup, the
state space is the compound of a separable metric space SB and a probability interval
SA = (0, 1]. Hence, S = SA × SB . Let �A and �B be the Borel sigma-algebra of
SA and SB , respectively, and define � = �A ⊗ �B . The set of all countably additive
probability measures over � that are congruent with the Lebesgue measure over SA
is denoted �. Let F be the set of all acts on S. An act is a lottery if it only depends
on SA and we denote L the set of lotteries. We denote xp y the lottery xE×SB y when
the Lebesgue measure of E is p. The agent’s preferences � are represented by the
smooth ambiguity model if there exist a utility function u, a function ϕ defined over
the image of u and a probability measure over � such that f � g is equivalent to∫
�

ϕ(
∫
S u( f )dP)dμ ≥ ∫

�
ϕ(

∫
S u(g)dP)dμ. We assume that the functions ϕ and u

are continuous and strictly increasing.

Theorem 5 Assume � is represented by the smooth ambiguity model. The following
statement (i) is necessary for statement (ii). It is also sufficient if there exists E ∈ �

such that
∫
�
P(E)dμ = 1

2 .

(i) ∀ p ∈ [0, 1], F ∈ �, and x, y, and z in X,

(z �A xp y and z �A ypx) ⇒ (z �B xF y or z �B yF x).
(ii) ϕ is concave.

Our condition allows us to characterize the concavity of ϕ without using unobserv-
able acts mapping � to X unlike Baillon et al. (2012), and without using u or μ in the
preference condition unlike Klibanoff et al. (2005).

4.2 Application 2: Learning

Consider an agent who has the possibility to learn about a single source S (e.g., to
receive signals). Will she become less uncertainty-averse after learning more about
the uncertainty she faces? If she is Bayesian, she should update her beliefs based
on the information she receives and we could not use Yaari’s original definition to
compare her utility before and after receiving information. By contrast, denote �B

her preferences Before receiving information and �A her preferences After receiving
information. Theorems 1–4 allow us to study the effect of learning on her uncertainty
aversion and on her utility curvature.

Observation 1 Theorems 1–4 can be used to compare an agent’s utility curvature
before and after receiving information about S.

4.3 Application 3: Situational factors

In a similar vein, Yaari’s definition does not allow for the comparison of an agent’s
utility curvature in different situations (decision context, material conditions, time
pressure, etc.) if the agent’s beliefs differ between them. It will often be difficult to
rule out the possibility that beliefs are affected by situational factors, especially if
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8 A. Baillon et al.

these factors are influential enough to affect preferences. Theorems 1–4 allow for the
study of situational influences on preferences, even if beliefs are also affected.

Observation 2 Theorems 1–4 can be used to compare an agent’s utility curvature
between different situations, irrespective of whether these situations affect the agent’s
beliefs.

An example of such a situational factor is the weather. It has been found that
the weather affects traders’ behavior, with market returns being lower on cloudy days
(Saunders 1993; Hirshleifer and Shumway 2003). It is not clear whether this is because
it affects traders’ perceived likelihood of future events or because it affects their intrin-
sic willingness to bear uncertainty.Watson and Funck (2012) showed that short selling
by (professional) traders increases on cloudy days, suggesting that they are more will-
ing to bet against stocks going up. In the light of our definition, this suggests that the
impact of cloudiness on stock returns is caused by a change in beliefs, rather than a
higher degree of uncertainty aversion.

4.4 Application 4: Different agents

So far, we have focused on comparing uncertainty aversion of a single agent across
different situations. The main focus of Yaari’s (1969) original definition was to com-
pare uncertainty aversion between different agents. To do this, however, agents needed
to face the same events and their subjective probabilities should coincide. Especially,
this latter requirement is overly restrictive as it denies uncertainty its fundamental
property of potential disagreement on beliefs; requiring all agents to hold the same
beliefs effectively reduces uncertainty to risk. Theorems 1–4 can also be used if �A

and �B belong to different actors. As such, they can be used to compare preferences
between agents who hold different beliefs or face different events entirely.

Observation 3 Theorems 1–4 can be used to compare the utility curvature between
different agents, possibly facing different events from different sources of uncertainty.

Comparing utility curvature when beliefs differ can alternatively be obtained from
requirements about endogenousmidpoints as shown byBaillon et al. (2012). However,
such midpoints are more complex to be observed than our modifications of Yaari’s
intuitive technique.

The ability to compare uncertainty preferences between agents facing different
sources of uncertainty can be of great practical value in cross-cultural research. Con-
sider comparing uncertainty preferences towards the stock market for investors from
different countries. One option would be to compare their uncertainty preferences on
a single market, such as the Dow Jones. However, such a market will potentially have
a different meaning for investors from different countries. It will often be more infor-
mative to compare the investors’ willingness to take risk on markets that carry similar
meaning to them, such as their respective home markets.
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Comparing uncertainty aversion towards different sources 9

5 Conclusion and discussion

We have introduced behavioral definitions of comparative uncertainty aversion for a
single agent towards different sources of uncertainty.Our definitions generalizeYaari’s
(1969) intuitive definition of comparative uncertainty aversion and only depend on the
agent’s willingness to accept bets under each source. Although they do not require that
the agent’s choices satisfy subjective expected utility (SEU), our definitions allow for
comparative statements regarding the agent’s utility curvature towards each source if
they do.

Our generalizations also open up new possibilities to investigate ambiguity aversion
inKlibanoff et al.’s (2005) smooth ambiguitymodel, to study the effects of learning and
situational factors on uncertainty preferences, and to compare uncertainty preferences
between different agents.

Yaari (1969) already wrote that the major use of measures of risk aversion is to
facilitate empirical applications.Wehope that our definitionswill facilitate the growing
study of the rich domain of uncertainty.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Proofs

A.1 Proof of Theorem 1

A.1.1 (ii) ⇒ (i)

Proof By the definition of “more concave”, uB more concave than uA implies that
there exists a concave function ϕ such that uB = ϕ ◦ uA. Moreover, ϕ is strictly
increasing because uA and uB are strictly increasing.

Consider any z, x, y ∈ X and events E ∈ �A and F ∈ �B . Without loss of
generality, we assume x ≥ y.

We first consider the case PA (E) ≥ PB (F).

z �A xE y

⇒ uA(z) ≥ PA(E)uA(x) + (1 − PA(E))uA(y)

⇒ uA(z) ≥ PB(F)uA(x) + (1 − PB(F))uA(y)

⇒ ϕ(uA(z)) ≥ PB(F)ϕ(uA(x)) + (1 − PB(F))ϕ(uA(y))

because ϕ is strictly increasing and concave

⇒ uB (z) ≥ PB (F) uB (x) + (1 − PB (F)) uB (y)

⇒ z �B xF y

123
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10 A. Baillon et al.

The case PA (E) < PB (F) can be derived in the sameway by starting from z �A yE x .
��

A.1.2 (i) ⇒ (ii)

Below, we prove not (ii) ⇒ not (i) if there exist E ∈ �A and F ∈ �B such that
PA(E) = PB(F) = 1

2 .

Proof Remember that uA and uB are strictly increasing. We can, therefore, define ϕ

over the image of uA by ϕ = uB ◦ u−1
A . Consequently, ϕ is also strictly increasing.

Not (ii) ⇒ there exists b and c in the image of uA such that ϕ( 12 (b + c)) <
1
2ϕ(b) + 1

2ϕ(c).
Let x, y, z ∈ X be uniquely defined by uA(x) = b, uA(y) = c, uA(z) = b+c

2 .
Consider an event E ∈ �A such that PA(E) = 1

2 (it must exist according to the
richness condition). Consequently, we have z ∼A xE y and z ∼A yE x .

Now, consider event F ∈ �B such that PB(F) = 1
2 (it must also exist according

to the richness condition).

uB(z) = ϕ (uA (z)) = ϕ

(
1

2
(b + c)

)

<
1

2
ϕ (b) + 1

2
ϕ (c) = 1

2
uB(x) + 1

2
uB(y)

= PB (F) uB(x) + (1 − PB (F)) uB(y)

= (1 − PB (F)) uB(x) + PB (F) uB(y)

⇒ z ≺B xF y and z ≺B yF x .

��
A.2 Proof of Theorem 2

A.2.1 (ii) ⇒ (i)

Proof By the definition of “more concave”, uB more concave than uA implies that
there exists a concave function ϕ such that uB = ϕ ◦ uA. Moreover, ϕ is strictly
increasing because uA and uB are strictly increasing.

Consider any z, x, y ∈ X , f ∈ FA, g ∈ FB , and events E, F ∈ �A and G, H ∈
�B . Without loss of generality, we assume x ≥ y.

We first consider the case PA(E)
(PA(E)+PA(F))

≥ PB (G)
(PB (G)+PB (H))

.

zE∪F f �A xE yF f

⇒ uA (z) ≥ PA (E)

(PA (E) + PA (F))
uA (x) + PA (F)

(PA (E) + PA (F))
uA (y)

⇒ uA (z) ≥ PB (G)

(PB (G) + PB (H))
uA (x) + PB (H)

(PB (G) + PB (H))
uA (y)

⇒ ϕ (uA (z)) ≥ PB (G)

(PB (G) + PB (H))
ϕ (uA (x)) + PB (H)

(PB (G) + PB (H))
ϕ (uA (y))
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Comparing uncertainty aversion towards different sources 11

because ϕ is strictly increasing and concave

⇒ uB (z) ≥ PB (G)

(PB (G) + PB (H))
uB (x) + PB (H)

(PB (G) + PB (H))
uB (y)

⇒ zG∪Hg �B xG yH g

The case PA(E)
(PA(E)+PA(F))

<
PB (G)

(PB (G)+PB (H))
, can be derived in the same way by starting

from zE∪F f �A yE xF f . ��

A.2.2 (i) ⇒ (ii)

Below, we prove not (ii) ⇒ not (i) if there exist E, F ∈ �A and G, H ∈ �B , such
that PA(E) = PA(F) and PB(G) = PB(H).

Proof Remember that uA and uB are strictly increasing. We can, therefore, define ϕ

over the image of uA by ϕ = uB ◦ u−1
A . Consequently, ϕ is also strictly increasing.

Not (ii) ⇒ there exists b, c in the image of uA such that ϕ
( 1
2 (b + c)

)
< 1

2ϕ (b) +
1
2ϕ (c).

Let outcomes x, y, z ∈ X be uniquely defined by uA (x) = b, uA (y) = c, uA (z) =
b+c
2 .
Consider events E, F ∈ �A such that PA(E) = PA(F) (they must exist according

to the richness condition) and any act f ∈ FA. Consequently, we have zE∪F f ∼A

xE yF f and zE∪F f ∼A yE xF f .
Now consider events G, H ∈ �B such that PB(G) = PB(H) (they must also exist

according to the richness condition) and any act g ∈ FB .

uB (z) = ϕ (uA (z)) = ϕ

(
1

2
(b + c)

)

<
1

2
ϕ (b) + 1

2
ϕ (c) = 1

2
uB(x) + 1

2
uB(y)

⇒ (PB (G) + PB (H)) uB (z) < PB (G) uB (x) + PB (H) uB (y)

and (PB (H) + PB (G)) uB (z) < PB (H) uB (x) + PB (G) uB (y)

⇒ zG∪Hg ≺B xG yH g and zG∪Hg ≺B yGxH g.

��

A.3 Proof of Theorem 3

A.3.1 (ii) ⇒ (i)

Proof By the definition of “more concave”, uB more concave than uA implies that
there exists a concave function ϕ such that uB = ϕ ◦ uA. Moreover, ϕ is strictly
increasing because uA and uB are strictly increasing.
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Consider any f = (E1 : x1, . . . , En : xn) ∈ FA and z ∈ X .

z �A �( f ) ∀�

⇒
uA (z) ≥ PA (E1) uA (x1) + PA (E2) uA (x2) + PA (E3) uA (x3) + · · ·

+PA (En) uA (xn)

and uA (z) ≥ PA (E1) uA (x2) + PA (E2) uA (x1) + PA (E3) uA (x3) + · · ·
+PA (En) uA (xn)

...

and uA (z) ≥ PA (E1) uA (xn) + PA (E2) uA (xn−1) + PA (E3) uA (xn−2) + · · ·
+PA (En) uA (x1)

In total, there are n! inequalities, and each outcome has been assigned to each event
(n − 1)! times.

Summing up these n! inequalities and dividing by n!, we have:

uA (z) ≥ 1

n
uA (x1) + 1

n
uA (x2) + · · · + 1

n
uA (xn)

⇒ ϕ (uA (z)) ≥ 1

n
ϕ (uA (x1)) + · · · + 1

n
ϕ (uA (xn)) because ϕ is strictly increasing and concave.

⇒ uB (z) ≥ 1

n
uB (x1) + · · · + 1

n
uB (xn) .

This inequality implies that there must exist a � such that z �B �(g) for any g =
(F1 : x1, . . . , Fn : xn) ∈ FB whose outcomes are the same as those of f because
otherwise:

z ≺B �(g) ∀�

⇒
uB (z) < PB (F1) uB (x1) + PB (F2) uB (x2) + PB (F3) uB (x3) + · · ·

+PB (Fn) uB (xn)

and uB (z) < PB (F1) uB (x2) + PB (F2) uB (x1) + PB (F3) uB (x3) + · · ·
+PB (Fn) uB (xn)

...

and uB (z) < PB (F1) uB (xn) + PB (F2) uB (xn−1) + PB (F3) uB (xn−2) + · · ·
+PB (Fn) uB (x1) .
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Summing these n! inequalities, and dividing them by n! implies

uB (z) <
1

n
uB (x1) + · · · + 1

n
uB (xn) .

��

A.3.2 (i) ⇒ (ii)

Below,we prove not (ii) ⇒ not (i) if there exist, for some integer n, an n-fold partitions
{Ei }n of SA and an n-fold partition {Fi }n of SB , such that PA(Ei ) = PB(Fi ) = 1

n for
all i ∈ {1, . . . , n}.
Proof Remember that uA and uB are strictly increasing. We can, therefore, define ϕ

over the image of uA by ϕ = uB ◦ u−1
A . Consequently, ϕ is also strictly increasing.

Not (ii) ⇒ there exists u1, . . . , un belonging to the domain of uA such that

ϕ

(
1

n
(u1 + · · · + un)

)

<
1

n
ϕ (u1) + · · · + 1

n
ϕ (un)

The outcomes x1, . . . , xn are uniquely defined by uA (x1) = u1, . . . , uA (xn) = un
and z is defined by uA (z) = 1

n (u1 + · · · + un).
Consider a partition {Ei }n of SA such that PA(Ei ) = 1

n for all i ∈ {1, . . . , n} (which
is assumed to exist), the act f ∈ FA assigning (x1, . . . , xn) to (E1, . . . , En) and all
its permutations �( f ). The equality uA (z) = 1

n u1 + · · · + 1
n un implies z ∼A �( f )

for all �.
Yet,

uB (z) = ϕ (uA (z)) = ϕ

(
1

n
(u1 + · · · + un)

)

<
1

n
ϕ (u1) + · · · + 1

n
ϕ ((un)) = 1

n
uB(x1) + · · · + 1

n
uB(xn).

Consider a partition {Fi }n of SB such that PB(Fi ) = 1
n for all i ∈ {1, . . . , n} (which

is also assumed to exist), the act g ∈ FB assigning (x1, . . . , xn) to (F1, . . . , Fn) and
all its permutations �(g). The inequality uB (z) < 1

n uB(x1)+· · ·+ 1
n uB(xn) implies

z ≺B �(g) for all �, and, hence, not (i). ��

A.4 Proof of Theorem 4

A.4.1 (ii) ⇒ (i)

Proof By the definition of “more concave”, uB more concave than uA implies that
there exists a concave function ϕ such that uB = ϕ ◦ uA. Moreover, ϕ is strictly
increasing because uA and uB are strictly increasing.
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14 A. Baillon et al.

Consider any f = (E1 : x1, . . . , En : xn) ∈ FA and z ∈ X .

z �A πm ( f ) ∀m
⇒
uA (z) ≥ PA (E1) uA (x1) + PA (E2) uA (x2) + PA (E3) uA (x3) + · · ·

+PA (En) uA (xn)

and uA (z) ≥ PA (E1) uA (x2) + PA (E2) uA (x3) + PA (E3) uA (x4) + · · ·
+PA (En) uA (x1)

...

and uA (z) ≥ PA (E1) uA (xn) + PA (E2) uA (x1) + PA (E3) uA (x2) + · · ·
+PA (En) uA (xn−1)

In total, there are n inequalities, and each outcome has been assigned to each event a
single time.

Summing up these n inequalities and dividing by n, we have:

uA (z) ≥ 1

n
uA (x1) + 1

n
uA (x2) + · · · + 1

n
uA (xn)

⇒ ϕ (uA (z)) ≥ 1

n
ϕ (uA (x1)) + · · · + 1

n
ϕ (uA (xn)) because ϕ is strictly increasing and concave.

⇒ uB (z) ≥ 1

n
uB (x1) + · · · + 1

n
uB (xn) .

This inequality implies that there must exist anm ∈ {1, . . . , n} such that z �B πm (g)
for any g = (F1 : x1, . . . , Fn : xn) ∈ FB whose outcomes are the same as those of f
because otherwise:

z ≺B πm (g) ∀m
⇒
uB (z) < PB (F1) uB (x1) + PB (F2) uB (x2) + PB (F3) uB (x3) + · · ·

+PB (Fn) uB (xn)

and uB (z) < PB (F1) uB (x2) + PB (F2) uB (x3) + PB (F3) uB (x4) + · · ·
+PB (Fn) uB (x1)

...

and uB (z) < PB (F1) uB (xn) + PB (F2) uB (x1) + PB (F3) uB (x2) + · · ·
+PB (Fn) uB (xn−1) .

Summing these n inequalities, and dividing them by n implies

uB (z) <
1

n
uB (x1) + · · · + 1

n
uB (xn) .

��

123



Comparing uncertainty aversion towards different sources 15

A.4.2 (i) ⇒ (ii)

Below,we prove not (ii) ⇒ not (i) if there exist, for some integer n, an n-fold partitions
{Ei }n of SA and an n-fold partition {Fi }n of SB , such that PA(Ei ) = PB(Fi ) = 1

n for
all i ∈ {1, . . . , n}.
Proof Remember that uA and uB are strictly increasing. We can, therefore, define ϕ

over the image of uA by ϕ = uB ◦ u−1
A . Consequently, ϕ is also strictly increasing.

Not (ii) ⇒ there exists u1, . . . , un belonging to the domain of uA such that

ϕ

(
1

n
(u1 + · · · + un)

)

<
1

n
ϕ (u1) + · · · + 1

n
ϕ (un)

The outcomes x1, . . . , xn are uniquely defined by uA (x1) = u1, . . . , uA (xn) = un
and z is defined by uA (z) = 1

n (u1 + · · · + un) .

Consider a partition {Ei }n of SA such that PA(Ei ) = 1
n for all i ∈ {1, . . . , n} (which

is assumed to exist), and the act f ∈ FA assigning (x1, . . . , xn) to (E1, . . . , En). The
equality uA (z) = 1

n u1 + · · · + 1
n un implies z ∼A πm( f ) for all m.

Yet,

uB (z) = ϕ (uA (z)) = ϕ

(
1

n
(u1 + · · · + un)

)

<
1

n
ϕ (u1) + · · · + 1

n
ϕ (un) = 1

n
uB(x1) + · · · + 1

n
uB(xn).

Consider a partition {Fi }n of SB such that PB(Fi ) = 1
n for all i ∈ {1, . . . , n} (which

is also assumed to exist) and the act g ∈ FB assigning (x1, . . . , xn) to (F1, . . . , Fn).
The inequality uB (z) < 1

n uB(x1) + · · · + 1
n uB(xn) implies z ≺B πm(g) for all m,

and, hence, not (i). ��

A.5 Proof of Theorem 5

A.5.1 (ii) ⇒ (i)

Proof Consider any z, x, y ∈ X , probability p, and event F ∈ �. Without loss of
generality, we assume x ≥ y.

We first consider the case p ≥ ∫
�
P(F)dμ.

z � xp y

⇒ u (z) ≥ pu (x) + (1 − p) u (y)

⇒ u (z) ≥
(∫

�

P(F)dμ

)

u (x) +
(

1 −
∫

�

P(F)dμ

)

u (y)

⇒ u (z) ≥
∫

�

(P(F)u (x) + (1 − P(F)) u (y)) dμ

⇒ ϕ (u (z)) ≥
∫

�

ϕ (P(F)u (x) + (1 − P(F)) u (y)) dμ
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16 A. Baillon et al.

because ϕ is strictly increasing and concave

⇒ z � xF y

The case p ≤ ∫
�
P(F)dμ can be derived in the same way by starting from z � ypx .

��

A.5.2 (i) ⇒ (ii)

Below, we prove not (ii) ⇒ not (i) if there exist E ∈ � such that
∫
�
P(E)dμ = 1

2 .

Proof Not (ii) ⇒ there exists an interval [b, c] in the image of u on which ϕ is convex.
Let x, y, z ∈ X be uniquely defined by u (x) = b, u (y) = c, u (z) = b+c

2 .
Consequently, we have z ∼ x 1

2
y and z ∼ y 1

2
x .

Now consider event E such that
∫
�
P(E)dμ = 1

2 (it must exist according to the
richness condition).

ϕ (u (z)) = ϕ

(
1

2
(b + c)

)

<
1

2
ϕ (b) + 1

2
ϕ (c)

=
(∫

�

P(E)dμ

)

ϕ (b) +
(

1 −
∫

�

P(E)dμ

)

ϕ (c)

=
∫

�

(P(E)ϕ (b) + (1 − P(E)) ϕ (c)) dμ

<

∫

�

ϕ (P(E)u(x) + (1 − P(E)) u(z)) dμ

⇒ z ≺ xE y.

Similarly, using the same steps with
∫
�
P(E)dμ = 1

2 ,

ϕ(u(z)) <

∫

�

(P(Ec)ϕ(b) + (1 − P(Ec))ϕ(c))dμ

<

∫

�

ϕ(P(Ec)u(x)(1 − P(Ec))u(z))dμ

⇒ z ≺ yE x .

��
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