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Abstract Stalnaker (Philosophical Studies, 128(1), 169—199 2006) introduced a
combined epistemic-doxastic logic that can formally express a strong concept of
belief, a concept of belief as ‘subjective certainty’. In this paper, we provide a topo-
logical semantics for belief, in particular, for Stalnaker’s notion of belief defined as
‘epistemic possibility of knowledge’, in terms of the closure of the interior operator
on extremally disconnected spaces. This semantics extends the standard topolog-
ical interpretation of knowledge (as the interior operator) with a new topological
semantics for belief. We prove that the belief logic KD45 is sound and complete
with respect to the class of extremally disconnected spaces and we compare our
approach to a different topological setting in which belief is interpreted in terms of
the derived set operator. We also study (static) belief revision as well as belief dynam-
ics by providing a topological semantics for conditional belief and belief update
modalities, respectively. Our setting based on extremally disconnected spaces, how-
ever, encounters problems when extended with dynamic updates. We then propose
a solution consisting in interpreting belief in a similar way based on hereditar-
ily extremally disconnected spaces, and axiomatize the belief logic of hereditarily
extremally disconnected spaces. Finally, we provide a complete axiomatization of
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the logic of conditional belief and knowledge, as well as a complete axiomatization
of the corresponding dynamic logic.

Keywords Epistemic logic - Doxastic logic - Topological semantics - (Hereditarily)
Extremally disconnected spaces - Conditional beliefs - Updates - Completeness -
Axiomatization

1 Introduction

Edmund Gettier’s famous counterexamples against the justified true belief (JTB)
account of knowledge [32] invited an interesting and extensive discussion among
formal epistemologists and philosophers concerned with understanding the cor-
rect relation between knowledge and belief, and, in particular, with identifying the
exact properties and conditions that distinguishes a piece of belief from a piece
of knowledge and vice versa. Various proposals in the literature analysing the
knowledge-belief relation can be classified in two categories: (1) the ones that start
with the weakest notion of true justified (or justifiable) belief and add conditions
in order to argue that they establish a “good” (e.g. factive, correctly-justified, unre-
visable, coherent, stable, truth-sensitive) notion of knowledge by enhancing the
conditions in the JTB analysis of knowledge; and (2) the ones that take knowledge as
the primitive concept and start from a chosen notion of knowledge and weaken it to
obtain a “good” (e.g. consistent, introspective, possibly false) notion of belief. Most
research in formal epistemology follows the first approach. In particular, the stan-
dard ropological semantics for knowledge (in terms of the interior operator) can be
included within this first approach, as based on a notion of knowledge as “correctly
justified belief”: according to the interior semantics, a proposition (set of possible
worlds) P is known at the real world x if there exists some “true evidence” (i.e. an
open set U containing the real world x) that entails P (i.e. U C P). Other responses
to the Gettier challenge falling under this category include, among others, the defea-
sibility analysis of knowledge [35, 39], the sensitivity account [45], the contextualist
account [24] and the safety account [51].1

While most research in formal epistemology follows the first approach, the second
approach has to date received much less attention from formal logicians. This is rather
surprising, since such a “knowledge-first” approach, which challenges “conceptual
priorty of belief over knowledge”, has been persuasively defended by one of the
most influential contemporary epistemologists (Williamson [69]). The only formal
account following this second approach that we are aware of (prior to our own work)
is the one given by Stalnaker [53], using a relational semantics for knowledge, based
on Kripke models in which the accessibility relation is a directed preorder. In this

For an overview of responses to the Gettier challenge and a detailed discussion, we refer the reader to
[33, 49].
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setting, Stalnaker argues that the “true” logic of knowledge is the modal logic S4.2
and that belief can be defined as the epistemic possibility of knowledge.* In other
words, believing p is equivalent to “not knowing that you don’t know” p:

Bp = -K—=Kp.

Stalnaker justifies this identity from first principles based on a particular notion of
belief, namely belief as “subjective certainty”. Stalnaker refers to this concept as
“strong belief”, but we prefer to call it full belief.> What is important about this type
of belief is that it is subjectively indistinguishable from knowledge: an agent “fully
believes” p iff she “believes that she knows” p.

Indeed, Stalnaker proceeds to formalize AGM belief revision [3], based on a spe-
cial case of the above semantics, in which the accessibility relation is assumed to be
a weakly connected preorder, and (conditional) beliefs are defined by minimization.
This validates the AGM principles for belief revision.

In this paper we generalize Stalnaker’s formalization, making it independent
from the concept of plausibility order and from relational semantics, to a topolog-
ical setting (motivation for topological semantics for epistemic logic is presented
in Section 2.3). In fact, when we interpret knowledge and belief as set-theoretical
operators, Stalnaker’s axioms naturally lead to a topological semantics that extends
the standard topological interpretation of knowledge as inferior operator with a new
topological semantics for belief, given by the closure of the interior operator with
respect to an extremally disconnected topology (see Theorem 4). We compare our
new semantics with the older topological interpretation of belief in terms of Cantor
derivative, giving several arguments in favour of our semantics. We prove that the
logic of knowledge and belief with respect to our semantics is completely axiom-
atized by Stalnaker’s epistemic-doxastic principles. Furthermore, we show that the
complete logic of knowledge in this setting is the system S4.2, while the complete
logic of belief on extremally disconnected spaces is the standard system KD45.

We moreover focus on a topological semantics for belief revision, assuming the
distinction between static and dynamic conditioning made in, e.g., [7, 8, 58]. We
examine the corresponding “static” conditioning, by giving a topological semantics
for conditional belief BY1. We formalize a notion of conditional belief By by
relativizing the semantic clause for a simple belief modality to the extension of the
learnt formula ¢ and first give a complete axiomatization of the logic of knowledge
and conditional beliefs based on extremally disconnected spaces. This topological
interpretation of conditional belief also allows us to model static belief revision of a
more general type than axiomatized by the AGM theory: the topological model val-

2Note that Stalnaker considers in his work [53] also several other variations such as S4.4, S4F, S5.

3We adopt this terminology both because we want to avoid the clash with the very different notion of
strong belief (due to Battigalli and Siniscalchi [12]) that is standard in epistemic game theory, and because
we think that the intuitions behind Stalnaker’s notion are very similar to the ones behind Van Fraassen’s
probabilistic concept of full belief [65].
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idates the (appropriate versions of) AGM axioms 1-7, but not necessarily the axiom
8, though it does validate a weaker version of this axiom.*

The above setting, however, comes with a problem when extended to a dynamic
one by adding update modalities in order to capture the action of learning (condi-
tioning with) new “hard” (true) information P.> In general, conditioning with new
“hard” (true) information P is modeled by simply deleting the “non-P” worlds
from the initial model. Its natural topological analogue, as recognized in [10, 11,
71] among others, is a topological update operator, using the restriction of the orig-
inal topology to the subspace induced by the set P. This interpretation, however,
cannot be implemented smoothly on extremally disconnected spaces due to their non-
hereditary nature: we cannot guarantee that the subspace induced by any arbitrary
true proposition P is extremally disconnected since extremally disconnectedness is
not a hereditary property and thus the structural properties, in particular extremally
disconnectedness, of our topological models might not be preserved. We proposed a
different solution for this problem in [5] via arbitrary topological spaces. In particu-
lar, [5] introduces a different topological semantics for belief based on all topological
spaces in terms of the interior of the closure of the interior operator and models
updates on arbitrary topological spaces. In this paper, however, we propose another
solution for this problem via hereditarily extremally disconnected spaces. Heredi-
tarily extremally disconnected spaces are those whose subspaces are still extremally
disconnected. By restricting our attention to this class of spaces, we guarantee that
any model restriction preserves the important structural properties that make the
axioms of the corresponding system sound, in this case, extremally disconnectedness
of the initial model. We then interpret updates (!¢)yr again as a topological update
operator using the restriction of the initial topology to its subspace induced by the
new information ¢ and show that we no longer encounter the problem with updates
that rises in the case of extremally disconnected spaces: hereditarily extremally dis-
connected spaces admit updates. Further, we show that while the complete logic of
knowledge on hereditarily extremally disconnected spaces is actually S4.3, the com-
plete logic of belief is still KD45. We moreover give a complete axiomatization of
the logic of knowledge and conditional beliefs with respect to the class of hereditarily
extremally disconnected spaces, as well as a complete axiomatization of the corre-
sponding dynamic logic. In addition, we show that hereditarily disconnected spaces
validate the AGM axiom 8§, and that therefore our proposed semantics for knowledge
and conditional beliefs captures the AGM theory as a theory of static belief revision.

Our work in the current paper has also led to an alternative approach to topological
semantics for justified belief and knowledge presented in [6], which takes a more
coherentist view on evidence as a source of a rational agent’s justified belief and
knowledge.

4AGM theory is considered to be static in the sense that it captures “the agent’s changing beliefs about an
unchanging world” [8, p. 14] This static interpretation of AGM theory is mimicked by conditional beliefs
in a modal framework, in the style of dynamic epistemic logic, and embedded in the complete system
Conditional Doxastic Logic (CDL) introduced by Baltag and Smets in [7, 8].

SThis term is used to denote information that comes with an inherent warranty of veracity, e.g. because of
originating from an infallibly truthful source (see, e.g., [59]).
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This work can be seen as an extension of [4]: while the results in [4] and Section 3
of the current paper coincide, the proofs of our important results can only be found in
the latter. The soundness and completeness results presented in [4] are merely based
on extremally disconnected spaces. In this paper, however, we go further. We model
knowledge and belief on hereditarily extremally disconnected spaces and propose a
topological semantics for conditional beliefs and updates based on these spaces.®

The paper is organized as follows. In Section 2 we provide the topological pre-
liminaries used throughout this paper (Section 2.1) and the interior-based topological
semantics for knowledge as well as the topological soundness and completeness
results for the systems S4, S4.2, and S4.3 (Section 2.2). Section 2.3 then explains the
motivation behind the use of the interior operator as a knowledge modality, where
the main focus will be on the underlying evidence-based interpretation. Section 3
introduces Stalnaker’s combined logic and briefly outlines his analysis regarding
the relation between knowledge and belief. We then propose a topological seman-
tics for the system, in particular a topological semantics for full belief. We continue
with investigating the unimodal fragments S4.2 for knowledge and KD4S5 for belief
of Stalnaker’s system, and give topological completeness results for these logics,
again with respect to the class of extremally disconnected spaces. We also compare
our topological belief semantics with Steinsvold’s co-derived set semantics [54] and
argue in favor of ours in this section. Section 4 focuses on a topological semantics for
belief revision, assuming the distinction between static and dynamic belief revision
and presents the semantics for conditional beliefs and updates, respectively. Finally
we conclude with Section 5 by giving a brief summary of this work and pointing out
a number of directions for future research.

Throughout the paper we assume familiarity with basic modal logic, Kripke
semantics, and axiomatizations of standard epistemic and doxastic logics such as
S4, S4.2, S4.3, and KD45. We refer the reader who is not familiar with the
aforementioned topics to [19, Chapters 1 and 4].

2 Background
2.1 Topological Preliminaries

We start by introducing the basic topological concepts that will be used throughout
this paper. For a more detailed discussion of general topology we refer the reader to
[25, 26].

A topological space is a pair (X, 7), where X is a non-empty set and t is a family
of subsets of X containing X and #J, and is closed under finite intersections and
arbitrary unions. The set X is called a space. The subsets of X belonging to 7 are
called open sets (or opens) in the space; the family 7 of open subsets of X is also
called a topology on X. Complements of opens are called closed sets. An open set

SChapter 4 of Aybiike Ozgiin’s Ph.D. dissertation [47] was developed based on an earlier version of this
paper titled as “The topological theory of belief’.
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Table 1 Kuratowski axioms

an) Int(X)=X (C1) CL(®) =9

12) Int(A) S A (C2) ACCI(A)

(I13) Int(A N B)=Int(A) NInt(B) (C3) Cl(A U B)=Cl(4) U CI(B)
(14) Int(Int(A)) =Int(A) (C4) CI(CI(A)) =CI(A)

containing x € X is called an open neighbourhood of x. The interior Int(A) of a set
A C X is the largest open set contained in A whereas the closure C1(A) of A is the
least closed set containing A. In other words,

o Int(A) = J{U e 7:U C A} e Cl(A)=(FSX:X\Fet,AC F}

It is easy to see that Cl is the De Morgan dual of Int (and vice versa) and can be
written as CI(A) = X \ Int(X \ A). It is well known that the interior Int and the
closure Cl operators of a topological space (X, t) satisfy the following properties
(the so-called Kuratowski axioms) for any A, B C X (see Table 1)’

A point x € X is called a limit point (or accumulation point) of aset A C X if
for each open neighborhood U of x, we have A N (U \ {x}) # @. The set of all limit
points of A is called the derived set of A and is denoted by d(A). Forany A C X,
we alsolet 1 (A) = X \ d(X \ A). We call 1 (A) the co-derived set of A. Moreover, a
set A C X is called dense-in-itself if A € d(A). A space X is called dense-in-itself
if X =d(X).

Example For any non-empty set X, (X, P(X)) is a topological space and every set
A C X is both closed and open (i.e., clopen). Another standard example of a topo-
logical space is the real line R with the family 7 of open intervals and their countable
unions. If A = [1, 2), then Int([1, 2)) = (1, 2) (the largest open interval included in
[1,2))and CI([1, 2)) = [1, 2] (the least closed interval containing [1, 2)) (see Fig. 1).
Moreover, it is not hard to see that d([1, 2)) = [1, 2], ¢([1,2)) = (1, 2), and (R, 1)
is dense-in-itself.

Definition 1 Given a topological space (X, t) and a non-empty set P € X, a space
(P, tp) is called a subspace of (X, ) where tp = {UN P : U € t}.

We can define the closure operator Cl;, and the interior operator Int;, of the
subspace (P, Tp) in terms of the closure and the interior operators of the space (X, 1)
as follows:

e Cl;,(A) =CI(A)N P o Int;,(A) = Int(P — A)N P,

where P — A := (X \ P) U A is the set-theoretic version of material implication.

"The properties (I1) — (I4) (and, dually, (C1) — (C4)) are what render the knowledge modality interpreted
as the topological interior operator an S4-type modality. We will elaborate on this in Section 2.2.3.
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1 2
@
A= [17 2)
1 2 1 2
—0 o— —e *
(a) Int(A) = (1,2) (b) Cl(4) = [1,2]

Fig. 1 The natural topology on R

2.2 The Interior Semantics for Modal Logic

In this section, we provide the formal background for the interior-based topological
semantics for the basic modal logic that originates from the work of McKinsey [41],
and McKinsey and Tarski [42] (some of the ideas could already be found in [55] and
[57]). In this semantics the modal operator U is interpreted on topological spaces
as the interior operator. These investigations took place in an abstract, mathematical
context, independent from epistemic/doxastic considerations. In [42], McKinsey and
Tarski not only proved that the modal system S4 is the logic of all topological spaces
(under the above-mentioned interpretation), but also showed that it is the logic of any
dense-in-itself separable metric space, such as the rational line Q, the real line R, and
the Cantor space, among others. This approach paved the way for a whole new area
of spatial logics, establishing a long standing connection between modal logic and
topology (see, e.g., [2] for a survey on this topic, in particular, see [60]). Moreover,
the completeness results concerning the epistemic system S4 have naturally attracted
epistemic logicians, and led to an epistemic re-evaluation of the interior semantics,
seeing topologies as models for information. Borrowing the use of topological mod-
els for intuitionistic languages where opens are treated as ‘observable properties’ or
‘pieces of evidence’ about where the actual state is, the interior semantics has been
considered to provide a deeper insight into the evidential interpretation of knowl-
edge, especially compared to the rather standard and more commonly used relational
semantics.

In the following, we briefly introduce the so-called topological interior semantics
and explain how and why it constitutes a satisfactory interpretation for (evidence-
based) knowledge, and, consequently, why—in certain contexts—it forms a richer
semantics than the relational semantics. While stating some important completeness
results (concerning logics of knowledge) of previous works, we also explain the
connection between the interior semantics and standard Kripke semantics. The pre-
sentation of this section follows [60, Section 2]. The reader who is familiar with the
source and topic should feel free to continue with Section 3.
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212 A. Baltag et al.

2.2.1 Syntax and Semantics

We consider the standard unimodal language L g with a countable set of propositional
letters Prop, Boolean operators —, A and a modal operator K. Formulas of Lx are
defined as usual by the following grammar

pr=pl-plore|Kg

where p € Prop. Abbreviations for the connectives Vv, — and <> are standard. Mor-
eover, the epistemic possibility operator (K )¢ is defined as =K —¢ and L := pA—p.

Given a topological space (X, t), we define a topological model, or simply, a
topo-model (based on (X, 7)) to be M = (X, t, v) where X and 7 are as before and
v : Prop — P(X) is a valuation function.

Definition 2 Given a topo-model M = (X, 7, v) and a state x € X, the interior
semantics for the language Lk is defined recursively as follows:

M,xE=p iff x € v(p)

M, x E g iff not M, x =¢

MxEeAy iff Mix Epand M, x =y

M,xEKp iff QU et)(xeUandVy e U, M,y = @)

where p € Prop.

We let [oIM = {x € X : M,x = ¢} denote the truth set of a formula ¢
in topo-model M. We omit the superscript for the model when it is clear from the
context. It is now easy to see that the semantic clauses for K and (K) give us exactly
the interior and the closure operators of the corresponding model, respectively. In
other words, according to the interior semantics, we have

(Kol = Int([l)
[{K)ell = Cl([eD).

We call a formula ¢ true in a topo-model M = (X, t,v), denoted by M = ¢,
if M,x &= ¢ forall x € X, and it is valid in a topological space X = (X, 1),
denoted by X = ¢, if M = ¢ for every topo-model M based on X'. Moreover, we
say ¢ is valid in a class K of topological spaces, denoted by K = ¢, if X = ¢ for
every member of this class, and it is valid, denoted by = ¢, if it is valid in the class
of all topological spaces. Soundness and completeness with respect to the interior
semantics are defined as usual.

2.2.2 Connection between Kripke Frames and Topological Spaces

As is well known, there is a tight link between the relational semantics and the interior
semantics at the level of reflexive and transitive frames: every reflexive and transitive
Kripke frame corresponds to an Alexandroff space. The class of reflexive and transi-
tive frames therefore forms a subclass of all topological spaces. This connection does
not only help us to see how the interior semantics and the relational semantics relate
to each other and how the former extends the latter, but it also provides a method
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A Topological Approach to Full Belief 213

to prove topological completeness results by using the already established results for
the relational counterpart.

Let us now fix some notation and terminology. We denote a Kripke frame by F =
(X, R), a Kripke model by M = (X, R, v) and we let ||@||¥ denote the truth set of
formula ¢ in a Kripke model M = (X, R, v). A topological space (X, ) is called
Alexandroff if T is closed under arbitrary intersections, i.e., (|.A € 7 forany A C t.
Equivalently, a topological space (X, t) is Alexandroff iff every point in X has a least
open neighborhood. A topo-model M = (X, t, v) is called an Alexandroff model if
(X, t) is an Alexandroff space.

Given a reflexive and transitive Kripke frame J, we can construct an Alexandroff
space (X, tg) by defining T to be the set of all up-sets® of F. The up-set R(x) =
{v € X : xRy} forms the smallest open neighborhood containing the point x.
Conversely, for every topological space (X, 7), we define a specialization preorder
R; on X by

xR.y iff x € CI({y}) iff (YU € 7)(x € U implies y € U).

(X, R;) is therefore a reflexive and transitive Kripke frame. Moreover, we have that
R = Ry, and that T = tp, if and only if (X, 7) is Alexandroff (see, e.g., [60, p.
238]). Hence, there is a natural one-to-one correspondence between reflexive and
transitive Kripke models and Alexandroff models. Moreover, the evaluation of modal
formulas in a reflexive and transitive Kripke model coincides with their evaluation in
the corresponding Alexandroff model, as stated in following proposition (see, e.g.,
[48, p. 306]):

Proposition 1 For all reflexive and transitive Kripke models M = (X, R, v) and all
¢ € Lk,

lpll™ = @M=
where M., = (X, tg, v).

Therefore, reflexive and transitive Kripke models and Alexandroff models are just
different representations of each other with respect to the language L. In particular,
the modal equivalence stated in Proposition 1 constitutes the key step that allows us
to use the relational completeness results to prove completeness with respect to the
interior semantics.

2.2.3 Topo-Completeness of S4, S4.2 and $4.3

Having explained the connection between reflexive-transitive Kripke models and
Alexandroff models, we can now state the topological completeness results for S4
and its two normal extensions S4.2 and S4.3 that are of particular interests in this
paper: our work is built on the interior semantics for knowledge and topological
completeness results of the aforementioned logics under this semantics.

Given the interior semantics, it is not hard to see that the Kuratowski axioms of
the interior operator are the axioms of the system S4 written in topological terms (see

8A set A C X is called an up-set of (X, R) if foreach x, y € X, xRy and x € A imply y € A.
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214 A. Baltag et al.

Table 2 S4 vs. Kuratowski
axioms S4 axioms and rules Kuratowski axioms

(K) K(Ay) < (KgAKy) Int(ANB) =Int(A) NInt(B)

(T) Ko — ¢ Int(A) C A
4) Ko —> KKg Int(A) C Int(Int(A))
(Nec) from ¢, infer K¢ Int(X) =X

Table 2). This implies the soundness of S4 with respect to the class of all topolog-
ical spaces under the interior semantics (see, e.g., [17, 48, 60]). For completeness,
we use the connection between Kripke frames and topological spaces presented in
Section 2.2.2.° In fact, Proposition 1 entails the following general result regarding all
Kripke complete normal extensions of S4.

Proposition 2 [60] Every normal extension of S4 that is complete with respect to the
standard Kripke semantics is also complete with respect to the interior semantics.

We can therefore prove completeness of the Kripke complete extensions of S4
with respect to the interior semantics via their relational completeness. What makes
the interior semantics more general than Kripke semantics is tied to soundness. For
example, S4 is not only sound with respect to Alexandroff spaces, but also with
respect to all topological spaces.

Theorem 1 [42] S$4 is sound and complete with respect to the class of all topological
spaces under the interior semantics.

Since the normal extensions S4.2 and S4.3 of S4 are of particular interest in our
work, we also elaborate on the topological soundness and completeness of these two
systems.

S4.2 is a strengthening of S4 defined as

S4.2 =844 ((K)K¢ — K(K)p)

where L 4 ¢ is the smallest normal modal logic containing L and ¢. It is well known,
see e.g., [19] or [22], that S4.2 is sound and complete with respect to reflexive,
transitive and directed Kripke frames. Recall that a Kripke frame (X, R) is called
directed"? (see Fig. 2) if

(Vx,y,2)(xRy AxRz) — (Ju)(yRu A zRu).

The directedness condition on Kripke frames is needed to ensure the validity of
(.2)-axiom (K)K ¢ — K (K)¢, however, in the interior semantics it is a special case
of a more general condition called extremally disconnectedness:

9 Alternatively, one can also build a canonical topological model in order to prove the completeness of S4.
For the details of this method, see, e.g., [60, Section 2.4.2].

ODjrectedness is also called confluence or the Church-Rosser property.
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A Topological Approach to Full Belief 215

Fig. 2 Directedness u

X

Definition 3 A topological space (X, 7) is called extremally disconnected if the
closure of each open subset of X is open.

For example, Alexandroff spaces corresponding to reflexive, transitive and
directed Kripke frames are extremally disconnected. More precisely, for a given
reflexive, transitive and directed Kripke frame (X, R), the space (X, Tr) is extremally
disconnected (see, [46, Proposition 3] for its proof). It is also well known that topo-
logical spaces that are Stone-dual to complete Boolean algebras, e.g., the Stone-Cech
compactification B(N) of the set of natural numbers with a discrete topology, are
extremally disconnected [50].

Similarly to the case of the standard Kripke semantics, in the interior semantics
extremally disconnectedness is needed in order to ensure the validity of the (.2)-
axiom. More accurately, (.2)-axiom characterizes extremally disconnected spaces
under the interior semantics:

Proposition 3 [29, 60] For all topological spaces (X, 1),
(KYKgp — K(K)p isvalidin (X, ) iff (X, 1) is extremally disconnected.

Proposition 3 and topological soundness of S4 imply that S4.2 is sound with
respect to the class of extremally disconnected spaces. As reflexive, transitive and
directed Kripke frames correspond to extremally disconnected Alexandroff spaces,
the following topological completeness result follows from the completeness of S4.2
with respect to the standard Kripke semantics and Proposition 2:

Theorem 2 [29, 60] S4.2 is sound and complete with respect to the class of
extremally disconnected spaces under the interior semantics.'!

Un fact, this result was already known to Leo Esakia in the 1980’s - personal communication of the
second named author.
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216 A. Baltag et al.

Another logic of knowledge that is of particular interest in this paper is the system
S4.3. Recall that S4.3 as well is a strengthening of S4 (and also of S4.2) defined as

S43:=S4+ K(K¢p — ¥) vV K(Ky — ¢).

Kripke semantics for this system is also well studied and it is well known, see e.g.,
[19], that S4.3 is sound and complete with respect to reflexive, transitive and linear
Kripke frames. Recall that a Kripke frame (X, R) is called linear if'?

Vx,y,2)((xRy AxRz) > (YRzV zRy V y = 2)).

The linearity condition on Kripke frames is needed to ensure the validity of (.3)-
axiom K(K¢ — ¥) Vv K(Ky¥ — ¢). However, to guarantee the validity of this
axiom on topological spaces under the interior semantics, we need the property of
hereditarily extremally disconnectedness:

Definition 4 A topological space (X, 7) is called hereditarily extremally discon-
nected (h.e.d.) if every subspace of (X, t) is extremally disconnected.

For hereditarily extremally disconnected spaces, we can think of Alexandroff
spaces corresponding to total preorders, in particular, corresponding to reflexive,
transitive and linear Kripke frames. Another interesting and non-Alexandroff exam-
ple of a hereditarily extremally disconnected space is the topological space (N, 1)
where N is the set of natural numbers and T = {, all cofinite subsets of N}.
Furthermore, every countable Hausdorff extremally disconnected space is heredi-
tarily extremely disconnected [20]. For more examples of hereditarily extremally
disconnected spaces, we refer to [20].

Theorem 3 [14] §$4.3 is sound and complete with respect to the class of hereditarily
extremally disconnected spaces under the interior semantics.

2.3 The Motivation behind Knowledge as Interior

Having presented the interior semantics, we can now elaborate on its epistemic
significance that has inspired our work in this paper.

2.3.1 The Interior Semantics is Naturally Epistemic and Extends the Relational
Semantics

The initial reason as to why the topological interior operator can be considered as
knowledge is inherent to the properties of this operator. As noted in Section 2.2.3,
the Kuratowski axioms (I1)-(I4) correspond exactly to the axioms of the system
S4, when K is interpreted as the interior modality (see Table 2 for the one-to-one
correspondence). Therefore, elementary topological operators such as the interior

12This property is also called no branching to the right (see, e.g., [19, p. 195]) and it boils down to
(Vx,y,2)((xRy AxRz) — (yRz V zRy)) when R is reflexive.
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operator, or, dually, the closure operator produces the epistemic logic S4 with no
need for additional constraints (also see Theorem 1). In other words, in its most gen-
eral form, topologically modeled knowledge is Factive and Positively Introspective,
however, it does not necessarily possess stronger properties. On the other hand, this
in no way limits the usage of interior semantics for stronger epistemic systems. In
accordance with the case for the relational semantics, we can restrict the class of
spaces we work with and interpret stronger epistemic logics such as S4.2, S4.3 (see
Theorems 2 and 3) and S5 in a similar manner (see, e.g., [60, p. 253]). To that end,
topological spaces provide sufficiently flexible structures to study knowledge of dif-
ferent strength. They are moreover naturally epistemic since the most general class
of spaces, namely the class of all topological spaces, constitutes the class of mod-
els of arguably the weakest, yet philosophically the most accepted normal system
S4. Moreover, as explained in Sections 2.2.2 and 2.2.3, the relational models for the
logic S4, and for its normal extensions, correspond to the proper subclass of Alexan-
droff models (see Proposition 2). The interior semantics therefore generalizes the
standard relational semantics for knowledge.

One may however argue that the above reasons are more of a technical nature
showing that the interior semantics works as well as the relational semantics, there-
fore motivate “why we could use topological spaces” rather than “why we should
use topological spaces” to interpret knowledge as opposed to using relational seman-
tics. Certainly the most important argument in favour of the conception of knowledge
as the interior operator is of a more ‘semantic’ nature: the interior semantics provides
a deeper insight into the evidence-based interpretation of knowledge.

2.3.2 Evidence as Open Sets

The idea of treating ‘open sets as pieces of evidence’ is adopted from the topologi-
cal semantics for intuitionistic logic, dating back to the 1930s (see, e.g., [56]). In a
topological-epistemological framework, typically, the elements of a given open basis
are interpreted as observable evidence, whereas the open sets of the topology are
interpreted as properties that can be verified based on the observable evidence. In
fact, the connection between evidence and open sets comes to exist at the most ele-
mentary level, namely at the level of a subbasis. We can think of a subbasis as
a collection of observable evidence that is directly obtained by an agent via, e.g.,
testimony, measurement, approximation, computation or experiment. The family of
directly observable pieces of evidence therefore naturally forms an open topological
basis: closure under finite intersection captures an agent’s ability to put finitely many
pieces into a single piece, i.e., her ability to derive more refined evidence from direct
ones by combining finitely many of them together. Therefore, the notion of knowl-
edge as the interior operator yields an evidential interpretation at a purely semantic
level. Moreover, the use of opens sets as pieces of evidence intrinsically reflects the
fact that the physical measuring devices we use to calculate quantitative values—
such as the height of a person [18], temperature of the weather, speeding of a car [48],
etc.—always come with a certain error range giving an approximation rather than
the precise value. Carefully taken measurements with increasingly accurate devices
results in better approximations to the actual state, yet being able to know the actual
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state requires taking a measurement with its exact value. This, according to the inte-
rior semantics, necessitates having the singleton set of the actual state an open set in
the corresponding topology. Elaborating on these points in more technical terms, a
proposition P is true at world x if x € P. If an open set U is included in a set P,
then we can say that proposition P is entailed/supported by evidence U by sharply
distinguishing P-states from all non-P states. Open neighbourhoods U of the actual
world x play the role of sound (correct, truthful) evidence. Therefore, the statement

x eInt(P)iff QU e tr)(x e Uand U C P) (1)

means that the actual world x is in the interior of P iff there exists a sound piece
of evidence U that supports P. That is, according to the interior semantics, the
agent knows P at x iff she has a sound/correct piece of evidence supporting P. So
the knowledge-as-interior conception can be seen as an implementation of one of
the most widespread intuitive responses to Gettier’s challenge: knowledge is “cor-
rectly justified belief” (rather than being simply true justified belief). To qualify as
knowledge, not only the content of one’s belief has to be truthful, but its evidential
justification has to be sound. Moreover, open sets will then correspond to proper-
ties that are in principle verifiable by the agent: whenever they are true, they are
supported by a sound piece of evidence, therefore, can be known. Dually, we have

x ¢ CI(P)iff QU € 1)(x € U and U < X\P) )

meaning that closed sets correspond to falsifiable properties: whenever they are false,
they are falsified by a sound piece of evidence. Besides, although it does not play
a major role in this paper, we briefly comment on the epistemic role of the set of
boundary points. The set of boundary points of a set P C X, denoted by Bd(P), is
defined as Bd(P) = CI(P)\Int(P). More precisely,

x € Bd(P) iff (VU € t)(x € U impliesU £ X\Pand U £ P) 3)

Therefore, x is a boundary point of P iff there is no sound piece of evidence that
supports neither P nor —P. In other words, given the aforementioned interpretations
of open and closed sets, the set of boundary points corresponds to the properties that
are neither verifiable nor falsifiable. These ideas have also been used and developed
in [1, 34, 66] with connections to epistemology, logic, and learning theory.

The interior semantics for knowledge has been extended to multiple agents [61],
to common knowledge [9, 63] to logics of learning and observational efforz [23, 30,
31, 43], to topological versions of dynamic-epistemic logic [71] (see [2] for a com-
prehensive overview on the field). On the other hand, belief on topological spaces,
rather surprisingly, has not been investigated and developed as much as knowledge,
especially in connection with topological knowledge.

2.3.3 Belief on Topological Spaces?
As explained in Section 2.3.2, as far as an evidential interpretation of knowledge is

concerned, the interior semantics improves the standard relational semantics, most
importantly, for the reason that evidential justification for knowing something is
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embedded in the semantics. It then seems natural to ask whether a topological seman-
tics can also account for notions of (evidentially) justified belief. In the next section,
we propose a topological semantics for Stalnaker’s notion of belief as subjective cer-
tainty [53] in terms of the closure of the interior operator, which, in turn, will answer
the above question positive.

One of the crucial properties that distinguishes knowledge from belief is its verac-
ity (formalized by the axiom (T) K¢ — ¢). However, no matter how idealized and
rational the agent is, it must be possible for her to believe false propositions, yet she
is expected to hold consistent beliefs (formalized by the axiom (D) —B_l). To the
best of our knowledge, the first worked out topological semantics for belief is pro-
posed by Steinsvold [54] in terms of the co-derived set operator. According to the
co-derived set interpretation of belief,

x € BPiff QU € t)(x € U and U\{x} C P), )

ie., x € BP iff x € r(P).13 Steinsvold [54] was the first to propose to use this
semantics to interpret belief, and proved soundness and completeness for the standard
belief system KD45. This account still requires having a truthful piece of evidence
for the believed proposition, however, the proposition itself does not have to be
true. Therefore, it is guaranteed that the agent may hold false beliefs. However, as
also discussed in [4, 46], and briefly recapped here, this semantics further guaran-
tees that in any topo-model and any state in this model, there is at least one false
belief, that is, the agent always believes the false proposition X\ {x} at the actual state
x. This is the case because for any topological space (X, 7) and x € X, we have
x & d({x}), i.e.,, x € t(X\{x}), therefore, the clause (3) entails that x € B(X\{x})
always holds. This is an undesirable and disadvantageous property, especially if we
also want to study dynamics such as belief revision, updates or learning. Always
believing X\ {x} prevents the agent to ever learning the actual state unless she believes
everything. Formally speaking, x € B({x}) iff the singleton {x} is an open, and in
this case, the agent believes everything at x. In order to avoid these downsides and
obtain KD45, we have to work with the so-call DSO-spaces, as shown in [54]. A
DSO-space is defined to be a dense-in-itself space (i.e., a space with no singleton
opens) in which every derived set d(A) is open.

Moreover, in a setting where knowledge as the interior and belief as the co-derived
set operator are studied together, we obtain the equality

KP=PNBP,

stating that knowledge is true belief. Therefore, this semantics yields a formalization of
knowledge and belief that is subject to well-known Gettier counterexamples [32].!4

13We here note that this topological semantics interpreting the modal operator [ as the co-derived set
operator, or dually, ¢ as the derived set operator was also pioneered by McKinsey and Tarski [42], and later
extensively developed by the Georgian logic school led and inspired by Esakia, and their collaborators
(see, e.g., [13, 15, 16, 27, 28, 37]).

14This connection has also been observed in [54, Section 1.11], and an alternative topological semantics for
knowledge in terms of clopen sets is suggested without providing any further technical results. Steinsvold
[54] does not elaborate on to what extend his proposed semantics for knowledge could give new insight
into the Gettier problem and leaves this point open for discussion.
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In the next chapter, we propose another topological semantics for belief, in par-
ticular, for Stalnaker’s notion of belief as subjective certainty [53], in terms of the
closure of the interior operator on extremally disconnected spaces.

3 The Topology of Full Belief and Knowledge
3.1 Stalnaker’s Combined Logic of Knowledge and Belief

In his paper [53], Stalnaker focuses on the properties of (justified or justifiable)
belief and knowledge and proposes an interesting analysis regarding the relation
between the two. As also pointed out in the introduction, most research in the for-
mal epistemology literature concerning the relation between knowledge and belief, in
particular, dealing with the attempt to provide a definition of the one in terms of the
other, takes belief as a primitive notion and tries to determine additional properties
which render a piece of belief knowledge (see, e.g., [24, 35, 39, 45, 49]). In contrast,
Stalnaker chooses to start with a notion of knowledge and weakens it to have a “good”
notion of belief. He initially considers knowledge to be an S4-type modality and ana-
lyzes belief based on the conception of “subjective certainty”: from the point of the
agent in question, her belief is subjectively indistinguishable from her knowledge.

In his formalization, Stalnaker [53] uses the bimodal language Lk p of knowledge
and (full) belief given by the following grammar:

pu=pl-plorneg|Kg| By

where p € Prop. Abbreviations for the connectives v, — and <> are standard. The
existential modalities (K )¢ and (B)¢ are defined as =K —¢ and —B—¢ respectively.
We will also consider two unimodal fragments Lg (having K as its only modality)
and Lp (having only B) of the language L p in later sections.

Table 3 Stalnaker’s System KB

Stalnaker’s Axioms

(K) K(p - ¢¥) —> (Kp — K) Knowledge is additive

(T) Ko — ¢ Knowledge implies truth

(KK) Ko - KK¢ Positive introspection for K

(CB) By — —B—gp Consistency of belief

(PI) By — KBy (Strong) positive introspection of B
(NI) —Bp - K—Bg (Strong) negative introspection of B
(KB) K¢ — By Knowledge implies Belief

(FB) By — BKy Full Belief

Inference Rules
(MP) from ¢ and ¢ — v, infer ¢ Modus Ponens

(Nec) from ¢, infer K¢ Necessitation
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We call Stalnaker’s epistemic-doxastic system, given in Table 3, KB. The axioms
seem very natural and uncontroversial:' the first three are the S4 axioms for knowl-
edge; (CB) captures the consistency of beliefs, and in the context of the other axioms
will be equivalent to the modal axiom (D) for beliefs: =B _L; (PI) and (NI) capture
strong versions of introspection of beliefs: the agent knows what she believes and
what not; (KB) means that agents believe what they know; and finally, (FB) captures
the essence of “full belief” as subjective certainty (the agent believes that she knows
all the things that she believes). Finally, the rules of Modus Ponens and Necessita-
tion seem uncontroversial (for implicit knowledge, if not for explicit knowledge) and
are accepted by a majority of authors (and in particular, they are implicitly used by
Stalnaker). The system KB yields the belief logic KD45 as shown in Proposition 4.

Proposition 4 [53] All axioms of the standard belief system KD45 are provable in
the system KB. More precisely, the following axioms are provable in KB:

(K) B(¢ - ¢) > (Bp — By) (4) B —> BBy
(D) Bp - —=B—¢p (5) =By — B—Bygp

Proposition 5 [53] The following equivalence is provable in the system KB:
By < (K)K¢

Proposition 5 constitutes one of the most important features of Stalnaker’s com-
bined system KB.'® This equivalence allows us to have a combined logic of
knowledge and belief in which the only modality is K and the belief modality B is
defined in terms of the former. We therefore obtain “...a more economical formula-
tion of the combined belief-knowledge logic...” [53, p. 179]. Moreover, substituting
(K)K for B in the axiom (CB) results in the modal (.2)-axiom

(K)K¢ — K(K)p.

Recall that we obtain the logic of knowledge S4.2 by adding the (.2)-axiom to the
system S4 (see Section 2.2.3). If we substitute (K)K for B in all the other axioms
of KB, they turn out to be theorems of S4.2 [53]. Therefore, given the equivalence
By < (K)K ¢, we can obtain the unimodal logic of knowledge S4.2 by substituting
(K)K for B in all the axioms of KB implying that the logic S4.2 by itself forms
a unimodal combined logic of knowledge and belief. Stalnaker then argues that his
analysis of the relation between knowledge and belief suggests that the “true” logic of
knowledge should be S4.2 and that belief can be defined as the epistemic possibility
of knowledge:

By := (K)Ko.

This equation leads to our proposal for a topological semantics of (full) belief.

ISWhat justifies the properties of knowledge and belief stated in KB may be debatable, though not in the
scope of this paper. We refer to [18] for a topological-based reformulation of Stalnaker’s system.
161nterested reader can find the proof of Proposition 5 in [46, Chapter 4].
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3.2 Our Topological Semantics for Full Belief

In this section, we introduce a new topological semantics for the language Lg g,
which is an extension of the interior semantics for knowledge with a new topological
semantics for belief given by the closure of the interior operator.

Definition 5 (Topological Semantics for Full Belief and Knowledge) Given a topo-
model M = (X, t, v), the semantics for the formulas in Lk p is defined for Boolean
cases and K¢ the same way as in the interior semantics. The semantics for By is
defined as

[Bel™ = Clnt([e 1)),
Truth and validity of a formula is defined the same way as in the interior semantics.

Proposition 6 A topological space validates all the axioms and rules of Stalnaker’s
system KB (under the semantics given above) iff it is extremally disconnected.

Proof See Appendix A.1. O

Having a look at the system KB from a more general semantic perspective,
we can argue that the epistemic-doxatic logic KB naturally induces a topological
semantics that is based on extremally disconnected spaces. To explicate, consider
the semantic structure M = (X, K, B, v), where X is a set of possible worlds and
K: P(X) - P(X)and B : P(X) — P(X) are unary operations on (sub)sets
of worlds with no pre-imposed restrictions (in particular, they are not assumed to
be topological operators), and v : Prop — P(X) is a standardly defined valua-
tion function. The semantics for the formulas in Lk g on (X, K, B, v) is defined for
Boolean cases in the usual way (see, e.g., Definition 2), whereas the semantic clauses
for the modal operators K and B are given by means of the functions K and B,
respectively, as

[KeIl™ = KlpI™
[BeIM = BlelM.

As usual, a formula ¢ € Lgp is valid in (X, K, B) if |[<p]]M = X for all models
M = (X, K, B, v) based on (X, K, B).

This way, we have defined an alternative and, in a sense, more general semantics
for the language £ g p which interprets K and B via set theoretical operators K and B,
respectively, independently from topologies. However, it is not hard to see that a spe-
cial case (X, K, B;) of the above semantics for the language Lk p is our proposed
topological semantics, where (X, T) is a topological space, K; = Int is the interior
operator, and B; = Cl(Int) is the closure of the interior operator with respect to the
topology t. More importantly, a structure (X, K, B) validating all the axioms and
rules of KB is indeed a topological one based on an extremally disconnected space:

Theorem 4 (Topological Representation Theorem) A semantic structure (X, K, B)
validates all the axioms and rules of Stalnaker’s system KB iff it is a topological one
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given by an extremally disconnected topology t on X, such that K = K; = Int and
B = B; = ClI(Int).

Proof See Appendix A.2. O

Theorem 4 shows that Stalnaker’s axioms form an alternative axiomatization of
extremally disconnected spaces, in which both the interior and the closure of the
interior are taken to be primitive operators (corresponding to the primitive modali-
ties K and B in Lk p, respectively). The conclusion is that our topological semantics
is indeed the most general semantics validating Stalnaker’s axioms in the sense
described above.

Theorem 5 The sound and complete logic of knowledge and belief on extremally
disconnected spaces is given by Stalnaker’s system KB.

Proof See Appendix A.3. O
3.3 Unimodal Case: the Belief Logic KD45

As emphasized in the beginning of Section 3, Stalnaker’s logic KB yields the system
S4.2 as the logic of knowledge and KD45 as the logic of belief (Proposition 4). It
has already been proven that S4.2 is sound and complete with respect to the class
of extremally disconnected spaces under the interior semantics (Theorem 2). In this
section, we investigate the case for KD45 under our proposed semantics for belief.
More precisely, we focus on the unimodal case for belief and consider the topological
semantics for the unimodal language £ in which we interpret belief as the closure of
interior operator. We name our proposed semantics in this section topological belief
semantics. We then prove topological soundness and completeness results for KD45
under the aforementioned semantics. Let us first recall the basic doxastic language
Lp, the system KD45 and the topological belief semantics for the language Lp.
The language Lp is given by

p:=pl-wleng| By
and we again denote —B— by (B). Recall that
KD45 = K + (B¢ — (B)g) + (By — BBy) + ((B)¢ — B(B)yp)

and given a topo-model M = (X, 7, v), the semantic clauses for the propositional
variables and the Boolean connectives are the same as in the interior semantics. For
the modal operator B, we put

[BeIM = Cl(Int([eIM))

and the semantic clause for (B) is easily obtained as

[(B)pIl™M = Int(Cl([o]M)).

We are now ready to state the main results of this section.
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Theorem 6 The belief logic KD45 is sound with respect to the class of extremally dis-
connected spaces under the topological belief semantics. In fact, a topological space
(X, ) validates all the axioms and rules of the system KD45 (under the topological
belief semantics) iff (X, t) is extremally disconnected.

Proof See Appendix A.4. O

Theorem 7 In the topological belief semantics, KD45 is the complete logic of belief
with respect to the class of extremally disconnected spaces.

Theorem 7 therefore shows that the logic of extremally disconnected spaces is
KD45 when B is interpreted as the closure of the interior operator. The inter-
ested reader can find all the details of both soundness and completeness proofs
in Appendix A.4 and A.5, respectively. The proof details however can be skipped
without loss of continuity. Besides these technical results, the closure-interior seman-
tics of belief comes with an intrinsic philosophical and intuitive value, and certain
advantages compared to the co-derived set semantics as elaborated in the next
section.

3.3.1 What Motivates Topological Full Belief

The closure-interior semantics provides an intuitive interpretation of Stalnaker’s con-
ception of (full) belief as subjective certainty. It does so through the definitions of the
interior and closure operators and the concepts they represent, namely, the notions
of evidence and closeness. We have discussed the role of open sets as pieces of
evidence, and of open neighbourhoods of the actual state as pieces of truthful evi-
dence in Section 2.3. Moreover, it is well known that the closure operator captures
a topological, qualitative notion of closeness: x is said to be close to aset A € X
iff x € CI(A). Recalling the proposed topological semantics for full belief, given a
topological space (X, t) and P € X, we have

x € BP iff x € Cl(Int(P)) (5)
iff x € C(K(P)) (6)
iff (YU € 7)(x € U implies U N K P # ¢) (7)

Therefore, following (5), topologically, the set of states in which the agent believes P
is very close to the set of states in which the agent knows P. Taking open sets as evi-
dence pieces, (6) moreover states that an agent (fully) believes P at a state x iff every
sound piece of evidence she has at x is consistent with her knowing P, i.e., she does
not have any truthful evidence that distinguishes the states in which she has belief
of P from the states in which she has knowledge of P. Belief, under this seman-
tics, therefore becomes subjectively indistinguishable from knowledge. Hence, the
closure-interior semantics naturally captures the conception of belief as “subjective
certainty”.

Moreover, the closure-interior belief semantics improves on the co-derived set
semantics for the following reasons: (1) belief as the closure of the interior operator
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does not face the Gettier problem, at least not in the easy way in which the co-derived
set semantics does, when considered together with the conception of knowledge as
interior. More precisely, knowledge as interior cannot be defined as (justified) true
full belief since, in general, Int(P) # Cl(Int(P)) N P,i.e., KP #* BP A P; (2) the
class of DSO-spaces with respect to which KD45 is sound and complete under the
co-derived set semantics is a proper subclass of the class of extremally disconnected
spaces (see Proposition 7), which shows that the closure-interior semantics for KD45
is defined on a larger class of spaces.

Proposition 7 Every DSO-space is extremally disconnected. However, not every
extremally disconnected space is a DS O-space.

Proof See Appendix A.6. O

In the next section, we study a topological analogue of static conditioning—
capturing static belief revision—by providing a topological semantics for conditional
beliefs based on extremally disconnected spaces. We then extend the setting for
dynamic conditioning by providing semantics for updates.

4 Topological Models for Belief Revision: Static and Dynamic
Conditioning

Conditioning (with respect to some qualitative plausibility order or to a probability
measure) is the most widespread way to model the learning of “hard” information.
The prior plausibility/probability assignment (encoding the agent’s original beliefs
before the learning) is changed to a new such assignment, obtained from the first
one by conditioning with the new information P. In the qualitative case, this means
just restricting the original order to P-worlds; while in the probabilistic case, restric-
tion has to be followed by re-normalization (to ensure that the probabilities newly
assigned to the remaining worlds add up to 1). In Dynamic Epistemic Logic (DEL),
one makes also a distinction between simple (‘“static”’) conditioning and dynamic
conditioning (also known as “update”). The first essentially corresponds to condi-
tional beliefs: the change is made only locally, affecting only one occurrence of the
belief operator Bg (which is thus locally replaced by conditional belief BY ¢) or of
the probability measure (which is locally replaced by conditional probability). In
contrast, an update is a global change, at the level of the whole model (thus recur-
sively affecting the meaning of all occurrences of the belief/probability operators). In
this section, we investigate the natural topological analogues of static and dynamic
conditioning.

4.1 Static Conditioning: Conditional Beliefs

In DEL, static belief revision captures the agent’s revised beliefs about how the
world was before learning new information and is implemented by conditional
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belief operators B¥+. Using van Benthem’s terminology, “[c]onditional beliefs pre-
encode beliefs that we would have if we learnt certain things.” [58, p. 139]. The
statement B?yr says that “if the agent would learn ¢, then she would come to
believe that W was the case before the learning” [8, p. 12]. That means conditional
beliefs are hypothetical by nature, hinting at possible future belief changes of the
agent. In the DEL literature, the semantics for conditional beliefs is generally given
in terms of plausibility models (or equivalently, in terms of sphere models), see,
e.g., [8, 58, 62].

In this section, we explore the topological analogue of static conditioning by
providing a topological semantics for conditional belief modalities. As conditional
beliefs capture hypothetical belief changes of an agent in case she would learn a piece
of new information ¢, we can obtain the semantics for a conditional belief modality
B?4 in a natural and standard way by relativizing the semantics for the simple belief
modality to the extension of the learnt formula ¢. By relativization we mean a local
change in the sense that it only affects one occurrence of the belief modality Be. It
does not cause a change in the model, i.e. it does not lead to a global change, due to
its static nature.

Semantics of Conditional Beliefs To recap, given a topo-model M = (X, 7, v)
based on an extremally disconnected topology 7, we can describe the extension of a
belief formula in the following equivalent ways

B¢l L Cliint(Tel)) € mt(Clant([o]))).

However, when we generalize the belief operator B by relativizing the closure and the
interior operators to the extension of a learnt formula ¢ in order to obtain a semantics
for conditional belief modalities, the resulting clauses no longer remain equivalent.
While the relativization of (1) leads to

[B?¥1 = Cl(le]l N Int([ell — [¥ 1)), ®)

called the basic topological semantics for conditional beliefs, the relativization of
(2) results in

[B?y1 = Int(le]l — Cl(lel NInt([e]l — (¥ 1)), €))

called the refined topological semantics for conditional beliefs, where [¢] — [V]
is used as an abbreviation for (X\[¢]) U [¥].

However, for the reasons explained below, the basic semantics (7) does not work
well as a generalization of belief on extremally disconnected spaces (and the same
arguments hold for the same formalization on hereditarily extremally disconnected
spaces). First of all, it validates the equivalence

Ko < =BT < =B ¥—¢ (10)

which gives a rather unusual definition of knowledge in terms of conditional beliefs:
this identity corresponds neither to the definition of knowledge in [7, 8] in terms of
conditional beliefs nor to the definition of “necessity” in [52] in terms of doxastic
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conditionals (see also, e.g., [21]). Moreover, the first equivalence in (9) shows that the
conditional belief operator is not a normal modality: it does not obey the Necessita-
tion Rule, and in particular the formula BT is not in general a validity. The second
equivalence in (9) shows that in our theory the AGM Success Postulate BY¢ written
in terms of conditional beliefs is not always valid.!” Ideally, we would like to have all
the AGM postulates in the appropriate form stated in terms of conditional beliefs to
be valid with respect to our semantics. However, one can show that while the AGM
Postulates 2-6, written in terms of conditional beliefs, are valid with respect to the
above semantics, the postulates 1, 7 and 8 are not.!3 The basic semantics for con-
ditional beliefs is thus not optimal in capturing all of the AGM postulates for static
belief revision. This motivates the search for an alternative semantics for conditional
beliefs which captures more of the AGM postulates and is compatible with the notion
of belief in Stalnaker’s system.

Fortunately, as mentioned, the definition of extremally disconnected spaces
presents the alternative semantics for conditional beliefs: the relativization of
Int(Cl(Int)) given in (8). We consider this semantics an improvement of the basic
semantics, since, as we will see in Theorem 9, it is more successful in capturing
the rationality postulates of AGM theory. This is why we refer to this semantics as
the refined topological semantics for conditional beliefs and knowledge. Another,
and simpler, possible justification for the so-called refined semantics of conditional
belief is that it validates an equivalence that generalizes the one for belief in a natural
way:

Proposition 8 The following equivalence is valid in all topological spaces with
respect to the refined topological semantics for conditional beliefs and knowledge

By < K(p — (K)(¢ AK(p — V).

Proof Follows immediately from the semantic clauses of conditional beliefs and
knowledge. O

This shows that, just like simple beliefs, conditional beliefs can be defined in
terms of knowledge and this identity corresponds to the definition of the “conditional
connective =" in [21]. Moreover, as a corollary of Proposition 8, we obtain that the
equivalences

(1

BTy & K(T = (K)TAKT > v) & KKKy 2 (K)Ky

are valid in the class extremally disconnected spaces.'® Interestingly, unlike the case
of simple belief, knowledge can be defined in terms of conditional belief:

17We refer to [7, 8] for the treatment of AGM theory in terms of conditional beliefs as a theory of static
belief revision. Some of the axioms studied in [7, 8] are stated in Theorem 9 and Proposition 10 with their
names corresponding to the AGM postulates.

18The interested reader can find a more detailed discussion about this semantics in [46].

191n fact, equivalences (1) and (2) are valid in the class of all topological spaces, however, equivalence (3)
is valid only in the class of extremally disconnected spaces.
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Proposition 9 The following equivalences are valid in all topological spaces with
respect to the refined topological semantics for conditional beliefs and knowledge

Ko < B™%1 < B™Y¢.

Proof Follows immediately from the semantic clauses of conditional beliefs and
knowledge. O

Proposition 9 constitutes another argument in favor of the refined semantics for
conditional beliefs over the basic one: as also stated in [8], this identity coincides
with the definition of “necessity” in [52] in terms of doxastic conditionals (see also,
e.g., [7, 21]).

Therefore, the language Lxcp of knowledge and conditional beliefs, Lk g, and
even the unimodal fragment of L having K as the only modality and the unimodal
fragment Lcp having only conditional belief modalities, have the same expressive
power, since we can define simple beliefs and conditional beliefs in terms of knowl-
edge (Proposition 5 and Proposition 8, respectively), and we can define simple beliefs
and knowledge in terms of conditional beliefs (Proposition 8 and Proposition 9,
respectively). As neither knowledge nor conditional beliefs can be defined in terms
of simple beliefs, the unimodal fragment £p having B as the only modality is less
expressive than the aforementioned systems (Fig. 3).

As for completeness, this can be obtained trivially:

Theorem 8 The logic KCB of knowledge and conditional beliefs is axiomatized com-
pletely by the system S4.2 for the knowledge modality K together with the following
equivalences:

l. By < K(p — (K)(@ AK(p — ¥)))
2. Bo< By

The validity of (1) and (2) is given by Proposition 8. While (2) reduces belief to
conditional belief, (1) reduces conditional beliefs to knowledge. Hence, the proof of
Theorem 8 follows from the topological completeness of S4.2.

Finally, we evaluate the success of the refined semantics in capturing the rational-
ity postulates of AGM theory.

Fig. 3 Expressivity diagram

. >
with respect to topo-models L KCB ﬁ KB

\/
/\

['K# B
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Theorem 9 The following formulas are valid in all topological spaces with respect
to the refined topological semantics for conditional beliefs and knowledge

Normality: B (¢ — ¥) — (B¢ — By
Truthfulness of Knowledge: K¢ — ¢

Persistence of Knowledge: K¢ — B¢

Strong Positive Introspection: B¢ — KB%¢

Success of Belief Revision:  B%¢

Consistency of Revision: —K—¢ — —B? 1
Inclusion: BY"O — BY(y — 0)
Cautious Monotonicity: BYY A B9 — BY"V

Moreover, the Necessitation rule for conditional beliefs:
From & ¢ infer B“’(p

preserves validity.

Proof See Appendix B1. O

The validity of the Normality principle and the Necessitation rule shows that,
unlike in case of the basic topological semantics for conditional beliefs, the con-
ditional belief modality is a normal modal operator with respect to the refined
semantics. Moreover, the refined semantics also validates the Success Postulate.
However, in this case, we have to restrict the principle of Consistency of Belief Revi-
sion to the formulas that are consistent with the agent’s knowledge. This is in fact
a desirable restriction taking into account the agent’s knowledge and is perfectly
compatible with the corresponding dynamic system that we will present in the next
section. Intuitively, if the agent knows —¢ with some degree of certainty, she should
not revise her beliefs with ¢. As conditional beliefs pre-encode possible future belief
changes of an agent and the future belief changes must be based on the new informa-
tion consistent with the agent’s knowledge, her consistent conditional beliefs must
pre-encode the possibilities that are in fact consistent with her knowledge.

The failure of Strong Negative Introspection is an expected result for the follow-
ing reasons. First of all, observe that Theorem 8 and Theorem 9 imply that all the
formulas stated in Theorem 9 are theorems of the system KCB. Recall that

—-Bgtp — K—|Bgtp

is the principle of Strong Negative Introspection. If this principle were a theorem of
KCB, then in particular =B™%¢ — K—B7?¢ would be a theorem of KCB. Then,
by Proposition 9, we would obtain

—K¢o - K—=Kgp

as a theorem of KCB. However, Theorem 8 states that the knowledge modality of
KCB is an S4.2-type modality implying that ~K¢ — K—Kg is not a theorem of
the system.

Moreover, even the extremally disconnected spaces fail to validate Rational Mono-
tonicity, which captures the AGM postulate of Superexpansion, with respect to the
refined topological semantics for conditional beliefs and knowledge. However, a
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weaker principle, namely, the principle of Cautious Monotonicity is valid in all topo-
logical spaces. This principle says that if the agent would come to believe  and
would also come to believe 0 if she would learn ¢, her learning  should not defeat
her belief in 6 and vice versa. In [36], the authors state that D. Gabbay also gives a
convincing argument to accept Cautious Monotonicity: “if ¢ is an enough reason to
believe 1 and also to believe 6, then ¢ and v should also be enough to make us believe
0, since ¢ was enough anyway and, on this basis, ¥ was accepted” [36, p. 178].

The refined conditional belief semantics therefore captures the AGM postulates
1-7 together with a weaker version of 8 on all topological spaces. It is thus more
successful than the basic one in modeling static belief change of a rational agent.
Moreover, we will show in Section 4.2 that the refined semantics for conditional
beliefs and knowledge validates Rational Monotonicity in a restricted class of topo-
logical spaces, namely in the class of hereditarily extremally disconnected spaces,
and therefore it is able to capture the AGM postulates 1-8 stated in terms of
conditional beliefs.

Summing up the work that has been done so far in this paper, a new topolog-
ical semantics for belief on extremally disconnected spaces is proposed in [4, 46]
and it has been proven, in this setting, that the complete logic of knowledge and
belief is Stalnaker’s system KB, the complete logic of knowledge is S4.2 and the
complete logic of belief is KD45 in this setting. Moreover, we provided a semantics
for conditional beliefs again on extremally disconnected spaces as well as complete
axiomatizations of the corresponding static systems. These results on extremally dis-
connected spaces, however, encounter problems when extended to a dynamic setting
by adding update modalities formalized as model restriction by means of subspaces.

4.2 Dynamic Conditioning: Updates

In DEL, update (dynamic conditioning) corresponds to change of beliefs through
learning hard information. Unlike the case for conditional beliefs, update induces a
global change in the model.

The most standard topological analogue of this corresponds to taking the restric-
tion of a topology 7 on X to a subset P € X. This way, we obtain a subspace of a
given topological space.

Topological Semantics for Update Modalities We now consider the language
Lixcp obtained by adding to the language Lxcp (existential) dynamic update
modalities (!¢)yr associated with updates. (@)Y means that ¢ is true and after the
agent learns the new information ¢, ¥ becomes true. The dual [!¢] is defined as
—(l¢)— as usual and [!¢]e means that if ¢ is true then after the agent learns the new
information @, \r becomes true.

Given a topo-model (X, 7,v) and ¢ € Ligcp, we denote by M,, the restricted
model M, = ([¢], Tep, vigy) Where [oll = [ol™, tpey = (U Npll | U € 7}
and v, (p) = v(p) N [[¢]l for any p € Prop. Then, the semantics for the dynamic
language L g cp is obtained by extending the semantics for Lxcp with:

[y M = [y 1Mo,
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Updates in general are expected to cause changes in an agent’s knowledge
and belief in some propositions, however, the way she reasons about her epis-
temic/doxastic state, in a sense the defining properties of the type of agent we
consider, should remain unaffected. This amounts to saying that any restricted model
should as well make the underlying static knowledge and belief logics sound. In
particular, as we work with rational, highly idealized normal agents that hold consis-
tent beliefs, we demand them not to lose these properties after an update with true
information. With respect to the closure-interior semantics, these requirements are
satisfied if and only if the resulting structure is extremally disconnected: under the
topological belief semantics, both the axiom of Normality

B(p AY) < (Bp A BY)
and the axiom of Consistency of Belief
By — —=B—yp

characterize extremally disconnected spaces (see, Lemmas 4 and 5, respectively, in
Appendix A.4). Therefore, if the restricted model is not extremally disconnected, the
agent comes to have inconsistent beliefs after an update with hard true information. In
order to avoid possible confusions, we note that B_L is never true with respect to
the closure-interior semantics since [BL]] = Cl(Int(J)) = @. By an agent having
inconsistent beliefs, we mean that she believes mutually contradictory propositions
such as ¢ and —¢ at the same time, without in fact believing B_L, as also illustrated
by the following example:

Example Consider the Alexandroff topo-model M = (X, t,v) where X =
{x1,x2,x3, x4}, © = {X,0, {x4}, {x2, x4}, {x3, x4}, {x2, %3, x4}} and V(p) =
{x1,x2,x3} and V(q) = {x2, x4} for some p,q € Prop. It is easy to see that

X corresponds to a directed reflexive transitive relational frame as depicted in
Fig. 4a, where the reflexive and transitive arrows are omitted. It is easy to check
that (X, t) is an extremally disconnected space and Bg — —B-—gqg is valid in
X. We stipulate that x is the actual state and p is truthfully announced. The updated
(i.e., restricted) model is then X, = ([pl, tp, Vp) where [p] = {x1,x2,x3},
7p = {llpl, 9, {x2}, {x3}, {x2, x3}}, VP(p) = {x1, x2, x3} and V), (q) = {x2}. Here,
(I[p1, 7p) is not an extremally disconnected space (similarly, the underlying Kripke
frame is not directed) since {x3} is an open subset of ([p]], t,) but Cl,({x3}) =
{x1, x3} is not open in ([p]], 7). Moreover, as x1 € |[Bq]]X = Cl,(Int,({x2})) =
{x1,x2} and x; € [[B—-q]]X!’ = Cl,(Int,({x1, x3})) = {x1, x3}, the agent comes
to believe both ¢ and —¢, implying that the restricted model falsifies (CB) at xj.
Consequently, it also falsifies (K) since [B(g A —-q)]]XP =0.

One possible solution for this problem is giving up on the (.2)-axiom for knowl-
edge and extending the class of spaces we work with: we can focus on all topological
spaces instead of working with only extremally disconnected spaces and provide
semantics for belief in such a way that the aforementioned axioms which were prob-
lematic on extremally disconnected spaces would be valid on all topological spaces.
This way, we do not need to worry about any additional topological property that is
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o e

(a) (X,7v) (b) (Ip, 7", V7)

Fig. 4 Update of (X, 7,v) by p

supposed to be inherited by subspaces. This solution, however unsurprisingly, leads
to a weakening of the underlying static logic of knowledge and belief. It is well
known that the knowledge logic of all topological spaces under the interior seman-
tics is S4 and we explored the (weak) belief logic of all topological spaces under the
topological belief semantics in [5]. A more natural solution, however, would be to
force the underlying static systems of knowledge and belief to be preserved after an
update. One way to do this, we propose in this work, is to further restrict our attention
to hereditarily extremally disconnected spaces, thereby, we guarantee that no model
restriction leads to changes in the underlying static logics of knowledge and belief,
and in particular, leads to inconsistent beliefs. As the logic of hereditarily extremally
disconnected spaces under the interior semantics is S4.3, the underlying static logic,
in this case, would consist in S4.3 as the logic of knowledge but again KD45 as the
logic of belief (see Theorems 3 and 10 below).

This solution to the above mentioned problem of the dynamic setting based
on extremally disconnected spaces (or, equivalently stated, based on an S4.2-type
static knowledge) is also motivated by the theory of subframe logics. The fact that
extremally disconnected spaces are not closed under subspaces corresponds to S4.2
not being a subframe logic (see [22, Section 9.4]). Similarly, the logical counterpart
of the fact that hereditarily extremally disconnected spaces are extremally discon-
nected spaces closed under subspaces is that the subframe closure of S4.2 is S4.3, see
[70, Section 4.7]. This leads to two important conclusions. Firstly, given that updates
we consider are interpreted by means of subspaces, the transition from the static
base S4.2 to S4.3 is the least strengthening we could use in order to obtain a logic
of knowledge that behaves well when extended with updates. Secondly, working
with hereditarily extremally disconnected spaces amounts to working with S4.2-
type of agent that keeps being S4.2 whenever she receives new information. Recall
that updates are expected to cause changes in an agent’s knowledge and belief in
some propositions, however, the way she reasons about her epistemic/doxastic state,
in a sense the defining properties of the type of agent we consider, should remain
unaffected. Therefore, our rather technically looking solution to the aforementioned
problem in fact amounts to having an agent of S4.2-type who keeps holding S4.2-type
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knowledge when faced with new truthful information. And, as explained above, S4.2-
type knowledge that is resistant to updates is in fact of S4.3-type. Following [38], we
could then argue that some previous work, e.g. [40, 53, 67], settled for S4.2 since they
did not consider the behavior of S4.2 in a dynamic setting: the logic of knowledge of
an S4.2-type agent who learns new information via updates is essentially S4.3.

As Stalnaker also observed in [53], the derived logic of belief with belief modality
defined as epistemic possibility of knowledge, i.e., as (K)K, is KD45 in case K is an
S4.3 modality:

Theorem 10 In the topological belief semantics, KD45 is the complete logic of belief
with respect to the class of hereditarily extremally disconnected spaces.

Proof See Appendix A.5 and observe that topological spaces corresponding to pins
are in fact hereditarily extremally disconnected. O

Then, we again obtain a complete logic KCB’ of knowledge and conditional
beliefs trivially, yet, with respect to the class of hereditarily extremally disconnected
spaces:

Theorem 11 The logic KCB' of knowledge and conditional beliefs is axiomatized
completely by the system S4.3 for the knowledge modality K together with the
Sfollowing equivalences:

1. B%Y < K(p = (K)(¢ ANK(p = ¥)))
2. By < BT(p

Proposition 10 The following formula
BY(y — 0) A =BY—y — BY"\V9,

called the axiom of Rational Monotonicity for conditional beliefs, is valid on
hereditarily extremally disconnected spaces.

Proof See Appendix B.1 and use the fact that S4.3 is sound and complete with
respect to reflexive, transitive and linear Kripke frames. O

We can then conclude, by Theorem 9 and Proposition 10, that the refined seman-
tics for conditional beliefs on hereditarily extremally disconnected spaces captures
the AGM postulates 1-8.

We now implement updates on hereditarily extremally disconnected spaces and
show that the problems occurred when we work with extremally disconnected spaces
do not arise here: we in fact obtain a complete dynamic logic of knowledge and
conditional beliefs with respect to the class of hereditarily extremally disconnected
spaces. We again consider the language £ g cp and semantics for update modalities
(!¢)r by means of subspaces exactly the same way as formalized in the beginning of
the current section, i.e., by using the restricted model M, with the semantic clause

[y M = [y 1Mo,
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In this setting, however, as the underlying static logic KCB’ is the logic of heredi-
tarily extremally disconnected spaces, we implement updates on those spaces. Since
the resulting restricted model M, is always based on a hereditarily extremally dis-
connected (sub)space, we do not face the problem of loosing some validities of the
corresponding static system: all the axioms of KCB' (and, in particular, of S4.3 and
KD45) will still be valid in the restricted space.

Against this static background, we can further axiomatize the logic of public
announcements, knowledge and conditional beliefs, following the standard DEL—
technique: This is done by adding to KCB' a set of reduction axioms that give us
a recursive rewriting algorithm to step-by-step translate every formula containing
public announcement modalities to a provably equivalent formula in the static lan-
guage. The completeness of the dynamic system then follows from the soundness of
the reduction axioms and the completeness of the underlying static logic (see, e.g.,
[64, Section 7.4] for a detailed presentation of completeness by reduction, and see
[68] for an elaborate discussion of axiomatizations of public announcement logics).

Theorem 12 The complete and sound dynamic logic !KCB' of knowledge and condi-
tional beliefs with respect to the class of hereditarily extremally disconnected spaces

is obtained by adding the following reduction axioms to any complete axiomatization
of the logic KCB':

L. (l¢)p < (@A Pp)

2. {lo)=y < (o A= {lp)y)

3. {lo)y(Wr A0) < ({(lo)¥ A (lp)0)
4. (9 K¢y < (wAK(<p—> {(lo)r))
5. (l9)B'Y < (¢ A BM (1p)y)
6. (lo)(W)x < ({lo)v)x

5 Conclusion and Future Work

Summary In this work, we proposed a new topological semantics for belief in terms
of the closure of the interior operator. Our proposal provides an intuitive interpreta-
tion of Stalnaker’s conception of (full) belief as subjective certainty due to the nature
of topological spaces, in particular, through the definitions of interior and closure
operators as elaborated in Section 3.3.1.

The majority of approaches to knowledge and belief take belief—the weaker
notion—as basic and then strengthen it to obtain a “good” concept of knowledge. Our
work provides a semantics for Stalnaker’s system which approaches the issue from
the other direction, i.e., taking knowledge as primitive. The formal setting developed
in our studies therefore adds a precise semantic framework to a rather non-standard
approach to knowledge and belief, providing a new semantics to Stalnaker’s system
and imparting if not additional momentum at least an additional interpretation of it.

Furthermore, we explore topological analogues of static and dynamic conditioning
by providing a topological semantics for conditional belief and update modalities.
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We evaluated two, basic and refined, topological semantics for conditional beliefs
directly obtained from the semantics of simple belief by conditioning and argued that
the latter is an improvement of the former. We demonstrated that the refined seman-
tics for conditional beliefs quite successfully captures the rationality postulates of
AGM theory: it validates the appropriate versions of the AGM postulates 1-7 and a
weaker version of postulate 8 (see Theorem 9). We moreover gave a complete axiom-
atization of the logic of conditional beliefs and knowledge. Although the semantics
proposed for the aforementioned static notions (namely; knowledge, (full) belief and
conditional beliefs) completely captures their intended meanings, modelling these
notions on extremally disconnected spaces causes the problem of preserving the
important structural properties of these spaces given that extremally disconnected-
ness is not a hereditary property as explained in Section 4.2 and also stated in [5].
In this paper, we solved this problem by restricting the class of spaces we work
with to the class of hereditarily extremally disconnected spaces and we formalized
knowledge, belief and conditional beliefs also on hereditarily extremally discon-
nected spaces together with updates and provide complete axiomatizations for the
corresponding logics. As a result of working on hereditarily extremally disconnected
spaces, the unimodal logic of knowledge is strengthened from S4.2 (the epistemic
logic of extremally disconnected spaces) to S4.3 (the epistemic logic of hereditar-
ily extremally disconnected spaces), whereas the unimodal logic of belief remains
to be KD45. We also showed that hereditarily extremally disconnected spaces val-
idate the AGM axiom 8, stated as Rational Monotonicity in terms of conditional
beliefs, and concluded that our topological semantics can capture the theory of belief
revision AGM as a static one formalized in a modal setting in terms of conditional
beliefs.

Relevant and Future Research At a high level, this paper takes a further small
step toward developing a satisfactory epistemic/doxastic formal framework in which
we can talk about evidential grounds of knowledge and belief. It does so by extend-
ing the interior-based topological semantics for knowledge by a semantic clause for
belief, which arguably works better than the previous proposal based on the co-
derived set operator. However, within the current setting, everything we can say
about evidence has to be said at a purely semantic level (see Sections 2.3 and
3.3.1 to recall the topological, evidence-related readings of knowledge and belief,
respectively). As we have not yet introduced any “evidence modalities”, the modal
language cannot really say anything concerning the link between evidence and belief,
or evidence and knowledge. We explored topological semantics for evidence and its
connection to topological (evidence-based) knowledge and belief in [6] by build-
ing topological evidence models generalizing those of van Benthem and Pacuit [62]
and also interpret evidence dynamics on such models following the aforementioned
work.

In this paper, we focused on providing a topological semantics for single agent
logics for knowledge, belief, conditional beliefs and updates. However, reasoning
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about knowledge, belief and especially about information change becomes particu-
larly interesting when applied to multi-agent cases. One natural continuation of this
work therefore consists in extending our framework to a multi-agent setting and pro-
viding topological semantics for operators, such as common knowledge and common
belief, in line with, e.g., [54, 63].
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Appendix A: The Topology of Full Belief and Knowledge
A.1 Proof of Proposition 6

Observe that for any topo-model (X, t, v) and for any ¢, ¢ € Lk 5,
o — v = Xiff [l < [¥].

Let (X, 7) be a topological space and v be an arbitrary valuation on (X, 7). We know,
by the soundness of S4 under the interior semantics, that the axioms (K), (T), (KK)
and the inference rules of KB are valid in all topological spaces. In addition, (NI),
(KB) and (FB) are also valid in all topological spaces. Here, we demonstrate only
the proof for the validity of (NI):

X =[-By - K—By] iff [-By] € [K—B¢]
iff X\ (Clnt([e1))) < Int(X \ (Cl(nt([¢1))))
iff Int(CI(X \ [[¢])) S Int(Int(CL(X \ [¢])))

Since Int(C1(X \ [¢])) = Int(Int(CI(X \ [¢]]))) is true in all topological spaces (by
(I4) in Table 1), the result follows. The proofs for the validity of the axioms (KB)
and (FB) follow similarly.
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Moreover, both (CB) and (PI) are valid on (X, ) (under our proposed semantics)
iff (X, ) is extremally disconnected. Here, we write only the proof for the validity
of (CB), the validity of (PI) follows similarly:

X =By — —=B—¢l iff [Bel < [(B)¢l
iff Cl(Int([e 1)) < Int(Cl([e 1))

iff Cl(Int([¢]))) = Int(Cl(Int([¢])))
iff (X, t) is extremally disconnected.

Therefore, (X, t) validates the axioms and rules of KB iff it is extremally disconnected.
A.2. Proof of Theorem 4

(<) This direction is proven in Proposition 6.

(=) Suppose (X, K, B) validates all the axioms and rules of KB. Then, the valid-
ity of the S4 axioms implies that K satisfies the Kuratowski conditions for
topological interior, and so it gives rise to a topology 7 in which K = Int,
by the Theorem 5.3 in [25, p. 74] (see also Proposition 1.2.9 in [26, p. 23]).
Then, since (X, K, B) validates all the axioms of KB, we have [Bp <
(K)Kgo]]M = X for any model M = (X,K,B,v) and for all ¢ € Lkp
(by Proposition 5). Hence, [[B(p]]M = BII(p]]M = Cl(Int([[go]]M), ie.,
B = Cl(Int). Thus, (X, K, B) = (X, K;, B;) where t is the topology gener-
ated by Int, K; = Int and B; = Cl(Int). Finally, the validity of the axiom (CB)
proves that (X, ) is extremally disconnected (see the proof of Proposition 6).

A.3 Proof of Theorem 5

Since axioms of KB are Sahlqvist formulas, KB is canonical, hence, complete with
respect to its canonical model. However, the canonical model of KB is in fact an
extensional model validating all of its axioms. Thus, by Topological Representation
Theorem (Theorem 4 in Section 3.2), we have that KB is sound and complete with
respect to the class of extremally disconnected spaces.

A.4 Proof of Theorem 6

Lemma 1 For any topo-model M = (X, t,v) and any ¢ € L we have

1.[Be — BBy] = X, 2.[(B)p — B{(B)p] = X.

Proof Follows from basic properties of the interior and closure operators. O

It follows from Lemma 1 that all topological spaces validate the axioms (4) and (5)
under the topological belief semantics. However, the K-axiom Bo A By <> B(p AY)
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and the D-axiom By — (B)¢ are not valid on all topological spaces but are valid on
all extremally disconnected spaces:

Lemma 2 For any topological space (X, t), we have U N CI(A) € CI(U N A) for
allU e tand A C X.

Proof Let (X, t) be a topological space, U € 7, A € X and x € X. Suppose
x € UNCI(A). Since x € CI(A), for all open neighbourhoods V of x, VNA # (. Let
W be an open neightbourhood of x. Then, since t is closed under finite intersection
and x is an element of both W and U, the set W N U is an open neighbouhood of x as
well. Thus, by the assumption that x € CI1(A), (WNU)NA # @, i.e., WN(UNA) # 0.
As W has been chosen arbitrarily, x € CI(U N A). O

Lemma 3 [44] The following are equivalent for a topological space (X, T):

1. (X, 7) is extremally disconnected.
2. ClLUYNCKKV)=ClUNV) forallU,V € .
3. ClLUYNCIK(V)=@forallU,V e twithUNV =4.

Lemma 4 A topological space (X, t) validates the K-axiom iff (X, ©) is extremally
disconnected.

Proof Let (X, ) be a topological space and M = (X, 7, v) be a topo-model on
(X, 7). Then,

X =[ByABY < Blp Ay)]
iff [Be ABYll=[B Ayl
iff Cl(Int([e 1)) N Cldnt([¥ 1)) = Cldnt([ell N [¥ 1))
iff Cl(Int([[e])) N Cl{Int([¢ 1)) = Cldnt([e]) N Int([¥ 1)) (by (I3), Table 1)
iff (X, t)is extremally disconnected (by Lemma 3)

Lemma 5 A ropological space (X, t) validates the D-axiom iff (X, t) is extremally
disconnected.

Proof See Appendix A.1, the case for (CB). O

It follows from Lemmas 4 and 5 that the K-axiom and the D-axiom are not only
valid on extremally disconnected spaces, they also characterize extremally discon-
nected spaces (under the topological belief semantics). Hence, the class of extremally
disconnected spaces is the largest class of topological spaces which validates the K-
axiom and the D-axiom. The fact that both K-axiom and the D-axiom characterizing
extremally disconnectedness might seem surprising at first sight. However, given that
we interpret the knowledge modality K as the interior and the belief modality B as
the closure of the interior operators on topological spaces, we obtain that the for-
mula (Bg — (B)g) is equivalent to ((K)K¢ — K (K)g), which is the (.2)-axiom,
and the formula (Bp A By < B(p A v¥)) is equivalent to ((K)K¢ A (K)KY <
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(K)YK (¢ A r)). Thus, the above propositions only state that a topological space val-
idates ((K)K¢ — K(K)g) iff it validates ((K)K¢o A (K)KY¥ < (K)K (¢ A V)
iff it is extremely disconnected. In fact, Lemmas 1, 4 and 5 yield the soundness of
KD45, i.e., they prove Theorem 6.

A.5 Proof of Theorem 7

For the topological completeness proof of KD45 we make use of the completeness
of KD45 with respect to the standard Kripke semantics. We first recall some frame
conditions concerning the relational completeness of the corresponding systems. Let
(X, R) be a transitive Kripke frame. A non-empty subset C C X is a cluster if

(1) foreach x,y € C we have xRy, and
(2) thereisno D C X such that C C D and D satisfies (1).

A point x € X is called a maximal point if there is no y € X such that xRy and
—(yRx). We call a cluster a final cluster if all its points are maximal. It is not hard
to see that for any final cluster C of (X, R) and any x € C, we have R(x) = C. A
transitive Kripke frame (X, R) is called cofinal if it has a unique final cluster C such
that for each x € X and y € C we have x Ry. We call a cofinal frame a brush if X \ C
is an irreflexive antichain, i.e., for each x, y € X \ C we have —(x Ry) where C is the
final cluster. A brush with a singleton X \ C is called a pin. By definition, every brush
and every pin is transitive. Finally, a transitive frame (X, R) is called rooted, if there
isanx € X, called a root, such that for each y € X with x # y we have x Ry. Hence,
every rooted brush is in fact a pin. Figure 5 illustrates brushes and pins, respectively.

For the proof of the following lemma see, e.g., [22, Chapter 5] and [19, Chapters
2,4].

Lemma 6 KD45 is a sound and complete with respect to the class of brushes, and

with respect to the class of pins. In fact, KD4S5 is sound and complete with respect to
the class of finite pins.

(a) Brush (b) Pin

Fig. 5 An example of a brush and of a pin, where the top ellipses illustrate the final clusters and an arrow
relates the state it started from to every element in the cluster
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Similar to the construction in Section 2.2.2, we can build an Alexandroff
extremally disconnected space from a given pin. The only extra step consists in tak-
ing the reflexive closure of the initial pin. More precisely, for any frame (X, R), let
R™ denote the reflexive closure of R, defined as

RY=RU{(x,x)|x € X}.

Given a pin (X, R), the set tg+ = {RT(x) | x € X} constitutes a topology on
X. In fact, in this special case of pins, we have g+ = {X, C, @} where C is the final
unique cluster of (X, R). Therefore, it is easy to see that (X, tg+) is an Alexandroff
extremally disconnected space. This construction leads to a natural correspondence
between pins and Alexandroff extremally disconnected spaces. Moreover, any two
such models M = (X, R, v) and /\/lfR+ = (X, tg+, v) make the same formulas of
Lp true at the same states, as shown in Proposition 7.

Lemma 7 For all ¢ € Lp, any Kripke model M = (X, R, v) based on a pin
M.
ol = 1™ =+

Proof The proof follows by subformula induction on ¢; cases for the propositional
variables and the Boolean connectives are elementary. So assume inductively that the
result holds for v; we must show that it holds also for ¢ := B.

(=) Suppose M,x = By, ie., R(x) C ||¥|/™. Since R(x) = C, we obtain
C C ||1,b||M. Then, by IH, we have C C [[w]]M’RJr .Since tp+ = {X, C, @}, we obtain
Cl(Int(C)) = Cl(Int([ [+ )) = X. Therefore, x € Cl(Int([¥ ]+ )) = X, i.e.,
x € [l &+ . The other direction follows similarly by using the observation that
forall A C X with A C C, Int(A) = @. O

Theorem 7. In the topological belief semantics, KD45 is the complete logic of
belief with respect to the class of extremally disconnected spaces.

Proof Let ¢ € L such that ¢ ¢ KD45. Then, by Lemma 6, there exists a relational
model M = (X, R,v), where (X, R) is a pin, and x € X such that M, x ¥~ o.
Therefore, by Proposition 7, we obtain M, ,x [& ¢. Since M-, is extremally
disconnceted, we obtain the desired result. O]

A.6 Proof of Proposition 7

Let (X, ) be a DSO-space and U € 1. Recall that for any A € X, Cl(A) =
d(A) UA.So Cl(U) =dU)UU. Since (X, t) is a DSO-space, d(U) is an open
subset of X. Thus, since U is open as well, CI(U) is open. Therefore, (X, 7) is an
extremally disconnected space.

Now consider the topological space (X, t) where X = {1,2,3} and 7 =
{X, 2, {2}, {1, 2}}. It is easy to check that for all U € t, C1(U) is open (in fact, for
each U € T with U # @, CI(U) = X). Hence, (X, 1) is an extremally disconnected
space. However, as CI(X \ {2}) = {1, 3}, we have 2 ¢ d(X). Thus, (X, t) is not
dense in itself and thus not a DS O-space.
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Appendix B: Topological Models for Belief Revision: Static
and Dynamic Conditioning

B.1 Proof of Theorem 9

By Proposition 8, we know that each of the axioms can be rewritten by using only
the knowledge modality K. We also know that the logic of knowledge S4 is complete
with respect to to the class of reflexive and transitive Kripke frames. Therefore, we
can show that each of the axioms is a theorem of S4 by using Kripke frames and the
relational completeness of S4. Then, we can conclude that these axioms are also valid
on all topological spaces, since S4 is sound with respect to the class of all topological
spaces under the interior semantics. Recall that the semantic clauses for knowledge in
the interior semantics and in the refined topological semantics for conditional beliefs
and knowledge coincide. Here we only show the case for Cautious Monotonicity, the
others follow similarly and can be found in [46].

Let (X, R) be a reflexive and transitive Kripke frame, M = (X, R, v) a model
on (X, R) and x any element of X. By Proposition 8, we can rewrite the axiom of
Cautious Monotonicity as

K(p — (K)o AK(p = ) ANK(p = (K)(9 A K(p — 0)))
— K@ ny) = (K)(@ AY)AK((9 AY) = 0))).

Suppose x € |[K(¢ = (K) (@ AK(p = ¥)) AK(p — (K)(@AK(p — ).
Then,

R(x) S llg = (K)(@ A K(p — ¥))l. and (11)
R(x) S llg = (K)(@ A K(p = 0))] (12)

We want to show that R(x) C |[(¢ AY¥) = (K)Y((@ AY) AK (@ AY) — 0))]

Let y € R(x) such that y € |[¢ A ¥|. Then, by Egs. 11 and 12, we have y €
IKK)(@ AK(p — ¥))|land y € ||(K)(¢ A K(¢ — 0))]||, respectively. These imply
there exists a zg € X with yRzg such that

20 € lp A K(p = ¥)l 13)

and there exists a z; € X with z; Ry such that
z1 € lo A K(p — 0)]. (14)

Hence, as R is reflexive, we have zp € ||| and thus zg € ||¢ A ¥ || by Eq. 13. Then,
since x RyRzg and R is transitive, we have zg € |l¢ — (K)(¢ A K(¢p — 0))]|, by
Eq. 12. Thus, as zo € |l¢]|, we obtain zo € [[(K)(¢ A K(¢ — 0))||. This implies
that these is a zp € X with zgRz such that zo € || A K(¢ — 6)]. Then, since R
is transitive and zg € ||K(¢ — ¥)||, we have z2 € |[K(¢ — v¥)|. Hence, since R
is reflexive and z» € |l¢|, we get zo € || Y| implying that z5 € ||¢ A ¥|. Moreover,
22 € [K(¢ — ¥l and 22 € ||K(¢ — 6) imply that z5 € |[K((p A ¥) — O)].
Therefore, z2 € |[(¢ A ¥) A K((¢ A ) — 6)]. Hence, as yRzoRzz and R is
transitive, y € |[(K)((¢ A ¥) A K((p AYy) — 0))|l. Hence, y € |[(¢ A ¢y) —
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(KY((p AYr) A K((p A1) — 0))]l. Sinca y has been chosen arbitrarily from R(x),
we have R(x) € (g AY) = (K) (9 AY) AK{(@ AY) — 0)), 1e.

x € [[K(gAd) = (K)o AY) AK(@ AY) = ).

References

. Abramsky, S. (1991). Domain theory in logical form. Annals of Pure and Applied Logic, 51(1), 1-77.

2. Aiello, M., Pratt-Hartmann, 1., van Benthem, J. (2007). Handbook of spatial logics. Germany:
Springer Verlag.

3. Alchourrén, C.E., Girdenfors, P., Makinson, D. (1985). On the logic of theory change: partial meet
contraction and revision functions. Journal of Symbolic Logic, 50(2), 510-530.

4. Baltag, A., Bezhanishvili, N., Ozgiin, A., Smets, S. (2013). The topology of belief, belief revision and
defeasible knowledge. In Logic, rationality, and interaction - 4th international workshop, LORI 2013,
Hangzhou, China, October 9-12, 2013, Proceedings (pp. 27-40).

5. Baltag, A., Bezhanishvili, N., Ozgiin, A., Smets, S. (2014). The topology of full and weak belief. In
Proceedings of the 11th international Tbilisi symposium on logic, language, and computation (TbiLLC
2015) revised selected papers (pp. 205-228).

6. Baltag, A., Bezhanishvili, N., C)zgun, A., Smets, S. (2016). Justified belief and the topology of
evidence. In Proceedings of the 23rd workshop on logic, language, information and computation
(WOLLIC 2016) (pp. 83—103).

7. Baltag, A., & Smets, S. (2006). Conditional doxastic models: a qualitative approach to dynamic
belief revision. Electronic Notes in Theoretical Computer Science, 165, 5-21. Proceedings of the 13th
Workshop on Logic, Language, Information and Computation (WoLLIC 2006).

8. Baltag, A., & Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. Texts in
Logic and Games, 3, 9-58.

9. Barwise, J. (1988). Three views of common knowledge. In Proceedings of the 2nd conference on
theoretical aspects of reasoning about knolwedge (pp. 365-379).

10. Baskent, C. (2007). Topics in subset space logic. Master’s thesis, ILLC, University of Amsterdam.

11. Baskent, C. (2011). Geometric public announcement logics. In Murray, R.C. & McCarthy, PM. (Eds.),
Preceedings of the 24th Florida artificial intelligence research society conference (FLAIRS-24) (pp.
87-88).

12. Battigalli, P, & Siniscalchi, M. (2002). Strong belief and forward induction reasoning. Journal of
Economic Theory, 105, 356-391.

13. Beklemishev, L., & Gabelaia, D. (2014). Topological interpretations of provability logic (pp. 257—
290). Netherlands: Springer.

14. Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J. (2015). S4.3 and hereditarily
extremally disconnected spaces. Georgian Mathemetical Journals, 22, 469-475.

15. Bezhanishvili, G., Esakia, L., Gabelaia, D. (2005). Some results on modal axiomatization and
definability for topological spaces. Studia Logica, 81(3), 325-355.

16. Bezhanishvili, G., Esakia, L., Gabelaia, D. (2011). Spectral and Typ-spaces in d-semantics. In
Logic, language, and computation - 8th international Thilisi symposium on logic, language, and
computation, LNAI Revised selected papers (Vol. 6618, pp. 16-29).

17. Bezhanishvili, N., & van der Hoek, W. (2014). Structures for epistemic logic. In Baltag, A., & Smets,
S. (Eds.) Johan van Benthem on logic and information dynamics (pp. 339-380) Springer International
Publishing.

18. Bjorndahl, A., & Ozgiin, A. (2017). Logic and topology for knowledge, knowability, and belief. In
Proceedings of 16th conference on theoretical aspects of rationality and knowledgle (TARK 2017),
vol. 251 of electronic proceedings in theoretical computer science (pp. 88—101).

19. Blackburn, P, de Rijke, M., Venema, Y. (2001). Modal logic, vol 53 of cambridge tracts in theoretical
computer scie. Cambridge: Cambridge University Press.

20. Blaszczyk, A., Rajagopalan, M., Szymanski, A. (1993). Spaces which are hereditarily extremely
disconnected. Journal of Ramanujan Mathematical Society, 8(1-2), 81-94.

21. Boutilier, C. (1990). Conditional logics of normality as modal systems. In Shrobe, H.E., Dietterich,

T.G. & Swartout, W.R. (Eds.), AAAI (pp. 594-599).

@ Springer



A Topological Approach to Full Belief 243

22.
23.
24.
25.
26.
217.
28.
29.
30.
31.

32.
33.

34.
35.

36.
37.

38.

39.

40.
41.

42.

44,

45.
46.

47.
48.
49.
50.
. Sosa, E. (1999). How to defeat opposition to Moore. Nos, 33, 141-153.
52.
53.

. Steinsvold, C. (2007). Topological models of belief logics. Ph.D. thesis, City University of New York.
55.

Chagrov, A.V., & Zakharyaschev, M. (1997). Modal logic, vol. 35 of oxford logic guides. Oxford
University Press.

Dabrowski, A., Moss, L.S., Parikh, R. (1996). Topological reasoning and the logic of knowledge.
Annals of Pure and Applied Logic, 78(1), 73—-110.

DeRose, K. (2009). The case for contextualism. 1st Edn. New York: Oxford University Press.
Dugundji, J. (1965). Topology, Allyn and Bacon series in advanced mathematics. Prentice Hall.
Engelking, R. (1989). General topology, 2nd edn. Vol. 6. Berlin: Heldermann Verlag.

Esakia, L. (2001). Weak transitivity-restitution. Study in Logic, 8, 244-254. In Russian.

Esakia, L. (2004). Intuitionistic logic and modality via topology. Annals of Pure and Applied Logic,
127(1), 155-170.

Gabelaia, D. (2001). Modal definability in topology. Master’s thesis, ILLC, University of Amsterdam.
Georgatos, K. (1993). Modal logics for topological spaces. Ph.D. thesis, City University of New York.
Georgatos, K. (1994). Knowledge theoretic properties of topological spaces. In Proceedings of
knowledge representation and reasoning under uncertainty: logic at work (pp. 147-159).

Gettier, E. (1963). Is justified true belief knowledge? Analysis, 23, 121-123.

Ichikawa, J.J., & Steup, M. (2013). The analysis of knowledge. In Zalta, E.N. (Ed.) The Stanford
encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, fall 2013 edition.
Kelly, K. (1996). The logic of reliable inquiry. Oxford University Press.

Klein, P. (1971). A proposed definition of propositional knowledge. Journal of Philosophy, 68, 471—
482.

Kraus, S., Lehmann, D., Magidor, M. (1990). Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence, 44(1-2), 167-207.

Kudinov, A., & Shehtman, V. (2014). Derivational modal logics with the difference modality (pp. 291—
334). Netherlands: Springer.

Lamarre, P., & Shoham, Y. (1994). Knowledge, certainty, belief, and conditionalisation (abbreviated
version). In Doyle, J., Sandewall, E., Torasso, P. (Eds.) Principles of knowledge representation and
reasoning (pp. 415-424). The Morgan Kaufmann Series in Representation and Reasoning. Morgan
Kaufmann.

Lehrer, K., & Paxson, T.J. (1969). Knowledge: undefeated justified true belief. Journal of Philosophy,
66, 225-237.

Lenzen, W. (1978). Recent work in epistemic logic Vol. 30. North Holland: Acta Philosophica Fennica.
McKinsey, J.C.C. (1941). A solution of the decision problem for the Lewis systems S2 and S4, with
an application to topology. The Journal of Symbolic Logic, 6(4), 117-134.

McKinsey, J.C.C., & Tarski, A. (1944). The algebra of topology. Annals of Mathematics (2), 45,
141-191.

. Moss, L.S., & Parikh, R. (1992). Topological reasoning and the logic of knowledge. In Proceedings

of 4th conference on theoretical aspects of computer science (TARK 1992) (pp. 95-105). Morgan
Kaufmann.

Noiri, T. (1988). Charaterizations of extremally disconnected spaces. Indian Journal of Pure and
Applied Mathematics, 19, 325-329.

Nozick, R. (1981). Philosophical explanations Cambridge. MA: Harvard University Press.

Ozgiin, A. (2013). Topological models for belief and belief revision. Master’s thesis, ILLC, University
of Amsterdam.

Ozgiin, A. (2017). Evidence in epistemic logic: a topological perspective. Ph.D. thesis, LORIA.
Université de Lorraine and ILLC, University of Amsterdam.

Parikh, R., Moss, L.S., Steinsvold, C. (2007). Topology and epistemic logic. In Handbook of spatial
logics (pp. 299-341). Springer Verlag.

Rott, H. (2004). Stability, strength and sensitivity: converting belief into knowledge. Erkenntnis, 61(2-
3), 469-493.

Sikorski, R. (1964). Boolean algebras. Berlin-Heidelberg-Newyork: Springer-Verlag.

Stalnaker, R. (1968). A theory of conditionals. In Studies in logical theory (Vol. 2, pp. 98-112).
Oxford: Blackwell.
Stalnaker, R. (2006). On logics of knowledge and belief. Philosophical Studies, 128(1), 169-199.

Tarski, A. (1938). Der Aussagenkalkiil und die Topologie. Fundamenta Mathematicae, 31, 103—134.

@ Springer



244

A. Baltag et al.

56.

57.

58.

59.

60.

61.

62.

63.
64.

65.

66.

67.
68.

69.

71.

Troelstra, A.S., & van Dalen, D. (1988). Constructivism in mathematics: an introduction., vol. 1 and
2 of studies in logic and the foundations of mathematics. Amsterdam.

Tsao-Chen, T. (1938). Algebraic postulates and a geometric interpretation for the Lewis calculus of
strict implication. Bulletin of the American Mathematical Society, 44(10), 737-744.

van Benthem, J. (2004). Dynamic logic for belief revision. Journal of Applied Non-Classical Logics,
14, 2004.

van Benthem, J. (2011). Logical dynamics of information and interaction. New York: Cambridge
University Press.

van Benthem, J., & Bezhanishvili, G. (2007). Modal logics of space. In Handbook of spatial logics
(pp- 217-298). Springer.

van Benthem, J., Bezhanishvilli, G., ten Cate, B., Sarenac, D. (2005). Modal logics for products of
topologies. Studia Logica, 84(3), 369-392.

van Benthem, J., & Pacuit, E. (2011). Dynamic logics of evidence-based beliefs. Studia Logica, 99(1),
61-92.

van Benthem, J., & Sarenac, D. (2005). The geometry of knowledge. Aspects of Universal Logic, 17.
van Ditmarsch, H., van der Hoek, W., Kooi, B. (2007). Dynamic epistemic logic, 1st Edn. Springer
Publishing Company, Incorporated.

van Fraassen, B. (1995). Fine-grained opinion, probability, and the logic of full belief. Journal of
Philosophical logic, 24, 349-3717.

Vickers, S. (1989). Topology via logic, vol 5 of cambridge tracts in theoretical computer science.
Cambridge: Cambridge University Press.

Voorbraak, F. (1993). As far as I know. Ph.D. thesis, Utrecht University.

Wang, Y., & Cao, Q. (2013). On axiomatizations of public announcement logic. Synthese, 190, 103—
134.

Williamson, T. (2000). Knowledge and its limits. Oxford Univ. Press.

. Wolter, F. (1993). Lattices of modal logics. Ph.D. thesis, Free University Berlin.

Zvesper, J. (2010). Playing with information. Ph.D thesis, ILLC, University of Amsterdam.

@ Springer



	A Topological Approach to Full Belief
	Abstract
	Introduction
	Background
	Topological Preliminaries
	The Interior Semantics for Modal Logic
	Syntax and Semantics
	Connection between Kripke Frames and Topological Spaces
	Topo-Completeness of S4, S4.2 and S4.3

	The Motivation behind Knowledge as Interior
	The Interior Semantics is Naturally Epistemic and Extends the Relational Semantics
	Evidence as Open Sets
	Belief on Topological Spaces?


	The Topology of Full Belief and Knowledge
	Stalnaker's Combined Logic of Knowledge and Belief
	Our Topological Semantics for Full Belief
	Unimodal Case: the Belief Logic KD45
	What Motivates Topological Full Belief


	Topological Models for Belief Revision: Static and Dynamic Conditioning
	Static Conditioning: Conditional Beliefs
	Semantics of Conditional Beliefs

	Dynamic Conditioning: Updates
	Topological Semantics for Update Modalities


	Conclusion and Future Work
	Summary
	Relevant and Future Research


	Acknowledgements
	Open Access
	Appendix A A: The Topology of Full Belief and Knowledge
	A.1 Proof of Proposition 6
	A.2. Proof of Theorem 4
	A.3 Proof of Theorem 5
	A.4 Proof of Theorem 6
	A.5 Proof of Theorem 7
	A.6 Proof of Proposition 7
	 B: Topological Models for Belief Revision: Static and Dynamic Conditioning
	Appendix B B: Topological Models for Belief Revision: Static and Dynamic Conditioning
	B.1 Proof of Theorem 9
	References


