
Complete axiomatizationof a relative modal logicwith composition and intersectionPhilippe Balbiani, Luis Fari~nas del CerroLaboratoire d'informatique de Paris-NordInstitut de recherche en informatique de ToulouseAbstractWe consider the question of the complete axiomatization of a rel-ative modal logic with composition and intersection.1 IntroductionAs an abstraction of a system introduced by Pratt, propositional dy-namic logic | PDL | is a powerful instrument with which it ispossible to reason about programs [9, 6, 7, 11, 8]. The linguistic basisof PDL is the propositional calculus enlarged with a family of modaloperators of the form [�] where � is a program in �c composed induc-tively via regular rules in the following way, for every �; � 2 �c : �; �2 �c | \do � followed by �", �_� 2 �c | \do either � or �", �+ 2�c | \repeat � a �nite number of times", the meaning of the formula[�]A being that \after every terminating execution of �, it is the casethat A". Semantically, the program � in �c corresponds to the binaryrelation R(�) between the states of some presumed universe W , see-ing that R(�; �) = R(�) � R(�), R(� _ �) = R(�) [ R(�), R(�+) =R(�)+, the formula [�]A being true in the state x 2 W when A is truein every state y such that x R(�) y. Since the days Gabbay, Parikhand Segerberg gave their proofs of the completeness of the axiomati-zation presented by Segerberg, several extensions of PDL have been1



proposed. One of them adds the intersection operator of programs,inductively allowing, for every �; � 2 �c, � ^ � 2 �c | \do � and �in parallel", considering that R(� ^ �) = R(�) \R(�).The interest to introduce the intersection operator of programslies in the fact that it formalizes some aspects of what is known asparallelism. That is the reason why various authors have consideredthe following issues : decidability = complexity and axiomatization =completeness of a PDL with intersection [10, 3, 16]. From the decid-ability = complexity point of view, Harel [10] proves that the validityproblem for a PDL with intersection, tests and deterministic atomicprograms is undecidable. In the general case, non-deterministic atomicprograms are allowed and Danecki [3] proves that the validity problemfor a PDL with intersection and tests is decidable. From the axiom-atization = completeness point of view, Passy and Tinchev [16] enricha PDL with intersection, tests and names to be interpreted as trueat exactly one state and prove the completeness of an axiomatizationof the resultant logic of programs, leaving open the question of thecompleteness of an axiomatization of a name-free test-free PDL withintersection.Considering the question of the complete axiomatization of a PDLwith intersection, we have to face the fact that neither the transitiveclosure of one binary relation nor the intersection of two binary re-lations are modally de�nable. This problem leads to the presentdayimpossibility of carrying out the plan of the complete axiomatizationof a PDL with intersection. Consequently, we do not claim to be ableto realize this plan and we modestly focus our attention on a fragmentof PDL with intersection. The linguistic basis of this fragment is thepropositional calculus enlarged with a family of modal operators ofthe form [�] where � is a program in �c composed in the followingway, for every �; � 2 �c : �; � 2 �c, � ^ � 2 �c. Semantically, theprogram � in �c still corresponds to the binary relation R(�) betweenthe states of some universe W , seeing that R(�; �) = R(�) � R(�),R(� ^ �) = R(�)\ R(�).The axiomatization of this fragment of PDL with intersection ispresented in the section 4 whereas the proof of the completeness ofthis axiomatization is organized in the sections 6 and 7. The sec-tion 6 shows that if a formula A is consistent with the consideredaxiomatical presentation of our relative modal logic with compositionand intersection then there exists a universe W and, for every � 2 �c,2



a binary relation R(�) between the states of W such that R(�; �) �R(�) �R(�), R(�^ �) = R(�)\R(�) and there exists a state x 2 Wsuch that A is true in x. However, it is quite possible that there exists�; � 2 �c and there exists x; z 2 W such that x R(�; �) z and, for ev-ery y 2 W , either x R(�) y or y R(�) z and the section 7 proves thatthe relational structure (W;R) can be transformed into a relationalstructure (W!; R!) such that R!(�; �) = R!(�) � R!(�), R!(� ^ �)= R!(�)\R!(�) and there exists a state x 2 W! such that A is truein x.2 LanguageLet �a be a countable set of \atomic programs". The set �c of the\complex programs" is de�ned by induction in the following way :� � = �, � 2 �a j �; � j � ^ �.Let � be the smallest ordering on �c compatible with f�; (�; 
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.3 Semantical studyLetW be a nonempty set and R be a mapping of �c to 2W�W . (W;R)is called \frame". (W;R) is \irre
exive" when, for every � 2 �c :� R(�) \ IdW = ;.(W;R) is \partial" when, for every �; � 2 �c :� R(�; �) = R(�) �R(�).� If � � � then R(�) � R(�).(W;R) is \standard" when, for every �; � 2 �c :� R(�; �) � R(�) �R(�).� R(� ^ �) � R(�) \R(�).� If � � � then R(�) � R(�).It should be remarked that :Proposition 1 If (W;R) is standard then, for every �; � 2 �c, R(�^�) = R(�)\ R(�).(W;R) is \normal" when, for every �; � 2 �c :� R(�; �) = R(�) �R(�).� R(� ^ �) = R(�) \R(�).It may be asserted that :Proposition 2 If (W;R) is normal then, for every �; � 2 �c :� If � � � then R(�) = R(�).� If � � � then R(�) � R(�).Consequently, the reader may easily verify that :Proposition 3 (W;R) is normal i� (W;R) is partial and standard.4



Let V be a mapping of �c to 2W such that, for every A;B 2 �c andfor every � 2 �c :� V (:A) = W n V (A).� V (A! B) = W n V (A) [ V (B).� V ([�]A) = fx : R(�)(x) � V (A)g.V is called \valuation on (W;R)" and (W;R; V ) is called \model on(W;R) de�ned from V ". For every A 2 �c, A is \true in (W;R; V )"when V (A) = W . Let RAL be the set of the formulas true in ev-ery normal model. The main result of this paper is the proof of thecompleteness of the following axiomatization of RAL.4 AxiomatizationTogether with the classical tautologies, all the instances of the follow-ing schema, for every � 2 �c :� [�](A! B)! ([�]A! [�]B).and all the instances of the following schemata, for every �; � 2 �c :� [�; �]A$ [�][�]A.� If � � � then [�]A [�]A.are axioms of RAL. Together with the classical inference rules, all theinstances of the following schema, for every � 2 �c :� If A is a theorem then [�]A is a theorem.are inference rules of RAL. The reader may easily verify that theaxioms of RAL are true in every partial model and the inference rulesof RAL preserve truth in every partial model. Consequently, a proofby induction on the length of the proof of A will show that :Theorem 1 For every A 2 �c, if A is a theorem of RAL then A istrue in every partial model.Let � be a set of formulas :� � is \maximal" when, for every A 2 �c, A 2 � or :A 2 �.� � is \consistent" when, for everyK � 1 and for every A1; : : : ; AK2 �, :(A1 ^ : : :^ AK) is not a theorem of RAL.5



It may be asserted that :Proposition 4 For every consistent set � of formulas, there exists amaximal and consistent set �0 of formulas such that � � �0.Proposition 5 For every � 2 �c, for every A 2 �c and for everymaximal and consistent set � of formulas, if [�]A 62 � then there existsa maximal and consistent set � of formulas such that [�]� � � andA 62 �.where [�]� = fA : [�]A 2 �g.Proposition 6 For every �; � 2 �c and for every maximal and con-sistent set �;� of formulas, if [�; �]� � � then there exists a maximaland consistent set � of formulas such that [�]� � � and [�]� � �.Proof The proofs of the propositions 4, 5 and 6 use the techniques ofthe maximal and consistent sets of formulas [12].5 Functions of maximalityTo prove the completeness of the axiomatization of RAL, we use map-pings called functions of maximality and structures called spaces ofmaximality. Let (W;R) be a frame and S be a mapping of W to theset of the maximal and consistent sets of formulas such that, for everyx 2 W , for every � 2 �c and for every A 2 �c, [�]A 2 S(x) i�, forevery y 2 W , if y 2 R(�)(x) then A 2 S(y). S is called \function ofmaximality on (W;R)" and (W;R; S) is called \space of maximalityon (W;R) de�ned from S". For every A 2 �c, A is \true in (W;R; S)"when, for every x 2 W , A 2 S(x). The \valuation on (W;R) associ-ated to S" is the valuation V on (W;R) such that, for every P 2 �a,V (P ) = fx : P 2 S(x)g. A proof by induction on the complexity ofA will show that :Proposition 7 For every A 2 �c, V (A) = fx : A 2 S(x)g.From all this it follows that :Proposition 8 For every A 2 �c, A is true in (W;R; V ) i� A is truein (W;R; S). 6



6 Proof of the standard completenessLet W0, W1, : : : be a sequence of sets de�ned by induction in thefollowing way, S be a mapping of W = SfWi : i � 0g to the set ofthe maximal and consistent sets of formulas such that :� Let W0 = f0g and S(0) be a maximal and consistent set offormulas.� For every i � 1, let Wi = Wi�1 [ fx�A : x 2 Wi�1, � 2 �cand A 2 �c are such that [�]A 62 S(x) and x�A 62 Wi�1g and,according to the proposition 5, for every x 2 Wi�1, for every �2 �c and for every A 2 �c such that [�]A 62 S(x) and x�A 62Wi�1, S(x�A) be a maximal and consistent set of formulas suchthat [�]S(x) � S(x�A) and A 62 S(x�A).and R be the mapping of �c to 2W�W such that, for every � 2 �cand for every x; y 2 W , x R(�) y i� there exists N � 1, there ex-ists �1; : : : ; �N 2 �c and there exists A1; : : : ; AN 2 �c such that
(�1; : : : ; �N) � � and y = x�1A1 : : :�NAN where, for every � 2�c, 
(�) = � and, for every N � 1 and for every �1; : : : ; �N 2 �c,
(�; �1; : : : ; �N) = �;
(�1; : : : ; �N). A proof by induction on Mwill show that :Proposition 9 For every M � 1, for every �1; : : : ; �M 2 �c, for ev-ery N � 1 and for every �1; : : : ; �N 2 �c,
(�1; : : : ; �M);
(�1; : : : ; �N)� 
(�1; : : : ; �M ; �1; : : : ; �N).Consequently, the reader may easily verify that :Proposition 10 (W;R) is a countable standard irre
exive frame onwhich S is a function of maximality.Consequently, (W;R; S) is a countable standard irre
exive space ofmaximality called \space of subordination" and :Theorem 2 For every A 2 �c, if A is true in every countable stan-dard irre
exive space of maximality then A is a theorem of RAL.Proof If A is not a theorem of RAL then the singleton f:Ag is con-sistent and, according to the proposition 4, there exists a maximaland consistent set �0 of formulas such that :A 2 �0. Let (W;R; S)be a space of subordination such that S(0) = �0. Consequently, A 62S(0), A is not true in (W;R; S) and A is not true in every countable7



standard irre
exive space of maximality.The use of spaces of subordination have been introduced by Cress-well [12] and developed by Humberstone [13] and Balbiani [1, 2].7 Proof of the normal completenessLet (W;R; S) be a countable standard irre
exive space of maximal-ity. This section is devoted to the proof that (W;R; S) can be trans-formed into a countable partial standard irre
exive space of maximal-ity (W!; R!; S!) such that W! � W and S!jW = S.7.1 Local completionLet (W;R; S) be a countable standard irre
exive space of maximality,�; � 2 �c and x; z 2 W be such that x R(�; �) z. (�; �; x; z) iscalled \potential defect of (W;R; S)". Our assumptions immediatelyyield the result that S(x) and S(z) are maximal and consistent sets offormulas such that [�; �]S(x) � S(z). Consequently, according to theproposition 6, there exists a maximal and consistent set � of formulassuch that [�]S(x) � � and [�]� � S(z). Let (W 0; R0; S 0) be a spaceof subordination such that S 0(0) = �. Let W 00 = W [W 0, R00 be themapping of �c to 2W 00�W 00 such that, for every 
 2 �c and for everyt; u 2 W 00, t R00(
) u i� :� Either t 2 W , u 2 W and t R(
) u.� Or t 2 W 0, u 2 W 0 and t R0(
) u.� Or t = x, u = 0 and � � 
.� Or t = x, u 2 W 0 n f0g and there exists 
 00 2 �c such that 0R0(
 00) u and �; 
 00 � 
.� Or t 2 W n fxg, u = 0 and there exists 
 0 2 �c such that t R(
 0)x and 
 0;� � 
.� Or t 2 W n fxg, u 2 W 0 n f0g and there exists 
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 0) x, 0 R0(
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.� Or t = 0, u = z and � � 
.� Or t = 0, u 2 W n fzg and there exists 
 00 2 �c such that zR(
 00) u and �; 
 00 � 
. 8



and S 00 be the mapping ofW 00 to the set of the maximal and consistentsets of formulas such that, for every t 2W , S 00(t) = S(t) and, for everyt 2 W 0, S 00(t) = S 0(t). It is easy to verify that (W 00; R00) is a countablestandard irre
exive frame on which S 00 is a function of maximality.Consequently, (W 00; R00; S 00) is a countable standard irre
exive spaceof maximality called \local completion of (W;R; S) with respect to(W 0; R0; S 0) and (�; �; x; z)" such thatW 00 �W and S 00jW = S. Observethat there exists y 2 W 00 such that x R00(�) y and y R00(�) z.7.2 Global completionLet (W;R; S) be a countable standard irre
exive space of maximalityand S0, S1, S2, : : : be the sequence of countable standard irre
exivespaces of maximality de�ned by induction in the following way :� Let W0 = W , R0 = R, S0 = S and S0 = (W0; R0; S0).� For every i � 1, let (�1; �1; x1; z1), (�2; �2; x2; z2), : : : be a list ofthe potential defects of Si�1 and S0i , S1i , S2i , : : : be the sequenceof countable standard irre
exive spaces of maximality de�ned byinduction in the following way :{ LetW 0i =Wi�1, R0i =Ri�1, S0i = Si�1 and S0i = (W 0i ; R0i ; S0i ).{ For every j � 1, let Sji = (W ji ; Rji ; Sji ) be a local completionof Sj�1i with respect to (�j ; �j ; xj; zj).Then, let Wi = SfW ji : j � 0g, Ri be the mapping of �c to2Wi�Wi such that, for every � 2 �c and for every x; y 2 Wi, xRi(�) y i� there exists j � 0 such that x 2 W ji , y 2 W ji andx Rji (�) y, Si be the mapping of Wi to the set of the maximaland consistent sets of formulas such that, for every x 2 Wi,there exists j � 0 such that x 2 W ji and Si(x) = Sji (x) and Si= (Wi; Ri; Si). The reader may easily verify that (Wi; Ri) is acountable standard irre
exive frame on which Si is a function ofmaximality. Consequently, Si is a countable standard irre
exivespace of maximality such that Wi � Wi�1 and SijWi�1 = Si�1.Observe that, for every potential defect (�; �; x; z) of Si�1, thereexists y 2 Wi such that x Ri(�) y and y Ri(�) z.Then, let W! = SfWi : i � 0g, R! be the mapping of �c to 2W!�W!such that, for every � 2 �c and for every x; y 2 W!, x R!(�) y i�there exists i � 0 such that x 2 Wi, y 2 Wi and x Ri(�) y, S! be9



the mapping of W! to the set of the maximal and consistent sets offormulas such that, for every x 2 W!, there exists i � 0 such that x2 Wi and S!(x) = Si(x) and S! = (W!; R!; S!). It is easy to verifythat (W!; R!) is a countable standard irre
exive frame on which S!is a function of maximality. Consequently, S! is a countable standardirre
exive space of maximality called \global completion of (W;R; S)"such that W! � W and S!jW = S. Observe that, for every potentialdefect (�; �; x; z) of S!, there exists y 2W! such that x R!(�) y and yR!(�) z. Consequently, S! is a countable partial standard irre
exivespace of maximality and :Theorem 3 For every A 2 �c, if A is true in every countable partialstandard irre
exive space of maximality then A is a theorem of RAL.Proof If A is not a theorem of RAL then, according to the theo-rem 2, there exists a countable standard irre
exive space of maximal-ity (W;R; S) such that A is not true in (W;R; S). Let S! be the globalcompletion of (W;R; S). Consequently, A is not true in S!.Clearly, we have demonstrated that :Corollary 1 For every A 2 �c, A is a theorem of RAL i� A is truein every partial model i� A is true in every normal model i� A is truein every countable normal irre
exive model.Proof This corollary is a consequence of the proposition 3, the theo-rem 1, the proposition 8 and the theorem 3.8 ConclusionTo close our study of our relative modal logic with composition andintersection, we mention some questions that remain unsolved.Consider the question of the complete axiomatization of a rela-tive modal logic with composition, intersection and tests or a rela-tive modal logic with composition, intersection and converse. Remarkthat, in the section 7.1, within the context of the local completion,the proof that (W 00; R00) is standard rests on the fact that the frames(W;R) and (W 0; R0) are irre
exive.Consider the issue of the complete axiomatization of the numerousrelative modal logics with composition and intersection devised within10



the context of the research in deontic logic [14] and data analysislogic [15].Add the composition operator of agents to the various logics ofknowledge incorporating distributed knowledge [4, 5], the knowledgeof the \compound agent" �; � being the knowledge of the agent �about the knowledge of the agent � and the knowledge of the \dis-tributed agent" � ^ � being the set of the conclusions to be drawnfrom the combined knowledge of the agents � and � and considerthe matter of the complete axiomatization of the resultant logics ofknowledge.Prove or disprove that � is decidable, that is to say : is there analgorithm determining, for every �; � 2 �c, whether it is the case that� � � ?AcknowledgementSpecial acknowledgement is heartly granted to Dimiter Vakarelov whomade several helpful comments for improving the readability of thepaper.References[1] P. Balbiani. Terminological modal logic. M. Kracht, M. de Ri-jke, H. Wansing, M. Zakharyaschev (editors), Advances in ModalLogic. Lecture Notes 87, 23{39, Center for the Study of Languageand Information, 1998.[2] P. Balbiani. Inequality without irre
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