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Abstract

We consider the question of the complete axiomatization of a rel-
ative modal logic with composition and intersection.

1 Introduction

As an abstraction of a system introduced by Pratt, propositional dy-
namic logic — PDL — is a powerful instrument with which it is
possible to reason about programs [9, 6, 7, 11, 8]. The linguistic basis
of PDL is the propositional calculus enlarged with a family of modal
operators of the form [«] where a is a program in II. composed induc-
tively via regular rules in the following way, for every o, € 1l : o 3
€ I, — “do a followed by 8", @V 3 € I, — “do either a or 5”7, a™ €
II. — “repeat « a finite number of times”, the meaning of the formula
[@] A being that “after every terminating execution of «, it is the case
that A”. Semantically, the program « in Il. corresponds to the binary
relation R(a) between the states of some presumed universe W, see-
ing that R(o; ) = R(a) o R(8), R(aV 3) = R(a) U R(3), R(a™) =
R(a)*, the formula [@]A being true in the state z € W when A is true
in every state y such that 2 R(«) y. Since the days Gabbay, Parikh
and Segerberg gave their proofs of the completeness of the axiomati-
zation presented by Segerberg, several extensions of PDL have been



proposed. One of them adds the intersection operator of programs,
inductively allowing, for every o, 8 € Il., o« A 3 € 1l — “do v and 3
in parallel”, considering that R(a A §) = R(a) N R(S).

The interest to introduce the intersection operator of programs
lies in the fact that it formalizes some aspects of what is known as
parallelism. That is the reason why various authors have considered
the following issues : decidability / complexity and axiomatization /
completeness of a PDL with intersection [10, 3, 16]. From the decid-
ability / complexity point of view, Harel [10] proves that the validity
problem for a PDL with intersection, tests and deterministic atomic
programs is undecidable. In the general case, non-deterministic atomic
programs are allowed and Danecki [3] proves that the validity problem
for a PDL with intersection and tests is decidable. From the axiom-
atization / completeness point of view, Passy and Tinchev [16] enrich
a PDL with intersection, tests and names to be interpreted as true
at exactly one state and prove the completeness of an axiomatization
of the resultant logic of programs, leaving open the question of the
completeness of an axiomatization of a name-free test-free PDL with
intersection.

Considering the question of the complete axiomatization of a PDL
with intersection, we have to face the fact that neither the transitive
closure of one binary relation nor the intersection of two binary re-
lations are modally definable. This problem leads to the presentday
impossibility of carrying out the plan of the complete axiomatization
of a PDL with intersection. Consequently, we do not claim to be able
to realize this plan and we modestly focus our attention on a fragment
of PDL with intersection. The linguistic basis of this fragment is the
propositional calculus enlarged with a family of modal operators of
the form [a] where « is a program in II. composed in the following
way, for every o, 3 € Il. @ ;3 € Il., a« A 3 € Il.. Semantically, the
program « in Il. still corresponds to the binary relation R(«) between
the states of some universe W, seeing that R(a; ) = R(«) o R(S),
R(a A B) = R(a) N R(5).

The axiomatization of this fragment of PDL with intersection is
presented in the section 4 whereas the proof of the completeness of
this axiomatization is organized in the sections 6 and 7. The sec-
tion 6 shows that if a formula A is consistent with the considered
axiomatical presentation of our relative modal logic with composition
and intersection then there exists a universe W and, for every a € I,



a binary relation R(a) between the states of W such that R(a; ) 2
R(a)o R(B), R(a A B) = R(a) N R(3) and there exists a state z € W
such that A is true in . However, it is quite possible that there exists
a, 3 € 1, and there exists z, z € W such that z R(«a; ) z and, for ev-

ery y € W, either 2 R(a) y or y R(8) = and the section 7 proves that
the relational structure (W, R) can be transformed into a relational
structure (W, R,,) such that R,(a;3) = Ry (o) o R.(53), Ru(a A B)
= R,(a)N R, (B) and there exists a state 2 € W, such that A is true
in z.

2 Language
Let I, be a countable set of “atomic programs”. The set I1. of the
“complex programs” is defined by induction in the following way :
ea=mrmell,|a;f|ang.
Let > be the smallest ordering on Il. compatible with {a;(8;7) =
(ev; B); v} and such that, for every o, 3,v € Il :
e aNP > a.
e aAf > S
o Ifa> B and a = v then = B A ~.

that is to say, if = is the binary relation on II. defined by induction
in the following way :

o « =  iff there exists K > 1 such that o =g [ where :
— a; (B;7) =1 (o B);y and (o3 8)57 =1 o5 (B57).
- & =1 .
- Ifa=xg pgand 8 =f v the a =41 7.
— If o =g Band v =f 6 then oy =g §;0 and oAy =g 41
B A0

then > is the binary relation on II. defined by induction in the follow-
ing way :
o « > [ iff there exists K > 1 such that o > [ where :
—aAf i aand a N[ > 5.
- o 7 .
—Ifa =g Band 8 = v the o =gy 7.



— Ifa=pgand 3 »1 v the o =11 7.
— Ifa>g gand § =~ the o =41 7.

— Ifa =g Band v =g & then a;y =g4p 350 and a Ay =g1p
B A0
— Ifa>g fgand a =1, vy then o =41, B A 7.

3 Semantical study

Let W be a nonempty set and R be a mapping of 1. to 2" (W, R)
is called “frame”. (W, R) is “irreflexive” when, for every a € Il :

e R(a)NIdw = 0.
(W, R) is “partial” when, for every a, 8 € Il. :
o R(a:f) = R(a)o R(3).
e If o = [ then R(a) C R(5).
(W, R) is “standard” when, for every a, 5 € Il :
o R(a:) 2 R(a) o R(H)
« R(aAf) 2 R(a) N R(H).
e If o = [ then R(a) C R(5).
It should be remarked that :
Proposition 1 If (W, R) is standard then, for every o, 3 € 1l., R(aA
#) = R(a) N R(5).
(W, R) is “normal” when, for every a, 5 € Il :
o R(a:f) = R(a)o R(3).
e Rlanp) = R(a)NR(S).
It may be asserted that :
Proposition 2 [f (W, R) is normal then, for every o, € 1. :
o Ifa=p then R(a) = R(S).
o Ifa = [ then R(a) C R(S).

Consequently, the reader may easily verify that :

Proposition 3 (W, R) is normal iff (W, R) is partial and standard.
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Let V be a mapping of ®. to 2 such that, for every A, B € ®. and
for every a € 1, :

o V(=A) =W\ V(A4).
e V(A= B)=W\ V(A UV(B).
o V([a]d) ={z : R(a)(z) C V(A)}.

V is called “valuation on (W, R)” and (W, R, V) is called “model on
(W, R) defined from V7. For every A € ®., A is “true in (W, R, V)”
when V(A) = W. Let RAL be the set of the formulas true in ev-
ery normal model. The main result of this paper is the proof of the
completeness of the following axiomatization of RAL.

4 Axiomatization

Together with the classical tautologies, all the instances of the follow-
ing schema, for every a € 11, :

e [0](A— B) = ([0]A — [a]B).

and all the instances of the following schemata, for every o, 5 € 11, :
o [a;5]A & [a][5]A.
o If @ = [ then [a]A + [5]A.

are axioms of RAL. Together with the classical inference rules, all the
instances of the following schema, for every a € 11, :

e If Ais a theorem then [«]A is a theorem.

are inference rules of RAL. The reader may easily verify that the
axioms of RAL are true in every partial model and the inference rules
of RAL preserve truth in every partial model. Consequently, a proof
by induction on the length of the proof of A will show that :

Theorem 1 For every A € ®., if A is a theorem of RAL then A is
true in every partial model.

Let I' be a set of formulas :
e ['is “maximal” when, for every A € ®., A € ' or =4 € I

e ['is “consistent” when, for every K > 1 and for every Ay,..., Ax
e, =(A1 A...A Ak) is not a theorem of RAL.



It may be asserted that :

Proposition 4 For every consistent set I' of formulas, there exists a
mazimal and consistent set I of formulas such that I' C I”.

Proposition 5 For every o € Il., for every A € ®. and for every
mazimal and consistent set I of formulas, if [a]A € T then there exists
a maximal and consistent set A of formulas such that [o]' C A and

Ad A,
where [o]l' = {A : [a]A € T}.

Proposition 6 For every o, 3 € . and for every mazimal and con-
sistent set I', A of formulas, if [a;; B]I" C A then there exists a mazimal
and consistent set A of formulas such that [a][' C A and [F]A C A.

Proof The proofs of the propositions 4, 5 and 6 use the techniques of
the maximal and consistent sets of formulas [12].

5 Functions of maximality

To prove the completeness of the axiomatization of RAL, we use map-
pings called functions of maximality and structures called spaces of
maximality. Let (W, R) be a frame and S be a mapping of W to the
set of the maximal and consistent sets of formulas such that, for every
x € W, for every a € TI. and for every A € &, [a]A € S(x) iff, for
every y € W, if y € R(a)(z) then A € S(y). S is called “function of
maximality on (W, R)” and (W, R, S) is called “space of maximality
on (W, R) defined from S”. For every A € ®., A is “truein (W, R, S)”
when, for every 2 € W, A € S(z). The “valuation on (W, R) associ-
ated to S” is the valuation V' on (W, R) such that, for every P € ®,,
V(P) ={2: P e S(z)}. A proof by induction on the complexity of
A will show that :

Proposition 7 For every A € &, V(A) = {z : A € S(x)}.
From all this it follows that :

Proposition 8 Forevery A € ®., A is true in (W, R, V) iff A is true
in (W, R,S5).



6 Proof of the standard completeness

Let Wy, Wi, ... be a sequence of sets defined by induction in the
following way, S be a mapping of W = [J{W, : ¢ > 0} to the set of
the maximal and consistent sets of formulas such that :

o Let Wy = {0} and S(0) be a maximal and consistent set of
formulas.

e Forevery i > 1, let W, = W,y U{zad : 2 € Wi_y, a € 1l,
and A € ®. are such that [a]A € S(2) and zaA ¢ W,;_1} and,
according to the proposition 5, for every z € W,_4, for every «
€ Il and for every A € &, such that [a]A ¢ S(z) and zaAd ¢
Wi_1, S(zaA) be a maximal and consistent set of formulas such

that [a]S(z) C S(zaA) and A € S(zaA).

and R be the mapping of II. to 2W*W such that, for every o € II,
and for every z,y € W, 2 R(a) y iff there exists N > 1, there ex-
ists aq,...,any € IlI. and there exists Ay,..., Ay € ®. such that
Olaq,...,any) = o and y = za1 Ay ...anyAx where, for every a €
II., O(a) = « and, for every N > 1 and for every ay,...,ay € Il
Olayaq,...;an) = a;O(ag,...,an). A proof by induction on M
will show that :

Proposition 9 For every M > 1, for every aq,...,apy € 1., for ev-
€TyN > 1 andforeveryﬂl,...,ﬂ]\r € Hc; O(ah"'vaM);O(ﬁh"'7ﬁN)
= O(alv"'7aM7ﬁl7"'7ﬁN)-

Consequently, the reader may easily verify that :

Proposition 10 (W, R) is a countable standard irreflexive frame on
which S is a function of mazimality.

Consequently, (W, R,5) is a countable standard irreflexive space of
maximality called “space of subordination” and :

Theorem 2 For every A € @, if A is true in every countable stan-
dard irreflexive space of mazimality then A is a theorem of RAL.

Proof If A is not a theorem of RAL then the singleton {—A} is con-
sistent and, according to the proposition 4, there exists a maximal
and consistent set I of formulas such that =A € T". Let (W, R,S)
be a space of subordination such that S(0) = I'V. Consequently, A ¢
5(0), A is not true in (W, R, S) and A is not true in every countable



standard irreflexive space of maximality.
The use of spaces of subordination have been introduced by Cress-
well [12] and developed by Humberstone [13] and Balbiani [1, 2].

7 Proof of the normal completeness

Let (W, R,S) be a countable standard irreflexive space of maximal-
ity. This section is devoted to the proof that (W, R,S) can be trans-
formed into a countable partial standard irreflexive space of maximal-

ity (We, R, S,) such that W, O W and S, = S.

7.1 Local completion

Let (W, R, S) be a countable standard irreflexive space of maximality,
a,f € 1l and z,z € W be such that 2 R(a;5) 2. (a,f,2,2) is
called “potential defect of (W, R,5)”. Our assumptions immediately
yield the result that S(z) and S(z) are maximal and consistent sets of
formulas such that [o; 5]S(z) C S(2). Consequently, according to the
proposition 6, there exists a maximal and consistent set A of formulas
such that [a]S(2) C A and [B]A C S(z). Let (W', R, S") be a space
of subordination such that S'(0) = A. Let W" = W UW’, R” be the
mapping of 1. to oW Such that, for every ~ € Il and for every
tbue Wt R'(y) wiff :

e Lithert € W, v € W and ¢t R(y) u.

e Orte Wi ue W andt R(y) u.

e Ort=2,u=0and a > 7.

e Ort =ua,u e W\ {0} and there exists v € Il. such that 0
R'(v") w and a;v" = ~.

e Ort e W\ {z}, u =0 and there exists v’ € I, such that t R(v’)
xand v = 7.

e Ort e WA\ {a}, u e W\ {0} and there exists v/, " € TlI.. such
that ¢ R(7') , 0 R'(v") w and +'; (a;7”) = 7.

e Ort=0,u==zand g = ~.

e Ort =0,u e W\ {z} and there exists v" € Il. such that z
R(y") wand 3;9" = 7.



and S” be the mapping of W to the set of the maximal and consistent
sets of formulas such that, for every t € W, S”(t) = S(t) and, for every
te W’ 8"(t) = 5'(t). It is easy to verify that (W"”, R") is a countable
standard irreflexive frame on which S” is a function of maximality.
Consequently, (W R" S") is a countable standard irreflexive space
of maximality called “local completion of (W, R,S) with respect to
(W' R',S") and (o, 3, &, z)” such that W” O W and S|/{/V = .5. Observe
that there exists y € W” such that 2 R"(a) y and y R"(f) =.

7.2 Global completion

Let (W, R, S) be a countable standard irreflexive space of maximality
and Sp, 81, So, ... be the sequence of countable standard irreflexive
spaces of maximality defined by induction in the following way :

e Let WO = VV7 Ro = R, SO = S and So = (Wo,Ro,So).

e Lorevery i > 1, let (ay, f1, 21, 21), (g, 82, 22, 22), ... be a list of
the potential defects of S;_; and S?, S}, 82, ... be the sequence
of countable standard irreflexive spaces of maximality defined by
induction in the following way :

— Let WZ'O = Wi—h R? = Ri—h SZO = Si—l and SZO = (WZ'O, R?, SZO)
— For every j > 1,let S = (W/, R}, S}) be a local completion
of §!7" with respect to (aj, B;, %, 2;).

Then, let W; = U{Wij : j > 0}, R; be the mapping of II. to
2WixWi guch that, for every a € II, and for every v,y € Wi, @
R;(a) y iff there exists j > 0 such that 2 € W/, y € W/ and
x Rf(oe) y, S; be the mapping of W; to the set of the maximal
and consistent sets of formulas such that, for every » € W;,
there exists j > 0 such that € W/ and S;(z) = S/(2) and S;
= (Wi, R;, S;). The reader may easily verify that (W;, R;) is a
countable standard irreflexive frame on which .5; is a function of
maximality. Consequently, S; is a countable standard irreflexive
space of maximality such that W; 2 W,_; and SiIWi_l = S;_1.
Observe that, for every potential defect (o, 3,2, z) of S;_1, there
exists y € W; such that 2 R;(a) y and y R;(3) z.

Then, let W, = |J{W; : i > 0}, R, be the mapping of II, to 2"W«*We
such that, for every a € Il and for every z,y € W, 2 R, (o) y iff
there exists ¢ > 0 such that 2 € W;, y € W; and 2 R;(«) y, S, be



the mapping of W, to the set of the maximal and consistent sets of
formulas such that, for every « € W, there exists « > 0 such that z
€ W; and S, (z) = S;(z) and S, = (W, R.,S,). It is easy to verify
that (W, R,) is a countable standard irreflexive frame on which S,
is a function of maximality. Consequently, &, is a countable standard
irreflexive space of maximality called “global completion of (W, R, 5)
such that W, 2 W and S,y = 5. Observe that, for every potential
defect (a, 3, z, z) of S, there exists y € W, such that 2 R, («) y and y
R, (3) z. Consequently, S, is a countable partial standard irreflexive
space of maximality and :

2

Theorem 3 For every A € ®., if A is true in every countable partial
standard irreflexive space of maximality then A is a theorem of RAL.

Proof If A is not a theorem of RAL then, according to the theo-
rem 2, there exists a countable standard irreflexive space of maximal-
ity (W, R, S) such that A is not true in (W, R, 5). Let S, be the global
completion of (W, R, S). Consequently, A is not true in S,,.

Clearly, we have demonstrated that :

Corollary 1 For every A € ®., A is a theorem of RAL iff A is true
in every partial model iff A is true in every normal model iff A is true
in every countable normal irreflexive model.

Proof This corollary is a consequence of the proposition 3, the theo-
rem 1, the proposition 8 and the theorem 3.

8 Conclusion

To close our study of our relative modal logic with composition and
intersection, we mention some questions that remain unsolved.

Consider the question of the complete axiomatization of a rela-
tive modal logic with composition, intersection and tests or a rela-
tive modal logic with composition, intersection and converse. Remark
that, in the section 7.1, within the context of the local completion,
the proof that (W”, R") is standard rests on the fact that the frames
(W, R) and (W', R') are irreflexive.

Consider the issue of the complete axiomatization of the numerous
relative modal logics with composition and intersection devised within
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the context of the research in deontic logic [14] and data analysis
logic [15].

Add the composition operator of agents to the various logics of
knowledge incorporating distributed knowledge [4, 5], the knowledge
of the “compound agent” «; 3 being the knowledge of the agent «
about the knowledge of the agent 3 and the knowledge of the “dis-
tributed agent” o A 3 being the set of the conclusions to be drawn
from the combined knowledge of the agents o and 3 and consider
the matter of the complete axiomatization of the resultant logics of
knowledge.

Prove or disprove that > is decidable, that is to say : is there an
algorithm determining, for every «, 8 € Il., whether it is the case that
a>pr
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