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Abstract  

A model has been developed to simulate the diffusion of energy innovations on a 

heterogeneous social network. Nodes on a network represent households, whose adoption of 

an energy innovation is based on a combination of personal and social benefit; social benefit 

includes the positive influence from an individual's personal social network and feedback 

from the wider population.  

This paper describes the development of the model to incorporate heterogeneous parameters, 

and thus become more like a real social system. The sensitivity of the model is investigated 

and it is shown that heterogeneity matters. This has important implications for the inclusion 

of real-world data into this type of model. 
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1. INTRODUCTION 

There has been much interest in applying complex-systems thinking to real-world problems 

and recently there have been examples of the application of complexity science techniques to 

understanding and addressing energy challenges
1
.  

In this paper we describe some results from a project in which the aim was to apply 

complexity science to enable effective decision-making on energy at the city level by 

developing the type of tools that a local authority could use to assess the implications of 

different energy-related interventions. With the UK's heavily urban population, cities have a 

major impact on energy sustainability. Indeed, cities are responsible for around two-thirds of 

global CO2 emissions
2
 and in the UK over 30%, of final energy is consumed in the domestic 

sector
3
. Local authorities hold significant indirect influence over the provision and use of 

energy in cities, and are in a position to influence residents and businesses to reduce energy 

demand through the services they deliver and their role as social landlords, community 

leaders and major employers (in addition to their regulatory and strategic functions)
4
. 

Decision-making tools are therefore needed to support local authorities in achieving their 

potential contribution to national and international energy and climate change targets. These 

tools may also be helpful in supporting local authorities to save money on initiatives by 

delivering energy programmes more efficiently, an important benefit at time when they are 

severely resource constrained
5
. 

The problem of how to quantify and integrate real-world data into mathematical and 

simulation models needs to be addressed for them to be seen as reliable, and to encourage 

take-up and use as tools by strategic planners. The aim of the current work is to assess the 

dependence of one potential simulation method on available data. This is done by running our 

model of diffusion of energy innovations and looking at how the results change as the 

parameters of the model are varied, and, therefore, which parameters strongly affect the 

model. These model parameters relate to real-world factors which could be either quantified 

using available data, where it is shown to be necessary, or otherwise given approximate 

values based on qualitative data which lead to meaningful results. Additionally, the 

sensitivity of the model outcomes to various parameters can be used to guide which are the 

most effective targets for network interventions in the real world, and what additional data 

need to be gathered. 

Interventions implemented by local authorities and targeted at the domestic sector can include 

both the direct deployment and the indirect promotion of various energy-efficient and 

renewable technologies, which are usually selected after cost-benefit analyses. These 

analyses are generally derived from the expected savings (in terms of both cost and 

greenhouse gas emissions) of these technologies assuming certain user behaviours (e.g. 

Cheng & Steemers
6
 and Clinch & Healy

7
). However, this type of analysis makes (often 

implicit) assumptions about the socio-technical aspects of an intervention, without evidence 

that these assumptions are appropriate to the intervention (for example, that the decision to 

adopt a certain technology will be based on rational economic decision-making and personal 
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preferences alone). Models based on individual behaviour tend to assume rational choice or 

reflect psychological motivations
8
, whereas approaches that address the social context of 

decision-making tend to be more qualitative
9
, and there is a clear need for approaches that 

integrate the two concepts.  

Both the individual preferences and the social-network influences are important factors in the 

adoption of energy innovations, and local authorities have the means to potentially harness 

these influences to their advantage in encouraging increased adoption. Since average uptake 

of an innovation emerges as a result of adoption behaviour of individuals connected on a 

social network, in order for us to investigate potentially successful interventions, a complex-

systems perspective is needed. 

Recent developments in complexity science allow study of the effect of social influences on 

the diffusion of new innovations
10

, as well as the importance of network structure and the role 

played by the overlapping communities to which people belong
11

. Valente
12

 describes the 

term “network interventions” as ‘the process of using social network data to accelerate 

behaviour change’ and highlights the need for research to compare different network 

interventions. 

 We reported on the development of a multi-parameter dynamical model of innovation 

diffusion on a social network in a recent paper
13

. In this previous work the model was 

restricted to a set of homogeneous nodes (representing households) with uniform parameters, 

in order to derive some analytical insight into the underlying behaviour of the system. This 

provided a great deal of theoretical understanding of the model, but these simplifications 

made the model less representative of the real world. In order to make the model useful for 

informing specific decision-making, in this paper we discuss the process for developing this 

model further by making the nodes represent heterogeneous households and integrating real-

world data. Our aim is to enhance and assess the usefulness of these types of models in 

understanding adoption of energy innovations and identifying interventions that could lead to 

their increased uptake. In subsequent work we have investigated this idea in more detail and 

present the development of the model for use to investigate different interventions a local 

government agency could take to try to increase uptake of energy-technologies in the 

domestic sector
14

. This paper therefore aims to bridge the gap between the work of 

mathematicians in modelling homogenous networks and the work of social scientists in 

understanding the role of social networks in the diffusion of innovations. 

 

2. THEORETICAL CONTEXT AND OBJECTIVES 

The spread of ideas or technologies has been studied by many people as diffusion on 

networks and the importance of social networks in the diffusion of innovations is well 

established (e.g. Choi, Kim, & Lee
15

; Delre et al.
10

, and references therein). Network 

diffusion models are widely used to study the spread of diseases, but these typically require 
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only a single contact for a transmission to occur from one individual to another. However, for 

a consumer product (or behaviour) to spread, empirical studies show that many people wait 

for a proportion of their social group to precede them in the process
16

. Threshold models have 

been developed to account for this phenomenon
17,18

.  

There have been some recent developments in understanding and modelling network 

influences on the diffusion of energy innovations. Multi-parameter models similar in 

principle to this work have previously been investigated, such as the model of Choi, Kim and 

Lee
15

, who numerically investigated individual realisations on a model balancing intrinsic 

value with network influences. A three-parameter model that includes influence from the 

wider population (as well as peer-group) was simulated by Lee, Lee and Lee
19

, who 

investigated complementary effects of competing products. The effect of feedback from the 

wider network and external drivers were considered in addition to the feed-back from other 

nodes by Basset et al
20

. A closely related model to ours was developed by Tran
21

, using the 

same three influence factors as the ones we describe below, using an agent-based model 

(ABM) to simulate and investigate competing technologies. It was found in these 

investigations that network influence can play an important role in accelerating energy-

innovation diffusion. Our approach differs from an agent-based model in that the rules 

governing a transition from a non-adopter to an adopter are deterministic and equation-based, 

rather than defined by a probability, but our model could be easily adapted to run in this way. 

The objectives of this paper are twofold: 

1. To present a method for modelling diffusion of energy-efficiency innovations on a 

social network of heterogeneous households; 

2. To describe the systematic approach to integration and use of empirical data in this 

type of social simulation and identify the gaps where more data are required. 

In the next section we outline our approach to the model development. We then present the 

systematic integration of empirical data. We conclude with comments on the methodology 

developed so far and its suitability in addressing the original aim, as well as areas for further 

research. 

 

3. APPROACH 

For a full description of the basic model that this work builds on see McCullen et al.
13

, which 

also includes a description of some of the features exhibited by the simulation results and 

mathematical analysis of the model. We include brief details of the main approaches and 

basis for the model here.  

The model represents individual households as nodes on a complex network, each with a 

binary variable representing their current state, xi = (0, 1), for non-adopters or adopters, 

respectively. The initial state for all households is chosen to represent the proportion of the 

households who have adopted the technology at the start time (m0).  
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The basic idea behind the model is that a household will decide to adopt the energy 

innovation if the perceived usefulness or utility exceeds a threshold (which encompasses their 

ability to adopt). The total perceived utility of an innovation (either technological or 

behavioural) can be attributed to a number of factors; for this model we divide these broadly 

into personal and social benefit
10

. Personal benefit pi is a measure of the perceived practical 

use of implementing the innovation to the ith household. The total social benefit is the utility 

derived from agreeing with peer groups and mainstream social norms. The social benefit can 

thus be divided into two parts: the influence from an individual's personal peer-group 

network and the influence from society in general (the total larger population in the network; 

that is, the social norm)
22

. 

The total utility therefore has three factors: personal benefit, social benefit from the peer-

group of one's network neighbour connections and a benefit derived from following the wider 

population. In the work of Tran
21

, this third factor was derived from the interaction with a 

subset of the whole population, representing an individual's wider contact network, whereas 

we look at the influence of the whole population (for example from both the wider contact 

network and via the media as a reflection of the mainstream social norm). 

In the model we have developed we assign these three factors to each household with the 

relative weightings i, i and i (with i + i + i = 1), to account for different behavioural 

archetypes. The parameter i is the weighting given to the personal benefit of adoption to the 

individual pi, i is the weighting given to the average value of xi within the individual's social 

network neighbourhood si, and i is the weighting given to m, the average of x over the entire 

population. 

The total utility is therefore given by:  

ui = ipi + isi + im,   (1) 

where si is the mean average of x over the ki neighbours of individual i and m is the mean 

value of x for the whole system. 

Adoption at each time-step occurs if perceived total utility to the household outweighs the 

barriers to adoption, the threshold:  

ui > i.         (2) 

This is a one-way process and the state at the next time-step remains 1 (i.e. the node remains 

an adopter). 
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3.1 Modelling the Social Network 

The individual nodes (here representing households) interact with others in their peer group 

(their network neighbours) via a fixed set of connections, or edges, on the network. Several 

common models of network topology were investigated in our previous work
13

, including 

random 
23

 and small-world 
24

 models. The most important factors influencing take-up by 

households in the network were found to be the node degree, i.e. the number of connections 

belonging to each node, and the clustering coefficient (or transitivity) i.e. the proportion of 

second-degree neighbours who are also directly linked (the so called “friend-of-a-friend is a 

friend” effect).   

Whilst the total number of contacts may vary greatly between individuals, it is clear that most 

individuals maintain a relatively small number of close associations who influence adoption 

decisions more strongly than the whole peer-network 
25

. In the real world, social interactions 

often occur via communities, which can be either social groups or workplaces, where 

individuals meet each other and form connections with a limited number of other members. A 

model containing these features is the random-clustered network model of Newman
26

. In 

these models the degree of clustering can be varied in a natural way by linking individuals via 

their mutual association with groups. The following work uses this type of model for the 

structure of the social network, assigning N nodes each to a number Gi of groups out of a total 

of W. This number Gi can be either homogeneous, such as each node being associated with G 

= 2 groups, or varying from node-to-node in a more realistic manner. The number of 

members per group (in the homogeneous case) is then given by M = GN/W, and this, along 

with the number of links per group L, determines the average degree of clustering within 

groups. Additionally, we can assign a number of individual connections across the network, 

representing links that are not associated through groups. This increases the number of 

connections for a node (its degree) without the clustering property derived from being part of 

the same group. In all other respects, group based and individually assigned connections are 

identical and perform the same function. It is possible to give the nodes and groups 

geographic locations and associate them with each other preferentially based on proximity. 

However, the outcomes of such simulations (not shown here) are not found to differ 

significantly, so in the following results nodes and groups are assigned to each other at 

random, as in the original scheme of Newman
26

. A simple version of this model for a small 

number of nodes is shown in Figure 1. 
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Figure 1. Network features: A simple network consisting of N=12 nodes and W=2 groups 

(circled). Node i has L = 3 links for each type of association, giving connections assigned 

both individually (to nodes I1, I2 and I3) and via the two groups that of which it is a member 

(to B1, B2 and B3 in the ‘blue’ group and D1, D2 and D3 in the ‘green’ group). Groups have 

a higher level of common connections between members than to the rest of the network and, 

therefore, higher clustering. 

 

In this work we wish to systematically investigate the parameter space of the model and the 

effect that including real, heterogeneous data could have on the expected level of uptake of an 

energy innovation. We have applied this to a case study for the city of Leeds, but this could 

easily have been applied to other geographic areas, and also for other types of innovation. 

In order to populate the model with some empirical data a survey of Leeds residents was 

undertaken in May–June 2011. Convenience sampling was used to gather 1068 valid 

responses to a questionnaire that sought information on the respondent’s social network and 

current sources of information about energy, as well as demographic information (including 

income level, employment status, and geographic area). The sample represents 0.34% of the 

total number of households in the metropolitan district of Leeds, and was found to be broadly 

representative of the population in terms of tenancy and house type. Additional details of the 

survey can be found elsewhere
14

. 
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4. SIMULATION AND EVALUATION 

A major aspect of our research is determining whether the insights and tools of complexity 

science can be useful for understanding energy interventions at the city level. It is, therefore, 

useful to understand the degree of complexity to which we need to represent the system in 

our models, and the degree of accuracy that is required for the model parameters. To do this 

we have systematically investigated the influence of the network structure, the threshold 

parameter and the archetypes (weightings for and). Determining the degree to which a 

correct representation of the statistical properties of the model parameters is critical to the 

outcome of any intervention will give us an understanding of the data requirements needed to 

produce useful simulations.  

We indicate where empirical data from the survey has been used in the model in the details 

covered in the next section regarding the systematic analysis of the parameter space. Table 1 

shows an overview of this. 

 

Table 1 – Data sources used to parameterise the model. 

 Parameters Data source (if used) 

Network structure N, G, M | W, L Survey | Assumption 

Individual connections I  | L Survey | Assumption 

Group connections G | L Survey | Assumption 

Archetypes Ai=(iiandi), P(Ai) Simulation 

Threshold  P() Survey | Assumption 

 

The model was written in the multi-platform, open-source Python programming language, 

using freely available modules NetworkX for the construction of the networks and Scientific 

Python (SciPy) for the dynamical time-stepping. Plotting was done using Gnuplot. Codes and 

compiled versions of the model are available at https://sourceforge.net/projects/netdifmodel/. 

In the modelling described below we assume that the network of contacts remains fixed for 

the duration of a simulation, as do the parameters of the individual nodes. In some cases we 

assume that all individuals take the same values of some or all parameters as each other (the 

homogeneous cases). The uptake rules are deterministic, but could easily be modified so that 

there is a probability of uptake derived from the dynamical equations (1) and (2), making the 

approach closer to an agent-based model. 

 

https://sourceforge.net/projects/netdifmodel/
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For the following investigations we want to understand the isolated effect of varying one of 

the network or parameters of the dynamical model, by keeping all other factors fixed. In all 

cases the personal utility p is set to 0.5 and the initial seed proportion m0 is set to 5% of 

nodes. We define an archetype, Aj, in the model to be a specific set of (j, j, j) parameter 

values which describe the decision-making behaviour of a subset of individual nodes in 

relation to the adoption of a particular innovation. In the simplest manifestation of the model 

we use a homogeneous population, by setting all nodes to be of the same archetype. This was 

done in our previous work
13

 to enable us to derive analytical expressions to explain the 

observed simulation results. Here, the results allow us to observe the individual responses of 

the different archetypes and guide us in choosing which archetypes to use in more realistic 

versions of the model simulations. At each set of (j, j, j) archetype values we perform 20 

individual realisations of the system, simulating the uptake of the innovation on the network 

from a different initial seed, with the same model and network parameters but different 

precise details, such as individual links.    

The results for the simplest case are shown in Figure 2, with colours plotted to represent the 

mean average uptake of the population after a fixed number of time-steps, which is here 36, 

after which time the uptake level settles to a constant value. This shows the same behaviour 

as that seen and analysed in detail in McCullen et al.
13

, which can be summarised as follows. 

The parameter space can be seen to be divided into distinct regions, each with different 

expected values for the likelihood of success. When the weighting to personal preference, , 

is large and the other parameters small (bottom left corner) then universal uptake is a 

certainty, as personal utility p is greater than the threshold in this case). Close to 

=1 (bottom right) everyone waits for everyone else to take the lead, so this never occurs 

(with only the initial seed ending up adopting the innovation). The situation is less well 

defined when network influences are more strongly weighted, close to =1, in which case 

the exact behaviour depends more strongly on the network and model parameters. The 

dividing lines between these regions can also be understood analytically in terms of the 

degree of the nodes in the network in these homogeneous cases. 
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Figure 2. Systematic study of the archetype parameter space for the simplest version of the 

basic model described in McCullen et al.
13

. Each point on the plot is for a unique set of 

() parameter values, which are homogeneous across the network with every node 

taking the same values. The colours show the average number of adopters after 36 time-steps 

over an ensemble of 20 realisations of the model, each time randomising the identities of the 

initial seed-nodes and who is connected to whom in the network, whilst keeping the 

numerical values of all parameters the same. Other model parameters are fixed to  = 0.25, N 

= 756, W = 20, G = 2, L=5. 

 

4.1 Variation of Network Connections 

We can firstly test the effect of making the model more representative of the real world by 

connecting each node to others via a different number of groups Gi, rather than all nodes 

having the same value of G, and including individual connections. This has the effect of 

changing the structure of the network so that nodes have variation in their degrees and the 

clustering is more irregular across the network. The group association number Gi can be 

picked from a distribution or based on empirical data. For the results shown in Figure 3 

connections were assigned based on the results of our survey, in which we asked people if 

they communicate about energy issues with others in their social and work groups as well as 

individual friends and family. These data were used to assign links to nodes based on these 

active group and individual contacts (i.e. those contacts they indicated they currently talk to 

about energy). For the individual connections, where respondents reported talking to friends, 

family and/or neighbours about energy they were assigned 5, 3 and 2 (or combinations 

thereof, up to a maximum of 10) links to other nodes, respectively. Where a respondent 

reported talking to groups about energy, then that household was associated with their 



11 

 

 

 

reported number of groups. Workplace links were assigned if the respondent was employed 

and reported talking to colleagues about energy. From 1068 responses it was found that 756 

households reported talking about energy-related issues to at least one other individual 

household, group (local) or workplace (long distance).  

It can be seen that changing the network structure in this way shifts the critical line in 

parameter space, the reasons for which can be understood using the insights from our 

previous work. That is, the critical parameters are the node degrees and the clustering 

coefficient. Since these factors are difficult to ascertain from data for interpersonal social 

networks (on the city scale, at least) we must conclude that simulation models such as these 

have the potential to be very useful for comparing the relative effectiveness of different 

interventions as opposed to making precise predictions on individual outcomes. The situation 

may be easier for online social networks, or smaller bounded communities since data is more 

readily available or easily gathered in such cases.  

In these results, a homogeneous population of socially motivated nodes are collectively made 

less likely to adopt the innovation by having these non-uniform group associations, as seen 

by the region near =1 becoming lighter in the plot. This agrees with previous observations 

that care must be taken when modelling anything which changes the network structure. This 

is particularly true if we are interested in cases close to the lines dividing different regions of 

the parameter plot. For example, an intervention would appear more sensitive if it changed 

individual archetypes to push them over the critical line than if they were modelled too far 

from this line for this to happen. These results also show that interventions based on 

encouraging households to have more active communication with their contacts (increasing 

either the number of active connections or ) could also result in a shift in the uptake for an 

otherwise fixed population. 
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Figure 3. Nodes are associated each to Gi groups based on survey data rather than every node 

to two, as was the case in Figure 2. Other than this variation, which alters network features 

such as the node degrees and clustering coefficient (transitivity), all parameters are identical 

to the previous case. For non-work groups the proportions of nodes communicating energy 

information via association to 0, 1, 2, 3 groups are 89%, 5%, 4% and 2% respectively, with 

37% of nodes additionally assigned individual connections. 45% of nodes also have an active 

work group. A group connection give a node 5 extra connections to other individual nodes. 

The critical line is seen to shift with this variation in the network structure, as compared to 

the previous case (Figure 2) of homogeneous associations.  

 

4.2 Distribution of thresholds 

In the real world, individuals and households do not have the same thresholds to adoption of 

innovations. Therefore, it is natural to consider the effect of introducing a variation in the 

thresholds assigned to nodes in the network model (c.f. Bassett et al.
20

). For this we can 

assign two or more discrete thresholds or even a continuous distribution. While it can be 

difficult to quantify the precise levels of the perceived and real barriers to adoption from 

surveys, data can help to provide information on the proportions of individuals with different 

banded threshold levels. First, we introduce two distinct thresholds, 1 and 2, and study the 

outcomes of simulations based on varying the values of these levels for a choice of one 

homogeneous archetype, as shown in Figure 4. The archetype used here was A=(0.1, 0.8, 

0.1), (a point centred two lines below the apex of the triangular archetype parameter plots in 

Figs. 2 and 3).  
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Figure 4 Different choices of two thresholds for a homogeneous archetype A=(0.1, 0.8, 0.1), 

colours show the mean uptake after 36 time-steps at each choice. All model parameters are as 

for the results in Figure 2. 

 

This clearly shows a strong dependence of the outcomes on which values are chosen, but will 

be dependent on the archetype chosen for the investigation. Particular choices of the two 

thresholds are shown in Figure 5, looking over all archetypes, one where the archetype used 

in Figure 4 is yellow (no uptake beyond the initial seed) and one purple (just over half adopt, 

on average). The shift in the behaviour demonstrates again that the choice of thresholds is 

crucial to the most basic qualitative features of the simulation results. Any comparison of the 

effectiveness of interventions which shifted a node's parameters would be significantly 

altered depending on this choice. 
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(a) 

 

(b) 

Figure 5 Different values of two thresholds, each assigned to half the nodes. (a) 1 = 0.45,  

= 0.25 (the yellow region in Figure 4) (b)  = 0.9,  = 0.1 (the purple region in Figure 4). 
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To explore the question of whether heterogeneity in the threshold parameter matters to the 

overall system we compare the case where every node in the network takes the same value as 

the average of the two thresholds in Figures 5 (a) and (b). For the results shown in Figure 6 

(a) and (b) we therefore uniformly raise the threshold across the population to = 0.35 and 

= 0.5, respectively. 

(a) 

 

(b) 

 

Figure 6 All nodes take the same threshold value of (a) = 0.35 and (b) = 0.5. 
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As can be seen from the results in Figure 6 (a) and (b) the results are not the same as in the 

case of distributed thresholds (Figure 5). Comparing Figure 5b with Figure 6b reveals a 

dramatically different result even though the average of the population thresholds in 0.5 in 

each case. In Figure 6b uniformity of the threshold parameter means not many new adopters 

are seen as there is a too low probability for "social contagion"
13

. Where there is an 

inhomogeneous mix of thresholds with the same average, as in Figure 5b, the low threshold 

agents can "kick-start" the process by being over the threshold first, raising the peer-average 

of some of the higher threshold individuals and resulting in a higher uptake than a 

homogeneous mid-range threshold. This is contrary to the expectation that the very high 

threshold (= 0.9) would be balanced by the low (= 0.1) and act similar to the average. 

This can be interpreted as an emergent property of the complex mix of heterogeneous 

thresholds rather than an averaged behaviour of the individual elements. In short, in a 

complex system of this type, where the elements are coupled, the exact heterogeneity of the 

elements matters to the emergent outcome at the system level.  

Further choices can be made for the number, values and populations of different thresholds. 

Several of these are illustrated in the results in the following two figures (7 and 8). In many 

studies, including our own, a population is divided into three levels with respect to barriers to 

adoption; low, medium and high. These can depend on a number of factors, but estimates of 

the number of individuals in each can be made from the responses to survey questions. The 

survey was used in such a way to divide the population into three. The percentage of 

households (nodes) assigned to each category are based on household income, house type and 

tenancy. Those living in flats, halls of residence, or in shared or rented accommodation are 

deemed unable to adopt, as they will typically not be able to change the physical fixtures and 

fittings. The banding of high, mid and low then corresponds to the household’s income 

level
14

. 

In Figure 7 (a) half the population have a threshold = 1, given that they cannot adopt. In (b) 

these nodes are reduced to the mid-range threshold. This is an example of the type of 

intervention that could be initiated by local authorities, for those who, for example, rent or are 

on lower incomes to be enabled to adopt by adding incentives or removing barriers to 

adoption. Many regions of the archetype parameter space subsequently show much improved 

uptake rates, although the general structure of the lines dividing regions remains unchanged. 



17 

 

 

 

(a) 

 

(b) 

Figure 7 Thresholds distributed over three values. (a) 28% of 1 = 0.25, 17% of  = 0.45, 

5% of = 0.75, 50% of = 1; (b) 28% of  = 0.25, 67% of  = 0.45, 5% of = 0.75. 

 

As a final example, we can pick all thresholds from a continuous distribution, rather than 

discrete fixed values. In Figure 8 this is shown for a case where thresholds were picked 

uniformly from zero to one. In this case all structure has disappeared and all homogeneous 

archetype parameter values take some intermediate value for the average uptake. 
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Figure 8 All nodes take different threshold values randomly from a uniform distribution, 

across the range [0:1]. 

4.3 Introducing Different Archetypes 

The next aspect to evaluate in making the model more realistic is to remove the restriction on 

the homogeneity of the archetypes. To do this we divide the population into a number of 

different groups with distinct archetypes, randomly assigning a certain proportion of nodes to 

each. In the real-world it is known that people fall into categories such as “innovator”, 

“majority” or “laggard” (Rogers, 1983) depending on their propensity to favour adoption of 

an innovation based on its individual merits, the fashion amongst ones peers or the 

prevalence in society as a whole, respectively. These types of behaviour can be seen in our 

previous results (as explained in McCullen et al.
13

), with certain sets of parameter values 

being more or less likely to adopt than others. To keep the parameter space manageable, as 

well as making the results easier to visualise and interpret, we restrict ourselves to three 

separate archetypes in each case, varying the relative proportions (P(A1), P(A2), P(A3)) 

assigned to each of the three archetypes (A1=(1, 1, 1,), A2=(2, 2, 2,), A3=(3, 3, 3,)) and 

performing an ensemble of simulations at each set of these proportions. For the results shown 

in Figure 9(c) we choose archetypes based on results shown previously (Figure 2). Three 

archetypes were selected from regions of the parameter space where the uptake rate was 

sensitive to the choice of parameters, rather than extreme archetypes where uptake was either 

completely successful or not at all (from Figure 2). In the first case we choose archetypes 

consisting of a mixture of pure = 1,= 1or = 1 types, to contrast with the case of 

homogeneous archetypes. For Figure 9(bfor all of the population, whereas for 

Figure 9(c), = 1 for 50% of the population, i.e. the difference between Figures 9(b) and 9(c) 

is largely due to the different distribution of thresholds. The reduction of the = 1 threshold 

to = 0.75 results in the picture seen in 9(d). 
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(c) 

 

(d) 

Figure 9. The population is divided into three archetypes and individual nodes are each 

assigned to an archetype Aj=(jjj). Each point on the plot is for a different set of relative 

proportions of the three archetypes in the population (P(A1), P(A2), P(A3)), and individuals are 

assigned according to this distribution. All other parameters are identical to previous cases. 

(a) Extreme values for the archetypes of [A1=(1, 0, 0), A2=(0, 1, 0), A3=(0, 0, 1)] in order to 

study the effect of having mixtures of purely personal, peer-group and societal archetypes for 

the different nodes, with varying proportions. (b) The set of three archetypes here are less 
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extreme [A1=(0.25, 0.7, 0.05), A2=(0.1, 0.8, 0.1), A3=(0.05, 0.6, 35)], and guided by 

simulations on homogeneous populations (e.g. Figure 2). (c) Here the thresholds are 

distributed, with the same values as used for  Figure 7a, and archetypes guided by the results 

therein, i.e. thresholds  = (1, 0.75, 0.45, 0.25) with proportions (0.5, 0.05, 0.17, 0.28), and 

archetypes (A1=(0.5, 0.45, 0.05), A2=(0.25, 0.65, 0.1), A3=(0.1, 0.7, 0.2)) with proportions of 

each being the location of data in this plot. In (d) the = 1 threshold is lowered to = 0.45, 

as for the results in  Figure 7b. 

 

The results in (a), with homogeneous thresholds, shows a similar split between regions of 

success and otherwise, with a fairly distinct dividing line. However, these will depend on the 

exact choice of archetypes and other model parameters. For the more realistic case of 

distributed thresholds shown in (b) the behaviour changes completely. Here the picture is 

much simplified, showing much lower sensitivity to the proportions of archetypes for the 

model. However, when the inaccessible subset of nodes (= 1) have their thresholds lowered 

to allow them to adopt, the critical behaviour is again apparent. This again shows the 

importance of the threshold distributions used in the model. 

 

5. DISCUSSION 

The structure of the network is important to the dynamical processes on it, and in this specific 

application of innovation diffusion the clustering (transitivity) is particularly so. Through our 

survey work we have gathered some information on the active network connections (those 

participants who indicated they do talk to about energy-related issues), both individual and 

group, which has certainly helped give a representational structure of a real-world network 

for the influence of energy information on which to base out models.  

We have demonstrated the importance of the parameters for the threshold () and the split of 

archetypes. However, we are currently limited in applying the model as a full decision-

support tool for local authorities by the availability of appropriate data, although as we have 

shown elsewhere
14

 our dynamical network approach could be used as the conceptual basis of 

a decision-support tool for local authority interventions in domestic energy demand 

reduction.  

The work presented here has highlighted that further data is required in order to develop these 

types of models, although valuable insights can be gained by adopting a systematic approach 

to exploring the parameter space, as we have shown. We summarise in Table 2 the specific 

types of quantitative data that would be needed to develop the model further. Whilst data is 

available on those types of household who do adopt energy innovations, we do not currently 

have any quantitative data to distinguish between those who would fall into the different 

archetype groups and, therefore, which archetype groups would exhibit weightings towards 
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,  or  (as discussed earlier). Additional data on the barriers to adoption for specific energy 

innovations is warranted. While we have focussed mainly on quantitative data, as that is most 

useful from a modelling perspective, in addition, in order to fully understand some of the 

issues that are listed in Table 2 a qualitative approach might be more appropriate. In 

particular understanding/awareness of the technology would warrant qualitative exploration. 

Similarly, qualitative data might also provide a useful insight into the respondents’ 

perceptions of ‘personal benefit’. 

 

Table 2 — Specific data requirements for further model development. 

Model parameter Data needed Comments 

Threshold ( Segmentation of households’ 

barriers to specific energy 

technologies. Linked to 

physical and economic 

barriers to adoption e.g. 

house type, tenancy, cost. 

May potentially include 

understanding/awareness of 

the technology.  

This would be different for 

different technologies e.g. 

solar panels cannot be 

adopted if the household 

does not have a south-facing 

roof. 

Personal benefit (p) Likely economic and 

personal benefit to adopting a 

technology  

This would not solely include 

cost savings, but could also 

include thermal comfort or fit 

with pro-environmental 

lifestyle choices. 

Archetypes (groups with 

different  weightings) 

Segmentation of households’ 

weightings for personal, 

personal social influence and 

social norms. 

This does not need to be 

technology specific. 

Social Network properties  Average node degree, 

transitivity and link 

weightings for connections 

specific to energy 

technologies. 

This may also be different for 

different technologies e.g. 

solar panels are more visible 

than loft insulation. 
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There are potentially many modifications and enhancements that could be made to the model 

developed so far, which support the assumption that there is potential value in these methods 

as a basis of decision-support tools. An example of an enhancement is given. In the current 

model, network connections are all equally weighted. In the survey, we gathered information 

on levels of trust regarding energy information that people placed in different groups of 

people (e.g. friends, family, work colleagues etc.). This information could be used to weight 

different network connections, i.e. introducing a measure of each connection’s ability to 

influence. 

Aside from further developments, experimental methods for validating the model would be 

invaluable and network interventions need to be tested in either restricted laboratory or real-

world settings. As noted by Valente
12

, the options for network interventions have been 

dramatically enhanced by electronic communications and online social networks. While there 

are some questions as to whether electronic network interventions are as effective as face-to-

face 
27

, the online networks could provide an easier means of setting up and monitoring a 

network intervention as well as providing the data on the initial (and developing) network 

structure. An online experiment, for example, implementing a scheme for users to 

recommend a friend to receive a voucher offer for an energy-efficient technology could be 

monitored and associated data on the participants gathered. This would provide a controlled 

environment with a bounded network of participants to be studied and would provide a 

valuable means of validating theoretical models. 

 

6. CONCLUSION 

In this work we have developed a model for exploring the parameter space to investigate 

what factors are important in the diffusion of innovations on a real-world social network. We 

extended the previous implementation of our basic dynamical network model, which 

represented households as homogeneous nodes, to integrate empirical data (gathered via a 

city-wide survey) into the models in order to express a heterogeneous population which more 

closely represents a real social system. In applying a systematic approach we have examined 

the relative effect that different parameters have on the behaviour of the system. This 

development exhibits a significant advance over previous models which contain a 

homogeneous population of nodes on a network. The method presented enables investigation 

of the relative significance of personal preferences versus social influence, both from the 

peer-group and wider population networks.  

The emergent behaviour arising in the system indicates that a complexity-based method is 

required to understand the decision-making of households, where interactions can play an 

important role in the non-linear dynamics that evolve. 
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This methodology has been developed further and used for exploring different network 

interventions that could be implemented by a local authority for enhancing uptake of energy-

technologies, and identifying those that would be more likely to lead to an increased uptake
14

. 

In addition, with relevant modifications based on empirical data this model could also be 

used to investigate diffusion of a variety of energy-efficient behaviours that may have 

different properties in terms of the associated level of personal preference and social 

influence. For example, it is plausible that solar panels are associated with a higher degree of 

social influence compared with loft insulation, as they are visible on the property.  

We have highlighted the need for new data to understand (both in a quantitative and 

qualitative way) householder barriers and drivers to adoption of energy-efficient innovations. 

However, the models developed to date provide a useful means of drawing insights into the 

factors affecting the emergent behaviour of a social system. This, in itself, provides a 

constructive starting point for designing effective interventions to increase uptake of energy-

efficient innovation in cities and supporting efforts to mitigate climate change. As observed 

by Valente
12

 ‘the science of how networks can be used to accelerate behaviour change ...is 

still in its infancy’. Nonetheless, the benefits to adopting network interventions are becoming 

clearer and this is certainly an area where further research is warranted. 
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