QUOTIENTS OF BOOLEAN ALGEBRAS AND REGULAR
SUBALGEBRAS

B. BALCAR AND T. PAZAK

ABSTRACT. Let B, C be Boolean algebras and e : B — C an embedding. We examine the
hierarchy of ideals on C for which € : B — C/Z is a regular (i.e. complete) embedding. As
an application we deal with the interrelationship between P(w)/fin in the ground model
and in its extension. If M is an extension of V' containing a new subset of w, then in M
there is an almost disjoint refinement of the family ([w]“)V. Moreover, there is, in M,
exactly one ideal Z on w such that (P(w)/fin)" is a dense subalgebra of (P(w)/T)M if
and only if M does not contain an independent (splitting) real.
We show that for a generic extension V[G], the canonical embedding

PY (w)/fin — P(w)/(U(Os)(B))“

is a regular one, where U(Os)(B) is the Urysohn closure of the zero - convergence structure
on B.

1. INTRODUCTION

Let V be a model of ZFC and M its extension. Then (P(w)/fin)" is a subalgebra of
the Boolean algebra P(w)/fin in M. By an extension of a model V' we mean a transitive
model M of ZFC, that has the same class of ordinal numbers as V and V' C M.

It is natural to ask whether (P(w)/fin)" is a regular subalgebra of (P(w)/fin).

This question makes sense only in cases when there are new reals in the extension M,
otherwise these algebras coincide. Hence in what follows we suppose that M is an arbitrary
ZFC extension of the ground model V' containing new reals. In this situation the answer
is negative, but under certain circumstances it leads to interesting ideals on w.

L. Soukup posed the following question:

Does the family ([w]*)V have an almost disjoint refinement in any generic extension
which contains a new real?

It was known that this holds for different types of generic extensions, e.g. adding one
Cohen real [Hec78]. Note, that the generic extension is a special type of ZFC extension.

We shall consider a more general situation when we take into account an arbitrary ZFC
extension M of V' and arbitrary family S C V', S € M, consisting of infinite sets. Clearly
to have any chance for a refinement, the extension M has to contain a new real, i.e.

(Pw))” < (Pw)™.

—=

In this generalised setting we show in paragraph 3 the following theorem. This result was
achieved for P(w)/fin independently by J. Brendle, his proof is rather different and can be
found in L. Soukup’s paper [Sou08|.
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Theorem 1. Assume that M is an extension of V' containing new reals. For any cardinal
Kk and any set family S C P(k) NV consisting of infinite sets there is an almost disjoint
refinement of S in M.

Let us recall some basic set theoretical facts and notions used here. In the following
A, B € [X]¥; A C* B will denote the fact that A\ B is finite.

Definition 2. A family S C [x]2 has an almost disjoint refinement (ADR) by countable
sets if there is an almost disjoint family A such that for every X € S there is A € A such
that A C X.

For systems on w we have the following proposition.

Proposition 3. For a family S C [w]|* the following are equivalent:
(i) The family S has ADR,
(ii) There is an almost disjoint family {Ax : X € S} such that Ax € [X]¥ for every
X eS.
(iii) There is an almost disjoint family A such that for any X € S

HAE€A: |XNAl=w}| =2°

Proof. (ii) — (i) This implication is trivial since the almost disjoint family from (%) satisfies
also ().

(i) — (iii) Let A be an almost disjoint family as in (7). In [w]* there is a maximal almost
disjoint family (BA : i € 2¥) of a size 2¥ below any A € A. Hence (B :i€ 2%, A€ A)
satisfies (4ii).

(iii) — (i) First enumerate S = {X, : a € 2¥} and for any X € S denote Ax = {4 €
A | X NA|l =w}, |Ax| = 2% Now proceed by recursion and for each X, € S choose an
A, € Ax, — {45 : 8 < a}. The family {A, N X, : o € 2¥} gives an almost disjoint
refinement for S. O

Our approach to Theorem 1 strongly benefits from results of [BPS80| or see |[BS89|;
let us quickly summarise the results we use. For undefined notions concerning Boolean
algebras see [Kop89] and for the basic forcing notions see [Jec86].

Note that an algebra B is (k,-,2) distributive if and only if any x-many partitions of
unity have a common refinement, or equivalently if the intersection N,<,D, of xk-many
open dense sets is dense.

The cardinal invariant b (non-distributivity number) is characterised through distribu-
tivity properties of the algebra P(w)/fin as follows:

Definition 4.
h = min {k : P(w)/fin is not (k, -,2) distributive }.

In the proof of Theorem 1 we use the base tree technique. Base tree is a special kind of
dense subset of P(w)/fin; see e.g. [BS89).

Theorem 5. There is a base tree (T, D*) for [w]“, i.e.
(i) (T,2*) C [w]“ is a tree,
(ii) if B € T then the family of immediate successors of B in T is a mazimal almost
disjoint family below B of full (2¥) size,
(iii) for each A € [w]“ there is B € T such that B C A,
(iv) the height of T is b.
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It is well known that if a new real is added, then (P(w)/fin)V is not a regular subalgebra
of (P(w)/fin)™. There is a natural question whether there is an ideal Z containing fin such
that the canonical embedding

(P(w)/fin)" — P(w)™/T
becomes regular. We show in paragraph 2 the following more general theorem:
Theorem 6. Let B be a subalgebra of a Boolean algebra C. There is an ideal T on C such
that the canonical homomorphism
i:B — C/I
b — [blz

is a reqular embedding of B into C/Z.

Finally in paragraphs 4 and 6 we compute the minimal regularisation ideal Z,,;, D fin for
embeddings (P(w)/fin)V — P(w)M /Zyin and B — B*/Fin. Both of these regularisation

ideals are closely connected with the order sequential topology on Boolean algebras, which
we briefly introduce in The Topological Intermezzo.

2. REGULARISATION IDEALS

We start with Theorem 6. First, let us recall the definition of a regular subalgebra B of
a Boolean algebra C and its equivalents.

A subalgebra B of a Boolean algebra C is called regular if any X C B which has a
supremum \/B X in B, has the same element as a supremum in C, i.e. \/B X = \/(C X. An
embedding i : B — C is regular if the image i[B| is a regular subalgebra of the algebra C.

Proposition 7. For a subalgebra B C C the following are equivalent.

(i) B is a regular subalgebra of C,
(i) every mazimal pairwise disjoint family in B is mazimal in C,
(iii) for each ¢ € C* there is a ‘pseudoprojection’ b, € B*; i.e. for everya < b., a € BT
alNc#0,
(iv) for every generic filter F' on C, F N\ B is a generic filter on B.
Proof. The proofs of the implications (i) < (ii) < (iii) < (v) and (vi)— (ii) are straight
forward.
To show that (ii)— (vi) let ¢ € C*. Take an arbitrary maximal pairwise disjoint family

B.Cc{beB : bAc=0}. From (i) it follows that B. is not maximal in B, hence there
is some b, disjoint with B. and we are done. O

Let B, C be Boolean algebras and e : B — C an embedding. We are looking for ideals
on C for which the factor embedding € is regular. We call such an ideal a regularisation
ideal for the embedding e. If the corresponding embedding is clear from context we omit
it.

Theorem 6. Let B be a subalgebra of a Boolean algebra C. There is a minimal ideal Z,,;,
on C such that the canonical homomorphism

i:B — C/Znn
b — [b]zmzn’

is a reqular embedding of B into C/Z,ip.
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Proof. Let
Z = {u € C : 3maximal pairwise disjoint family X C B such that uAz = 0 for any z € X }.

We check that 7 is an ideal. The set Z is downward closed. Let u,v € Z. Take maximal
pairwise disjoint families X and Y that guarantee that u respectively v belongs to Z. Then
Z={xANy#0:2€ X &y €Y} is amaximal pairwise disjoint family of elements of B
and u V v is disjoint with every element of Z. Therefore u Vv € Z, hence Z is an ideal.

No b € B* belongs to Z, so the mapping i : B — C/Z is an embedding. We show that
i is a regular embedding. Let {¢; : i € I} be a maximal pairwise disjoint family in B,
the family {[¢;] : @ € I} is a pairwise disjoint family in C/Z. Assume that there is [u],
disjoint with every [¢;] in C/Z, i.e. ¢; Au € Z, hence there is a maximal pairwise disjoint
set X; C B | ¢; such that u is disjoint from every element of X;. The set |J{X; :7 € I} is
maximal in B and so u € Z, i.e. [u] =0 € C/Z.

The ideal Z obtained in this way is minimal and we denote it Z,,;,. O

The following fact was proved by M. Rubin for other purposes [Rub83|, cf. [Kop89].

Proposition 8. Let B be a subalgebra of a Boolean algebra C and let J C C be a mazximal
ideal such that BN J = {0}. Then the canonical embedding

i:B—C/J,
is regular. In this case i[B] is even dense in C/J.

Proof. Suppose that i[B] is not dense in C/J. Then there is a ¢ € C, ¢ € J such that for
any b € BT b £ ¢. Since J is maximal and ¢ € J there is a j € J such that there is a
be BT sothat b <cVjie b<sc, acontradiction. O

Corollary 9. Let B be a subalgebra of a Boolean algebra C and let J C C be a maximal
regularising ideal. Then
(i) if B is complete, then B ~ C/J;
(ii) if C is complete, then the completion of B is isomorphic with C/J; RO(B) ~ C/J;
(iii) for any ideal Z on C such that Z N BT = () there is a regularisation ideal J D Z.

Proposition 10. Let B be a subalgebra of a Boolean algebra C and let
K={J : J is an ideal on C maximal with respect to J NB" = (0}

then
(i) MK = Znin and
i) UL={ceC : =(FbeB) b<c}.
(i) If Z,J are regularisation ideals, then T N J is a regularisation ideal.

Proof. Suppose that Zp \ J # 0 and a € T, \ J. Since J is maximal then there is a
j € J for which there is a b € BT such that b < 7V a. Since a € T,,;,, there is a maximal
antichain M in B such that m Aa = 0, for each m € M. Every b € B has to intersect some
m € M,so0#mAb<jVa, but the m and a are disjoint hence m A b < j, which is a
contradiction with the assumption that 7 does not contain any element from B*. Hence,
NK DO Zun-

Take an arbitrary ¢ € CT \ Zy,, the set X = {b € BT : b < —c} is not dense in B as
¢ & Trmin- This means that there is a by € B* such that

(Vb e X) b—1by #0.
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If by < c then ¢ does not belong to any regularisation ideal, otherwise if by — ¢ & B* one
can take a maximal regularisation ideal J extending C | (by — ¢). This shows that ¢ & J;
and we are done.

(77) and (iii) are easy. O

3. ALMOST DISJOINT REFINEMENT OF GROUND MODEL REALS

Let M be a ZFC extension of V. We ask about the existence of an almost disjoint
refinement of [w|“ NV in M. Clearly, to have any chance for a refinement, the extension
M has to contain a new real, i.e.

(Pw)" < (Pw)™.

=

Hence, from now on we will assume, that the extension M contains new reals. In fact we
ask about the existence (of course in M) of a mapping

1 (W) = W)
such that for each z # vy, z,y € ([w]*)V
(i) ¢(x) C x and
(i) p(x) Nply) =" 0.
First we show the well known fact that the subalgebra ((P(w)/fin)" C (P(w)/fin)¥ is
not regular.

Lemma 11. Thereiso C w, 0 € M such that for each X € [w]*NV thereisaY € [X]*NV
such that Y No = 0.

Proof. Instead of w one can consider the countable set

A= J{™0,1} : new}

Let x be the characteristic function of a new real. Define ¢ = {x | n: n € w}, note that
o is set of compatible functions. Then o has the desired properties:

Let X C A, X € V be infinite. Since A with inverse inclusion is a tree it follows that
X either contains an infinite subset Y of compatible functions or it contains an infinite
subset Y of pairwise disjoint functions. In the latter case |Y No| < 1. Now suppose that
Y is a set of compatible functions and Y N ¢ is infinite. Then |JY = x, but JY € V and
x € V, a contradiction. Hence Y N o =* () and we are done. O

This yields a list of straightforward corollaries. Note that if there is a H C [w]“ dense
in (P(w)/fin)™ such that H C V. Then PM(w) = PV (w).

Corollary 12. Assume that V' is ZFC model and M its extension containing new reals.
Then

(i) there is 0 C w, 0 € M such that o does not contain an infinite ground model set;
i.e. (P(w)/fin)V is not a regular subalgebra of the Boolean algebra P(w)/fin in M,

(ii) there is a MAD family in [w]* NV which is no longer MAD in M; cf. Proposition
7.

Theorem 1. In any ZFC extension M of V containing a new real there is an almost

disjoint refinement of ([w])V.
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Proof. From Corollary 12 we know, that there is a destructible MAD family A in [w]*NV/,
with its ‘destructor’ o € [w]¥, 0 € M, i.e. cNA="{ for all A€ A.

Let (T,2*) C [w]* be a base tree for [w]|, in the ground model V. Our aim is to
construct another base tree 7 € V and for each a € T* we find 0, € [w]|* such that
{04 : @ € T*} will be an almost disjoint refinement for the base tree 7, hence for [w]*NV.

We denote by T, the a-level of the tree T'. By recursion we construct a base tree T* € V'
for w*NV.

We start with the level Ty, which is a MAD family on w. Each t € T} is an infinite
subset of w, take an arbitrary bijection b, : t — w in V. So b, *[A] is a destructible MAD
family on t with a destructor b, *(c) € M. Put Ty = J{b,'[A] : t € Tp}.

If all T}j’s are known for 3 < «, denote by T}, a common almost disjoint refinement of
{1} : B < a} and T,. Every t € T}, is an infinite subset of w, so as in the initial step, take
an arbitrary bijection b, : t — w in V and put T = J{b; '[A] : t € T".}.

The tree T* € V is clearly a base tree for (jw])NV. Moreover, for each ¢t € T* we found
a subset b; '(0) € M. Note that each b; '(0) is almost disjoint with every s € T} for each
> a. Hence, for each t # s, b;'(o) is almost disjoint from b, ' (o) and

{b; (o) : teT}
is an almost disjoint refinement of ([w]*)", which completes the proof. O

Corollary 13. Assume that M is an extension of V' containing new reals. For any cardinal
k and any set family S C P(k) NV consisting of infinite sets there is an almost disjoint
refinement of S in M.

Proof. Let A be a MAD family on x in V consisting of countable sets. For each A € A
apply previous theorem. For each A € A we have a refinement by countable sets Ry.
{URa : A € A} is the desired refinement: let X be infinite subset of , then there is
A € A such that X N A is infinite hence there is some r € R4, r C X. O

4. THE REGULARISATION IDEAL FOR P(w)/fin

From the previous paragraphs we know, that for an arbitrary ZFC extension M, there is
a minimal ideal such that the embedding (P(w)/fin) — (P(w)/fin)™ /T is regular. Since
T contains fin, we can simplify the notation and write (P(w)™/Z. We are able to describe
the minimal regularisation ideal only in the case of a generic extension rather then an
arbitrary one. i.e. the minimal ideal Z,,;, such that the embedding

(P(w)/fin)" = (P@)"® /T

is regular. To describe Z,,,;,, we introduce the order sequential topology on Boolean algebras.

Topological Intermezzo. In order to equip a Boolean algebra with a topological structure
that agrees with the Boolean operations we start with a convergence structure. It is enough
to determine which sequences converge to 0 because using the symmetrical difference
operation we can move convergent sequences to an arbitrary element a € B; i.e. lima, = a
if and only if lima, A a = 0. It is natural to use the following notion of a limit; i.e.
lima,, = 0 if and only if

limsupa, = /\ \/ a,=0= \/ /\ ay = liminf a,,.

n k>n n k>n
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It is clear that the right-hand side of the previous formula is redundant and one can
define the order convergence structure on Boolean algebra B as the following ideal

Os(B) ={f €B“ : limsup f = 0}.

Note that it follows directly from the definition that f € Os(B) if and only if there is
g € B so that g \, 0 and f < g.

The order convergence structure Os(B) determines the order sequential topology Ts on
the Boolean algebra: The set A C B is 75-closed if and only if

(Vf € A¥) (f is convergent sequence — lim f € A).

(B, 75) is generally a T topological space. The 7, topology allows us to define The
Urysohn closure of Os(B); i.e. an ideal

U(Os(B)) ={f €B“: f " 0}.
There is a well known relation between algebraic and topological convergence.

Proposition 14. A sequence (x,) converges to x in the topology T, T, —— 0, if and only
if any subsequence of (x,) has a subsequence that converges to 0 algebraically.

The definition of the topological structure sketched here works well only in case the
Boolean algebra in question is o-complete (we use it here on complete Boolean algebras).
In general, the assumption of o-completeness of B is not necessary. We give the general
definition here. The definitions coincide whenever B is o-complete; for more details see
[V1a69|, [BFH99|, [BJP05] or [Paz07].

Definition 15. Let B be an arbitrary Boolean algebra,
Os(B) = {f € B : 3A C B a maximal at most countable antichain such that f L A},
where f 1 A means that the set {n € w: f(n) A a # 0} is finite for every a € A.

If there are no maximal infinite countable antichains in B it is clear that Os(B) = Fin =
{feBY:{n: f(n) #0} <w}.

The structure B* with coordinate-wise Boolean operation is again a Boolean algebra;
one can also look at B“ as a set of B-names for subsets of w in the forcing extension by B.
From this point of view, the ideal Os(B) consist of names for finite subsets of w.

Proposition 16. Let B be a complete Boolean algebra. Then for any generic G on B
0s°(B) = {fo : f€OsB)} = fin = W],
where fo ={n €w: f(n) € G}.

Proof. Let f € Os and suppose to the contrary that fs is an infinite set for some generic
G. Since [ € Os, there exists g \, 0 such that f < g. Clearly if f(n) € G then g(n) € G.
Since g is monotone and f¢ is infinite, we have g(n) € G for every n € w. This is a
contradiction since 0 = A{g(n) : n € w} € G.

On the other hand, suppose that f & Os and let d = limf > 0. Choose a generic filter G
such that d € G. Clearly, Vk € w d < \/{f(n) : n > k}, which means that Yk € w Im > k
f(m) € G; hence the set fg is infinite. O
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Computing the minimal reqularisation ideal for P(w)/fin. Now we are ready to show that
the minimal regularisation ideal Z;, for the canonical embedding of the Boolean algebra
(P(w)/fin)V into (P(w)/fin)VI¢ is given by the evaluation of names from U(Os(B)).
Theorem 17. Let B be a complete Boolean algebra and let G be a generic filter in B over
V. Then

Irnin = U(OS)G
Proof. Let f € “BNV be such that fo = p C w destroys a MAD A € V. Find a name

g € U(Os) for the set p. Suppose f & U(Os); i.e. there is X C w infinite such that
f1Y &Os for each Y € [X]“. Let

X ={Xew®: :WeX|“f|YOs}.

For X € X there is an A € A such that X N A is infinite; denote this infinite intersection
by Yx = X NA. Since X € X, f | Yx € Os; i.e. limy, f € G. Otherwise if

AV rfn)ea,
kew k<n€e€Yx

then \/,_.cy, f(n) € G for each k € w and the set fo N (AN X) would be infinite, which
would contradict the fact that fg destroys A. Now, put

c = \/ mner f(n> ¢ G7
Xex
and g(n) = f(n) — ¢; clearly g = fo = p and g € U(Os).
Let f € U(Os)\ Os i.e. for every infinite X there is a Yy € [X]¥ such that f [ Yx € Os.
Then the family
F={Yy: Xew“}
is dense in P(w)/fin. Now, pick an arbitrary MAD family A C F. Clearly, fg is an infinite
set (f € Os) and destroys the MAD family A. O

This result together with Corollary 12 yields the following equivalence. This equivalence
was proved independently by M. S. Kurili¢ and A. Pavlovié.

Corollary 18. [KP07| For a complete Boolean algebra B the following are equivalent
(i) U(Os(B)) = Os(B),
(ii) there is no V®-destructible MAD family on w in V/,
(iii) the algebra B as a forcing notion does not add new reals.

In the special case when there are no independent reals in the extension M there is even
a unique largest regularisation ideal (cf. Proposition 8) with a simple and straightforward
description. We say that A C PM(w) is an independent real if for every X € [w]* NV both
AN X and X \ A are infinite.

Definition 19. Let H be the family of subsets of w that do not contain infinite sets from
the ground model

H={ceM:ccw & -3ac (w*) acoa}.

Proposition 20. The following holds in M.

(i) H is an open dense subset of ([w]“,C) if and only if M contains new reals.
(ii) H is an ideal if and only if M does not contain independent reals.
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Proof. First note that if M contains a new real x C w, x € V, then H contains an infinite
set. It is easy to see that o given by lemma 11 is an infinite set belonging to H.

To prove (i), let A € ([w]*)Y. Then there is a bijection f in V between w and A and
by Lemma 11 there is a subset ¢ C w in M which does not contain an infinite ground
model set, so f[o] € H is a subset of A. Generally, if A € [w]” then A € H or there is an
A’ € ([w]*)V, A" C A and we can use the same reasoning.

(11) Suppose that M contains an independent real o. Clearly 0 € H and —o € H, hence
H is not an ideal.

On the other hand if H is not an ideal, then there are a,b € H and there is an X € ([w]*)V
such that X C aUb. Again, we can identify X and w in ground model and then X Na is
an independent real in M. O

It is clear that whenever H is an ideal, then it is the unique regularisation ideal; cf.
Proposition 10.

Proposition 21. Let M be a ZFC extension of V containing new reals. Then M does not
contain independent reals if and only if there is a unique tdeal H such that the canonical

embedding (P(w)/fin)V — P(w)/H is reqular.

Proof. This is a direct consequence of Propositions 8 and 10. U

5. SEMISELECTIVE IDEAL

Definition 22. Let Z be an ideal on w containing [w]<“, we say that the coideal K =
P(w) — T is semiselective (cf. 1. Farah [Far98]) if

(i) for every countable collection {D,, C K : D,, opendensesetin (I, C*)} the intersec-
tion (), Dn is dense in (K, C*) and

(ii) for each A € K and for every decomposition R of A into finite sets, there is selector
X e K;ie foreveryre RirnX|<1.

Typical examples of semiselective coideals are [w]“, a selective ultrafilter F, or K(A),
where A C [w]* is a maximal almost disjoint family and L(A) = {X Cw: {4 € A :
| X N A| = w} isinfinite }.

In fact those coideals are even selective (happy families), c.f. [Mat77|. A coideal is
selective if we strengthen the condition (7) to the fact that the preordering (IC, C*) is o-
closed. Selective and semiselective coideals play an important role in Ramsey theory see
[Mat77], [Far98|.

We ask when the coideal [w]“ in V' generates a semiselective coideal in some extension
M D V;i.e. when the structure

H={ACw:(Facw*NV)acC A}
is semiselective coideal in M.
Theorem 23. Let M be a ZFC extension of V. [w]* NV generates a semiselective coideal
i M if and only if
(i) M does not contain an independent reals and

(il) w NV is a dominating family in M and

(i) of h # w.
Proof. The family H = {ACw: (Ja € [w]*NV)aC A} is P(w)™ — H, where the ideal
H is defined in 19. Hence H is a coideal if and only if H is an ideal if and only if M does
not contain independent reals, cf. Proposition 20.
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Condition (i7) is for coideal H equivalent to (i7) in Definition 22 of semiselective coideal.
Using a base tree in V, condition (ii7) of Theorem is equivalent to (i) in Definition of a
semiselective coideal. O]

Remark 24. (i) A typical example of M satisfying (i) — (i4i) is when M is a generic
extension over Sacks forcing. More consistent examples of ccc, “w bounding forcings
producing suitable extension can be found in [BJP05]

(ii) Generic extension via Rational perfect set forcing [Mil84| satisfies conditions (7)
and (i7i) and does not satisfy condition (iz). The extension via Measure algebra
satisfies condition (i7) and (i7i) but does not satisfy condition ().

Question. Note that if M = V[G], where G is generic over some proper forcing, then
item (7i7) from theorem can be omitted. We do not know any extension containing new
reals, satisfying conditions (i) a (ii) and collapse the cofinality of b to w; i.e. whether the
condition (##i) can be omitted in general.

6. THE REGULARISATION IDEAL FOR B“/Fin

In this final part we assume that Boolean algebras are at least o-complete. This as-
sumption is necessary but since our motivation comes from forcing it is not too restrictive.
The canonical embedding

e:B — B
b — (b:n€cw)
is obviously regular. The more interesting situation is the derived embedding é : B —
B“/Fin, where Fin = {f € B : [{n : f(n) # 0}| < w}. This embedding is not regular
since the image of a maximal countable antichain (a, : n € w) C B is not maximal in
B“/Fin. It is enough to put f = (a, : n € w) € (B \ Fin) and we get f A e(a,) € Fin
for every n € w. Note that by our assumption that B is o-complete, there are countable
maximal antichains in B.

It is natural to ask what is the minimal regularisation ideal Z,,;, for this situation and
how does the algebra B* /Z,,;, behave from the forcing point of view.

Proposition 25. The canonical embedding of o-complete Boolean algebra B into B¥ /Os(B)
is reqular. Moreover, whenever the canonical embedding B — B“/T is reqular for some
ideal T D Fin, then Os(B) C T.

Proof. Let f € B® — Os then d = limf > 0 is the required pseudoprojection witnessing
the fact that the embedding B < B“/Os is regular.

Computing Z,,;, using Theorem 6 we obtain that
Toin = {f € B : 3 max.antichain AinB suchthat f 1 A}.
It is clear from the definition that Os C Z,,;,, which completes the proof. O

We conclude with the forcing description of algebra B“/Z, where Z is a regularisation
ideal.

Theorem 26. Let B be a complete Boolean algebra and Fin C Z C B* an ideal for which

the canonical embedding B — B“ /T is regular, then B* /T is isomorphic with an iteration
of B and P(w)/Z¢, where G is the generic filter on B; i.e.

BY/I = Bx(Pw)"/1%).
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Proof. We define

0 :BxPWw)/I¢ — BY/I
(b, f) — e@) N[,

where f is a B-name for a subset of w. Let us recall the ordering

(b, f) < (c,g) if and only if b < c & blIF “[f]z < [g]7”,

where b IF “[f]z < [g]7” means that e(b) A f <z e(b) A g.
It is a routine check to verify that ¢ preserves ordering, the disjointness relation and
that ¢[B P(w)/Z¢] is dense in B+ /Z. O

The following result was originally proved by A. Kamburelis.

Corollary 27. If B is a complete Boolean algebra, then

B“/Os(B) = Bx (P(w)"® /Fin).
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