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Abstract

Rédei and Gyenis (2013) suggest that Lewis’s Principal Principle is meaningful only
if it satisfies certain consistency conditions: starting from any assignment of subjective
probabilities (credences) to some algebra of events, we should always be able to extend
our algebra with events of the form “the value of the objective probability (chance) of
event F' is p” and assign subjective probabilities to such events in a consistent manner.
We show that this extension is indeed possible in most cases. However, we also argue
that this requirement is not necessary: the Principal Principle concerns subjective believes
about objective chance, hence events concerning those probabilities are meant to be in the
algebra initially, as Lewis’s text suggests clearly.

1 Introduction

Lewis (1980) proposed the Principal Principle in his seminal work titled A Subjectivist’s
Guide to Objective Chance. Lewis argued that when a subjectivist believes in objective
chance, the credences he assigns to events and the credences he assigns to possible values
of the objective chances of these events cannot be arbitrary if the subjectivist is reasonable:
these credences (besides making a probability measure) have to satisfy a relation, namely,
the relation that Lewis calls Principal Principle. Accordingly, in Lewis’s work, credence
is assigned to at least two kinds of propositions: those expressing real events (such as the
coin fell heads, we shall call them “chancy events”) and those expressing that the objective
chances of chancy events are equal to certain values (such as the chance of heads is, say,
35%). Recently, Rédei and Gyenis (2013) have proposed at various forums, such as the
PSA Biennial Meeting in 2014, that the Principal Principle makes sense only if whatever
credence function is defined on the chancy events, such credence can be extended in a con-
sistent manner to events concerning values of the objective chances of the chancy events.
They presented their claim using the language of Bayesianism, but this is essentially what
they proposed.
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In this work we show that the extendibility Rédei and Gyenis require essentially always
holds. Before doing so however, we also present an argument disputing the claim of Rédei
and Gyenis that this extendibility is indeed necessary for the Principal Principle to be
meaningful.

2 Credences of Events, Credences of Objective Chances

In this section we turn to Lewis for guidance and inspiration. We examine one of the
examples he presented in (Lewis, 1980) to motivate the Principal Principle, and we make
some general observations. The example and the observations shall guide us throughout
the current work: On the one hand they indicate how to construct the embedding Rédei and
Gyenis require for their consistency. On the other hand, they also help us understand the
meaning of the Principal Principle, why it is a reasonable requirement, and why it would
be a reasonable requirement even if consistency notion of Rédei and Gyenis had happened
to fail to hold.

2.1 An Example of Lewis

Lewis’s example is the following (Lewis, 1980): “... suppose you are not sure that the
coin is fair. You divide your belief among three alternative hypotheses about the chance of
heads, as follows.

e You believe to degree 27% that the chance of heads is 50%.
e You believe to degree 22% that the chance of heads is 35%.
¢ You believe to degree 51% that the chance of heads is 80%.

Then to what degree should you believe that the coin falls heads? Answer. (27% x 50%) +
(22% x 35%) + (51% x 80%); that is, 62%. Your degree of belief that the coin falls heads,
conditionally on any one of the hypotheses about the chance of heads, should equal your
unconditional degree of belief if you were sure of that hypothesis. That in turn should
equal the chance of heads according to the hypothesis: 50% for the first hypothesis, 35%
for the second, and 80% for the third. Given your degrees of belief that the coin falls
heads, conditionally on the hypotheses, we need only apply the standard multiplicative
and additive principles to obtain our answer.”

In this example, Lewis states that given an agent who believes in objective chance,
and given certain degrees of belief (credences, 27%, 22%, 51% in this case) that the agent
assigns to the possible objective chances (50%, 35%, 80% in this case) of a certain chancy
event (heads in this case), the reasonable credence that the agent has to assign to the event
itself is already determined (62% in this case).

More precisely, in the example a coin is tossed and there are two possible chancy
outcomes: H (heads) and T (tails). The credence the subjectivist ends up associating to
H is C(H) = 0.62. However, this assignment of credence is not arbitrary: it is a derived
credence. Namely, the subjectivist believes in objective chance, and there is a primary



credence associated to the possible objective chances of H, and the credence of H is
derived from this primary credence:

e Subjectivist believes in objective chance of H

He thinks there are three possibilities for the objective chance of H:

ch(H)=05 or ch(H)=035 or ch(H)=028.

He assigns the following credences to the possible objective chances:
- C(ch(H) =0.5) =0.27
- C(ch(H) =0.35) = 0.22
- C(ch(H) =0.8) =0.51

C(H) then is computed using the following formula

C(A) =) r-C(ch(A) =r) (1)

Note that in the situation above, it is implicitly assumed that assigning credences to
values of the chances of certain events makes sense. In fact, we should not be surprised.
Lewis wrote about the subjectivist’s guide to objective chance, that is, objective chance is
part of the world, and credence can be assigned to possible values of it. The algebra of
events is generated by at least five events concerning the objective world: two events for
the possible chancy outcomes H and T', and three more events for the possible values of
the objective chance of H (and hence of T').

Lewis assumes (and Pettigrew (2012) showed that this should indeed be assumed)
that credence and chance are probability measures abiding the laws of probability theory.
Accordingly, assigning credences to statements about the chances of events only makes
sense if those statements signify events of an underlying event algebra. That underlying
event algebra also contains the actual chancy events, because credences are assigned to
them as well. Lewis’s example indicates that a credence function defined on the possible
values of the objective chances of chancy events and also on the possible chancy events
themselves is not an arbitrary probability measure: it has to satisfy a consistency condition
(namely, Equation (1) in the example) on the top of being a probability measure.

2.2 General Observations

Where does Equation (1) come from? If A is some event of the real world, ch; is the chance
function over such events at some time ¢, and C' is the credence function, the general idea
that is expressed by the above example can be written as C(A) = > r - C(chi(A) =
r) where the sum runs through all r values ch;(A) can possibly take. Clearly, in case
of continuum, the summation has to be replaced by an integral. If we throw in Lewis’s



admissible evidence too (think of it as facts from the past), then the above equation takes
the following form:
C(AIE) =) r-C(ch(A) =r|E) 2)
T

Note that if C satisfies the laws of probability, then the following always holds:

C(A|E) = C(Alchi(A) =r A E)-C(chy(A) =r|E) 3)

aslongas >, C(ch(A) = r|E) = 1, that is, as long as r runs through all possible values
of chi(A). The Principal Principle requires that

C(A|chi(A)=r AN E) =r 4)

hold for all admissible F events. Lewis in his paper noted that Equation (3) together with
the Principal Principle (4) immediately imply Equation (1).

The meaning of the Principal Principle is of course that a reasonable agent should
choose the credence such that if the objective chance of a chancy event A is r according
to the evidence collected by the agent, then the credence of A should be the same r unless
some further inadmissible evidence I/ overwrites this. For example, if the agent has ev-
idence that a coin is biassed such that the chance of H is 0.8, then he should choose the
credence of H to be 0.8, unless he has some further evidence that overwrites this choice,
for example when the toss already happened and he knows the result. Without further
such evidence, for example, just before the coin is tossed, the reasonable credence to be
assigned to H is 0.8.

Suppose now the agent learned that ch,(A) = r, and updated his credence function
accordingly to C":

C'(B|E) := C(B|chy(A) =r AN E)

for all B. That is, the agent added chi(A) = r to the set of evidences. Is it true that this
new credence function automatically satisfies the PP for any ch;(B) = r/ condition, or
additional assumptions are needed?

Just from assuming that C satisfies the PP without without admissible F events, it
does not follow that C” also satisfies the PP. However, it does follow from the Principal
Principle with admissible E events included, as long as events of the form ch;(A) = r are
admissible. And indeed, Lewis insists that such events must be admissible. Then, applying
the PP to ch;(A) = r A E instead of E, we have

C'(B|chy(B) =7 AN E) = C(B|chy(B) =71" A (chy(A)=r N E)) =1

Now consider the following: Remember, Equation (2) says, for any admissible evi-
dence E, C(A|E) = Y. r - C(chy(A) = r|E), where the sum runs through all r values
that ch;(A) can possibly take. We have seen that this follows from the PP if the credence
function obeys the laws of probability. The other direction is also true: The assumption



that the credence C satisfies the laws of probability and that events of the form ch;(A) = r
are admissible, together with (2) imply the Principal Principle. To see this, consider that

C(Alchy(A) =7 A E)=> 1" C(chy(A) =r'|chy(A) =7 A E) (5)

T,/

where we applied Equation (2) not for E but for ch;(A) =r A E. But

S "0 C(chy(A) = 1'|chy(A) =1 A E) =r

,r./

for any r, because if C' satisfies the laws of probability, then C(chi(A) = r'|chy(A) =
r A E) =1ifr' =rand C(ch(A) = 1'|chy(A) =r A E) = 0ifr’ % r no matter what
E is. With this, Equation (5) becomes

C(Alchi(A) =r N E)=r. (6)

Hence, given that the laws of probability are satisfied and that events of the form
chi(A) = r are admissible, the Principal Principle and the validity of Equation (2) for
all admissible E' are in fact equivalent. This is an important observation, because as (2)
implies the PP, it gives us a hint how to construct in the sections below the extension Rédei
and Gyenis require for their consistency notion: Namely, if the credence of each chancy
event A is computed from the credences assigned to the possible values of the objective
chance of A using Equation (2), then the credence function on the chances and on the
chancy events satisfies the Principal Principle.

3 Consistency Questions of Rédei and Gyenis

Rédei and Gyenis raised the question what it really meant to conditionalize with the event
that the chance of something is a certain value. They posed their question in a more abstract
and mathematically well-defined way than how we have proceeded so far. It is essentially
the following:

Chance in their terminology is replaced by a probability measure p,p; over an algebra
Sop; representing the chancy events (corresponding to H and 7" in the example). They drop
time ¢ to make the discussion simpler as it is not necessary for presenting their complaints.
Credence is replaced by a probability measure py,,;,; over some algebra Sgyp;. They observe
that it is necessary that Sy,,;,; includes S,;,; as we want to associate credence at least to the
real events. Furthermore, S, has to contain events of the form " Fy;; (A) = r7 meaning
the event that “the objective chance of A equals 7. We intentionally do not follow their
notation "p,p;(A) = 7, because we want to be able to write " P,y;(A) = popj(A)” mean-
ing “the objective chance of A equals p,y;(A)” where p,y;(A) is a probability measure on
Sopj- Rédei and Gyenis define the following:



Definition 3.1 (Abstract Principal Principle) The subjective probabilities py,;(A) are
related to the objective probabilities poy;(A) as

psubj(A‘l—Pobj(A) - pobj(A)—l) = Dobj (A) )

as long as the conditioning makes sense.'

Remark 3.2 Unfortunately, Rédei and Gyenis wrote their Principal Principle in the form
Psubj (A| Ponj(A) = r7) = pop;(A), which is confusing as it is not correct (it is not the
PP and in fact it should not be required) when 7 is not the objective probability p,;(A).
It is clear however from their discussions of their formula that they only consider the case
when p,y;(A) = r. Hence we wrote it in the form of Equation 7 to avoid this confusion.
In our treatment, p,y; is just a measure over S, it may actually be different from the real
objective chance, although Rédei and Gyenis are not concerned with this situation. (In
fact, the Principal Principle as Lewis stated has nothing to say about the the real objective
chance, it only considers evidence about the objective chance.)

Rédei and Gyenis have another notion too, Stable Abstract Principal Principle, which
also requires that given any A € Sy, for all B € S5,

DPsubj (Al™ Posi (A) = pos; (A)7) =
= Pyubj (Al Ponj (A) = pob; (A) TN Poyj(B) = posi(B)™)

as long as the conditional probabilities make sense. In other words, learning the objective
probability of B should not destroy the PP for A.
Rédei and Gyenis then define their strong consistency condition:

Definition 3.3 (Strong Consistency) The Abstract Principal Principle is defined to be
strongly consistent if the following hold: Given any probability space (Xopj, Sobjs Pobj)
and another probability measure p?ubj on Sepj, there exists a probability space (Xgyp;,
Ssubj> Psubj) and a Boolean algebra embedding h of Sgyj into Seyyj such that: for every
A € Sopjs Psubj(h(A)) = p(s)ubj(A), and there exists an A" € Sgyp; with the property
Dsubj (R(A)|A") = pop;(A), and if A, B € Sppj and A # B then A’ # B'.

Clearly, A" would be the event “the objective probability of A is p,y;(A)”.
Rédei and Gyenis then have two claims:

e In order for the (Abstract) Principal Principle to be meaningful, it is necessary that
strong consistency hold and strong consistency is tacitly assumed.
e It is not clear whether strong consistency holds or not.

"Note that Rédei and Gyenis left out admissible evidence for simplicity. That is because their consistency
problem is non-trivial even in that case. We stick to this simpler situation in this work.



I strongly disagree with the first claim. Lewis’s work is titled A Subjectivist’s Guide
to Objective Chance. That is, chance is viewed as being objective, and credence can be
associated to statements about objective chance. When the objective world contains both
the events and their chances, credence is not an arbitrary probability measure, but the
Principal Principle limits what a reasonable credence function may look like. Coming
back to Lewis’s example we cited at the beginning, given the credences assigned to the
various biasses, it does not make sense to assign 50% credence to heads, but it has to be
62%. In other words, the Principal Principle is a consistency condition itself for the case
when we assign credences to statements about objective chance. That is, there is only one
Sopj» for a subjectivist who believes in objective chance, statements about objective chance
are in S; to start with, and the Principal Principle is the consistency condition that we
have to require for a credence function on Sp;.

This view that I proposed in the previous paragraph I believe is also supported by the
usual Bayesian analysis. The Bayesian prior, which corresponds to credence, is given
not on the real outcomes such as heads and tails, but instead on the set of probability
measures (described by some parameter) over the real outcomes. In this set of probability
measures, of course, events expressing that the probability of a chancy event A is r can
be represented by the set of the form {p : p(A) = r}. That is, in Bayesian analysis as
well, statements about the values of these probabilities are part of the event space from the
beginning. Prior probabilities of the chancy events are computed from the prior measure
over the probabilities similarly to formula (1) just as Lewis did his computation.

However, if we insist that S,;; denote only the chancy events and it should be extended,
then from the above, it is clear how to do it: We take all probability measures on S,; and
define an event algebra on it that is fine enough to include all sets of the form {p : p(A) =
r} where A € S,p; and € [0, 1]. Let us call this event algebra over the probabilities S‘“}V
Ob] (that is, the algebra
generated by elements of the form A; x Ay where A1 € Sy5 and Ay € S;gj). But even
in such a setup, an agent would not start from a credence function on S,; that he would
want to extend to Syyp;. Instead, he would start fixing a credence function on the chances,
or, with Bayesian language, he would first fix a Bayesian prior pmbj on S obj? and would
obtain the prior probability psubj on S,p; using the usual formula corresponding to (1):

(this is the algebra of chances). We can define Syp; := Spp; @

p?ubj Zr psubj {p : p(A) = 7a})

which is just the same as the expected value of the function p — p(A) with respect to the
probability p b 2 Furthermore, the joint probabilities on Ssupb; would also be the usual®

Dsubj (A1 X Ag) == ZT o ({p s (A1) =7 Ap € As})

r

2With integral notation, it is p?ubj f th o( )dpmbj( ).
3With integral: pyup; (A1 x Az) = fAz )dpmbj( )

7



That is exactly what happens in Lewis’s example about the coin tosses: In that case S
can be taken to have two atomic elements, heads and tails, and Sg,’j] to have three atomic
elements with non-zero credence (Bayesian prior):

e one putting 50% chance on heads with credence 27%.
e one putting 35% chance on heads with credence 22%.
e one putting 80% chance on heads with credence 51%.

Then the credence can be extended to S,; giving 62% for heads and 38% for tails. It is
not the 62% and the 38% that an agent postulates first and then finds a measure on Sgg;
(which would correspond to the suggestion of Rédei and Gyenis), but the other way.

About the second point Rédei and Gyenis made, I do agree. It is not obvious, but still,
it turns out to be essentially true, which is the topic of the rest of this discussion.

4 Strong Consistency of the (Abstract) Principal Prin-
ciple

Even if strong consistency does not seem to us necessary to be required in general, in
certain cases it may be interesting to fix credences on the set of objective events, and then
try to extend it to a larger algebra that includes also events like " Py;(A) = 7. Such an
extension was for example considered by Diaconis and Zabell (1982, Sec. 2.1) without the
strong consistency condition.

Here we prove the following strong consistency theorem:

Theorem 4.1 Given any probability space (X5, Sob;, Pob;) and another probability mea-
sure pgubj on Sy, if thereis an a € (0, 1) such that for all A € Sypj, a-poy;(A) < pgubj (A)
or popi(A) = pgubj (A) = 0 (that is, we can “pull” pyy; under p(s)ubj), then strong consis-
tency holds: there exists a probability space (X subj» Ssubj» psubj) and a Boolean algebra
embedding h of Sypj into Sy such that

(i) Forevery A € S,y there exists an A € Sypj with the property
Dsubj (h(A) ‘Al) = Pobj (A) (8)

(ii) If A, B € Sppj and A # B then A’ # B'.

(iii) The probability space (Xgubj, Ssubj, Dsubj) IS an extension of the probability space
(Xobj» Sobjs p?ubj) with respect to h; i.e., we have

psubj(h(A)) = pgubj (A) A€ Sobj (9)
(iv) Dsupj is stable: for all A, Ay, ..., A,, € Sy we have

pobj(A) = Dsubj (h(A)‘A/ N All n..N A’/VL) (10)



Proof:

1. Consider the set of all probability measures on (X,p;, S,;): Denote it by X(f{jj (this is
the set of all possible chances):

XOCII}]- :={p: pis a probability measure on (X, Sop;) }

2. Foran A € Sy and an r € [0, 1], let us define

"Ppj(A) = 1" = {p: p(A) =1} C X5,

3. Take a fine enough o-algebra Sg{}] on Xg{}] such that for all A € Sy and r € [0,1],

"Pyi(A) =" € S

4. We claim that it is possible to find a measure piﬁb j (credence of chances) on S{f{}j such

that pgzbj(ﬂ” " Poyi(A;) = pobj(A,»)"'Ch) # 0 forany Ay, ..., A, € Su; (in order to

1=

be able to take conditionals) and for all A € S(,bj,
Pouni (A) = D 7 iy ("o (A) = 17"),
T

where the summation is taken over all values r for which ply, (" Popi(A) = r7") # 0

(it could also be defined as an integral over [0, 1], see footnote 2): Fora p € X(‘)'l’}j, let

0, denote Dirac-measure concentrated on p. That is, for any S € ngjj 0p(S) = 1iff
p € S,and 6,(S) = 0iff p ¢ S. Then, p"

subj €an simply be taken to be of the form

*h
p§ubj =a- 51001:;' +b- 5;00

where a and b are conveniently chosen constants and pg is a probability measure on
(Xobjs Sobj): We assumed that there is an a € (0,1) such that for all A € S5, a -
Pobi(A) < p(s)ubj(A) or Py (A) = pgubj(A) = 0. Clearly, the measure a - dy,,. is
a positive measure on (X(f{]j, S(f{}j
measure. Let b := 1 — a, and let py := T - (pgubj — a - Povj)- Asa € (0,1) and

), but as a € (0,1), it is smaller than a probability

a-Pobj < p?ubj, po is a positive measure on (Xopi, Sopj ). As po(Xopj) = ﬁ (1—a) =

1, this is a probability measure on (X,p;, S,p;), hence an element of X, {f{)‘] Let

h .
pgubj =a 5pobj +b- 5170



Since a + b = 1, this is also a probability measure. For any Ay, ..., A, € Sy ,

pﬁﬁbj(anObj (A = Pobj (A —ICh pmb] m{p p pobj(Ai)})
=a- 5pobj(ﬂ{p : p(Ai) = Pobj(Ai)})
=1

+ b Sy ([P 2 P(AL) = pob; (Ai)})

=1
=a+ b-0p ([ {p: P(Ai) = poj(Ai)})
=1
>a>0

where we used the fact that poy; € (i1 {p : p(Ai) = pop;j(Ai)}, and that 6, (S) =1
iff poy; € S. We also have that for all A € S,

ZT psubj Ob](A) :T—wh)
- Zr (4 Gy (5 9(A) = 71+ 1By ({2 p(4) = 1)

pobj(A) ~a+po(A)-b

poni(A) 0+ T (o, (4) = @ pogy (4)) - (1)

pUb](A) ca+ psubj (A) — Q" Pobj (A) = p?ubj(A)

Here note that pSl', (" Pop;(A) = 77") # 0 for at most two different ’s: 1 = pop; (A)
and r = pp(A), so there is no problem using the summation sign.

5. Let (Xgupj, Ssubj) = (Xopj X Xol}fj,S S(f{)lj) Here Spp; ® S(‘jbj is the o-algebra
generated by elements of the form A x E where A € Sy and E € Sgl’}] Let the

measure Pyyp; on (Xgupj, Ssupj) be generated by

pSUb] AXE Z’I" pvubj {p:p(A) =r Ape E})

forall A € Sy and E € Sggj. Again, because of the way we defined pggbj, for any
A x E, there are at most two values of 7 (pop;(A) and py(A)) such that the summands
in the above summation are non-zero, so it is not incorrect to keep using the summation
instead of integral.

6. Forall A € Sy, let

h(A) =AX Xob]

10



and

TP (A) =717 i= Xop; x {p:p(A) =71} = Xppj X "Popj(A) = pch

and A" :="P;(A) = pov;(A)”

7. Clearly,

Psubj(h(A))

by the choice of pwb "

= Dsubj(A X Xob])
= ervub] {p p )_T/\pEXob]})

= ersubj {p p ) })
= ersubj Ob] A) = T—ICh)

psubj (A)

8. Then, for Ay, ..., A, € S5, we have

n

Psubj ( ﬂ A;)

=1

as we have seen.

9. Tosee (iv), fix A, Aq, ...,

= psubj(ﬂrpobj(Ai) = pobj(Ai)—l)

=1
n

= psubj(m Xobj X I—Pobj(Ai> = pobj(Ai)—ICh)
=1

= psub] ﬂ P(’b] pObJ(A )—|Ch) >0

Ap € Sy, for simplicity let Ag := A. By applying the above

11



definitions, and as pgp; (o A5) > 0,

Poubj (M(A)| A" 0 () Af) =

=1
— psubj(A(A) NI, AY)
 paui(Mimo A9
Dot (A X X5 N g (Xobg X ™ Popj (Ai) = pobi(A:) ™))
B Poubs (Nio(Xob; * I—Pobj(A) Pobj (Ai) "))
~ Peub (A X X57) 0 (Xopj % g™ Pobj (Ai) = Pobi(A:) ™))
B Dsubj (XObj X ﬂz 0 ob] (A ) DPobj (A )—ICh)
 Dsubg (A X (Vg™ Pobj (Ai) = pobj (A7) ")
B DPsubj (X()b] X ﬂz ol_Pab] (A ) DPobj (A )—ICh)

_ Zﬁ'pﬁﬁb]({p p(A)=r /\peﬂi o Povj(Ai) = pop; (Ai) ™ )
ZTT‘Pﬁﬁbj({P!P( Xopj) =7 N p €Nz Povj(Ai) = J( i) )})
:Zr p?gb]({p‘p( =7 A pemz 0o Obj( i) = Ubj(A )

)
. pmbj({p P(Xobj) =1 A p € (Nimo" Pobj(Ai) = pobj (Ai)M)})
_ Zr psubj {p:p( ): rA p(A) :pobj( ) A /\i:lp( 1) :pobj(Ai)})
Pl (P p(A) = pov(A) A Nz P(Ai) = pobj(A)})

= Pobj(4)

because the numerator is only non-zero when r = pgy,; (A), in which case the numerator
and the denominator are equal. This gives us (iv). For the special case when there is
only one A1, namely X,;, we obtain the proof of (i).

10. Finally, consider (ii). In the construction so far, for A # B, A’ # B’ is actually
not ensured. But it is easy to modify Xj,;; so that this condition is ensured as well.
Namely, consider the disjoint union Xy,p; & Sppj, take pyupi(Sep;) := 0, and define
A" :="Ppi(A) = poy;(A)7 U {A}. This will not interfere with the probabilities, but
including { A} ensures that A # B implies A’ # B'.

QED

Remark 4.2 We left the proof of the satisfiability of (i7) to the end, because we think that
this condition, although easily satisfiable, should not be required. A’ corresponds to the
event “the probability of A is p,y;(A)”, while B” corresponds to the event “the probability
of B is pyyj(B)”. There is no reason for these propositions to necessarily denote different
events in the probability space. For example, when a coin is tossed, “the probability of
heads is %” and “the probability of tails is 2” can reasonably correspond to the same set in

a Kolmogorovian model, while heads and talls are different events.

12



Remark 4.3 Note, in the special case when py,; = p?ubj, then p?ﬁb i = dp,y;» MO matter
what a we chose.

If X,5; (and hence Syp;) is finite, and if p,y; is absolutely continuous with respect to
pgubj (that is, for any A € Sy, Ponj(A) # 0 implies p?ubj (A) # 0), then for any a €

. vty (A)
(0, minges,,; Apyy, (4)>0 Z;Obbjﬁ) C (0,1) we have that for all A € S,pj, a - pop;j(A) <

pgubj(A) or pop;(A) = p?ubj (A) = 0, and the conclusions of the Theorem hold. Hence we
have

Corollary 4.4 If X,; is finite, and if poy; is absolutely continuous with respect to pgubj,
then strong consistency holds.

Remark 4.5 Rédei and Gyenis also define a consistency property for “debugged” versions
of the Principal Principle. We do not consider that case here for two reasons. One is that
the handling of admissible evidence would raise a whole array of new issues. The other is
that as we argued in this paper, strong consistency is not needed for the Principal Principle
to make sense, and that is true even if we throw in admissible evidence, and no matter
whether we consider the original version or debugged versions.

Remark 4.6 We wrote that strong consistency “essentially” holds. We put it this way
because of the above absolute continuity condition. Note, the absolute continuity of poy;
with respect to pgubj is a necessary condition, because a zero p?, ; cannot be updated by
new knowledge to non-zero probability. In the finite case absolute continuity is sufficient
to pull pyy,; below p?ubj, in the infinite case it is not sufficient. We in fact believe that the
absolute continuity condition is sufficient to prove strong consistency even in the infinite
case (without pulling the whole of p,;,; below pgub j), but with a more complex construction
for pyyp;. Proving that remains future work.
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