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Abstract 

There are three types of questions associated with Simpson’s Paradox (SP): (i) why is SP 

paradoxical? (ii) what conditions generate it? and (iii) what should be done about SP? 

Pertaining to the first two questions, we argue that SP has nothing to do with causality. 

However, causality plays a role in addressing the third question. Our research shows that 

one needs to divorce the question of the paradox itself and the reason it seems 

paradoxical from the question of what to do about it. By providing a logic-based account 

for the paradox, we critique and produce a counterexample to Spirtes, Glymour and 

Scheines’ causal account of SP. We compare their approach to ours by means of two sets 

of experiments that show SP is not causal (Word count 129.) 
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1Several versions of the paper have been accepted for presentation in several places including in Germany, 

Holland, India, and the United States. This version of the paper was presented at the APA, Eastern 

Divisional Meetings and Jadavpur University. We would like to thank the audiences in those places 

including John G. Bennett, Gordon Brittan, Jr., Dan Flory, and James Mattingly, for their helpful 

comments. 
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 Simpson’s Paradox and Causality 

 
 

“The skeptic about causality pushes the brake pedal to 

make his car slow, flips a switch to make a lamp glow, 

puts his money in the bank to collect interest (Spirtes, 

Glymour, and Scheines, 2000, p.2.)” 

 

 
“[Physicists] continued to write equations in the office 

and talk cause-effect in the cafeteria…. [P]hysicists talk, 

write, and think one way and formulate physics in 

another (Pearl, 2009, pp.407-8.)” 

 

 

Overview 
    

Simpson’s Paradox (SP) involves the reversal of the direction of a comparison or the 

cessation of an association when data from several sets are pooled. SP has wide 

applications in numerous disciples. Behind its applications and usefulness, several deeper 

issues have yet to be properly distinguished. Moreover, resolving one does not 

necessarily lead to the resolution of the rest. We will further argue that a conflation of 

those issues is in fact a factor in misreading the entire story about the paradox. Lately, 

however, it is almost conventional wisdom among scholars in this field to take the core of 

SP to be exclusively causal. In the words of Peter Spirtes, Clark Glymour, and Richard 

Scheines, “[t]he question is what causal dependencies can produce such a [case], and that 

question is properly known as “Simpson’s paradox”. (Spirtes, Glymour, and Scheines, 

2000, p.40, emphasis is ours.)” Judea Pearl, for example, writes that “…the spice of 

Simpson paradox has turned out to be nonstatistical (i.e., causal) after all (Pearl, 2009,   

p.177.)” In a very recent paper, epidemiologists, Miguel Hernan, David Clayton, and 

Niels Keiding echo the same refrain: 
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“[Simpson] paradox and error arise only when the problem is stripped of its causal context and 

analyzed merely in statistical terms, or when non-causal concepts like … collapsibility [is] 

allowed to guide the analysis. Once the casual goal is made explicit and causal considerations are 

incorporated into the analysis, the course of action becomes crystal clear. (Hernan, Clayton, and 

Keiding in 2011, p. 784.)”  

 

One purpose of this paper is to contest the conventional wisdom that traces SP to 

causality insofar as its central themes are concerned.  Three questions need to be 

distinguished with regard to the paradox: (i) why or in what sense, is SP a paradox?, (ii) 

what are the conditions for the emergence of this paradox?, and (iii) what should one do 

when confronted with a typical case of the paradox (to be called hereafter the “what-to- 

do” question?). We will argue that SP has to do with causality only if we ask the “what-

to-do” question. For the sake of brevity, we will confine ourselves to the views of Spirtes, 

Glymour, and Scheines’ causal account, often called the CMU theorists’ account, as our 

rejoinder, if it is correct, is adequately general to be applicable to any other causal 

accounts of the paradox.2 

     The first section of the paper contains examples of Simpson’s paradox. In the second 

section, we will provide a logic-based account that addresses the first two questions about 

the latter. In the next section, we discuss Spirtes, Glymour, and Scheines’ causal account 

of the paradox. In section four, we provide a counterexample to the causal account. 

Section five is devoted to a comparison between our account and the causal account. 

                                                           
2This does not, however, imply that there are no differences between the different casual accounts 

regarding Simpson’s paradox. Pearl, for example, has developed a calculus of causality to handle causal 

cases including Simpson’s paradox. In addition, according to both him and some other causal theorists, 

although the collapsibility principle goes hand in hand with the paradox it is not the central idea in 

unlocking its riddle, as the principle is fundamentally non-causal. To contrast Pearl’s account with the 

CMU theorists’, the CMU theorists have proposed a constraint on observational data so that the data do not 

generate Simpson’s paradox, whereas Pearl does not offer such a constraint.  Consequently, the need for the 

collapsibility principle does not arise for their account. For more on the CMU theorists’ view, see, section 

3. However, for our present purpose, what matters is the common assumption shared by both Pearl and the 

CMU theorists about the causal resolution of the paradox. 
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Here, we describe two experiments regarding Simpson’s paradox and discuss their 

bearing on choosing between these two accounts. Section six evaluates an objection to 

our account. We conclude that the causal account fails to appreciate the significance of 

the three questions we outline above regarding the paradox.  

1. Simpson’s paradox: 

      Consider the following two examples of the paradox. 

Simpson’s Paradox (Type I) 

 

Two Groups 

Dept. 1 Dept. 2 Acceptance Rates Overall 

Acceptance 

Rates Accept Reject Accept Reject Dept. 1 Dept. 2 

F 180 20 100 200 90% 33% 56% 

M 480 120 10 90 80% 10% 70% 

 

     Table 1  

 

 

Simpson’s Paradox (Type II) 

Two Groups 

Dept. 1 Dept. 2 Acceptance Rates Overall 

Acceptance 

Rates Accept Reject Accept Reject Dept. 1 Dept. 2 

Females 90 1410 110 390 6% 22% 10% 

Males 20 980 380 2620 2% 12% 10% 

 

  Table 2 

 

Table 1 represents an example of a formulation of the paradox in which the association in 

the subpopulations (departments) with higher acceptance rate for females is reversed in 

the combined population, with overall higher rates for males. Table 2 contains an 

example of an apparently paradoxical effect when the association between “gender” and 

“acceptance rates” in the subpopulations ceases to exist in the combined population. 
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Although the acceptance rates for females are higher in each department, in the combined 

population, those rates cease to be different.   

 

2. Our logic-based account of the paradox:3 

We begin with an analysis of the paradox in response to question (ii) above. Consider two 

populations, [A, B], taken to be mutually exclusive and jointly exhaustive. The measured 

overall rates for each population are called, [α, β], respectively. Each population is 

partitioned into categories called, [1, 2], and the measured rates within each partition are 

called [A1, A2, B1, B2]. Let’s assume that f1 = the number of females accepted in D1; F1 = 

the total number of females applied to D1; m1 = the number of males accepted in D1; M1 

= the total number of males applied to D1. Then A1 = f1 / F1, and B1 = m1/M1. Similarly, 

we define A2 and B2. Let’s assume that f2 = the number of females accepted in D2; F2 = 

the total number of females applied to D2; m2 = the number of males accepted in D2; and 

M2 = the total number of males applied to D2. So, A2 = f2/F2 and B2 = m2/M2. Likewise, 

we understand α and β to represent overall rates for each population, females and males, 

respectively.  So the terms α = 
)(

)(
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. To help conceptualize 

these notations in terms of Table 1, we provide their corresponding numerical values. A1 

= 
200

180
 90%, A2 = 

300

100
 33%, B1= 

600

480
 80%, B2 = 

100

10
 10%, α, = 

500

280
 56%, 

                                                           
3This section we base on our earlier work [reference removed for the sake of review]. 
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and finally β = 
700

490
 70%. Because α, β, A1, A2, B1, and B2 are rates of some form, they 

will range between 0 and 1 inclusive. We further stipulate the following definitions.  

 C1 ≡ A1 ≥ B1   

 C2 ≡ A2 ≥ B2   

 C3 ≡ β ≥ α.   We call C ≡ (C1 & C2 & C3). 

 

For Table 1, C1 is true because 90% > 80%; C2 is true because 33% > 10%, and finally, C3 

is true because 70% > 56%.  We define the term θ, which provides a connection between 

the acceptance rates (A1, B1, A2 and B2) within each partition to their overall acceptance 

rates (α and β).  

 θ = (A1 – B1) + (A2 – B2) + (β – α). 

 

This condition says for the data in Table 1 that θ = 10% + 23% + 14% = 47%, meeting the 

other formal condition for the paradox. That is, Simpson’s paradox (SP) arises if and only if 

 

 (i) C ≡ (C1 & C2 & C3) and 

 (ii) C4 ≡ θ = {(A1 – B1) + (A2 – B2) + (β – α)} > 0. 

 

Each condition (i and ii) is necessary, but jointly they constitute sufficient conditions for 

generating SP. This just means that not only Table I satisfies both of these conditions, but 

also any version of the paradox must satisfy them. 

      There are three points worth mentioning. First, the characterization of the puzzle in 

terms of our two conditions captures the central intuitions at stake in the examples given; 

they are in no way ad hoc. The central intuitions are, once again, the reversal or the 

cessation of an association in the overall population. Second, the paradox is “structural” 
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in character, in the sense that the reasoning that leads to it is deductive. (Consider our 

examples, which involve simple arithmetic. The overall rates of acceptance for both 

females and males follow from their rates of acceptance in two departments taken 

separately.) Third, unless someone uses the notion of causation trivially, for example, 

believes that 2+2 “causes” 4, there is no reason to assume that there are causal intuitions 

lurking in the background.  We will return to the last point in greater detail in the 

following sections. 

      We now provide an explanation of how the paradox arises in our type I version and 

why people find it perplexing. For our purposes, we have reconstructed our type I version 

of SP in terms of its premises and conclusion. However, the point of the reconstruction 

will be adequately general to be applicable to all types of SP. Before the reconstruction, 

we introduce a numerical principle called the collapsibility principle (CP) which plays a 

crucial role in the reconstruction. We call a dataset collapsible if and only if [A1≥ B1 and 

A2≥ B2] → α ≥β.  Here, the forward arrow “→” stands for “material implication.”  The 

CP says when, if certain relationships hold in the sub-populations between variables (for 

example, if the rate of acceptance of females is higher than the rate of acceptance of 

males in both sub-populations), the same relationships must hold in the overall 

population (that is, the rate of acceptance of females must be higher than the rate of 

acceptance of males in the population).  We will, however, find that the principle in 

question is, in fact, false with regard to the paradox.  

        Recall, A1 and A2 stand for the rates of acceptance for population A in departments 

1 and 2 respectively. Similarly, B1 and B2 stand for the rates of acceptance for population 

B in departments 1 and 2 respectively. In contrast, α and β are rates of acceptance for A 
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and B populations in the overall school. More explicitly, if we use our earlier notations of 

f1, F2, m1, M2, then CP implies [(f1/F1) > (m1/M2) & (f2/F2) > (m2/M2)]→  
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. In the type I version of SP outlined above, even 

though the data set satisfies the antecedent, that is, A1 (i.e., f1/F2) > B1 (i.e., m1/M1) and 

A2 (i.e., f2/F2) > B2 (i.e., m2/M2), its consequent remains unsatisfied. As we can see, CP is 

a numerical inference principle devoid of any causal intuition. 

 

     Here is the reconstruction of the type I version. 

P1: Female and male populations are mutually exclusive and jointly exhaustive; one can’t be a 

student of both departments along with satisfying two conditions (i & ii) in our characterization 

of what is called SP. 

P2: The acceptance rate of females is higher than that of males in department # 1. 

P3: The acceptance rate of females is higher than that of males in department # 2. 

P4: If P2 & P3 are true, then the acceptance rate for females is higher than that of males overall. 

P5: However, fewer females are admitted overall. (That is, the consequent of P4 becomes false.) 

 

Conclusion: the deductive consequence of P2, P3, P4 and P5 contradict one another; there is a 

genuine paradox involved. 

 

 

    In our derivation of the paradox, premise 4 plays a crucial role. In our type I version, 

the rates of acceptance for females are greater than those of males in each department. 

That is, A1 > B1 and A2 > B2, but α < β.  Thus, CP becomes false. In fact, that CP is not 

generally true is shown by our derivation of a contradiction. 

    Our answer to the first question, (i), then, is simply that humans tend to invoke CP 

uncritically, as a rule of thumb, and thereby make mistakes in certain cases about 

proportions and ratios; they find it paradoxical when their usual expectation that CP is 

applicable across the board, turns out to be incorrect.   
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3. The causal account of SP: 

       Peter Spirtes, Clark Glymour and Richard Scheines (2000) have developed a subject 

matter-neutral automated causal inference engine that provides causal relationships 

among variables from observational data using information about their probabilistic 

correlations and assumptions about their causal structure. These assumptions are, (i) the 

Causal Markov Condition (CMC), (ii) the Faithfulness Condition (FC) and (iii) the 

Causal Sufficiency Condition (CSC). According to CMC, a variable X is independent of 

every other variable (except X’s effects) conditional on all of its direct causes.  A is a 

direct cause of X if A exerts a causal influence on X that is not mediated by any other 

variables in a given graph. The FC says that all the conditional independencies in the 

graph are only implied by CMC, while CSC states that all common causes of measured 

variables are explicitly included in the model. Since these theorists are interested in 

teasing out reliable causal relationships from data they would like to make sure that those 

probability distributions are faithful, otherwise, they will not be able to derive causal 

relationships. In Table 2 above, the dependency we observe between “gender” and 

“acceptance rate” (in the subpopulation) gets cancelled out by their independence (from 

the overall population). In this case, the CMC alone imposes no constraints on the 

distributions that this structure could produce, since there is no independence whatsoever 

from using CMC. If there is an independence relation in the population that is not a 

consequence of the CMC, then the population, according to these causal theorists, is 

unfaithful. By assuming FC, they are able to eliminate all such cases of SP from 

consideration. 
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     One reason for SP being causal, according to this account, is that (per our first 

example), applying to the school is a causal problem involving causal dependencies 

between “gender” and “acceptance rates.” Similarly, with regard to Simpson’s own 

example in the literature, Spirtes et al. write, “[t]he question is what causal dependencies 

can produce such a table, and that question is properly known as “Simpson’s paradox”. 

(Spirtes, Glymour, and Scheines, 2000, p.40, emphasis is added.)” Therefore, Simpson’s 

worry has a causal story, i.e., the source of the paradox lies in its causal root. 

     Consider the following two tables to see what these theorists mean. Table III is based 

on data for 80 patients. 40 patients were given treatment T and 40 assigned to a control, 

~T.  Patients either recovered, R, or didn’t recover, ~R. There were two types of patients, 

(i) males (M) and (ii) females (~M). 

Simpson’s Paradox (Medical Example) 
 

Two Groups 

M ~M Recovery Rates Overall 

Recovery 

Rates R ~R R ~R M ~M 

T 18 12 2 8 60% 20% 50% 

~T 7 3 9 21 70% 30% 40% 

 

     Table 3 
 

One would think that treatment is preferable to control in the combined statistics, 

whereas, given the statistics of the sub-population, one gathers the impression that control 

is better for both men and women. Given a person of unknown sex, would one recommend 

the control? Spirtes et al. recommend “control.” Call this first example the medical 

example. In a second example, however, we are asked to consider the same data, but now 

regarding varieties of plants (white [W] or black variety [~W]), R and ~R as yields 

(high[Y] or low yield [~Y]) and M and ~M as tall and short plants ([T] or [~T]).  
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Simpson’s Paradox (Agricultural Example) 
 

Two Groups 
T ~T Yield Rates Overall 

Yield Rates 
Y ~Y Y ~Y T ~T 

W 18 12 2 8 60% 20% 50% 

~W 7 3 9 21 70% 30% 40% 

 

     Table 4 
 

 

Given Table 4, the overall yield rate suggests that planting the white variety is preferable 

since it is 10% better overall, although the white variety is 10% worse among both tall 

and short plants (sub-population statistics). Which statistics should one follow in 

choosing between which varieties to plant in the future? The CMU theorists’ 

recommendation is that in this case one should take the combined statistics and thus 

recommend the white variety for planting which is in stark contrast to the 

recommendation given in the medical case. In short, both medical and agricultural 

examples provide varying responses to the “what to do question?” There is no unique 

response regarding which statistics, subpopulation or whole, to follow in every case of 

SP.  

    Consider the “causal feature” in their causal account concerning the medical 

example. The novelty of their approach exploits the idea of intervention with regard to 

these cases. They construe “interventions” as something which directly controls targeted 

manipulated variables in such a manner that makes the manipulated variables 

probabilistically independent of all their other causes when the rest of casual structure 

remains intact. Thus, gender turns out not to be an effect of treatment. When we 

“intervene” in their technical sense to impose a treatment on a new subject, gender and 

treatment not only as are but must be probabilistically independent. The reason for 
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treating gender and treatment to be independent is that we don’t know the new subject’s 

gender, leaving no effect on our choice concerning the value of that individual in the 

casual structure. In the medical example, Spirtes et al. recommend “control.”` In the 

agricultural example, by contrast, the decision to plant which variety does not influence 

the genetic features in terms of both their association between height and color, and other 

possible effects on the plant. So whatever causal dependency there is between the plants’ 

height and color in the sample will continue to exist in the population. Thus, 

recommending the whole population statistics, according to them, should be its natural 

choice.  

4. A counterexample to the causal account: 

It is not easy to come up with an example which precludes invoking some sort of appeal 

to “causal intuitions” with regard to SP. But what follows is, we think, such a case. It 

tests in a crucial way the persuasiveness of the CMU theorists’ account. 

    Suppose we have two bags of marbles, all of which are either big or small, and red or 

blue. Suppose in each bag, the proportion of big marbles that are red is greater than the 

portion of small marbles that are red. Now suppose we pour all the marbles from both 

bags into a box. Would we expect the portion of big marbles in the box that are red to be 

greater than the portion of small marbles in the box that are red?  Most of us would be 

surprised to find that our usual expectation is incorrect. The big marbles in bag 1 have a 

higher ratio of red to blue marbles than do the small marbles; the same is true about the 

ratio in bag 2. But considering all the marbles together, the small marbles have a higher 

ratio of reds to blues than the big marbles do. To help understand this scenario, we 

provide the following example.  



12 

 

Simpson’s Paradox (Marble Example) 

 

Marbles of two 

sizes 

Bag 1 Bag. 2 Red marbles rates Overall  

rates for red 

marbles Red Blue Red Blue Bag 1 Bag 2 

Big marbles 180 20 100 200 90% 33% 56% 

Small marbles 480 120 10 90 80% 10% 70% 

 

     Table 5  

In Table 5, we find that in both bags, big marbles have a higher ratio of red to blue 

marbles than the small marbles do (bag 1: 90% > 80% and bag 2: 33% >10%). When all 

marbles are pooled together in one bag, the small marbles, however, have a higher ratio 

of red to blue marbles than do the big marbles (in the combined bag: 70% > 56%). We 

argue that this is a case of SP since it has the same mathematical structure as the type I 

version of Simpson’s paradox. There are no causal assumptions made in this example, no 

possible causal “confounding.” But it still seems surprising. That is the point of the test 

case. We believe the test case shows that at least sometimes there is a purely 

mathematical mistake about ratios that people customarily make. Some statisticians 

might be tempted to contend that even in this situation there is confounding between the 

effects of the marble size on the color with the effects of the bag on the color. However, 

this confounding is not a causal confounding on which the causal account rests since one 

cannot say that bag 1 has caused big marbles to become more likely to be red or that bag 

2 has caused big marbles to become more likely to be blue. In short, one must admit that 

the above counter-example does not involve causal intuitions, yet it is still a case of SP. 

      It must also be admitted that there are all sorts of complexities about going from 

correlation to causation. Correlations are not causes, though correlations are part of the 

evidence for causes. But what is paradoxical about SP has little to do with these 

complexities; there is simply a mistaken inference about correlations, which are really 



13 

 

just ratios. Of course, when there are different correlations available which may seem to 

support conflicting causal inferences, the inference from correlations to cause becomes 

much more difficult; no one could reasonably deny that. We certainly admit that 

surprising facts about proportions come up frequently when we infer causes from 

proportions.  This is when our mistakes about proportions seem most troubling to us. But 

the paradoxical nature of the examples really lies in the mistaken assumptions about the 

correlations (ratios) themselves. 

 

5. Comparison 

      We contend that whether SP has anything to do with causality depends on which 

question (noted above) we are asking. Although first two questions are no doubt distinct, 

our formal reconstruction of the paradox provides a unified account of them, which 

empirical studies we have carried out both illustrate and amplify We now discuss the 

results of two additional experiments. One involves a version of the paradox in non-

mathematical language and the second one is in mathematical language. The purpose of 

this set of experiments is to determine student responses to the questions below. The non-

mathematically explained case of the paradox is: 4 

 

 

                                                           
4
Here, we are overlooking various subtleties involved in setting up those experiments. We offered two 

separate pages to each student at two different times during a one-hour class period, and two students 

sitting next to each other were given two different pages which contained the same target questions, but in a 

different order. We did not want students to know what we were planning to test, nor did we want each 

student to know exactly what the student sitting next to him/her was doing. Often many of the survey 

questions are irrelevant to the target questions. For example, we asked, “is there life in Mars”? For fuller 

versions of those two experiments administered to the students during their class hours please contact the 

authors. 
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    There are only two high schools in a certain school district. Given that the graduation rate for 

girls in School #1 is higher than the graduation rate for boys in School 1, and that the graduation 

rate for girls in School #2 is higher than the graduation rate for boys in School 2. Does it follow 

that the graduation rate for girls in the district is higher than the graduation rate for boys in the 

district? 

 

Which one of the following is true? 

 

a. Yes, the graduation rate for girls is greater than it is for boys in the district. 

b. No, the graduation rate for girls is less than it is for boys in the district. 

c. No; the graduation rates for girls and boys are equal in the district 

d. No inference could be made about the truth or falsity of the above because there 

is not enough information. 

The mathematical case of the paradox is: 
 

1. (f1/F1) > (m1/M1). 

2. (f2/F2)  > (m2/M2).  

3. Does it follow that 
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    Which one of the following is true? 

 

(a) Yes, the first expression is greater than the second. 

(b) No, the first expression is less than the second. 

(c) No, the first and second expressions are equal. 

(d) No, inference could be made about the truth or falsity of the above because 

there is not enough information. 

 

 

The correct answer to both questions is (d). Data were collected from 106 students (n). 

We found that for the non-mathematical question, students chose response (a) 83% of the 

time which involves the mistaken use of the collapsibility principle which is a non-causal 

numerical inference principle. They correctly responded choosing (d) only 12% of the 

time. For the mathematical question, they are right at the rate of 29%, whereas they have 

committed the error at 57% of the time. A test of the null hypothesis of no difference in 

the rate of errors between the two versions of the questions produces evidence of a 

statistically significant difference in the error rates (P-value < 0.0001). This just means 
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that the two types of questions produce different error rates.5  Similar surveys over many 

years of students in philosophy classes have manifested the same patterns of responses. 

The varying error-rate in two types of questions is clearly evidence for the statistical 

difference between them without implying that this statistical difference has any deep 

philosophical bearing on our discussion, since a large number of students committed the 

same type of error by misapplying the collapsibility principle in both cases.  

    The math version of the paradox exactly mirrors our test case which does not involve 

any causal intuition whatsoever. In turn, the math version also has similar structure as the 

non-math version of our experiment involving the paradox. Consequently, it will be a 

mistake to think that the subjects’ responses have exploited a causal intuition underlying 

different versions of the paradox based on the reason that there is no difference between 

these two experiments, as they exhibit the similar mathematical structure. Most subjects 

mistakenly applied the non-causal principle CP.  

    Consider Spirtes, Glymour and Scheines’ comments that Simpson’s worry has a causal 

story, i.e., whether to recommend “treatment” or “leave the patients untreated.” They 

show clearly that the source of their recommendation about SP lies in their causal 

analysis, especially when they recommend “control” in the medical example using 

intervention and other causal machinery, and recommend planting “white verities” in the 

agricultural example, finding the same causal dependency between plants’ height and 

color both in sample and population. Two points need to be mentioned clearly here.  

                                                           
5Why the students provided a different type of response with regard to the math formulation of the paradox 

could be an interesting topic to speculate. Students may be frightened by mathematics, and when faced with 

(d) “non inference is possible”, might consider it to be an easy alternative. However, this type of 

speculation goes beyond the scope of the paper. 
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      First, there is no point in denying that there are causal considerations involved in 

examples, the medicine and agricultural examples. They have no doubt contributed to our 

understanding regarding how to address the “what to do” question. Doing is almost always 

causing something to happen or to be the case. So to know what to do, we generally need 

to know how to cause something. In the agricultural example, if the decision is about what 

to plant to get the best yield, then it seems that causal issues settle the case. If we have no 

way of controlling how many tall plants are produced except by choosing whether to plant 

the white or black variety, and what we are interested in is what strategy will produce the 

highest yield, then this settles which yield statistics to pay attention to. However, if the 

decision question is instead about how to develop varieties producing higher yields, then 

perhaps one would want to focus on the fact that the most important factor to work on is 

the size of the plants. So for that question, the subgroup statistics would be relevant. 

The second point is about our assumption that the causal decision theory is correct. It 

is hard to see why one would recommend doing something that is merely correlated with a 

good result if there is no relevant cause underlying the correlation. Given a set of options 

constituting a decision situation, decision theory recommends an option which maximizes 

utility. It makes an appraisal of an option’s utility by computing that option’s expected 

utility. This account exploits probabilities and utilities of an option’s possible outcome to 

calculate its expected utility. Here, probabilities in question are dependent on the option. 

What is distinctive about causal decision theory is that it adopts the dependence of 

probabilities on the option to be causal rather than merely evidential. Since the what-to-do 

question is a decision theoretic question and we agree with causal theorists that causal 
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considerations settle the issues, we will assume the recommendations provided by causal 

decision theory to be the correct with regard to both medical and agricultural examples. 

       Given what is discussed so far about the causal theorists’ stance toward the what-to-

do question one realizes that they have in fact addressed the “what-to do-”question. We, 

however, argue that they fail to provide an adequate response to the first two questions. 

We have already provided a counter-example showing that SP has nothing to do with 

causality in so far as the first two questions are concerned. But SP still seems surprising 

because the CP violation is what causes this “paradoxical” result. In addition to the fact 

that the casual theorists have not provided an explanation for its surprising nature, they 

didn’t actually provide conditions for the paradox to arise, our second question about the 

paradox. We don’t deny that causal inference plays a crucial role in addressing the “what-

to-do” question. In short, Spirtes et al. address the third question, but not the first two 

questions, thus failing to distinguish the three types of questions with regard to the 

paradox. The following table summarizes how the two approaches have addressed three 

types of questions. 

Simpson’s Paradox and Three Types of Questions 

Approaches Why paradoxical? 
What conditions 

needed for SP? 
What to do? 

Causal 
No  explanation 

provided 

No specific conditions 

provided 

Exploits the  idea of 

intervention 

Logic-based 
The failure of 

collapsibility principle 

Two conditions 

provided 

 

Agrees with the causal 

approach 

supplemented with 

causal decision theory 

 

Table 6 
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6. A possible objection to our account: 

        One objection that has been raised recently against our account is that the real crux 

of the paradox lies in knowing why it has happened rather than how to recognize the 

paradox when it did.6 According to this objection, causal theorists are interested in the 

deeper “why” question. The objector even contends that it is not even hard to provide a 

causal story behind our counterexample.  

          If one were asked why the ratios of small red to small blue and large red to large 

reds of the bag of marbles in the hobby store are what they are, one could provide 

plausible causal explanations. The manufacturing or packaging process might have 

favored this ratio, for example. The objector continues that perhaps blue marbles are 

made of more brittle materials, and so break and are defective more often (or the blue 

material is more expensive and so the manufacturer wanted a good ratio of blue to red 

marbles loads with small blues and large reds, or so on). Moreover, we will always look 

for a causal account rather than rest content with a statistical anomaly. 

      People may make this causal assumption. One needs to be reminded, however, of our 

original question: what makes the SP paradoxical? But, (a) our claim about the 

paradoxical nature of SP is independent of our ability to come up with plausible 

explanations, (b) we have gathered empirical evidence to support our claim that people 

extend the collapsibility principle across the board, and (c) we have demonstrated how 

the collapsibility principle in SP cases leads directly to contradiction. 

     This new “defense” of the causal theorists changes the question. Instead of asking 

what makes the SP paradoxical, it asks why we got the paradoxical data. We are not 

                                                           
6 Our APA commentator has suggested this way-out for causal theorists. 
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committed to denying that there is typically a causal story about how we came up with 

the data, although it could perfectly well be a coincidence. And indeed, we have 

investigated how evidence can be assessed for SP to be able to rule out its occurrence just 

by chance.7 

   

7. Conclusion: 

In the first epigram for this paper, as the CMU theorists write, “[t]he skeptic about 

causality pushes the brake pedal to make his car slow, flips a switch to make a lamp 

glow, puts his money in the bank to collect interest.” (Spirtes, Glymour, and Scheines, 

2000, p. 2.)  In the same vein, Pearl notes, physicists have “continued to write equations 

in the office and talk cause-effect in the cafeteria. Physicists talk, write, and think one 

way and formulate physics in another.” (Pearl, 2009, pp. 407-8) In the light of the data 

presented above, how do we make sense of what they claim? Their underlying theme is 

that many skeptics’ theoretical attitudes toward causality do not agree with their 

psychological attitudes toward it. Yet in a straightforward sense, our experimental data 

have shown that psychological attitudes concerning causality do not always enter into SP 

examples. In fact, the generation of the paradox has nothing to do with causality, since 

the principle of collapsibility is non-causal. The role of causation in explaining what SP 

is and why it occurs could be left aside, even if causality remains important to resolving 

both the most common instances of SP and the what -to -do –questions”. 

We showed that Simpson’s paradox can be generated in a straightforward 

deductive way. Among its premises is concealed a distinctly human dimension. In recent 

                                                           
7 (Unpublished) 
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years, there has been a great deal of discussion of human frailty in connection with an 

individual’s assessment of probabilistic statements (Kahneman et al., 1982; Kahneman, 

2011). Our resolution of the paradox has illuminated another aspect of human frailty. We 

explained its apparent paradoxical nature by invoking the failure of our widespread 

intuitions about numerical inference. The failure of collapsibility, which is non-causal, in 

Simpson’s paradox-type cases is what makes them puzzling, and the latter is what paints 

a human face onto the rather abstract structure of “Simpson’s paradox.”  

As George Berkeley once observed, philosophers “have first raised a dust and 

then complain that [they] cannot see” (Berkeley, 1710). Failing to see the relevance of the 

three types of questions is what we consider to be the dust that revolves round the 

paradox. Once the dust has settled, we perceive that the two experiments regarding the 

paradox have even brought a new flavor to doing “experimental philosophy,” since it 

allows us to decide between two competing accounts of the paradox, (i) causal and (ii) 

non-causal accounts. However, strictly speaking, which account is the correct one 

depends entirely on which of the three questions we are asking. This oversight, we 

contend, is the root cause of the debate over the true nature of Simpson’s paradox that the 

causal theorists have sorely missed. 
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