Skip to main content
Log in

An approach to infinitary temporal proof theory

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract.

Aim of this work is to investigate from a proof-theoretic viewpoint a propositional and a predicate sequent calculus with an ω–type schema of inference that naturally interpret the propositional and the predicate until–free fragments of Linear Time Logic LTL respectively. The two calculi are based on a natural extension of ordinary sequents and of standard modal rules. We examine the pure propositional case (no extralogical axioms), the propositional and the first order predicate cases (both with a possibly infinite set of extralogical axioms). For each system we provide a syntactic proof of cut elimination and a proof of completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambler, S., Kwiatkowska, M., Measor, N.: Duality and the completeness of modal μ–calculus. Theor. Comp. Sci. 151, 3–27 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baratella, S., Masini, A.: A proof-theoretic investigation of a logic of positions. Ann. Pure Appl. Logic 123, 135–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basin, D., Matthews, S., Viganò, L.: Labelled modal logics: quantifiers. J. Logic, Lang. Inf. 7–3, 237–263 (1998)

    Google Scholar 

  4. Cerrito, S., Cialdea Mayer, M.: Bounded model search in linear temporal logic and its application to planning. In: H. De Swart (ed.) Automated Resoning with Analytic Tableaux and Related Methods, Lec. Notes in Artificial Intelligence, 1937, (Springer, Berlin, 1998), pp. 141–152

  5. Emerson, E.A.: Temporal and modal logic. In: J. van Leeuwen (ed.), Handbook of theoretical computer science. Vol. B: formal models and semantics (Elsevier, Amsterdam, 1990), pp. 995–1072

  6. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs as fixpoints. In: Proc. 7th Int. Colloq. Aut. Lang. Prog., Lec. Notes in Comp. Sci. 85, (Springer, Berlin, 1981), pp. 169–181

  7. Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal logic: mathematical foundations and computational aspects. Vol. 1. (Oxford University Press, Oxford, 1994)

  8. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proc. 7th ACM Symposium on Principles of Programming Languages (ACM Press, 1980), pp. 163–173

  9. Garson, J.W.: Quantification in modal logic. In: D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol II (Reidel, Dordrecht, 1984), pp. 249–307

  10. Girard, J.-Y.: Proof theory and logical complexity, vol. I (Bibliopolis, Napoli, 1987)

  11. Guerrini, S., Martini, S., Masini, A.: An analysis of (linear) exponentials based on extended sequents. Logic J. IGPL, 6, 735–753 (1998)

    Google Scholar 

  12. Harel, D.: Dynamic Logic. In: Handbook of Philosophical Logic. Vol. II. Extensions of classical logic. D. Gabbay and F. Guenthner (eds.), Synthese Library 165, (D. Reidel Publishing Co., 1984), pp. 497–604

  13. Kamp, J.: Tense logic and the theory of linear order. Ph.D Thesis, UCLA, USA 1968

  14. Martini, S., Masini, A.: A computational interpretation of modal proofs. In: H. Wansing (ed.), Proof theory of modal logic, (Kluwer, 1996), pp. 213–241

  15. Masini, A.: 2-sequent calculus: a proof theory of modalities. Ann. Pure Appl. Logic 58, 229–246 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pnueli, A.: The temporal logic of programs. 18th Annual Symposium on Foundations of Computer Science (Providence, R.I., 1977), IEEE Comput. Sci., Long Beach, Calif, 1977, pp. 46–57

  17. Reynolds, M.: An axiomatization of full computation tree logic. J. Symbolic Logic, 66–3, 1011–1057 (2001)

    Google Scholar 

  18. Schütte, K.: Proof theory, Translated from the revised German edition by J. N. Crossley. Grundlehren der Mathematischen Wissenschaften, Band 225. (Springer–Verlag, Berlin–New York, 1977)

  19. Segerberg, K.: A model existence theorem in infinitary propositional modal logic. J. Philos. Log. 23–4, 337–367 (1994)

    Google Scholar 

  20. Sisla, A., Clarke, E.: The complexity of propositional linear temporal logic. J. ACM 32–3, 733–749 (1985)

    Google Scholar 

  21. Szalas, A.: A complete axiomatic characterization of first-order temporal logic of linear time. Theoret. Comput. Sci. 54–2-3, 199–214 (1987)

    Google Scholar 

  22. Szalas, A.: On natural deduction in first-order fixpoint logics. Fundamenta Informaticæ 26, 81–94 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Takeuti, G.: Proof theory (North-Holland, Amsterdam, 1975)

  24. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logic of programs. J. Comput. Sys. Sci. 32, 183–221 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Masini.

Additional information

Supported by MIUR COFIN 02 ‘‘Teoria dei Modelli e Teoria degli Insiemi, loro interazioni ed applicazioni’’.

Supported by MIUR COFIN 02 ‘‘PROTOCOLLO’’.

Mathematics Subject Classification (2000):03B22, 03B45, 03F05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baratella, S., Masini, A. An approach to infinitary temporal proof theory. Arch. Math. Logic 43, 965–990 (2004). https://doi.org/10.1007/s00153-004-0237-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-004-0237-z

Key words or phrases:

Navigation