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Introduction 
 
Automatic facial expression measurement systems have been under development since the 
early 1990ʼs. The early attempts worked well in highly controlled conditions, but failed for 
spontaneous expressions, and real application environments. Automatic facial expression 
recognition has now advanced to the point that we are able to apply it to spontaneous 
expressions.  These systems extract a sufficiently reliable signal that we can employ them in 
behavioral studies and to begin to develop applications that respond to spontaneous 
expressions in real time.   
 
Tools for automatic expression measurement will bring about paradigmatic shifts in a number of 
fields by making facial expression more accessible as a behavioral measure. Previous 
behavioral studies employed objective coding of facial expression by hand, which required 
extensive training and could take hours to code each minute of video.  The automated tools will 
enable new research activity not only in psychology, but also in cognitive neuroscience, 
psychiatry, education, human-machine communication, and human social dynamics. Statistical 
pattern recognition on large quantities of video data can reveal emergent behavioral patterns 
that previously would have required hundreds of coding hours by human experts, and would be 
unattainable by the non-expert. The explosion of research in these fields will also provide critical 
information for computer science and engineering efforts to make computers and robots that 
interact effectively with humans and understand nonverbal behavior. Moreover, automated facial 
expression analysis will enable investigations into facial expression dynamics that were 
previously intractable by human coding because of the time required to code intensity changes. 
 
This chapter first overviews the state of the art in computer vision approaches to facial 
expression recognition, including methods for characterizing expression dynamics. The chapter 
then reviews behavioral studies that have employed automatic facial expression recognition to 
learn new information about the relationships of facial expression to internal state, and reviews 
the first generation of applications in learning and education that take advantage of the real-time 
expression signal.  
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State-of-the-art in computer vision approaches to automatic facial 
expression measurement 
 
Automated facial expression recognition systems have been under development since the early 
1990ʼs (e.g. Mase 1991; Cottrell and Metcalfe, 1991). While the early systems worked well for 
the face video on which they were developed, generalization to new individuals, and new 
camera conditions, even when approximately frontal and well lit, remained a major challenge. 
Performance on spontaneous expressions tumbled to near chance.  Much of the current 
research has focused on achieving robustness through machine learning, or statistical models, 
where the system parameters are estimated from large data samples. Advances have also 
included more informative image features and robust motion tracking.  
 

----------------------------------------------- 
INSERT FIGURE 1 ABOUT HERE 
----------------------------------------------- 

 

Automatic expression recognition systems share a similar overall architecture, shown in Figure 
1, (1) The face is first localized in the image; (2) Information about the image is extracted from 
the face region (“feature extraction”); and (3) this information used to make a decision about 
facial expression (“classification”). The most important ways in which expression recognizers 
differ is the type of features extracted, the method of classification, and the integration of 
information over time. Below we overview these steps, and review some of the strengths and 
weaknesses of current approaches.  For a more thorough analysis and comparison, the 
reviewer is referred to the survey papers (Tian et al., 2003; Fasel and Luettin, 2003; Pantic and 
Rothkrantz, 2000; Zeng et al., 2009).  
 
Feature Types 
 
Image features for expression recognition fall into three main categories: geometric features, 
motion features, and  appearance-based features. Geometric features include the shape of the 
mouth or eye opening,  relative distances between fiducial points such as the inner eyebrows, or 
relative positions of many points on a face mesh; (see Tian et al., 2001, for an example).  
 
Motion features consist of displacements estimated by tracking individual feature points or 
tracking more complex shapes. Motion tracking continues to be a highly challenging area of 
computer vision research, in which even state-of-the-art tracking algorithms are subject to drift 
after a couple of seconds of tracking, and require re-initialization. Drift refers to an accumulation 
of position error over time. A particular challenge is that most tracking algorithms depend on a 
brightness constraint equation which assumes that brightness has neither been added nor 
subtracted from the image, but rather it has just moved.  Facial expressions include numerous 
violations of this constraint, including lips parting to show the teeth, and wrinkling.  
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Appearance-based features attempt to extract information about the spatial patterns of light and 
dark in the face image.  This information is typically extracted by applying banks of image filters 
on the pixel intensities. An image filter is like a template match. The more similar the image 
window is to the spatial pattern in the 2-D filter, the higher the output value. Commonly used 
features include Gabor filters (e.g. Bartlett et al., 2006), eigenfaces (e.g. Cottrell and Metcalfe, 
1991), independent component filters (e.g. Donato et al., 1999), integral image filters (Wang et 
al., 2004; Whitehill et al.,  2009), and histograms of edges at different spatial orientations (Levi 
and Weiss, 2004). Gabor filters, for example, are akin to a local Fourier analysis on the image 
obtained by applying templates of sine wave grating patches at multiple spatial scales, 
orientations, and positions on the image. Since the dimensionality of appearance-based feature 
vectors is high, on the order of tens of thousands of features, practical expression recognition 
systems typically require thousands of training images to achieve robust performance. Machine 
learning systems taking large sets of appearance-features as input, and trained on a large 
database of examples, are emerging as some of the most robust systems in computer vision for 
tasks such as face detection (Viola and Jones, 2004; Fasel et al., 2005), feature detection 
(Vukadinovic and Pantic, 2005; Fasel, 2006), identity recognition (Phillips et al., 2006), and 
expression recognition (Littlewort et al., 2006). Appearance-based features also donʼt suffer 
from drift, which is a major challenge for motion tracking.  
 
Active Appearance Models (AAMs) integrate elements from geometric, tracking, and 
appearance-based approaches (Cootes et al., 2001; Lucey et al., 2006; Huang et al., 2008).  
AAMʼs are essentially a method for robust tracking of a set of facial landmarks by fitting the face 
image to a flexible face model.  This flexible face model contains information not only about how 
landmark positions change with expression, but also how the image graylevels near the 
landmark points change in appearance. Robustness is achieved by constraining the motion 
tracking to fit statistical models of both the shape and appearance of the face. The approach 
requires a set of training images, usually of the individual face to be tracked, in which multiple 
landmark positions have been labeled as the face undergoes a range of facial expression 
changes that spans the tracking requirements in the run-time system. AAMʼs have performed 
well on individuals in which models have been trained, but have difficulty generalizing to novel 
individuals. Approaches to improve generalization of AAMʼs to novel faces is an area of active 
research. It is of note that AAM approaches to expression recognition typically use just the final 
landmark displacement information for expression recognition.  
 
It is an open question which feature class, appearance-based, motion-based, or geometric, are 
best for expression recognition.  Several studies that suggest that appearance-based features 
may contain more information about facial expression than displacements of a set of points 
(Zhang et al., 1998; Donato et al., 1999), although findings are mixed (e.g., Pantic and Patras, 
2006). One compelling finding is that an upper-bound on expression recognition performance 
using hand-labeled feature positions (e.g. Michel and El Kaliouby, 2003) was found to be lower 
than the performance of a fully automated system using appearance-based features, tested on 
the same dataset (Littlewort et al., 2006).  However there is no question that motion is an 
important signal, and may be crucial for detecting low intensity facial expressions.   Ultimately, 
combining appearance-based and motion-based representations may be the most powerful, 
and there is some experimental evidence that this is indeed the case (e.g., Bartlett et al., 1999).  
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All three classes of features are highly affected by out-of-plane head rotations. Most systems 
require head pose to remain within about 10-20 degrees of a fully frontal view.  Methods of 
handling out-of-plane rotation are an area of active research, and include learning view specific 
expression detectors for profile views (Pantic and Patras, 2006), or mapping onto a 3D head 
model, rotating to frontal, and re-projecting (e.g. Bartlett et al., 2002).  As cameras and data 
storage become less expensive, multi-camera approaches are emerging as one of the more 
effective ways to address this problem.  
 
Classification Methods 
 
After image features are extracted from the face, a decision is made about facial expression 
based on the set of image measures. A few systems have used rule-based classifiers in which 
the mapping from feature values to facial expression is defined manually (e.g. Moriyama et al., 
2002). For the most part, however, facial expression recognition systems use machine learning-
based classifiers, such as neural networks (Tian et al., 2001), and more recent variants on 
neural networks such as support vector machines (Bartlett et al., 2006) and Adaboost (Tong et 
al., 2007; Whitehill et al., 2009), to make a decision about the facial expression in the image.  
Generally, the machine learning based classifiers, when trained on large amounts of data, give 
rise to more robust systems.   
 
Methods of Integrating Over Time 
 
There is a large body of research showing that the dynamics of facial expressions (i.e., the 
timing and the duration of muscle movements) are crucial for interpretation of human facial 
behavior (Russell and Fernandez-Dols, 1997; Ekman and Rosenberg, 2005; Frank et al., 1993; 
Valstar et al. 2006).  In recognition of this, several  computational methods have been explored 
for integrating information over time, and this is an active area of current research.  Approaches 
include employing spatio-temporal image features, such as spatio-temporal Gabor filters or 
motion energy filters (e.g. Yang et al., 2007). Another method is to compute expression 
estimates, using only spatial features for each video frame and then combining these with a 
dynamic time series model such as a Hidden Markov Model (e.g. Zhang et al., 2008; el Kalioubi 
and Robson, 2005; De La Torre et all, 2007, Chang et al., 2006).  
 
Levels of Description 
 
Another consideration in facial expression recognition is the level of categorization of the 
stimulus. One approach is to recognize facial expressions according to a categorical model, for 
example, at the level of basic emotions such as happy, sad, afraid, etc.  However there may be 
many states of interest, such as stress, interest, and fatigue, or variants of an emotion, such as 
frustration, annoyance, and rage, and the facial configurations of these states may be unknown.  
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A second, more flexible approach is to recognize individual facial actions (Facial Action Units 
(AUs), Ekman and Friesen, 1978), which can then be combined if categorical representations 
are required. An advantage of facial action systems is that they provide a more objective 
description of the facial expression, and enable discovery of new associations between facial 
movement and an emotional or cognitive state. The facial action coding system (FACS) (Ekman 
and Friesen, 1978) is a widely used method for coding facial expressions in the behavioral 
sciences. The system describes facial expressions in terms of 46 component movements, which 
roughly correspond to the individual facial muscle movements. An example is shown in Figure 2. 
Because it is comprehensive, FACS has proven useful for discovering new associations 
between facial movements and affective or cognitive states (see Ekman and Rosenberg, 2005) 
for a review of facial expression studies using FACS). The primary limitation to the widespread 
use of FACS is the time required to manually code the individual facial actions by human 
experts.  It takes over 100 hours of training to become proficient in FACS, and it takes 
approximately 2 hours for human experts to code a single minute of video. An automated 
system for facial action coding would enable a large range of new research in behavioral 
science.  

 
----------------------------------------------- 
INSERT FIGURE 2 ABOUT HERE 
----------------------------------------------- 

 
Another parameterized expression coding system is the Facial Animation Parameters (FAPS) in 
the MPEG4 video standard (Pandzic and Forchheimer, 2002). FAPS codes the movements of a 
set of 66 facial feature points.  This coding standard is an important advance in terms of 
compatibility of multiple systems.  A drawback is that it was developed by engineers with 
experience in speech animation, not facial expression. The set of feature points provide sparse 
information on many behaviorally relevant movements other than those immediately around the 
mouth, and it also encourages systems to ignore appearance changes, resulting in the plastic 
looking animations in computer generated films such as Polar Express. However, FACS is not 
well suited for coding speech movements.  Some combination of the two systems may avoid the 
problems inherent in each. 
 
 
Training images and spontaneous expressions 
 
For the task of learning categorical models, often a set of undergraduates or professional actors 
will be used to pose the desired facial expression.  However, these posed expressions often 
differ from their spontaneous counterparts. Spontaneous and posed expressions have different 
structural and temporal properties. Part of the reason for these differences is physiological. It is 
well known that there are two distinct neural pathways for posed and spontaneous facial 
expressions, each one originating in different areas of the brain (see Rinn, 1984, for a review). 
Subcortically initiated facial expressions (the spontaneous group) are characterized by 
synchronized, smooth, symmetrical, and ballistic muscle movements whereas cortically initiated 
facial expressions (posed expressions) tend to be less smooth, with more variable dynamics, 
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and less synchrony among different muscles (Rinn, 1984; Frank et al., 1993; Schmidt et al., 
2003; Cohn and Schmidt, 2004). Because of these differences, it is important to employ 
databases of spontaneous expressions, such as the drowsiness example described later in this 
chapter. While this is recognized by many research groups, elicitation and verification of the 
desired states is a major research challenge. (See Cowie 2008.) 
 
Approaches that focus on recognition of elemental facial movements such as facial actions have 
another set of challenges for development of training data  Such approaches require expert 
coding of face video, which is expensive and time consuming.  
 
For both approaches,  large numbers of training examples are required in order to recognize 
facial behavior with robustness. Moderate performance can be attained with tens of examples 
(Bartlett et al., 2003), and asymptotes with tens of thousands of examples (Whitehill et al., 
2009).  Experience in our lab has suggested that automated detection of facial actions, where 
the AU detectors were developed from a large number of training samples, provides a good 
foundation for subsequent recognition of subject states for which there may be a much smaller 
number of samples.  
 
The precision of automated facial expression recognition systems depends on the richness of 
the training set. It is essential to not only have a good range of positive examples (images 
containing the target expression) but also to have a good range of negative examples (images 
to which your system should respond ʻnot happyʼ). The negative set is often overlooked, at great 
peril, as this can lead to false positives when the system is applied to real behavior. (See 
Whitehill et al., 2009).  
 
 
The Computer Expression Recognition Toolbox 
 
A number of the system features described above have been combined into a end-to-end 
system for fully automated facial expression recognition, called the Computer Expression 
Recognition Toolbox (CERT). CERT was developed at developed at University of California, 
San Diego, originating from a collaboration between Ekman and Sejnowski  (Bartlett et al., 
1996, 1999, 2006; Donato et al., 1999; Littlewort et al., 2006). The current system automatically 
detects frontal faces in the video stream and codes each frame with respect to 40 continuous 
dimensions, including basic expressions of anger, disgust, fear, joy, sadness, surprise, 
contempt, a continuous measure of head pose (yaw, pitch, and roll), as well as 30 facial action 
units (AUʼs) from the Facial Action Coding System. See Figure 3. 
 
The technical approach to CERT is an appearance-based, discriminative approach. As 
described above, these approaches have proven highly robust and fast for face detection and 
tracking (e.g. Viola and Jones, 2001),  do not suffer from initialization and drift, which presents 
challenges for state of the art tracking algorithms, and take advantage of the rich appearance-
based information in facial expression images. Face detection, as well as detection of internal 
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facial features, is first performed on each frame using a generalization of the Viola and Jones 
face detector (Fasel et al. 2005). The automatically located faces are then aligned using a fast 
least squares fit on the detected features, and finally passed through a bank of Gabor filters at 8 
orientations and 9 spatial frequencies (2:32 pixels per cycle at 1/2 octave steps). Output 
magnitudes are then normalized and passed to facial action classifiers.   
 
Facial action detectors were developed by training separate support vector machines to detect 
the presence or absence of each facial action.  The training set consisted of over 10,000 images 
that were coded for facial actions from the Facial Action Coding System, including over 5000 
examples of spontaneous expressions. Tests on a benchmark dataset (Cohn-Kanade) show 
state of the art performance for recognition of basic emotions (98% correct detection for 1 vs. 
all, and 93% correct for 7 alternative forced choice of the six basic emotions plus neutral), and 
for recognizing facial actions from the Facial Action Coding System (mean .93 area under the 
ROC1 curve for posed facial actions, .84 for spontaneous facial actions with speech). The 
system outputs a continuous value for each emotion and each facial action.  These outputs are 
significantly correlated with the intensity of the facial action (Bartlett et al., 2006; Whitehill et al, 
2009). More information about the facial expression detection system can be found in Bartlett et 
al., 2006. 

----------------------------------------------- 
INSERT FIGURE 3 ABOUT HERE 
----------------------------------------------- 

 
This system was employed in some of the earliest experiments in which spontaneous behavior 
was analyzed with automated expression recognition (Bartlett et al., 2008). These experiments 
addressed automated discrimination of posed from genuine expressions of pain, automated 
detection of driver drowsiness, adaptive tutoring systems, and an intervention for children with 
autism. The analysis revealed information about facial behavior that were previously unknown, 
including the coupling of movements. These experiments are described in the next section, 
along with landmark studies from other research labs, which were among the first to employ 
computer vision for basic research into  facial behavior.  
 

Applications to basic research in human behavior, education, and 
medicine 
 
Pain, Fatigue, and Stress 
 

                                                
1 The Receiver Operator Characteristic curve (ROC) plots hits against false alarms as the 
decision threshold shifts from one extreme to the other.  The area under the ROC is 0.5 for a 
system at chance and 1 for perfect detection.  It is equivalent to percent correct on a 2-
alternative forced choice in which a target and non-target are randomly selected and the system 
must choose which is the target (Green & Swets, 1966).  
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Automated Discrimination of Real From Faked Expressions of Pain. Given the two different 
neural pathways for facial expressions, one may expect to find differences between genuine and 
posed expressions of states such as pain. The ultimate goal of this work is not the detection of 
malingering per se, but rather to demonstrate the ability of an automated system to detect facial 
behavior that the untrained eye might fail to interpret, and to differentiate types of neural control 
of the face.  It holds out the prospect of illuminating basic questions pertaining to the behavioral 
fingerprint of neural control systems, and thus opens many future lines of inquiry.   
 
In a study by Littlewort and colleagues (2009), the computer expression recognition toolbox 
(CERT) was applied to spontaneous and posed facial expressions of pain (Figure 4). In this 
study, 26 participants were videotaped under three experimental conditions: baseline, posed 
pain, and real pain. The real pain condition consisted of cold pressor pain induced by 
submerging the arm in ice water. The study assessed whether the automated measurements 
were consistent with expression measurements obtained by human experts, and developed a 
classifier to automatically differentiate real from faked pain in a subject-independent manner 
from the automated measurements. A machine learning approach was employed in a two-stage 
system. In the first stage, a set of 20 detectors for facial actions from the Facial Action Coding 
System operated on the continuous video stream. This data was then passed to a second 
machine learning stage, in which a nonlinear support vector machine (SVM) was trained to 
detect the difference between expressions of real pain and fake pain. Measures of AU dynamics 
were extracted from the CERT outputs and passed to the real pain / faked pain classifier.  
 
Naïve human subjects tested on the same videos were at chance for differentiating faked from 
real pain expressions, obtaining only 49% accuracy, where chance is 50%.  The automated 
system was successfully able to differentiate faked from real pain. In an analysis of 26 subjects 
with faked pain before real pain, the system obtained 88% correct for subject independent 
discrimination of real versus fake pain on a 2-alternative forced choice. Moreover, the most 
discriminative facial actions in the automated system were consistent with findings using human 
expert FACS codes.  In particular, in the faked pain condition the automated system output 
showed exaggerated activity of the brow lowering action (corrugator, as well as inner brow raise 
(central frontalis), and eyelid tightening, which were consistent with a previous study on faked 
versus real cold pressor pain that employed manual FACS coding (LaRochette et al., 2006).  
 
The temporal event analysis performed significantly better than a SVM trained just on individual 
frames, suggesting that the real versus faked expression discrimination depends not only on 
which subset of AUʼs are present at which intensity, but also on the duration and number of AU 
events. 

----------------------------------------------- 
INSERT FIGURE 4 ABOUT HERE 
----------------------------------------------- 

Pain or no pain? In a related study, Ashraf et al (2007) measured the ability of an automated 
facial expression recognition system to estimate pain intensity using a system developed at 
Carnegie Mellon University (CMU). Pain is typically assessed by patient self-report. Self-
reported pain, however, is difficult to interpret and may be impaired or not even possible, as in 
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young children or the severely ill. Behavioral scientists have identified reliable and valid facial 
indicators of pain. Until now they required manual measurement by highly skilled observers. 
Ashraf et al. developed an approach that automatically recognizes acute pain. Adult patients 
with rotator cuff injury were video-recorded while a physiotherapist manipulated their affected 
and unaffected shoulder. Skilled observers rated pain expression from the video on a 5-point 
Likert-type scale. From these ratings, sequences were categorized as no-pain (rating of 0), or 
pain (rating of 3, 4, or 5).  Ratings of 1 or 2 were discarded as indeterminate. They explored 
machine learning approaches for pain-no pain classification using Active Appearance Models 
(AAMs). Keyframes within each video sequence were manually labeled for the positions of 
internal facial landmarks, while the remaining frames were automatiacally tracked the positions 
of the landmarks with the AAM.  A set of appearance and shape features were then derived 
from the AAM and passed to a support vector machine for the pain/no-pain classification. The 
system achieved a hit rate of 81% for detecting pain versus no-pain.  These results support the 
feasibility of automatic pain detection from video.  
 

Automated Detection of Driver Fatigue. It is estimated that driver drowsiness causes more 
fatal crashes in the United States than drunk driving (Department	
  of	
  Transportation,	
  2001). 
Hence an automated system that could detect drowsiness and alert the driver or truck dispatcher 
could save many lives. Previous approaches to drowsiness detection by computer make 
presumptions about the relevant behavior, focusing on blink rate, eye closure, yawning, and head 
nods (Gu	
  and	
  Ji,	
  2004;	
  Zhang	
  and	
  Zhang,	
  2006). While there is considerable empirical evidence 
that blink rate can predict falling asleep, it was unknown whether there were other facial 
behaviors that could predict sleep episodes. The work described here employed machine learning 
methods to real human behavior during drowsiness episodes. The objective of this study was to 
discover what facial configurations are predictors of fatigue. In this study, facial motion was 
analyzed automatically using the Computer Recognition Toolbox (CERT). In addition, we also 
collected head motion data using an accelerometer placed on the subject’s head, as well as 
steering wheel data. (The automated yaw pitch and roll detectors had not been developed at the 
time of this study).  
 

In this study, 4 subjects participated in a driving simulation task over a 3 hour period between 
midnight and 3AM. Video of the subjectsʼ faces and time-locked crash events were recorded 
(Figure 5). The subjectsʼ data were partitioned into drowsy and alert states as follows. The one 
minute preceding a crash was labeled as a drowsy state.  A set of ʻalertʼ video segments were 
identified from the first 20 minutes of the task in which there were no crashes by any subject. 
This resulted in a mean of 14 alert segments and 24 crash segments per subject.  

 
----------------------------------------------- 
INSERT FIGURE 5 ABOUT HERE 
----------------------------------------------- 

 
In order to understand how each action unit is associated with drowsiness across different 
subjects, Multinomial Logistic Ridge Regression (MLR) was trained on each facial action 
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individually. The five facial actions that were the most predictive of drowsiness by increasing in 
drowsy states were blink, outer brow raise, frown, chin raise, and nose wrinkle. The five actions 
that were the most predictive of drowsiness by decreasing in drowsy states were smile, lid 
tighten, nostril compress, brow lower, and jaw drop. The high predictive ability of the blink/eye 
closure measure was expected. However the predictability of the outer brow raise was 
previously unknown. We observed during this study that many subjects raised their eyebrows in 
an attempt to keep their eyes open. Also of note is that action 26, jaw drop, which occurs during 
yawning, actually occurred less often in the critical 60 seconds prior to a crash.  

 
A fatigue detector that combines multiple AUʼs was then developed.  An MLR  classifier was 
trained using contingent feature selection, starting with the most discriminative feature (blink), 
and then iteratively adding the next most discriminative feature given the features already 
selected. MLR outputs were then temporally integrated over a 12 second window. Best 
performance of .98 area under the ROC was obtained with five features.  

 
We also observed changes in the coupling of behaviours with drowsiness.  For some of the 
subjects coupling between brow raise and eye openness increased in the drowsy state (Figure 
6a,b). Subjects appear to have pulled up their eyebrows in an attempt to keep their eyes open. 
Head motion was next examined. Head motion increased as the driver became drowsy, with 
large roll motion coupled with the steering motion as the driver became drowsy. Just before 
falling asleep, the head would become still. See Figure 6c,d.  

 

----------------------------------------------- 
INSERT FIGURE 6 ABOUT HERE 
----------------------------------------------- 

 
This is the first work to our knowledge to reveal significant associations between facial 
expression and fatigue beyond eyeblinks. The project also revealed a potential association 
between head roll and driver drowsiness, and the coupling of head roll with steering motion 
during drowsiness. Of note is that a behavior that is often assumed to be predictive of 
drowsiness, yawn, was in fact a negative predictor of the 60-second window prior to a crash. It 
appears that in the moments just before falling asleep, drivers may yawn less, not more, often. 
This highlights the importance of designing a system around real, not posed, examples of 
examples of fatigue and drowsiness. 
 
Automatic Detection of Stress. Dinges, et al. (2005) prototyped an automated system to 
discriminate between high and low levels of stress as expressed by a subject's face. The 
particular application that the research targeted was detection of stress in astronauts during 
space flight, but in fact the methods were quite general and were not tailored to this specific 
domain. In their experiment, 60 subjects completed a battery of computerized neurobehavioral 
tests, and the test sessions were video recorded. Tests were presented to each subject in both 
easy and difficult versions to induce stress of low and high levels, respectively. The high-stress 
version contained more difficult questions and allowed less time for answers.  
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The approach employed motion tracking followed by a dynamical model. The system tracks the 
face using a 3-D deformable face mesh that models both translation and rotation of the head 
(rigid motion) and deformations of the face itself (non-rigid motion). Feature vectors are then 
extracted from the face, including not only deformation parameters from the face mesh but also 
grayscale information from the eyes. These feature vectors are input to two dynamical models 
(Hidden Markov Models, HMMs), one trained on high-stress and the other trained on low-stress 
sequences.  The two HMMʼs output a probability estimate that the sequence of input features 
were generated under high or low stress, respectively. Dinges, et al., post-processed these 
probabilities with an additional discriminative classifier (support vector machine), for deciding 
high versus low stress.  The system was tested for subject dependent recognition. From each 
subject video, four sequences were extracted of 5-10 seconds duration. Two sequences of each 
subject (one low and one high-stress) were employed to train the system, the other two 
sequences were used for testing performance. The overall accuracy was reported at 70% for a 
high versus low stress decision.  This was above chance but below the 85% accuracy of human 
judges. This is moderate performance, but provides the first support to our knowledge for 
detection of stress states using automated expression measurement.  
 
The Science and Technology of Educating 
 
Automated Feedback for Intelligent Tutoring Systems. There has been a growing thrust to 
develop tutoring systems and agents that respond to the studentsʼ emotional and cognitive state 
and interact with them in a social manner  (e.g. Kapoor et al. 2007,DʼMello et al., 2007). 
Whitehill, et al. (2008) investigated the utility of integrating automatic facial expression 
recognition into an automated teaching system. This work used expression to estimate the 
student's preferred viewing speed of the videos, and the level of difficulty, as perceived by the 
individual student, of the lecture at each moment of time. This pilot study took first steps towards 
developing methods for closed loop teaching policies, i.e., systems that have access to real time 
estimates of cognitive and emotional states of the students and act accordingly. 
 
In this study, 8 subjects separately watched a video lecture composed of several short clips on 
mathematics, physics, psychology, and other topics. The playback speed of the video was 
controlled by the subject using a keypress. The subjects were instructed to watch the video as 
quickly as possible (so as to be efficient with their time) while still retaining accurate knowledge 
of the video's content, since they would be quizzed afterwards.  
 
While watching the lecture, the student's facial expressions were measured in real-time by the 
CERT system (Bartlett et al., 2006). After watching the video and taking the quiz, each subject 
then watched the lecture video again at a fixed speed of 1.0. During this second viewing, 
subjects specified how easy or difficult they found the lecture to be at each moment in time 
using the keyboard.  
 
For each subject, a regression analysis was performed to predict perceived difficulty and 
preferred viewing speed from the facial expression measures.  The expression intensities 
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themselves, as well as their first temporal derivatives, measuring the instantaneous change in 
intensity, were the independent variables in a standard linear regression. An example of such 
predictions is shown in Figure 7c for one subject.  
 

----------------------------------------------- 
INSERT FIGURE 7 ABOUT HERE 
----------------------------------------------- 

 
The facial expression measures were significantly predictive of both perceived difficulty (r=.75) 
and preferred viewing speed (r=.51). The correlations on validation data were 0.42 and 0.29, 
respectively. The specific facial expressions that were correlated with difficulty and speed varied 
highly from subject to subject. The most consistently correlated expression was AU 45 (``blink''), 
where  subjects blinked less during the more difficult sections of video.  This is consistent with 
previous work associating decreases in blink rate with increases in cognitive load (Holland and 
Tarlow, 1972; Tada 1986).   
 

Overall, this study provided proof of principle, that fully automated facial expression recognition 
at the present state of the art can be used to provide real-time feedback in automated tutoring 
systems. The recognition system was able to extract a signal from the face video in real-time 
that provided information about internal states relevant to teaching and learning. 
 
A related project that attempts to approximate the benefits of face-to-face tutoring interaction is 
a collaboration between the MIT media lab and the developers of AutoTutor (DʼMello et al., 
2007). AutoTutor is an intelligent tutoring system that interacts with students using natural 
language to teach physics, computer literacy, and critical thinking skills. The current system 
adapts to the cognitive states of the learner as inferred from dialogue and performance. A new 
affect sensitive version is presently under development (DʼMello, et al., 2008) which detects four 
emotions (boredom, flow/engagement, confusion, frustration) by monitoring conversational 
cues, gross body language, and facial expressions. Towards this end, they have developed a 
database of spontaneous expressions while interacting with the automated tutor, which will 
significantly advance the field.   
 
   
Applications in Neuropsychology and Medicine 
 
Facial Expression Perception and Production in Children with Autism. Children with 
Autism Spectrum Disorders (ASD) are impaired in their ability to produce and perceive dynamic 
facial expressions (Adolphs et al., 2001). Automated facial expression recognition systems can 
now be leveraged in the investigation of issues such as the facial expression recognition and 
production deficits common to children with autism spectrum disorder (ASD). Not only can these 
technologies assist in quantifying these deficits, but they can also be used as part of 
interventions aimed at reducing deficit severity. 
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The Letʼs Face It! training program (LFI!) (Cockburn et al., 2008) is an intervention for children 
with autism spectrum disorder (ASD) that has been shown to significantly improve their face 
processing abilities. However, it is only capable of improving their receptive ability. In this 
project, we introduced CERT into LFI! in order to provide the children with immediate feedback 
on their facial expression production. In a prototype game, called SmileMaze, the system 
responds to the subjectʼs smiles (Figure 8a). Such facial expression tasks engage children with 
autism and may aid in learning nonverbal behaviors essential for social functioning. Moreover, 
training in facial expression production may improve recognition, as perception and production 
have been shown to be linked in many areas of development. 
 
This convergence of expertise from computer and behavioral science provides additional 
scientific opportunities beyond development of intervention games. For example, it enables us 
to more readily explore questions such as the effect of familiarity on recognition and 
generalization. Using CERT, we can capture and quantify training stimuli from the participantʼs 
environment, including parents, teachers, siblings and friends. The use of familiar faces in the 
program may not only provide a more engaging environment for the participant, but may also 
facilitate generalization of learned skills from familiar faces to novel faces.  
 
Facial expression recognition technology also enables us to develop an “Emotion Mirror” 
application (Figure 8b) in which players control the expressions of a computer-generated avatar 
and/or images and short video clips of real faces. Here, participants can explore the same 
expression on different faces. This aids in training a generalized understanding of facial 
expressions. It also knits expressive production and perception as it is the participantʼs own face 
that drives the expressions shown on the avatar and/or image.  
 

----------------------------------------------- 
INSERT FIGURE 8 ABOUT HERE 
----------------------------------------------- 

 

A related project is underway at the MIT Media Lab (Madsen et al., 2008; Picard and Goodwin, 
2008). They are developing new technology to help individuals with autism to capture, analyze, 
and reflect on a set of social-emotional signals communicated by facial and head movements in 
live social interaction.  The system employs an ultramobile PC and miniature camera, which 
enables them to capture and analyze facial behavior of their own everyday social companions. 
The system then presents interpretations of the face and head movements, such as agreeing or 
confused. This approach with wearable technologies offers, for the first time, the ability to 
conduct just-in-time in situ assistance to help individuals with high functioning autism to learn 
facial expressions and underlying emotions in their own specific natural environments. A novel 
output display, called ʻemotion bubblesʼ was developed, in which each mental state was 
represented by a different color, and bubble size indicated the magnitude of that state.   
 
The facial expression analysis employs a system developed by el Kaliouby and Robson (2005). 
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This framework employs a commercial feature point tracker to obtain real-time measures of the 
locations of 24 features on the face. It uses the motion, shape, and color deformations of these 
features to classify 20 movement primitives including action units from the Facial Action Coding 
System, as well as 11 communicative gestures such as head nod or eyebrow flash.  These 
measures are then passed to a dynamic Bayesian network to interpret the meaning of head and 
facial signals over time. The system was trained on a database of actors who displayed a range 
of cognitive and mental states. Rather than recognizing basic emotions, recognition is 
performed for the following six mental states: agreeing, concentrating, disagreeing, interested, 
thinking and confused.  This database, called the Mind-Reading database (Baron-Cohen et al., 
2004) was collected with the objective of providing children with autism examples of facial 
expressions that are relevant in every day life.  
 
Pilot studies were conducted with adolescents diagnosed as high functioning autism. Subjects 
watched the bubble display respond to their own facial expressions, and also attempted to elicit 
specific bubbles in their own conversations with their friends. Experimenters witnessed multiple 
instances of subjects adjusting their own conversation flow to try to elicit the desired bubble, 
thereby providing practice for both eliciting and understanding mental states of others.  
 
 
Automated Facial Expression Analysis of Psychiatric Disorders.  Wang et al (2008) were 
the first to apply video-based automated facial expression analysis in neuropsychiatric research. 
They conducted case studies on two patients: One with schizophrenia and one with Aspergerʼs 
syndrome.  While it is well known that patients with Schizophrenia exhibit impairments in facial 
expression including flattened affect, and ʻabnormal affect,ʼ there is little objective data on their 
facial behavior due to the time required for manual coding.   Similarly, little objective data exists 
characterizing facial expression production in Autism Spectrum Disorders.  Studies such as this 
one will provide important information on facial expression production in these populations for 
relating to underlying neural pathology and social interaction deficits.  
 
They employed a system for recognition of basic emotions that was trained on a dataset of 32 
actors with evoked facial expressions. The evoked expressions were obtained by asking 
participants to describe a situation in their life pertaining to each emotion. These situations were 
recounted back to them by a psychiatrist and video recordings were taken during the recounting 
session. It was trained on four expressions plus neutral, and 3 intensities. This made a relatively 
small training set in machine learning terms (384 images, or 96 per class), but it is one of the 
very few systems to be trained on spontaneous expressions of basic emotions.  
 
The evoked expression paradigm was then repeated for the patients. The automated system 
was used to measure dimensions such as the frequency of occurance of the target facial 
expression, and the probability of the subjects expression given the model trained on the control 
subjects. This study obtained some general findings, such as reduced occurances for sadness, 
anger, and fear for the patient with schizophrenia, and reduced occurances of fear for the 
patient with Aspergerʼs, as well as a poor match to the controls for fear.   
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This paper is a first step towards a larger study to compare the facial behavior of these patients 
to the distribution of facial behavior in the healthy population. Automated expression 
measurement facilitates such studies, and provides a consistent measurement tool for 
comparing populations, something typically not possible with manual coding studies due to inter-
coder variability. Approaches such as the one in this paper that are trained on full face 
expressions from healthy controls can indicate the degree to which expressions match the 
healthy population, but are less well suited to illustrating how they differ.  Also, depending on the 
composition of the training set, they may be unable to differentiate some movements such as 
the zygomatic from the risorious, which move the lip corners obliquely versus laterally.2 Systems 
that perform facial action coding may be better suited to making such discriminations.  
 
 
Basic Research in Dynamic Facial Behavior 
 
The Dynamics of Infant-Mother Smiles. Messinger et al (2008) conducted the first application 
of automated measurement to study facial expression coupling in infant-parent interaction. They 
studied the facial behavior of mothers and infants during natural play sessions for two mother-
infant dyads.  The face analysis software was the system developed at CMU by Cohn, Kanade 
and colleagues based on Active Appearance Models (AAM), described above. As is common 
with AAM-based methods, manual initialization of the face mesh, as well as intermittent re-
initialization was necessary.  
 
The facial behaviors that were analyzed with the automated system included smile (AU 12), eye 
constriction (AU 6), and mouth opening (25, 26). First, analysis of expression dynamics within 
subjects revealed that synchrony of smile-related movements differed for infants than for adults, 
For infants,  correlations between mouth opening and smile strength, and mouth opening and 
eye constriction, were moderate to high, whereas for mothers, these correlations were lower 
and more variable.  
 
Perhaps most demonstrative of the utility of automatic face measurement was the study of 
correlations between smile activity in one partner of the dyad and subsequent smile activity in 
the other partner. They investigated interaction between mother and infant by computing 
windowed cross-correlations of smile activity over time. The infant-mother smile activity 
exhibited changing (nonstationary) local patterns of association, providing a glimpse into turn-
taking and the formation and dissolution of states of affective synchrony.   
 
In this study, the automated system enabled analysis of expression dynamics that was 
previously not possible with manual FACS coding.  While some important studies of dynamics 
exist (e.g. Frank, Ekman, and Friesen 1993), the coding of dynamics in these studies is coarse 

                                                
2 The schizophrenic patient in a figure from the paper, for example, is smiling with the risorius, 
yet receives high scores for ʻhappy.ʼ  
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due to the time required for manual FACS coding of intensity, consisting of measures such as 
time to apex, duration of apex, and time to offset. Automated systems provided measurements 
of intensity on a frame-by-frame basis which facilitate new experiments on expression dynamics 
and coupling.  
 
All Smiles Are Not Created Equal. Ambadar, et al. (2009) used automatic face analysis to 
study the morphological and dynamic characteristics of different types of spontaneous smiles, 
and more precisely, how these characteristics affect how smiles are perceived by other humans.  
All dynamics information except duration were measured automatically using an earlier version 
of the facial expression analysis software developed by Cohn and Kanade's group at CMU 
(Cohn and Kanade, 2007).  
 
In Ambadarʼs experiment, 101 observers evaluated 122 different video sequences containing 
smiles. Each video sequence contained a single human subject spontaneously smiling while 
interacting with another human.  The observers judged each video sequence to be either 
amused, embarrassed, nervous, polite, or other.  Facial dynamics were then analyzed for three 
categories: amused, polite, and embarrassed/nervous.  
 
Using the manual coding of the morphological characteristics (which AU was present) and 
automatic coding of the dynamics, the authors assessed which smile characteristics best 
distinguished each smile type from the others. Relative to perceived polite smiles, perceived 
amused smiles had larger amplitude, longer duration, more abrupt onset and offset, and more 
often included AU 6, open mouth, and smile controls. Relative to those perceived as 
embarrassed/nervous, perceived amused smiles were more likely to include AU 6 and have less 
downward head movement. Relative to those perceived as polite, perceived 
embarrassed/nervous smiles had greater amplitude, longer duration, more downward head 
movement, and were more likely to include open mouth. 
 
Contrary to Ambadar, et al.'s hypothesis, asymmetry between left and right side of the face was 
not significantly different across the three smile types. The researchers speculated that the 
facial expression analysis software, in its current version of development, may not have been 
sufficient to detect subtle facial asymmetries, especially when the faces analyzed are non-
frontal, as often occurs in practice.  
 
Human Dynamic Facial Expression Perception. Automated facial expression measurement 
also provides a way to test the perception of dynamic faces by providing a means for developing 
dynamic stimuli. Several recent studies have emerged which measure facial movements of a 
human subject, and then map them onto an avatar, which enables aspects of the face such as 
appearance features or dynamic features to be manipulated. Curio et al (2008) employed this 
technology to enable new experiments on adaptation to dynamic facial expressions.  
 
This study showed for the first time an after-effect for dynamic facial expressions.  Subjects 
adapted to anti-happy or anti-disgust expressions, where an anti-expression is a morph in the 
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opposite direction to that of the original expression, relative to neutral.   They were then tested 
for discrimination of reduced expressions, where a reduced expression is a morph in the same 
direction as the original expression, but attenuated. The task was a 2-alternative forced choice 
of happy or disgust.  
 
Adaptation to anti-happy facial motions increased the recognition rates for happy and decreased 
recognition rates for disgust, and vice versa. The aftereffect was much stronger for dynamic vs. 
static adapting stimuli. (In both cases the test stimulus was dynamic. It would be interesting to 
look at cross-over to static test stimuli as well.) The study also showed that the aftereffect 
depended on identity.  Both dynamic and static adaptation aftereffects were stronger when the 
identity of the adapting stimulus matched the identity of the test stimulus.  This result contrasts 
other data from cognitive neuroscience suggesting separate encoding of expression and 
identity, although is consistent with some studies of static adaptation aftereffects (e.g. Ellamil, 
Anderson, and Susskind, 2008; Fox and Barton, 2007).  Please see the chapter by Calder for a 
more thorough discussion of whether identity and expression are processed by separate visual 
routes.  Interestingly, there was no significant difference in forward versus reverse dynamic 
display on the adaptation aftereffect.  
 
Another study by Boker and colleagues (in press) used automated facial expression 
measurement and synthesis to explore gender effects on head nods. It was previously shown 
that women tend to nod their heads more than men, and individuals of either gender nod more 
when speaking with a woman than a man.  This study attempted to differentiate whether the 
increase in nodding when speaking with a woman was due to facial mimicry, or awareness of 
the gender of the conversant.  In this study, subjects conversed with an avatar that was driven 
by another person, and the effects of changing the appearance or head motion of the avatar on 
the subjectʼs nonverbal behavior was examined. An Active Appearance Model (AAM) was 
employed to drive the avatar, where identity was encoded by mean shape and appearance of 
the model, and changes in expression were encoded by  the coefficients on the basis vectors 
that span shape and appearance for that person. Apparent gender was manipulated by 
changing mean shape and mean appearance to another confederate of the same or opposite 
gender.  Voice pitch was altered to match the apparent gender. Head motion in both individuals 
was measured using motion capture. 
 
They found that changing appearance of the avatar from one gender to another did not affect 
head nods in the subject, but that the motion dynamics of the avatar did.  Thus the gender effect 
on head nods was related to dynamic aspects of the stimulus, and not to static appearance 
parameters related to gender.  This finding  supports the role of facial mimicry in the head nods. 
Of course, dynamics can influence perceived gender, as can the audio signal, pitch 
manipulations not withstanding. The facial dynamics of the avatar nevertheless accounted for 
more of the subjects head nod behavior than the gender of the avatar as indicated by 
appearance and voice pitch.  
 
This team used a similar approach to investigate the effect of depression on face-to-face 
interaction (Boker at al. 2009). They specifically looked at the effects of dampened facial 
expressions and head movements. They found that attenuated head movements led to 
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increased head nods and lateral head turns, and attenuated facial expressions also  led to 
increased head nodding. These results are consistent with a hypothesis that the dynamics of 
head movements in dyadic conversation include a shared equilibrium, and contribute a new 
perspective on the effect of dampened affect on dyadic interaction.  
 
A related line of research by Jonathan Gratchʼs group at USC has investigated the role of facial 
mimicry in eliciting social rapport.  In these studies, two subjects interact through a computer 
monitor, where each subject views an avatar rendition of the other subject. Head pose is 
automatically tracked, and can either be rendered with fidelity, or with a manipulation such as 
displaying the head motion from the previous conversation.  Such studies have shown a strong 
relationship between mimicry and ratings of rapport (Gratch et al., 2006; 2007).  
 
Overall, this is a promising technique that will enable investigations of dynamic nonverbal 
behavior that were previously impossible. 
 

Summary and conclusions 
 
Automatic facial expression recognition has advanced to the point that we are now able to apply 
it to spontaneous expressions with some success.  While the accuracy of automated facial 
expression recognition systems is still below that of human experts, automated systems already 
bring strengths to the table that enable new experiments into facial behavior that were 
previously infeasible. Automated systems can be applied to much larger quantities of video data 
than human coding.  Statistical pattern recognition on this large quantity of data can reveal 
emergent behavioral patterns that previously would have required hundreds of coding hours by 
human experts, and would be unattainable by the non-expert. Moreover, automated facial 
expression analysis is enabling investigations into facial expression dynamics that were 
previously intractable by human coding because of the time required to code intensity changes. 
Automated facial expression technology such as CERT can be used in order to objectively 
characterize the distribution of facial  expression productions in a large set of typically 
developing children and adults. Indeed, such a project is underway (Kang et al., 2008).  This will 
provide a way to measure the degree to which facial expressions of patient populations diverge 
from norms, and describe the dimensions on which they diverge.  
 
This chapter reviewed the state of the art in automated expression recognition technology, and 
outlined its capabilities and limitations.  It then described a new generation of experiments that 
used this technology to study facial behavior and to develop applications in learning and 
education that take advantage of the real-time expression signal.  The chapter also reviewed 
new experiments in dynamic face perception that have been enabled by this technology. Recent 
developments in expression tracking and animation have provided a way to parameterize and 
explore dynamic face space.  
 
Tools for automatic expression measurement are beginning to bring about paradigmatic shifts in 
a number of fields by making facial expression more accessible as a behavioral measure.  This 
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chapter described how these tools are beginning to enable new research activity not only in 
psychology, but also in cognitive neuroscience, psychiatry, education, human-machine 
communication, and human social dynamics. 
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Figure 1. Schematic of automatic facial expression recognition. 
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Figure 2. Sample facial actions from the facial action coding system. The system defines 46 
distinct facial movements. (Reprinted from Bartlett et al., 2010, © MIT Press 2010.) 
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Figure 3. Example of CERT running on live video. In each subplot, the horizontal axis is time 
and the vertical axis indicates the intensity of a particular facial movement. (Reprinted from 
Bartlett et al., 2008. © 2008 IEEE). 
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a b  
Figure 4.  Facial expression of faked pain (a) and real pain (b), with corresponding FACS codes.  
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Figure 5. Driving Simulation Task. (Reprinted from Vural et al., 2007. © 2007 IEEE). 
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a      b 

 
c      d 
Figure 6. Changes in movement coupling with drowsiniess. a,b: Eye Openness (red) and Eye 
Brow Raise (AU2) (Blue) for 10 seconds in an alert state (a) and 10 seconds prior to a crash (b), 
for one subject. c,d: Head motion (blue) and steering position (red) for 60 seconds in an alert 
state (c) and 60 seconds prior to a crash (d) for one subject. Head motion is the output of the roll 
dimension of the accelerometer. (In grayscale, gray=blue, red=black.) (Reprinted from Bartlett et 
al., 2008, © 2008 Springer.) 
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a    b   

c   

 
Figure 7 a. Sample video lecture. b. Automated facial expression recognition is performed on 
subjects face as she watches the lecture. c. Self-reported difficulty values (dashed), and the 
reconstructed difficulty values (solid) computed using linear regression over facial expression 
movements for one subject. (Reprinted from Whitehill et al., 2008. © 2008 IEEE). 
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a   b  
 
Figure 8. Prototype intervention tasks for children with ASD. a: Smile maze. The smile maze 
responds in real time to smiles by the subject. (Reprinted from Cockburn et al., 2008. © 2008 
IEEE.) b. Emotion Mirror: An avatar responds to facial expressions of the subject in real-time. 
(Reprinted from Littlewort et al., 2004, © 2004 IEEE.) 

 
 


