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A PARACONSISTENT ROUTE TO SEMANTIC CLOSURE

EDUARDO BARRIO, FEDERICO PAILOS, AND DAMIAN SZMUC

Abstract. In this paper we present a non-trivial and expressively complete
paraconsistent näıve theory of truth, as a step in the route towards semantic
closure. We achieve this goal by expressing self-reference with a weak proce-

dure, that uses equivalences between expressions of the language, as opposed
to a strong procedure, that uses identities. Finally, we make some remarks
regarding the sense in which the theory of truth discussed has a property
closely related to functional completeness, and we present a sound and com-
plete three-sided sequent calculus for this expressively rich theory.

1. Introduction

A semantically closed theory is a theory that is capable of expressing every
semantic concept –and, hence, every semantic concept applicable to the theory
itself. If this is the case, then it is reasonable to think that every extensional
(i.e. definable by a truth-table) notion should be expressible in the theory. This
phenomenon is indeed closely related with the well-known notion of functional
completeness. Thus, it seems that a necessary requirement of a semantically closed
theory is for it to have something to do with this sort of completeness.

Moreover, if a theory is semantically closed, as a consequence, it will be able
to express its own concept of truth. In what follows, we will refer to theories that
are able to achieve this goal as näıve theories of truth.1 The aim of this paper is
to discuss whether or not its possible to get functionally complete näıve theories of
truth, as a necessary step in the route towards semantic closure. Were this project
to fail, then the general endeavor of having a semantically closed language will be
doomed.

Now, in the context of a näıve theory of truth, we will say that the corresponding
truth predicate behaves like a näıve truth predicate. But, then, what is required for
a truth predicate to deserve being called näıve? The first reasonable desideratum
we will be considering, is for it to have a transparent truth predicate. Let A be a
sentence of the language, let Tr be a truth predicate and let ⟨A⟩ be a name for the
formula A. Then Transparency requires that the sentence A and Tr(⟨A⟩) should
be intersubstitutable salva veritate in every non-opaque context.2 In extensional
semantics, transparency is granted if for every valuation v, v(A) = v(Tr(⟨A⟩)).

Key words and phrases. Truth, Semantic Closure, Paradoxes, Paraconsistency, Self-Reference.
1As opposed to the orthodox view on formal theories of truth (incarnated e.g. by Tarski [28]),
one of the main advantages of a näıve theories of truth is that they avoid hierarchical approaches

to the concept truth.
2I.e. in every context where both A, or Tr(⟨A⟩), are used, and not mentioned.
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Transparency is usually understood as one of the most central features of a näıve
theory of truth. In fact, the consensus around this point is vast.3

The second desideratum we will be considering, demands the truth predicate to
validate the näıve (or full) T-Scheme. The T-Scheme expresses the idea that, for
any sentence A, the assertion of A is equivalent to the assertion that A is true.4

A⇔ Tr(⟨A⟩)

It should be noticed that not all non-hierarchical theories of truth validate the
T-Scheme, most authors recognize this as a flaw of their approaches.5 Notice that in
the above expression⇔ is some biconditional. Considering these two first desider-
ata, a natural question emerges: how should the biconditional featured in the T-
Scheme behave, in order to fulfill both of these requirements? As is well known,
not all the options are well-suited. For example, Tarski showed in [28] that he
two-valued biconditional of classical logic will not do the trick.

A general remark regarding the alternatives for this biconditional is provided
in [13] by Laura Goodship. If we want the theory to be safe from trivialization
due to semantic paradoxes, there seems to be two main routes: (1) either the
conditional should invalidateModus Ponens, or (2) the conditional should invalidate
Contraction and Pseudo Modus Ponens. In this paper, we will explore one possible
realization of the first alternative6: we will consider näıve theories of truth that
invalidate Modus Ponens due to the fact that they are based on paraconsistent7

–and, therefore, non-classical– logics.8

Even if näıve truth predicates are usually taken to force the move to non-classical
(e.g. paraconsistent) logics, most people working in non-classical theories of truth
agree that classical logic is a fine logic to deal with e.g. consistent contexts or
sentences. Thus, it seems to be a desirable third desideratum to have the linguistic
and logical means to recover or recapture classical logic, for those areas where e.g.
consistency is granted. We will do this with the help of techniques developed by

3With the notable exception of Priest, who rejects it in [22].
4The T-Scheme was proposed by Tarski as a very basic feature of the truth predicate. In this

paper, we will be agreeing with the received view in recognizing the T-Scheme as a central feature
of a properly speaking näıve truth predicate.
5See, for example, Kripke [16], Halbach [14]. Notice that Field [11] devotes an entire work to find
a way to extend Kripke’s theory of truth with a new (bi)conditional that validates the T-Scheme.
6Additionally, there are in fact many connections between our project and the one presented in
[13] by Laura Goodship. Those connections will become explicit when we give a few hints about

how we get self-reference in our näıve theory of truth, in Section 3.
7There are numerous näıve theories of truth in the market that make use of a non-detachable
conditional (e.g. [25], [3]). Some of them are paraconsistent, and some are not. In turn, para-
consistent logics have received many definitions (see [25, 3]). Perhaps the most encompassing

definition describes a paraconsistent logic as a formal system where the inference from A,¬A to
B does not hold in general, i.e. there is at least some instance of A and B where it fails.
8Paradigmatically, näıve theories of truth based on non-classical logics make use of the non-
classical values to accommodate well-known paradoxical sentences –e.g in the context of paracon-

sistent theories of truth, paradoxical sentences are taken to be both true and false.
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logicians working in logics of formal inconsistency (LFIs).9, which will help us to
have linguistic resources to distinguish classical from non-classical contexts.10

Finally, if having näıve theories of truth is a necessary step in the route towards
semantic closure, then it also seems reasonable to require näıve theories of truth
to fulfill additional desiderata related to achieving semantically closed theories.
In this vein, if every semantic notion of the system should be expressible in a
semantically closed theory, then surely every extensional semantic notion should be
expressible in it. Thus, it seems that a semantically closed theory should be able to
express every notion that corresponds to a function that can be displayed in a truth-
table featuring only the truth values of the theory. Given this, we consider that a
fourth desideratum for a näıve theory of truth considered as a first step towards a
semantically closed theory, is for it achieve this sort of expressive completeness.11

There is, of course, a close but non-trivial relationship between this desideratum
and that of a logic being functionally complete, and indeed we will be commenting
on this relationship below.

In summary, this paper will present a non-trivial näıve theory of truth that
we will call MSC+ (for “Matrix for Semantic Closure”), that satisfies the four
desiderata specified above. The paper is structured as follows. In Section 2 we give
some general formal and technical details about the systems we are going to work
with. In Section 3 we prove some limitative results on various paraconsistent logics
that might, in principle, be able to fulfill the four desiderata. In Section 4 we present
the particular base logic we will use: MSC. In Section 5 we sketch our general
strategy to achieve a theory that does indeed satisfy our four desiderata, which
will require a particular way of expressing self-reference. In Section 6 we present
a sequent system LSC+ that is sound and complete with respect to MSC+ and
show that the presented theory has some meta-logic properties related to functional
completeness. Finally, in Section 7 we make some concluding remarks and point
out some further issues that might be interesting for future research.

2. Preliminaries

In the sequel we are going to work, mainly, with logics considered from a semantic
point of view. We denote logical systems L with pairs ⟨L,⊧L⟩ of an uninterpreted
language L and a (semantic) consequence relation ⊧L induced, in turn, by a seman-
tic structure (a matrix ) ML, intended to interpret the language L.

In each case, we will work with a base language L composed of a denumerable set
of propositional variables Var and a set C of n-ary connectives. The set of formulae
FormL is defined, standardly, as the absolutely free algebra generated by Var over
C.

9Paraconsistent logics that have a consistency operator are nowadays called in the literature Logics

of Formal Inconsistency. These systems go back to Newton da Costa’s work on his C-systems in
[9] and [8], but were later developed in a systematic way by W. Carnielli, J. Marcos, M. Coniglio
and others in their seminal papers [6], [5].
10Other non-linguistic alternatives to recover classical logic in the context of non-classical logics

are carried out in the meta-theory, e.g. Beall [2].
11Therefore, being expressively complete is a necessary condition for a theory to be semantically
closed. Of course, we do not pretend that it is also a sufficient condition, because there might
be semantic notions that are intensional, or hyperintensional, that cannot be captured by any

truth-function. Thus, even a expressively complete theory may not be able express them.
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Now, since we want to deal with a truth predicate and this linguistic possibility
often implies the rise of potentially pathological phenomena represented by e.g.
self-referential sentences that lead to paradoxes, we will need formal devices to
model these facts.

In particular, we will need a symbol Tr for a (unary) truth predicate. Moreover,
we will need some way to talk about the expressions of the language in the language
itself by, e.g. having names to refer to the sentences of the language. We will do
this, by means of a name-forming device ⟨⋅⟩, which allows to add to the language a
term ⟨A⟩, i.e. a name for A, for each formula A of the language. We will refer to
the extended language that has all these resources as L+.

This being said, we will denote formulae of L (either sentences –e.g. closed
formulae– or open formulae) by capital Roman letters A,B,C, etc., and set of
formulae of the language by capital Greek letters Γ,∆,Σ, etc.

Definition 2.1 (Semantic Structure). A semantic structure (a matrix )ML for the
language L is a tuple ML = ⟨VL,DL,OL⟩ where

● VL is a (non-empty) set of truth values
● DL is a (non-empty) proper subset of VL

● OL is a set that includes for every n-ary operator ◇, the corresponding
n-ary truth-function ◇̃ ∶ (VL)

n Ð→ VL

All n-ary truth-functions belonging to each OL will be displayed in truth-tables.
For the sake of clarity, when some connective ◇ has a different associated truth-
function in the structures MLa and MLb characteristic of the logics La and Lb, we
will call this functions, respectively, ◇̃La and ◇̃Lb .

Definition 2.2 (Valuation). Let ML = ⟨VL,DL,OL⟩ be a semantic structure (a
matrix) for a language L. AnML-valuation for L is a homomorphism v ∶ FormL Ð→

VL. We denote the set of all such valuations as VL.

Moreover, below we will also require from the semantic structures interpreting
these languages, to give a transparent interpretation to Tr, e.g. to ensure that if A
is a sentence and ⟨A⟩ is a name for such sentence, then, for any valuation v ∈ VL,
v(A) = v(Tr⟨A⟩).

Definition 2.3 (Semantic Consequence Relation). Given a semantic structure (a
matrix)ML, the consequence relation ⊧L induced byML is defined in the following
way. We say that a formula A is a semantic consequence of a set of formulae Γ
(notation Γ ⊧L A) if and only if for every valuation v ∈ VL, if v(B) ∈ DL for every
B ∈ Γ, then v(A) ∈ DL.

Finally, we must provide some detail to the extent of how is self-reference
achieved in the theory in question. There seem to be two main options to represent
self-reference: through a weak or a strong procedure. The former option achieves
this goal by requiring a self-referential sentence to be equivalent to a sentence that
“talks about” the first one. The latter involves an essential use of identities.

These options might be instantiated by a plethora of technical means, varying
from one framework to the other. In this paper, we will discuss some examples
thereof.

Definition 2.4 (Weak Self-Referential Procedure). Let Th be a theory that has a
name-forming device ⟨⋅⟩. If for every formula A(x), with x as the only free variable
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in A(x), there is a (closed) formula B such that the formula B ↔ A(⟨B⟩) is true in
the context of Th, then we say that Th adopts a weak self-referential procedure.

Definition 2.5 (Strong Self-Referential Procedure). Let Th be a theory that has a
name-forming device ⟨⋅⟩. If for every formula A(x), with x as the only free variable,
there is a term t such that t is identical to the name of A(t) in the context of Th,
then we say that Th adopts a strong self-referential procedure.

Remark 2.6. Notice that these procedures can sometimes be already present “in”
the theories in question, e.g. i.e. if they are extensions of arithmetical theories or
expressively equivalent theories that validate the Weak and/or the Strong Diagonal
Lemma. But in some cases, they do not come with the theories, in which case
they can be “imposed from the meta-language” to the theories in question, e.g. by
restricting their valuations.

In fact, the latter is the route followed, e.g. by David Ripley in [26] to adopt a
strong self-referential procedure, in the context of a theory that does not necessarily
extend an arithmetic system or anything of the like. We should emphasize that we
will be following a similar route, but to adopt a weak self-referential procedure,
again, in the context of a theory that does not necessarily extend an arithmetic
system or anything of the like.

We will take the notational liberty of calling a theory Th that uses a Weak
Self-Referential procedure, alternatively, as Thw and –analogously– a theory Th

that uses a Strong Self-Referential procedure, alternatively, as Ths. When context
provides enough clarification, we will allow ourselves to omit these subscripts.

3. How not to build a näıve theory of truth

Let us briefly remember what we are after in this essay. We want a non-trivial
paraconsistent näıve theory of truth that is also capable of recovering classical
reasoning, and that is functionally complete. In this section we will analyze the
case of some paraconsistent logics already presented in the literature to determine if
they can, or cannot, accomplish these goals. To do this, we will first check whether
or not these systems can be extended to näıve theories of truth that are capable of
recovering classical reasoning, leaving functional completeness aside for now. After
all, if the resulting theories were to fail at this stage of the investigation, that will
be sufficiently informative for our purposes.

Thus, in this section we will be considering näıve theories of truth built on top
of paraconsistent logics that are capable of recovering classical reasoning by means
dear to Logics of Formal Inconsistency (LFIs, for short). In a nutshell, when ○(A)
is a formula depending exactly on A, LFIs are systems for which the following holds
(see e.g. [5], [4], [6])

There are some some Γ,A,B such that:

● Γ,A,¬A ⊭ B

● Γ, ○(A),A ⊭ B

● Γ, ○(A),¬A ⊭ B

And yet for all Γ,A,B:

● Γ, ○(A),A,¬A ⊧ B

Along these lines, when the sets ○(A) is a singleton it is usually called a consis-
tency operator, and is symbolized as ○A.
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Hence, in what follows we will study, first, the case of a näıve theory of truth
built on top of the system MPT (developed in [7]), due to Marcelo Coniglio and
Luis Silvestrini. Secondly, we will study the case of a näıve theory of truth built on
top of the system LP

○, i.e. an LFI that extends with a consistency operator the
most popular paraconsistent logic in the literature about theories of truth: Graham
Priest’s LP.12 In principle, these systems present major advantages towards our
final goal. We will show, nevertheless, that under some circumstances these theories
are trivial.

Let us consider, then, if MPT, our first candidate, may be the base of an
adequate näıve theory of truth.

Definition 3.1. Let the language LMPT be composed of a denumerable set of
propositional variables Var and a set CMPT = {∼,¬,∧,∨, ○,→MPT,↔MPT} of con-
nectives. The set of formulae FormLMPT

is defined, standardly, as the absolutely
free algebra generated by Var over CMPT.

It is worth noticing that ↔MPT is just the conjunction of the left-right and the
right-left conditionals, as in classical logic.

Definition 3.2. The logic MPT = ⟨L,⊧MPT⟩ is defined by the semantic structure
MMPT = ⟨VMPT,DMPT,OMPT⟩, built in the following way:

● VMPT = {1,
1
2
,0}

● DMPT = {1,
1
2
}

● OMPT = the set of truth-functions associated with the connectives in CMPT,
displayed in the truth-tables of Figure 1

¬A A

0 1
1
2

1
2

1 0

∼A A

0 1
0 1

2

1 0

○A A

1 1
0 1

2

1 0

A ∧B 1 1
2

0

1 1 1
2

0
1
2

1
2

1
2

0
0 0 0 0

A ∨B 1 1
2

0
1 1 1 1
1
2

1 1
2

1
2

0 1 1
2

0

A→MPT B 1 1
2

0
1 1 1 0
1
2

1 1 0
0 1 1 1

A↔MPT B 1 1
2

0
1 1 1 0
1
2

1 1 0
0 0 0 1

Figure 1. Truth-tables for the logic MPT

Definition 3.3. Let MPTs+ be the theory formulated in the language L+
MPT

(an
extension of LMPT, as described in Section 2), that is the result of:

● adopting a strong self-referential procedure
● restricting MPT+’s valuations to those that satisfy Transparency

Is MPTs+ an admissible näıve theory of truth? We are going to show that the
answer is negative.

Theorem 3.4. MPTs+ is unsatisfiable.

12For more about LP, see e.g. [23].
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Proof. Consider a name A, such that A = ⟨(Tr(A)→⊥)⟩,13 which can be considered
as a Curry sentence. We will show that there is no stable assignment of truth values
to Tr(A). If v(Tr(A)) = 0(1), then v(Tr(A) →⊥) = 1(0). Now, if v(Tr(A)) = 1

2
,

then v(Tr(A) →⊥) = 0. Thus, as MPT+’s truth predicate is transparent, and A =
⟨(Tr(A)→⊥⟩, then v(Tr(A)) = 0. But the initial assumption was that v(Tr(A)) =
1
2
. Thus, there is no stable assignment of truth values to this sentence.14 �

It is interesting to highlight that MPT’s conditional –which was centrally in-
volved in the unsatisfiability result above– has a distinctive classical feature: it
validates Modus Ponens. In the literature about truth theories, it is customary for
paraconsistent systems to avoid conditionals that validate Modus Ponens –precisely
in light of paradoxes such as Curry’s. For instance, LP’s conditional invalidates
this rule. Thus, it is argued, a theory of truth based on LP will not have problems
with a Curry sentence, because there is a stable valuation for it: A may just get
the value 1

2
. If this is the case for every pathological sentence that can be built,

then maybe LP can be used as the logical basis for the kind of semantically closed
theory we are looking for.

Let us consider, then, if LP+, our second candidate, may be the base of an
adequate näıve theory. It is well known that it is possible to add a transparent
truth predicate to LP, obtaining the non-trivial theory of truth LP+.15 But in
order for it to cope with our desiderata of recovering classical reasoning in consistent
contexts, and to do that in the language, LP’s language has to be expanded.16 Let
us call the base logic that results from expanding LP with a consistency operator,
LP

○.

Definition 3.5. Let the language LLP○ be composed of a denumerable set of
propositional variables Var and a set CLP○ = {¬,∧,∨, ○,→LP,↔LP} of connectives.
The set of formulae FormLLP○

is defined, standardly, as the absolutely free algebra
generated by Var over CLP○ .

Again, it is worth noticing that ↔LP is just the conjunction of the left-right and
the right-left conditionals, as in classical logic.

Definition 3.6. The logic LP
○ = ⟨L,⊧LP○⟩ is defined by a the semantic structure

MLP○ = ⟨VLP○ ,DLP○ ,OLP○⟩, which is obtained in the following way:

● VLP○ = {1,
1
2
,0}

● DLP○ = {1,
1
2
}

13Notice that ⊥ can be defined in MPT+ as ¬(B → B), for any sentence B. Another way to do
it is as B ∧ ∼B. But as the authors define the classical negation in terms of the conditional, the

former seems a more basic one.
14If MPT+ uses a metalinguistic function f from names to sentences such that, for every formula

A(x), with x as the only free variable, there is a term t such that f(t) = A(t), and we only consider
valuations where t refers to A(t), there will be a term u such that f(u) = (Tr(u) →⊥). Then there
is no stable assignment of truth values to Tr(u). If v(Tr(u)) = 0(1), then v(Tr(u) →⊥) = 1(0).

Now, if v(Tr(u)) = 1

2
, then v(Tr(u) →⊥) = 0. Thus, as MPT+’s truth predicate is transparent,

and f(u) = (Tr(u) →⊥), then v(Tr(u)) = 0. But the initial assumption was that v(Tr(u)) = 1

2
.

Thus, there is no stable assignment of truth values to this sentence.
15For more about such results, see [23], [24] and [25]
16Of course, other available options have been explored. Priest, in [25], and Beall, in [3], have
presented other ways to do it. But Priest’s option specified this restriction from the metalanguage.

Beall, on the other hand, uses multiple conclusion logics.
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● OLP○ = the set of truth-functions associated with the connectives in CLP○ ,
displayed in the truth-tables of Figure 2

A→LP B 1 1
2

0

1 1 1
2

0
1
2

1 1
2

1
2

0 1 1 1

A↔LP B 1 1
2

0

1 1 1
2

0
1
2

1
2

1
2

1
2

0 0 1
2

1

Figure 2. Truth-tables for the logic LP
○

It should be highlighted that→LP is the definable material conditional, which can
be formulated as the disjunction of the negation of the antecedent and the assertion
of the consequent. The remaining connectives for which we did not provide new
truth-tables, maintain their meanings assigned in MMPT.

Definition 3.7. Let LP○s+ be the theory formulated in the language L+
LP○

(an
extension of LLP○ , as described in Section 2), that is the result of:

● adopting a strong self-referential procedure
● restricting LP

○
+’s valuations to those that satisfy Transparency

Is LP○s+ and adequate näıve theory of truth, that respects all of the above
desiderata? Once again, the answer is negative. To prove this fact, we need a few
preliminary results.

Theorem 3.8. LP○s+ is unsatisfiable.

Definition 3.9 (Classical Negation). Let a logic L be a tuple ⟨L,⊧ML
⟩ and let

VML
be the set of its valuations. We say (following some remarks made by De and

Omori in [10]), that a unary operator ⇁ is a classical negation for the logic L if
and only if, for every sentence A and for every valuation v ∈ VL:

v(A) ∈ DL if and only if v(⇁A) ∉ DL

Remark 3.10. A classical negation is definable in LP
○
+ as ⇁A =def ¬A ∧ ○A.

Lemma 3.11. If a (many-valued) näıve theory of truth Th is capable of defining
a classical negation, and also uses a strong self-referential procedure, then Th is
unsatisfiable.

Proof. Let C be a name such that C = ⟨⇁Tr(C)⟩. Then, there would be no stable
assignment of truth values to Tr(C). We just need to consider two possibilities: (i)
either C receives a designated valued, or (ii) it receives an undesignated value. As
Th has a transparent truth predicate, (i) if v(Tr(C)) ∈ D, then v(⇁Tr(C)) ∉ D.
And (ii) if v(Tr(C)) ∉ D, then v(⇁Tr(C)) ∈ D.17 �

17Or, if the theory uses a metalinguistic function f from names to sentences such that, for every
formula A(x), with x as the only free variable, there is a term t such that f(t) = A(t), and we
only consider models where t refers to A(t), there will be a term u such that f(s) =⇁Tr(s). Then

there is no stable assignment of truth values to Tr(s). We just need to consider two possibilities:
(i) either Tr(s) receives a designated valued, or (ii) it receives an undesignated value. As the
theory has a transparent truth predicate, (i) if v(Tr(s)) ∈ D, then v(⇁Tr(s)) ∉ D. And (ii) if

v(Tr(s)) ∉ D, then v(⇁Tr(s)) ∈ D.
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Therefore, as a corollary, since LP○s+ is able to define a classical negation, has a
transparent truth predicate and uses a strong self-referential procedure.18

Finally, if we want to avoid this kind of results there seems to be two immediate
options:

(1) either we give up some expressive requirements (such as having consistency
or recovery operators, classical negations, a transparent truth predicate,
etc.)

(2) or we give up the need for a strong self-referential procedure

The first path seems to be easier. But notice that if we take it, we cannot fulfill
our goal of having a semantically closed system. If we do not want to give up the
project of having a semantically closed theory, the only admissible option seems to
be the last one.

In the rest of the paper, we will explore the prospect of changing the way to
achieve self-reference, using some weak self-referential procedure. This will be done
in the context of a new system, that will turn out to be sufficiently expressive under
the eyes of our desiderata. To do this, a new conditional will play a key part in
this plot.

4. A logic for semantic closure

We present below our preferred base logic called MSC, for “Matrix Logic for
Semantic Closure”.

Definition 4.1. Let the language LMSC be composed of a denumerable set of
propositional variables Var and a set CMSC = {¬,∧,∨, ○,→LP,↔LP} of connectives.
The set of formulae FormLMSC

is defined, standardly, as the absolutely free algebra
generated by Var over CMSC.

Definition 4.2. The logic MSC = ⟨LMSC,⊧MSC⟩ is defined by a the semantic
structureMMSC = ⟨VMSC,DMSC,OMSC⟩, which is obtained in the following way:

● VMSC = {1,
1
2
,0}

● DMSC = {1,
1
2
}

● OMSC = the set of truth-functions associated with the connectives in CMSC,
that are displayed in the truth-tables of Figure 3

A→MSC B 1 1
2

0
1 1 1 0
1
2

1 1 1
2

0 1 1 1

A↔MSC B 1 1
2

0
1 1 1 0
1
2

1 1 1
2

0 0 1
2

1

Figure 3. Truth-tables for the logic MSC

Again, it is worth noticing that ↔MSC is just the conjunction of the left-right
and the right-left conditionals, as in classical logic. The remaining connectives for

18Notice that as MPT+ is able to define a classical negation in exactly the same way as LP
○+,

Theorem 3.4 could be seen as a corollary of Lemma 3.11. Thanks to an anonymous referee for

this clarification.
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which we did not provide new truth-tables, maintain their meanings assigned in
MMPT.

As we will show in the next Section below, this distinctive conditional will help
us design weak self-referential procedure that will be crucial to avoid triviality.
Given our remarks in Section 7, many non-detachable conditionals coming from
many-valued paraconsistent logics may be able to serve this role. However, even if
we do not think of the presently discussed conditional as the only one that deserves
attention to this regard, we are of the opinion that it has in fact some interesting
philosophical properties –on which we comment below.

The first point we would like to highlight is that, using a slight modification
of Tomova’s terminology from [29], the conditional A →MSC B can be justifiably
referred to as a semi-natural conditional given that, when restricted to classical
values, it behaves classically.

Secondly, the conditional A →MSC B has an interesting connection with the
external notion of entailment. It gets value 1 whenever a designated value is pre-
served from antecedent to consequent -either because the consequent is assigned
the value 1

2
or 1, or because the antecedent is assigned the value 0. In this sense,

the conditional seems to partially internalize the notion of entailment of the theory:
if a (single premise) inference is valid, then the corresponding conditional will get
value 1. Unfortunately, this connection does not hold when we consider invalid
inferences. In fact, there will be invalid inferences that do not correspond to a false
conditional.

Thirdly, MSC’s conditional allows for an interesting conceptual reading. Let
us start comparing MSC’s conditional with LP’s conditional. The latter can be
shown to be such that A →LP B â⊧ ¬A ∨B. Thus, in LP, “if A, then B” is true
if and only if either A is false, or B is true. Moreover, by known equivalences,
A↔LP B â⊧ (A ∧B) ∨ (¬A ∧ ¬B). Thus, in LP, “A is equivalent to B” is true if
and only if A and B belong to the same semantic category, i.e. they are both true
or both false.

In the case of MSC the situation is relatively similar. Let △A mean, intuitively,
that A gets a designated value or, more conceptually, that A is “true”, in a meta-
theoretic sense.19. Let us notice that in the context of paraconsistent logics, while
“being true” is an inconsistent notion (i.e. there are true formulae that are also
not true), the notion of “being designated” is not inconsistent (i.e. there are not
designated formulae that are also non-designated).

Moreover, it can be shown that A→MSC B â⊧ ¬A∨△B. Thus, in MSC, “if A,
then B” is true if and only if either A is false, or B is designated. Additionally, by
known equivalences, A↔MSC B â⊧ (△A ∧△B) ∨ (¬A ∧ ¬B). Thus, in MSC, “A
is equivalent to B” is true if and only if A and B are both designated, or they are
both false.

Finally, the only strange feature of →MSC is its main (and only) difference with
MPT’s conditional: when the antecedent gets value 1

2
and the consequent gets

value 0, MSC’s conditional gets (the designated) value 1
2
. In fact, this is a feature

shared with LP’s material conditional: if the conditional in question is read in a
dialetheist way, it gets both from true to false –and thus it should be false– and
from false to false –and hence should be true. Therefore, it should be (and it is)

19This notion is definable in MSC as follows △A =def A ∨ ¬○A.
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Conditionals LP
○
+ MPT+ MSC+

Modus Ponens A→ B,A ⊧ B No Yes No
Modus Ponens II (A→ B) ∧A ⊧ B No Yes No
Deduction Thm. (RTL) ⊧ A→ B, then A ⊧ B No Yes No
Deduction Thm. (LTR) If A ⊧ B , then ⊧ A→ B Yes Yes Yes
Identity ⊧ A→ A Yes Yes Yes
Transitivity A→ B,B → C ⊧ A→ C No Yes No
Transitivity II (A→ B) ∧ (B → C) ⊧ A→ C No Yes No
Disjunction Intro. ⊧ A→ (A ∨B) Yes Yes Yes
Conjunction Elim. ⊧ (A ∧B)→ A Yes Yes Yes
Contraposition ⊧ (A→ B)→ (¬B → ¬A) Yes No Yes
Contraction I A→ (A→ B) ⊧ A→ B Yes Yes Yes
Contraction II ⊧ A→ (A→ B)→ A→ B Yes Yes Yes
Pseudo MP I ⊧ ((A→ B) ∧A)→ B Yes Yes Yes
Pseudo MP II ⊧ A→ ((A→ B)→ B) Yes Yes Yes
Transit. Liar ⊧ ((⊺→ λ)→⊥ Yes No No

Figure 4

both true and false. Figure 4 shows a very brief comparison between MSC+’s,
MPT+’s and LP

○
+’s conditional.

All this being said, let us now show how to achieve self-reference in MSC+, via
a particular weak self-referential procedure.

5. Weak self-reference for MSC+

5.1. Preliminary considerations. The most simple way to adopt a weak self-
referential procedure for a paraconsistent theory of truth would be to consider the
basic paraconsistent theory of truth as the basis of a formal theory Th that has
the same expressive power than, say, Peano Arithmetic has. More specifically, if
the resulting theory proves the Weak Diagonal Lemma as a theorem, we would be
granted the adoption of a procedure of this sort, as detailed in Section 2. However,
it is convenient to highlight that the usual ways of doing this when the basic logic
is paraconsistent are not so straightforward.

On the one hand, it is not so easy to show that the axioms of Peano Arithmetic
together with an underlying paraconsistent theory of truth e.g. LP+ lead to a proof
of the Weak Diagonal Lemma. It is also not easy to prove this for the case ofMSC+.
So considering an axiomatic arithmetic theory with an underlying paraconsistent
theory of truth does not sound very promising.

On the other hand, it is not easy either to show that if we consider a sequent
calculus for a paraconsistent theory of truth e.g. LP+ and add to it an arithmetic
theory formulated with sequent rules (à la Negri and von Plato in [19], [18], applied
for theories of truth in e.g. [12]), then this will lead to a proof of the Weak Diagonal
Lemma. Of course, it is not easy to prove this for the case ofMSC+. So considering
an arithmetic theory formulated with sequent rules together with a sequent calculus
for a paraconsistent theory of truth does not sound very promising either.

In conclusion, to consider the basic paraconsistent theory of truth as the basis
of a theory Th that has the same expressive power than, say, Peano Arithmetic
has is not a straightforward way to adopt a weak self-referential procedure for
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a paraconsistent theory of truth. This is why we need to validate this principle
another way.

5.2. Adopting a Weak Self-Referential Procedure. Our way of doing this
will be rather mechanical: we will build a set Z that will include all the instances
of the desired weak self-referential procedure that contain appearances of the truth
predicate Tr. By doing this, we will include in Z all variants of the usual (and
unusual) pathological sentences, like The Liar, Curry, The Truth-Teller, etc, along
with potentially new pathological expressions, like strengthened Liar and Curry
sentences. Finally, we will show that the resulting theory MSCw+ is non-trivial.

In fact, we will show that there is a valuation that satisfies Z alongside with
MSC+, though this valuation does not satisfy every formula.20. This valuation will
be indeed very simple: it will assign the value 1

2
to every propositional variable.

As a corollary, this implies that the resulting theory adopts a weak self-referential
procedure.

Now, to go into the technicalities of the construction of the set Z, let us consider
the following. First, we will discriminate an infinite proper subset of propositional
variables Var

∗ ⊆ Var. We will then mark –in the metalanguage– every member of
Var

∗ with an ∗.21 Thus, we will refer to the members of Var∗ as, for example, p∗,
q∗, etc.

Secondly, we will consider sentences of the form

x∗ ↔ Ax∗

Where Ax∗ refers to a sentence that has at least one instance of Tr(⟨x∗⟩) as a
subformula; x∗ is a member of Var∗; and the biconditional at play is the character-
istic (non-detachable) biconditional of MSC.22

Instantiation on Ax∗ and the biconditional statement will exemplify every self-
referential sentence that includes a truth predicate to be represented in the lan-
guage.23 In particular, we will be able to model the traditional pathological sen-
tences, but also possible new pathological sentences including the consistency op-
erator or classical negation. Nevertheless, we need a further semantic restriction.

Finally, for each formula-schema Ax∗ we will select one and only one correspond-
ing biconditional with a different propositional letter as its left term. We will denote
the set of all such biconditionals as Z. This set of biconditionals will be used as
a surrogate of the set of potentially pathological sentences definable via e.g. the
Weak Diagonal Lemma.

20This valuation does not necessarily provide an intended model for MSC+, but it does provide
a model for it.
21Though this last move is not essential. But putting a mark to those distinguished propositional
letters will make things easier to understand, as those propositional letters will play a key part in

the self-referential procedure we are about to present.
22By that we just meant an instance of Tr(y) where the y is substituted by the designated name
of the relevant instance of x∗

23To be precise, not every pathological sentence can be built using the procedure just sketched.
For example, it does not allow to build cycles –e.g. sentences that refer to other sentences that
(eventually) refer to them. However, we prefer to leave these details out of the picture, for it

will not be difficult (although it will be tedious) to expand this procedure to construct every
pathological sentences. Still, as our main focus are not cycles (nor, for example, the sentences
present in Yablo’s paradox, see e.g. [30]) these remarks seem to us good enough, for the purpose

of this paper.
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Definition 5.1. Let MSCw+ be the theory formulated in the language L+
MSC

(an
extension of LMSC, as described in Section 2), that is the result of:

● adopting a weak self-referential procedure, i.e. by restricting MSC+’s val-
uations to those that satisfy all the biconditionals in Z

● restricting MSC+’s valuations to those that satisfy Transparency

To conclude this Section, we will now establish that in fact MSCw+ is non-
trivial.

Theorem 5.2 (Non-Triviality). There is an MSCw+ valuation, for which not
every formula is designated.

Proof. Let us consider the valuation v that assigns to every propositional letter of
Var (and hence of Var∗) the value 1

2
. Let p∗ be the “regular” Liar, expressed with

the paraconsistent negation, i.e. p∗ ↔MSC ¬Trp∗ . Thus, v(p∗) = 1
2
. Now consider

the consistency assertion relative to p∗, i.e. ○p∗. If, v(p∗) = 1
2
, then v(○p∗) = 0.

Thus, we have the desired formula which shows that MSCw+ is not trivial.
Then, we only need to check if v is an “admissible” valuation –i.e. if v assigns

a designated value to every biconditional in Z receives a designated value. But,
as we have established, every propositional letter q will be such that v(q) = 1

2
,

including every propositional letter from Var
∗. Thus, every biconditional x∗ ↔ Ax∗

that belongs to Z will receive a designated value.24

�

Remark 5.3. Consider the weakly self-referential versions of the sentences used to
prove the triviality of MPT+ and LP

○
+, respectively: s∗ ↔ (Tr(⟨s∗⟩) → ⊥ and

u∗ ↔ ∼Tr(⟨u∗⟩). These sentences do not cause any problem in the context of
MSCw+, for both s∗ and u∗ can be assigned the value 1

2
.

To conclude this section, let us remember that in [13] Laura Goodship suggested
two general recommendations for näıve theories, which included näıve set-theory,
näıve theories of truth, etc. She stressed that if we want the theory to be safe from
trivialization due to semantic paradoxes and at the same time to retain a huge
expressive power, there seems to be two main modifications that can be done.

One of the last things that we would need to establish, in order to verify that
we accomplished the aim of this paper is whether or not the T-Scheme holds un-
restrictedly. We conclude that this is indeed the case, a result of the following
theorem.

Theorem 5.4. The T-Scheme is unrestrictedly valid in MSCw+

Proof. Notice that every MSCw+ valuation satisfies Transparency, i.e. every valu-
ation v is such that, for each sentence A, v(A) = v(Tr(⟨A⟩)). Moreover, notice that
the truth-table for the characteristic biconditional of MSCw+ is such that if for
every valuation v, v(B) = v(C), then ⊧MSCw+ B ↔ C. Therefore, as an instance,
⊧MSCw+ A ↔ Tr(⟨A⟩). In other words, the T-Scheme is unrestrictedly valid in
MSCw+. �

These modifications regarded the (bi)conditional which is used in the formulation
of the comprehension axioms: (1) either the conditional should invalidate Modus
Ponens, or (2) the conditional should invalidate Contraction and Pseudo Modus

24We would like to thank Dave Ripley for the help provided with regard to this result.
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Ponens. Näıve theories embracing the first option are referred to in the literature
as being part of the “Goodship Project” (see [2]). This project was already proven
fruitful in the context of näıve set-theories based on paraconsistent logics in Hitoshi
Omori’s paper [20].

In this vein, the present paper constitutes the first successful exploration of the
Goodship Project in the context of näıve theories of truth based on paraconsistent
logics: we presented a näıve theory of truth that uses a conditional lacking Modus
Ponens to express self-reference.

6. Metalogical properties: Soundness, Completeness and

Expressive-Completeness

6.1. Soundness, Completeness, Non-Triviality. We will use, as the target
proof theory, the three-sided disjunctive sequent system LSC+. We now specify
how disjunctive sequents behave.

Definition 6.1. A disjunctive sequent Γ ∣ Σ ∣∆ is satisfied by a valuation v if and
only if v(γ) = 0 for some γ ∈ Γ, or v(σ) = 1

2
for some σ ∈ Σ, or v(δ) = 1 for some

δ ∈∆. A sequent is valid if and only if it is satisfied by every valuation. A valuation
is a counterexample to a sequent if the valuation does not satisfy the sequent.25

There is a strong relation between valid sequents of LSC+ and valid inferences
of MSCw+, i.e. Γ ⊧MSCw+ ∆ if and only if Γ ∣∆ ∣∆ is valid. This fact follows from
the definition of MSCw+’s validity and the definition of validity of a three-sided
sequent.

The proof system we are about to present includes some axioms, alongside with
structural and operational rules. As is usual, a sequent is provable in LSC+ if and
only if it follows from the axioms by some number (possibly zero) of applications
of the rules.

Given we are working with sets, the effects of the structural rules of Exchange
and Contraction are built in, and Weakening is built into the axioms. Still, to make
things easy to understand, we will include a Structural Rule of Weakening. We will
have three versions of a three-sided Cut rule, and also a Derived Cut rule (that
can be inferred from the three basic Cut rules) and that will be a key part of the
Completeness Proof. Id and SeudoDL (short for “Seudo Diagonal Lemma”) are the
axiom-schemes of LSC+. Weak, Cut1, Cut2, Cut3 and Derived Cut are structural
rules. The rest of the rules presented below are the operational rules of LSC+.
Notice that, in order to apply the rule SeudoDL, the proviso that x∗ ↔ Ax∗ is a
member of Z must be satisfied.

● Axioms:

Id
A,Γ ∣ A,Σ ∣ A,∆

SeudoDL
Γ ∣ x∗ ↔ Ax∗ ,Σ ∣ x

∗
↔ Ax∗ ,∆

● Structural Rules:

25It might be argued that inferences involve formulae (and not sets of them) as conclusions. In
this case, the conclusion should be read as a single formula, or the singleton of a single formula.

All the results below carry over to this approach without loss of generality.
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Γ ∣ Σ ∣∆
Weak

Γ,Γ′ ∣ Σ,Σ′ ∣∆,∆′

Γ,A ∣ Σ ∣∆ Γ ∣ Σ,A ∣∆
Cut 1

Γ ∣ Σ ∣∆

Γ ∣ Σ ∣∆,A Γ ∣ Σ,A ∣∆
Cut 2

Γ ∣ Σ ∣∆

Γ,A ∣ Σ ∣∆ Γ ∣ Σ ∣∆,A
Cut 3

Γ ∣ Σ ∣∆

Γ,A ∣ Σ,A ∣∆ Γ ∣ Σ,A ∣∆,A Γ,A ∣ Σ ∣∆,A
Derived Cut

Γ ∣ Σ ∣∆

● Operational Rules:

Γ ∣ Σ ∣∆,A
L¬

Γ,¬A ∣ Σ ∣∆

Γ ∣ Σ,A ∣∆
M¬

Γ ∣ Σ,¬A ∣∆

Γ,A ∣ Σ ∣∆
R¬

Γ ∣ Σ ∣∆,¬A

Γ,A,B ∣ Σ ∣∆
L∧

Γ,A ∧B ∣ Σ ∣∆

Γ ∣ Σ,A ∣∆,A Γ ∣ Σ,B ∣∆,B Γ ∣ Σ,A,B ∣∆
M∧

Γ ∣ Σ,A ∧B ∣∆

Γ ∣ Σ ∣∆,A Γ ∣ Σ ∣∆,B
R∧

Γ ∣ Σ ∣∆,A ∧B

Γ ∣ Σ ∣∆,A Γ,B ∣ Σ ∣∆
L→

Γ,A→ B ∣ Σ ∣∆

Γ ∣ Σ,A ∣∆ Γ,B ∣ Σ ∣∆
M→

Γ ∣ Σ,A→ B ∣∆

Γ,A ∣ Σ,B ∣∆,B
R→

Γ ∣ Σ ∣∆,A→ B

Γ ∣ Σ,A ∣∆
L○

Γ, ○A ∣ Σ ∣∆

Γ,A ∣ Σ ∣∆,A
R○

Γ ∣ Σ ∣∆, ○A

Γ ∣ Σ,A ∣∆,A
L∼

Γ,∼A ∣ Σ ∣∆

Γ,A ∣ Σ ∣∆
R∼

Γ ∣ Σ ∣∆,∼A

Γ,A ∣ Σ ∣∆
LTr

Γ, T r(⟨A⟩) ∣ Σ ∣∆

Γ ∣ Σ,A ∣∆
MTr

Γ ∣ Σ, T r(⟨A⟩) ∣∆

Γ ∣ Σ ∣∆,A
RTr

Γ ∣ Σ ∣∆, T r(⟨A⟩)

As the rest of the constants (∨ and↔MSC) can be defined in terms of the former,
and hence we will not specify rules for them.

The following are some important properties of MSC+ and LSC+:

Theorem 6.2 (Soundness). If a sequent Γ ∣ Σ ∣∆ is provable, then it is valid.

Proof. The axioms are valid, and validity is preserved by the rules, as can be checked
without too much trouble.

�

Theorem 6.3 (Completeness). If a sequent Γ ∣ Σ ∣∆ is valid, then it is provable.

Proof. In the Appendix. �

Theorem 6.4 (Non-Triviality). There is at least one sequent Γ ∣ Σ ∣ ∆ that is not
derivable in LSC+

Proof. Let p∗ be The Liar sentence. Given the sequent ∅ ∣ p∗ ∣ ∅ is valid and the
system is complete, the sequent ∅ ∣ p∗ ∣ ∅ will be provable in the LSC+. Moreover,
given the sequent p∗ ∣ ∅ ∣ ∅ is not valid and LSC+ is sound, p∗ ∣ ∅ ∣ ∅ will not have
a proof.

�
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6.2. Remarks on functional completeness and related notions. Below we
present the definitions of functional completeness and truth completeness due to
Malinowski, Rosser and Turquette with some slight modifications to cope with our
notation.

Definition 6.5 ([17]). For any natural number n ≥ 2, we denote by Un any algebra
of the form Un = ⟨Vn,On⟩ where ∣Vn∣ = n ∈ N and On is a set of finitary operations
on Vn. Then,

● g defines f in On if g is a composition of some of On such that: f(x⃗) = g(x⃗)
for all x⃗ ∈ Ek

n

● f is definable in On if g defines f in On for some g

● Un is functionally complete if every finitary k-ary (k ∈ N) mapping f ∶

Ek
n Ð→ Vn is definable in On

● (Rosser and Turquette [27]) Un is truth complete if all J-operators Ji ∶ i ∈ Vn

are definable in Un, where Ji(x) = 1 if x = i, and Ji(x) = 0 otherwise

Remark 6.6. Although the above definition talks of algebras being functionally
complete or truth complete, it is standard to speak of logics themselves enjoying
these features. This is, of course, a reasonable thing to do since n-valued logics
L = ⟨L,⊧L⟩ have a consequence relation ⊧L induced by a matrixML = ⟨Vn,Dn,On⟩
with regard to this which, ⟨Vn,On⟩ is an algebra where ∣Vn∣ = n ∈ N and On is a set
of finitary operations on Vn.

Definition 6.7. We will be reserving the notion of functional completeness for
logics (i.e. algebras). When we are dealing with a theory Th that is functionally
complete, we will say that Th is expressively complete.

Remark 6.8. As can be easily noted, if a logic is functionally complete it is truth
complete. However, the converse does not necessarily hold. Thus, if having an ex-
pressively complete theory is something we require in the route to semantic closure,
then having a truth complete theory might not be enough for this purpose.

Remark 6.9. It might be illuminating to cite a case of a function that is not definable
in a given logic, but is definable in a theory based on that logic. In fact, in our
case, MSC is not able to define the constant function for 1

2
, but it turns out that

MSCw+ can do this. To establish this fact, we shall notice that MSCw+’s Liar
sentence p∗ is such that it can only receive the value 1

2
in every valuation. Thus,

in the context of the theory MSCw+ (but not, in the context of the logic MSC)
it can be thought of p∗ as the formula that “defines” the constant function for 1

2
.

This also allows us to prove that MSC+ is not functionally complete.26

Theorem 6.10 ([15]). Every three-valued logic capable of expressing the unary
operations ⋆1, ⋆2 and the binary operation ⋆3 is functionally complete.

A ⋆1A

1 1
1
2

0
0 1

2

A ⋆2A

1 0
1
2

1
2

0 1

A ⋆3 B 1 1
2

0

1 1 1
2

0
1
2

1
2

1
2

0
0 0 0 0

26Moreover, as noticed by an anonymous referee, the operation ⋆1 is also not definable in MSC

and this fact also witnesses that the logic MSC is not functionally complete.
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Theorem 6.11 (Truth-Completeness). MSC and, thus, MSCw+ are truth com-
plete.27

Proof. The operators J1, J 1

2

and J0 are definable in MSC+ as follows

● J1(A) =def A ∧ ○A

● J 1

2

(A) =def ¬○A

● J0(A) =def ¬A ∧ ○A

�

Theorem 6.12 (Expressive-Completeness). MSCw+ is expressively complete

Proof. Notice that MSCw+ can define the truth functional constants ⊺, ⊥, and
has also a formula –e.g. The Liar sentence p∗– that receives the value 1

2
in every

valuation, which therefore can be used as a constant for the truth-value 1
2
. We can,

thus, show now that MSCw+ can define the functions of [15] as follows

● ⋆1(A) =def (p
∗
→ A) ∧ ○A

● ⋆2(A) =def ¬A
● A ⋆3 B =def A ∧B

�

7. Conclusion

In the previous sections we showed that if getting functionally complete näıve
theories of truth is as a necessary step in the route towards semantic closure, then
it is possible to get non-trivial theories of this sort. If aiming at semantic closure is
something that will result to be impossible in the future, it will not be because näıve
theories of truth cannot accommodate the expressive power necessary to develop
this enterprise. In fact, we showed (following closely a suggestion made by Laura
Goodship in [13]) that all that is required to have näıve theories of truth that are
as expressively rich as one wants them to be, is to express self-reference in a weak
way (i.e. via equivalences) and not in a strong way (i.e. via identities).

It might be reasonable to ask: if we use a weak self-referential procedure to
show that MSCw+ is nontrivial, could not we just construct an equally strong
näıve theory of truth with e.g. LP

○ and have a resulting theory LP○w+? This is
actually the case, indeed, at least if we make suitable arrangements –e.g. using a
similar weak self-referential procedure, resembling the one discussed in Section 5.
In that case, it will not be difficult to run a non-triviality proof for e.g. LP○w+

along the same lines of the one presented above. Let us comment that, in any
case, this seems not to be the preferred way of Graham Priest who in e.g. [22]
chooses to drop Transparency instead of turning to express self-reference with a
non-detachable conditional.

Nevertheless, our main concern here is not to pick näıve theory of truth to which
we should commit ourselves, but to show that the route to semantic closure is not
entirely blocked. Further applications of the approach presented here can be surely
carried out, and we hope to analyze them in the near future.

The framework discussed here is, moreover, open to further expansions and de-
velopments. Two of the most interesting tasks ahead are to expand the language

27Thanks to an anonymous referee for discussion on this matter.
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with more näıve semantic notions –for example, a Validity predicate– without trivi-
alizing the system. Whether or not applying the weakened self-referential procedure
to these systems will allow us to have non-trivial systems is a question that we leave
for further research.

Appendix: The Completeness Proof

We will use the method of reduction trees,28 that allows to build for any given
sequent, either a proof of that sequent, or a counterexample to it. The method also
provides of a way of building the eventual counterexample. We will introduce the
notions of subsequent and sequent union, that will be used in the proof:

Definition 7.1. A sequent S = Γ ∣ Σ ∣∆ is a subsequent of a sequent S′ = Γ′ ∣ Σ′ ∣∆′

(written S ⊑ S′) if and only if Γ ⊆ Γ′, Σ ⊆ Σ′, and ∆ ⊆∆′.

Definition 7.2. A sequent S = Γ ∣ Σ ∣ ∆ is the sequent union of a set of sequents
[Γi ∣ Σi ∣ ∆i]i∈I (written S = ⊔[Γi ∣ Σi ∣ ∆i]i∈I) if and only if Γ = ∪i∈IΓi, Σ = ∪i∈IΣi

and ∆ = ∪i∈I∆i.

The construction starts from a root sequent S0 = Γ0 ∣ Σ0 ∣∆0, and then builds a
tree in stages, applying at each stage all the operational rules that can be applied,
plus Derived Cut “in reverse”, i.e. from the conclusion sequent to the premise(s)
sequent(s).29 Thus, stage 0 will just be the root sequent S0. If it is an axiom, the
branch is closed. For any stage n + 1, one of two following things might happen:

(1) For all branches in the tree after stage n, if the tip is an axiom, the branch
is closed.

(2) For open branches: For each formula A in a sequent position in each open
branch, if A already occurred in that sequent position in that branch (i.e.
A has not been generated during stage n + 1), and A has not already been
reduced during stage n + 1, then reduce A as is shown below. There are
three possible positions in which a formula can appear in a sequent: either
on (i) the left side, or on (ii) the middle, or on (iii) the right side. We need
to consider all these possible cases.

● If A is a negation ¬B, then: if A is in the left/ middle/ right position,
extend the branch by copying its current tip and adding B to the right/
middle/ left position.

28For similar proofs, see [1], were these kind of reduction trees proofs for many-valued theories
where originally presented, but also see [26] and [21].
29For the proof, we use an enumeration of the formulae and an enumeration of names. We will
reduce, at each stage, all the formulae in the sequent, starting from the one with the lowest
number, then continuing with the formula with the second lowest number, and moving on in this
way until the formula with the highest number in the sequent is reduced. In case a formula that
appears in more than one side of the sequent, we will start by reducing the formula that appears
on the left side and then proceed to the middle and the right side, respectively. The final step,

at each stage n of the reduction process, will be an application of the Derived Cut rule to the
n-formula in the enumeration. If we apply a multi-premise rule, we will generate more branches
that will need to be reduced. If we apply a single-premise rule, we just extend the branch with one

more leave. We will only add formulae at each stage, without erasing any of them. As a result of
the process just described, every branch will be ordered by the subsequent relation. Any branch
that has an axiom as it topmost sequent will be closed. A branch that is not closed is considered
open. This procedure is repeated until every branch is closed, or until there is an infinite open

branch. If every branch is closed, then the resulting tree itself is a proof of the root sequent. If
there is an infinite open branch Y , we can use it to build a counterexample to the root sequent.
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● If A is a conjunction B ∧ C, then: (i) if A is in the left position, extend
the branch by copying its current tip and adding both B and C to the left
position. (ii) If A is in the middle position, split the branch in three: extend
the first by copying the current tip and adding B to both the middle and
right positions; extend the second by copying the current tip and adding
C to the middle and right positions; and extend the third by copying the
current tip and adding both B and C to the middle position. (iii) If A is
in the right position, split the branch in two: extend the first by copying
the current tip and adding B to the right position; and extend the second
by copying the current tip and adding C to the right position.

● If A is a consistency assertion ○B, then: (i) if A is in the left position,
extend the branch by copying its current tip and adding B to the middle
position. (ii) If A is in the right position, extend the branch by copying its
current tip and adding B to the right and left positions. (iii) If A is in the
middle position, then do nothing.

● If A is a classical negation assertion ∼B, then: (i) if A is in the left position,
extend the branch by copying its current tip and adding B to the middle
and the right positions. (ii) If A is in the right position, extend the branch
by copying its current tip and adding B to the left position. (iii) If A is in
the middle position, then do nothing.

● If A is a conditional B → C, then: (i) if A is in the left position, split the
branch in two: extend the first by copying the current tip and adding B to
right position, and extend the second by copying the current tip and adding
C to the left position. (ii) If A is in the middle position, split the branch
in two: extend the first by copying the current tip and adding B to middle
position, and extend the second by copying the current tip and adding C

to the left position. (iii) If A is in the right position, extend the branch by
copying the current tip, adding B to the left position, and adding C to the
middle and right positions.

We will also apply the Derived Cut rule at each step. Consider the nth formula
in the enumeration of formulae and call it A. Now extend each branch using the
Derived Cut rule. For each open branch, if its tip is Γ ∣ Σ ∣ ∆, split it in three
and extend the new branches with the sequents Γ,A ∣ Σ,A ∣ ∆, Γ,A ∣ Σ ∣ ∆,A, and
Γ ∣ Σ,A ∣∆,A, respectively.

Now we need to repeat this procedure until every branch is closed, or, if that
does not happen, until there is an infinite open branch. If the first scenario is the
actual one, then the tree itself is a proof of the root sequent, because each step will
be the result of an application of a structural or operational rule to the previous
steps. If the second scenario is the actual one, we can use the infinite open branch
to build a counterexample.

If in fact there is an infinite open branch Y , then the Derived Cut rule will have
been used infinitely many times. Thus, every formula will appear at some point
in the branch for the first time, and will remain in every step afterwards. Now,
we first collect all sequents of the infinite open branch Y into one single sequent
Sω = Γω ∣ Σω ∣ ∆ω = ⊔{S ∣ S is a sequent of Y }. Notice that, as Derived Cut
has been applied infinitely many times in the construction of the branch, every
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formula will occur in exactly two places in Sω.
30 Thus, there will be a valuation

such that no formula in the sequent gets the value associated with the place where
it occurs (i.e. 0 if the formula occurs in the left, 1

2
if it occurs in the middle, 1

if it occurs in the right). Hence, for each formula A in the sequent, v will give to
A a value different from the ones corresponding to the sides where A appears in
the sequent. But that includes all the formulae in the initial and finite sequent S0.
That valuation, then, will also be a counterexample to S0. Therefore that valuation
will be a counterexample to the sequent being considered.

Thus, for atomic formulae A (propositional letters and truth assertions), v(A) = 0
or 1

2
or 1, respectively, if and only if A does not appear in Γω or Σω or ∆ω,

respectively. Let us now take A to be any formula whatsoever.31

The rules for reducing formulae can be used to show by induction that, if none
of the components of complex formulae (non-classical and classical negations, con-
junctions, conditionals, consistency assertions) receive the value associated with
any place in which they appear in Sω, neither will the compound. We will not see,
due to limitations of space, how this method works in detail. For conjunctions and
paraconsistent negations, we proceed exactly as is shown in [26]. New cases are
the cases of consistency assertions, classical negations and our peculiar condition-
als. As the first two kinds of reduction behave very similarly to the cases of the
other monadic constants, we will just check one type of reduction of a conditional
assertion.

Let us now focus on to the cases of conditionals of the form B → C. We need
to consider three possible situations: (i) either the conditional appears in both the
left and the right sides, or (ii) it appears both in the left and in the middle sides, or
(iii) it appears on the middle and the right sides. We will just check what happens
with case (i), and leave (ii) and (iii) to the reader.

In this case, eventually, B → C will be reduced from a sequent like Γ,B → C ∣
Σ ∣ ∆,B → C. The reduction of the conditional on the right side will demand to
copy the current tip, and also the addition of B in the left, and the addition of C
in both the middle and the right sides of the sequent. But, as B → C appears also
in the left side, this demands to split the branch in two, and to extend the first by
copying the current tip and adding B to the right position, and also to extend the
second by copying the current tip and adding C to the left position. As we have
established, we need to reduce first the occurrences of the formula that appears on
the left, then the ones that appears on the middle, and finally the ones that appears
of the right side of the sequent. (Recall that we are talking about occurrences of
the same formula, and which is the order to reduce them at some particular stage
n.) The result of reducing first the sequent of the left, and then the one of the
right, will be the result of splitting the branch in two, and (1) extending the first

30It cannot occur in the three places, because then there will be some finite stage n where the

formula appears for the first time in the branch in the three sides. But then that sequent will be
an axiom, and therefore the branch will be closed.
31Does A appear in exactly the places where Tr(⟨A⟩) appears? Yes. As any formula in sequent
that corresponds to an infinite open branch, A appears in exactly two places. If Tr(⟨A⟩)) appears
in the only place where A does not appear, then, as Tr(⟨A⟩) will eventually be reduced, A will

appear in the only place where it does not appear until that moment in branch. But then that
sequent will be an axiom, and thus the branch will be closed. This is the only possibility that
we need to consider. Tr(⟨A⟩) can not appear in less places that A: as any formula in a sequent

corresponding to an infinite open branch, it has to appear in exactly two places.
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by copying the current tip and adding B to the left and right position, but also add
C to the middle and right position, and (2) extending the second by copying the
current tip and adding C to the left, middle and right position, and also B to the
left and right positions. Thus, the two new sequents will be:

Γ,B → C,B ∣ Σ,C ∣∆,B → C,B,C

⋮

Γ,B → C,B,C ∣ Σ,C ∣∆,B → C,C

⋮

Thus, these are two new branches. The second one, will be an axiom, because
the formula C appears in the three sides of the sequent, and then that particular
branch will be closed. But that does not happen with the other branch. The
complexity of B and C is less than the complexity of B → C, hence the inductive
hypothesis can be applied to them. Therefore, B will get value 1

2
, C will get value

0, and then B → C will get value 1
2
. Thus, none of these formulae in the branch

receives the value associated with the sides of the sequent in which they appear.
By completing the induction along these lines, we can show that we can construct

a valuation such that no formula receives the value associated with any place where
it appears in Sω. But, as we know, that includes all the formulae in the initial and
finite sequent S0. That valuation, then, will also be a counterexample to S0, which
is what we were looking for. Thus, for any sequent S, either it has a proof or it has
a counterexample.
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