
APPROXIMATION REPRESENTATIONS FOR ∆2 REALS

GEORGE BARMPALIAS

Abstract. We study ∆2 reals x in terms of how they can be approx-
imated symmetrically by a computable sequence of rationals. We deal
with a natural notion of ‘approximation representation’ and study how
these are related computationally for a fixed x. This is a continuation of
earlier work; it aims at a classification of ∆2 reals based on approxima-

tion and it turns out to be quite different than the existing ones (based
on information content etc.)

1. Introduction

There are many ways to study real numbers from an effectiveness point
of view. Most of the work has been done in classical computability theory
(see Odifreddi [5], [6]) and in particular the study of degree structures and
hierarchies of reals (i.e. sets). Other work is on randomness, see e.g. [1].
Another approach is concerned much with what ways (in some sense related
to effectiveness) a real number can be approximated by a sequence of ratio-
nals. This approach is more in the framework of computable analysis, see
e.g. Calude, Coles, Hertling, Khoussainov[3], Calude, Hertling[4] and Ret-
tinger and Zheng[8], Zheng[7] for hierarchies of reals. In Barmpalias[2] we
initiated the study of ∆2 reals x by means of the structure of the sets

Az = {i | zi < x}

where z is a computable sequence of rationals (zi) with limit x, under
strong reducibilities. It is well known that the limits of a computable se-
quences of rationals are exactly the ∆2 reals, and so our approach is re-
stricted to this important class, the reals T -reducible to 0′. In fact we are
only interested in sets Az that are bi-infinite (something we assume from
now on). In this case we call z a symmetric approximation to x.

Definition 1. If lim z = x is a symmetric approximation to x, the set Az

is called an approximation representation of x.

We often say just representation for short. It is clear that such a set
represents a particular computable approximation of a real. We have a
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correspondence of a ∆2 real with all its representations and conversely a
representation may be a representation of many different reals; see figure 1.

x1

x2

x3

A1

A2

A3

Ax

Figure 1. Reals and representations

A basic fact is

Proposition 1 (Barmpalias[2]). Every representation of a real is Turing
equivalent with it.

So all representations of a real lie in the same T -degree and that is why
we are interested in strong reducibilities ≤r. Under ≤r the r-degrees of
representations of a real x form a substructure Dr

x of the r-degrees within
the Turing degree of x. We call this the approximation structure of x.

Moreover, a representation of x is c.e. iff x is c.e. (i.e. the limit of a
computable increasing sequence of rationals). The main results in [2] were
about c.e. reals, and so all the representations we considered were c.e. We
constructed a c.e. x such that an infinite antichain is embeddable in Dwtt

x .
The same method can be used to embed an infinite computably independent
set of sets {Ai} (i.e. with An 6≤wtt ⊕i6=nAi) and so construct an x such that
every countable partial ordering is embeddable in Dwtt

x . In contrast we
constructed a non-computable c.e. x such that all of its representations are
m-equivalent (i.e. Dm

x consists of a single element).
By exploring the variety of representations that a c.e. (and in general ∆2)

real can have, from a computational point of view (e.g. strong reducibilities),
we aim at a classification of these reals according to their approximation
properties. This approach is natural since approximation is a characterising
feature of the ∆2 class. Also it is a different way of looking at those reals,
and we very much like to establish connections with existing classifications.

In this paper we continue in the line of Barmpalias[2] but looking at more
advanced questions. In the next section we give a characterisation of repre-
sentations in terms of cuts or linear orderings. We show that representations
are exactly the cuts of computable orderings of N, of order type ω + ω∗. So
a ∆2 real naturally defines a class of such cuts (i.e. its representations) and
most of the results below can be stated in terms of cuts. In the same section
we also mention that no representation lies on a proper class of the difference
hierarchy and that there are reals that have different wtt-degree than any
of their representations.

In section 3 we look at the question of how the representations of two
T -equivalent reals are related. We construct T -complete x1, x2 and a repre-
sentation A of x1 such that every representation of x2 is wtt-incomparable
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to A. So the two structures are not necessarily related computationally (ap-
part from the fact that they lie in the same T -degree). The proof uses an
infinite injury argument, and it is the first one we use for the construction
of representations.

In section 4 we look at density: given A1 <wtt A2 representations of a
c.e. x is there a representation of it A with A1 <wtt A <wtt A2? Although
the wtt-degrees of c.e. sets are dense, it turns out that a negative answer is
true. We use an infinite injury tree argument to construct suitable x, A1,
A2 and support this claim.

We assume that the reader is familiar with computability theory and
in particular with priority arguments on a tree. We follow the standard
notation in computability theory. For background in computable analysis
the references given above are useful.

2. Some facts about representations

Let (zn) be a computable (say injective) sequence of rationals. This se-
quence defines a computable linear ordering ≺z on N: n ≺z m ⇐⇒ zn <
zm. If (zn) converges symmetrically to some x, Az is a bi-infinite cut1 of
that computable ordering. It is known (see Odifreddi[5]) that the cuts of
computable linear orderings of N are exactly the semi-recursive sets. We
recall the following

Definition 2 (Jockusch). A set A is semirecursive if there is a computable
f such that

• f(x, y) ∈ {x, y}
• x ∈ A ∨ y ∈ A ⇒ f(x, y) ∈ A.

So approximation representations are semi-recursive sets, but the converse
doesn’t hold, as the following proposition shows. Let ω∗ be the inverse of the
usual ordering ω of the naturals. It is not difficult to show that any linear
ordering of N in which every element has either finitely many predecessors or
finitely many successors, is isomorphic to ω + ω∗. Also, any linear ordering
of N which has a unique bi-infinite cut is isomorphic to ω + ω∗. We also
have

Proposition 2. A set of naturals is an approximation representation of
some ∆2 real iff it is the bi-infinite cut of a computable linear ordering of
N, of order type ω + ω∗.

Proof. Suppose we are given such an ordering ≺ and C its unique bi-infinite
left cut; we will define a (symmetrically) convergent computable sequence z
such that Az = C. We define z0 in the middle of (0, 1) and suppose that for
all i < s, zi ↓. Let as be the largest z-term with index < s and ≺ s; and
as = 0 if such doesn’t exist. Also let bs be the smallest z-term with index

1cut of a linear ordering < of N is a downwards or upwards <-closed subset of N. We
often identify a cut with its complement.
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< s and ≻ s; and bs = 1 if such doesn’t exist. Then define zs in the middle
of (as, bs).

Since ≺ is computable, the definition of z is effective and z is computable.
By induction s ≺ n ⇐⇒ zs < zn. We prove that z converges. For every
s ∈ C there are only finitely many n ≺ s. So there must be an s1 ∈ C
with zs < zs1

. So there is an increasing sequence (si) of elements in C
such that (zsi

) is increasing and so converging, say to a. Dual observations
hold for C and so we get a decreasing and converging (say to b) (zni

) with
ni ∈ C. It is enough to show that a = b. Indeed, otherwise the interval
(a, b) would be proper and no term of the two sequences would appear in
it. But according to the way we define z any large enough zs will appear in
(a, b), a contradiction.

So z converges and since Az is a bi-infinite cut, it is identical to C. Fi-
nally it is obvious that an approximation representation Az is a cut of a
computable ordering of type ω + ω∗, which concludes the proof. �

Another interesting question is how a representation of a real x relates to
x w.r.t. strong reducibilities. We observe

Proposition 3. No wtt-complete c.e. real x has a representation ≡wtt x.

Proof. In [2] we showed that any representation Az of x is a hypersimple
set. And it is known that no such sets are wtt-complete. �

Finally we note

Proposition 4. Representations are either c.e. or co-c.e. or they don’t be-
long to any finite level of difference hierarchy.

To see this, first note that if Az is not c.e. or co-c.e. then it is bi-immune
(see [2]). Then the proposition follows from

Lemma 1. No set in a finite level of the difference hierarchy is bi-immune.

Proof. Suppose that A is properly n-c.e. and n is even. We show that A is
not immune. Let lims φ(m, s) = A(m), φ(m, 0) = 0 and

(1) |s : φ(m, s) 6= φ(m, s + 1)| ≤ n

for every m. Note that since A is properly n-c.e. (so not (n − 1)-c.e.)
(1) holds with equality for infinitely many m. To effectively generate an
infinite subset of A we start looking for k on which φ changes exactly n
times. We will find infinitely many such k and since n is even they must
have lims φ(k, s) = 0 and so belong to A. The case ‘n-odd’ is dual (showing
that A is not immune). �

3. Two approximation structures in 0′

It is natural to ask what is the relation of the information content of a
real and the variety of its representations. The following theorem shows
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that reals with the same information content may have quite unrelated ap-
proximation structures. This means that a classification of the ∆2 reals
based on their approximation structures is qualitatively quite different from
classifications based on information content.

Theorem 1. There exist Turing complete c.e. reals x1, x2 and a represen-
tation Az1 of x1 such that every representation of x2 is wtt-incomparable
with Az1 .

We will build x1, x2 by an approximation procedure, in the framework
developed in [2]; we review it briefly. For the construction of a c.e. real x
with requirements on its representations, we start defining the terms of a
sequence z in decreasing order. On the other hand we have a non-decreasing
sequence y which controls the enumeration in Az, i.e. whenever we wish to
enumerate n ց Az (say at s) we define ys = zn. All this action takes place
within (0, 1) and we picture (0, ys) as the black area (see figure 2) which
expands, but also tends to a limit (since y is bounded). Also, we always
define the z-terms outside the black area (though they may enter it later
on).

zi

zj

zk

zt

black area

ys

Figure 2: Construction

The convergence of z is guaranteed once we make sure that it steadily ap-
proaches lim y (at every stage s an interval (ys, t) is suggested as appropriate
for the definition of zs; we always define it in the middle of the suggested
interval). Eventually we will have lim y = lim z and this c.e. real will satisfy
the requirements.

The construction of z is most importantly a construction of a computable
ordering of N which admits a unique bi-infinite cut. The properties of this
ordering guarantee the satisfaction of the requirements.

The reals x1, x2 of theorem 1 will be constructed in a variation of this
general framework. We lay out the requirements.

R : lim y1 = lim z1 := x1 & lim y2 = lim z2 := x2

P : K ≤T x1 & K ≤T x2

Qe : lim we = x2 ⇒ ¬[Awe = Φ
A

z1

e ;φe] ∨ Awe co-finite

Ne : lim we = x2 ⇒ ¬[Az1 = ΦAwe

e ;φe]

where Φe, φe are effective enumerations of partial computable functionals
and functions respectively and the expression A = ΦB;φ means that the use
in these computations is bounded by φ (witnessing a wtt-reduction). R will
be sorted out by the framework of the construction, as described above.
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3.1. P-requirements. To satisfy P we have to code K into x1, x2 or into
sets equivalent with them. The easiest choice is to code it into Az1 , Az2

since these sets are directly involved in the construction (remember that any
representation of a real is T -equivalent with it). Notice that the construction
z2 only makes the coding in P easier; z2 is not involved in other requirements.

One can see that, if we are to satisfy all requirements, the coding in P
will yield no stronger than T -reduction (i.e. wtt-reduction is not possible).
Thus we enumerate Turing functionals Γ1, Γ2 such that

Γ
A

z1

1 = K & Γ
A

z2

2 = K.

The uses γi will be increasing. They will always be defined on elements
currently outside Azi and eventually rest on such an element. Also, at any
stage

t < k ⇐⇒ zi
γi(k) < zi

γi(t)
.

3.2. Q-requirements. The requirements most difficult to satisfy are the Q
ones; these will bring an infinite injury character to the construction. The
difficulty is that we don’t have any control on the witnesses wn, which can
be enumerated without our will. The effective list of computable sequences
we contains many inappropriate ones that we should reject in the first place,
were we able to distinguish them in a computable way. Such are e.g. w’s
with Aw co-finite. For these w’s our module will run forever, and we have
to ensure that this feature does not harm other requirements (especially P).
Here is a strategy for Q.

(1) Pick the least unused witness n /∈ Aw such that wn ↓< z2
γ2(e+1). If

γ2(e+1) changes during this cycle, Q is initialized and we start from
(1).

(2) Wait until ΦA
z1 (n) ↓= 0;φ(n) ↓. If in the meantime n ց Aw, go to

(1).
(3) Let k be the maximum such that wn < z2

γ2(k). If z1
t < z1

γ1(k+1) for

some t < φ(n), t /∈ Az1 , define y1
s := z1

γ1(k+1).

We ensure that the Γ1-markers that sit (on z1-terms) on the left
of w are as many as the Γ1-markers that sit on the left of z2 terms
involved in the use φ(n) and yet in the black area.

(4) Wait until ΦA
z1 (n) ↓= 0;φ(n) is restored. (If in the meantime n ց

Aw go to (1).)
Then put n ց Aw by defining y2

s := wn.
(5) If ΦA

z1 (n) ↓ is spoilt, go to (1).

As usual, s denotes the current stage of the construction in which this
module works.
Analysis of outcomes. The finite outcomes are

• Stuck in (1)
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• Stuck in (2) or infinitely many visits to (1), (2) but finitely many on
the other steps (count this as finite since no action is taken in the
first two steps.)

• Stuck in (4)
• Stuck in (5)

Note that each of these outcomes is not only successful for Q but also
mean that Q’s module stops interfering with the rest of the construction,
from some point on. In particular it allows P to succeed (since it agitates
each Φ-marker for only a finite time). Also any number of Q’s can work
together since Qe can only agitate γi(n) for n > e + 1.

The infinite outcomes are

(a) We pass infinitely often from (3), (4) but only finitely often from
(5). (that is when almost every time we visit (4), the unwanted
enumeration happens while waiting for ΦA

z1 (n) ↓.)
(b) We reach and leave (5) infinitely often (because of a Az1 ↾ φ(n)

enumeration.

The action involved in the infinite outcomes is expansion of the zi-black
area. In case (a) we only have expansion of the z1-area while in case (b)
expansion of both ones. This could interfere with P or even with other
requirements. The idea for showing that it doesn’t is to show that these
actions, although apparently forced by steps (3),(4), they would anyway
occur (sooner or later) by a P-related action. Indeed, if for example we
reach (5) and the computation is spoilt, this would be due to a K ↾ (k + 1)
enumeration. So even if we hadn’t act under (3) or (4), this expansion of
the black area would happen at the time of the K ↾ (k + 1) enumeration;
our actions are in acordance with P. This way the impact Q has in the
construction under an infinite outcome (given P) is very little (namely it
only affects the timing of the actions and not the actions themselves).

To illustrate this we prove the satisfaction of a single Qe and P in a
construction motivated only by these two requirements, and Q has an infinite
outcome.

First we show that all Γi-markers eventually rest on Azi (i.e. outside the
black area). Note that γi(n) for n ≤ e+ 1 won’t be agitated by Qe. Now by
induction: assume that for all n < n0, γi(n) eventually rest (say after stage
s0). From s0 all of our w-witnesses will sit on the left of z2

γ2(n0); indeed,

otherwise the module would terminate since the markers on the left of w are
stable. So γ2(n0) eventually rests on Az2 . According to step (3), z1

γ2(n0) will

not be agitated again (so γ1(n0) eventually rests).
Now the satisfaction of Q is evident, once we realize that supposing

lim w = lim y we get that either the module terminates or Aw co-finite.
Indeed, if this didn’t hold we would have infinitely many terms on the right
of z2

γ2(e+1); but since z2
γ2(e+2) < z2

γ2(e+1) and sit outside the black area, this

would contradict limw = lim y.
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We note that any number of Q-requirements with any outcomes work well
along with P and their satisfaction can be proved inductively as above. In
particular no nesting of strategies is needed.

3.3. N -requirements. Ne is easier to satisfy. After finitely many attempts
we can ensure that our witnesses stay out of the black area as long as we
want. This involves placing any witness z1

t in a safe position, namely between
z1
γ1(e) and z1

γ1(e+1). This will not cause any problems in the construction since

we only work on Ne finitely often.

(1) Pick t big (so z1
t currently undefined) and declare z1

t witness (so give
instruction for z1

t ’s definition that z1
γ1(e+1) < z1

t < z1
γ1(e)).

Wait until ΦAw(t) ↓= 0;φ(t) ↓. If in the meantime t ց Az1 or
γ1(e + 1) changes, start anew.

(2) If there are wi, i < φ(t) outside the black area with wi < z2
γ2(e), put

all these i ց Aw (by defining y2
s := wi where wi is the maximum

such w-term).
Wait until ΦAw(t) ↓= 0;φ(t) is restored. If in the meantime γ1(e+

1) changes (and so t ց Az1), go to (1).
(3) Put t ց Az1 (by defining y1

s := z1
t ).

(4) If ΦAw(t) ↓= 0 is spoilt, go to (1).

Note that the finiteness and success of this module depends solely on
the success of P (that the Γ1-markers eventually rest). As Q-requirements
respect P and N do as well (because Ne doesn’t agitate γi(n) for n ≤ e) all
strategies are compatible.

3.4. Construction and Verification. Let us divide P into P1,P2, . . .
where Pn denotes the requirement that γ1(n), γ2(n) both eventually rest
(and of course Γ1,Γ2 hold correct computations). We agree on the following
priority list of requirements:

P0 > N0 > Q0 > P1 > N1 > . . .

We also assume a uniform numbering of the requirements in this list, so
that we can talk about the i-th requirement regardless its nature.

At each stage we enumerate one axiom for each Γi: find the least t such

that Γ
A

zi

i (t) ↑ and enumerate the axiom Γ
A

zi

i (t) = K(t) with big use γi(t).
At stage s + 1 we define zi

s between ys and the largest zi
t, t ≤ s which

lies outside the black area unless zt is subject to a condition set by an N -
requirement. In the latter case we define it according to the condition. Note
that we only specify where a term should be placed in relation with other
defined terms. To make the construction definite, let the definitions be on
the middle of the suggested interval.

At s + 1 we also define yi
s+1 after a series of substages. At substage n we

run the n-th strategy and get a temporary definition yi
s+1[n] of yi

s+1. We do

this for all n ≤ s and eventually define yi
s+1 := yi

s+1[s].
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This concludes the construction but few explanatory words are appropri-
ate. Every time we visit a strategy, we start from where we last stopped.
Also the parameters we use have current value, as this was left by the last
substage of the current stage (this also applies to the black area). Of course,
in order to run a strategy, all parameters mentioned must be defined (other-
wise we don’t do anything more than deliver the parameters as we got them
from the previous strategy, to the next one). Finally if we set a condition z1

t

according to Ne and γ1(e + 1) changes before z1
t ↓, we remove the condition

since it was based on a value that changed.
Verification. We proceed inductively, supposing that for all j < n, Pj ,
Nj, Qj are satisfied and the ones with finite outcome (including Pj) have
stopped acting after s0. The construction carries on defining γi(n) and
zi
γi(n) outside the black area. And since Pj , Nj, Qj for j ≥ n never force

γi(n) ց Azi , γi(n) ↑ can only happen due to Nj , Qj for j < n (given that
γi(j), j < n have stabilised). Since Nj, j < n have ceased to act, they can’t
be responsible for γi(n) ↑ and the same holds for the Qj , j < n with finite
outcome.

Now we can prove that once z2
γ2(n) is defined after s0, it will stay outside

the black area forever. Indeed, otherwise a Qj , j < n with infinite outcome

would come to a witness wj
t > z2

γ2(n), enumerate t ց Awi under step (4) and

hold ΦA
z1 (t) 6= Awi(t) with use Az1 ↾ φ(t) that can change only if one of

γ1(k), k < n moves (due to the preliminary action of step (3)). By inductive
hypothesis the disagreement would be preserved and Qj would have finite
action, contradiction.

So z2
γ2(n) will eventually rest outside the black area and, according to the

above,, no infinitary Q will pick a w-witness greater than z2
γ2(n). Hence,

according to step (3), no such requirement will move γ1(n). And due to the
choice of s0, no other requirement will agitate γ1(n), which will eventually
stabilise, giving the success of Pn.

Turning into Nn, let s1 > s0 be large enough so that γi(n) have stabilised.
No lower priority requirement than Nn can enumerate z1

γ1(n+1), and so an

Nn-witness z1
t . Thus, only an infinitary higher Qj could do that, under step

(3) of its module. But again, if this happened we could show that Qj has
finite outcome: the witness it would hold when performing this enumeration
would be greater than z2

γ2(n+1) (otherwise it wouldn’t enumerate z1
γ1(n+1)).

So when it reached (5) (and it will reach it since s1 is big enough), the
computation would be preserved due to the choice of s1, and the module
would terminate; contradiction. Now if Nn doesn’t reach (3), we’re done.
Otherwise the disagreement will be preserved due to the action in (2) and
the choice of s1.

As far as Qn is concerned, if it gets stuck on a step of its module, it is
obviously satisfied (as explained when we analysed its outcomes). Otherwise
we will have
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(2) t ∈ Awn ⇒ wn
t > z2

γ2(n+1)

for all t. This concludes the induction step in an argument that shows
the satisfaction of all P,N , and the Q with finite outcome. For the Q
with infinite outcome it shows that (2) holds. Now we can see that these
are also satisfied; indeed, supposing lim y2 = lim wn we can see that there
are only finitely many terms wn

t > z2
γ2(n+1) which also means that Qn is

satisfied. That is because the interval (z2
γ2(n+2), z

2
γ2(n+1)) is non-empty and

lies outside the black area. So in this case Awn is co-finite, which is what
we wanted.

The only thing left to complete the verification is to show that R is
satisfied. Fix i ∈ {1, 2}. According to the way that the terms of zi are
defined by the construction, it is enough to prove that

(3) lim yi = lim
s

zi
γi(s)

.

Indeed, if we fix an s, almost all zi-terms will be defined on the left of
zi
γi(s)

(because only finitely many terms which carry N -conditions can be

defined on the right of it). Now we will use the fact that we define zi-terms
in the middle of the suggested interval. The sequence (zi

γi(s)
) is decreasing

and bounded; so lims zi
γi(s)

exists and is ≤ lim y (as all of its terms are). Let

lim y = x and consider the sequence recursively defined as

a1 = zi
γi(1)

as+1 = x +
as − x

2

(intuitively, we start from zi
γi(1)

and define the next term in the middle

of the interval between x and the last term). It is straightforward that
lims as = x. If we prove that

as ≥ zi
γi(s)

for all s, using the fact that zi
γi(s)

≥ x for all s, we get (3), i.e. what we

need to finish. We prove it inductively: for s = 1 it is evident. Suppose that
it holds for s. Note that when zi

γi(s+1) is defined, zi
γi(s)

is already defined

and so

zi
γi(s+1) = yt +

yt − zk

2

for some t, k, with zk ≤ zi
γi(s)

and yt ≤ x. By the induction hypothesis,

we also have zk ≤ as, and so
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zi
γi(s+1) ≤ x +

x − as

2
= as+1

and we are done.

4. Non-density of representations

It is natural to ask whether the wtt-degrees of representations of a fixed
c.e. real are dense. The following theorem says that this is not always the
case, and it is not obvious if we consider that the wtt-degrees of c.e. sets in
general is dense.

Theorem 2. There are c.e. reals y such that the wtt-degrees of the repre-
sentations of y are not dense.

We wish to construct two sequences z, x with the same limit and such
that Az <wtt Ax and for every sequence w with the same limit and Az ≤wtt

Aw ≤wtt Ax, either Aw ≡wtt Az or Aw ≡wtt Ax.
An easy way to code Az into Ax is to define each z-term on some x-term.

This is what we’ll do, and note that it implies Az ≤m Ax.
The density requirement is the hardest, and we will split it into three.

Given w, our first attempt will be to try to prevent Az ≤wtt Aw ≤wtt Ax.
For the first inequality we have N , and M will work on preventing the
second. If one of them fails to block the inequality, it will produce a certain
infinitary outcome about w in relation with x or z. If they both fail, the
information they give about w in relation with z and x, along with the work
of a third requirement Q will deliver Aw ≡wtt Az or Aw ≡wtt Ax.

Along these lines we now formulate N , M. The usual way to block a wtt-
inequality between representations (say Az ≤wtt Aw) is to pick a witness zi

and wait until ΦAw(i) ↓;φ (where Φ is a possible reduction). Then expand
the black area up to the largest w-term less than zi and wait until the
computation is restored. If this happens, the use will be the same, and so
no w-term in the use will be outside the black area and less than zi. this
means that now we can expand the black area up to zi (thus diagonalising)
and the computation will be preserved unless a w-term below the use sits
on zi.

So N will block ≤wtt unless all of its z-witnesses sit on w-terms. And if we
try as witnesses a cofinite subset of N−Ax (we have to employ witnesses that
sit outside the black area), failing to block ≤wtt will produce the outcome
that almost all z-terms (outside the black area) sit on w-ones. Similarly,
if M fails to block Aw ≤wtt Ax, this will be because almost every w-term
(outside the black area) sits on an x-one.

4.1. Requirements. To formalise these ideas, let Z be the set of the indices
of the x-terms that happen to sit on z-terms (we know that every z-term is
made to sit on an x-term). Similarly, with respect to the given w, let W be
the set of indices of the x-terms that happen to sit on w-terms. Then we
have
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Nw : Az ≤wtt Aw ⇒ Z ∩ Ax ⊆∗ W

where ⊆∗ means subset modulo finite sets. Now let Xw be the set of
indices of w-terms that sit on x-ones. Note that this is a c.e. set, as well as
Z, W that we considered above. Then we require

Mw : Aw ≤wtt Ax ⇒ Aw ⊆∗ Xw.

From the above it is clear that we are working modulo the black area.
This means that we are only interested in elements sitting outside of it.
This will continue to hold throughout the proof, since for the elements in
the black area we can decide their luck by waiting long enough to appear
there.

4.1.1. Q-requirements. If both N ,M are satisfied by their second clause,
we know that modulo (i.e. ignoring) the black area, almost every z-term sits
on a w-term and almost every w-term sits on an x-term. The job of Q is
to give Z a certain maximality property, but only modulo the black area.
Indeed, it is not difficult to show that if Z were maximal then Ax ≤m Az
2 and so there is no hope for the requirement Az <wtt Ax to be satisfied.
Given a sequence w as before, we want

(4) Ax ∩ Z ⊆∗ Ax ∩ W ⇒ Ax ∩ Z =∗ Ax ∩ W ∨ Ax ∩ W =∗ Ax.

where W comes from w as before and =∗ is equality modulo finite sets.
Note that when w runs over all computable sequences of rationals, {W} is
an effective enumeration of all c.e. sets. It is now not very hard to see that
the satisfaction of (4) Nw,Mw implies

(5) Az ≤wtt Aw ≤wtt Ax ⇒ Aw ≤m Az ∨ Ax ≤m Aw

which is what we want. Indeed, if we suppose Az ≤wtt Aw ≤wtt Ax then
Nw,Mw are satisfied by their second clauses. The second clause of Nw

implies that the disjunction in (4) is true. For Aw ≤m Az, using the second
clause of Mw, we only need to decide the luck of xi with i ∈ W (using Az).
This is possible if the first clause of the disjunction in (4) is true. If not, the
second clause of that disjunction gives Ax ≤m Aw.

Note that the ≤m in (5) are in fact ≡m. For (4) it is enough to satisfy

Qw : (Z ∩ Ax ⊆∗ W ) ∨ (Z ∩ Ax ∩ W finite)

2consider the c.e. set Z ∪ Ax; the maximality of Z gives Z ∪Ax =∗ Z or Z ∪Ax =∗ N,
from which the claim follows.
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4.1.2. P-requirements. To guarantee the strictness of the inequality Az <wtt

Ax we have

P : ΦAz 6= Ax;φ

where Φ runs over the partial computable functionals. This requirement
along with N , M (and no other) motivate the black area.

4.1.3. Az co-infinite. Finally we want x, z to be symmetric approximations
(i.e. Ax, Az infinite and co-infinite) and while P implies this for x, it is not
obvious by what we have said so far that the same holds for z. We can easily
adjust the modules described below, such that they leave infinitely many z-
terms outside the black area (by restraining a finite amount of P, N and M
action). But this is not necessary if we observe the following. Since Ax is
semirecursive, it cannot be hh-simple and so it cannot be maximal. Consider
a co-infinite c.e. W which contains Ax and the corresponding Qw. If Az were
cofinite, Ax ∩Z would be finite and thus the first clause (the hypothesis) of
(4) would hold. By the properties of W there are infinitely many x-terms
outside the black area which do not sit on w-terms. This means that the
second clause of the disjunction in Qw is false, and Ax ∩ Z =∗ Ax ∩ W
must hold. But this is impossible since the first part is finite and the second
infinite. So Az will be co-infinite, provided that the requirements above are
satisfied.

4.2. Modules. Above we showed that the requirements P,Q,N ,M are
sufficient to imply the theorem. Before stating the strategies which will
satisfy them, we say few things about the construction. As usual the black
area is an increasing sequence, which we will keep implicit in this proof (e.g.
expanding the black area up to a certain point means to define the current
term of the sequence on that point). At the begining of stage s we define
xs between the end of the black area and the least x-term sitting outside of
it. For the definition of z we have a set Z which is enumerated by various
Q-requirements and is, as before, the set of indices of x-terms which sit on
z-ones. At the beginning of each stage we pick the least n ∈ Z such that xn

doesn’t sit on a z-term, and define zk = xn, where k is the least such that
zk ↑.

Hence there are two sorts of enumerations going on in the construction.
One sort is those controlled by the black area (i.e. enumerations into Az, Ax

and the various Aw). The other is enumerations into Z and the various W .
We only control (by Q’s action) the one in Z; the one in W is done by the
opponent. The two sorts of enumerations are unrelated, apart from the fact
that Z-enumeration is done on the part (i.e. terms) that the the black area
currently leaves unaffected.

The argument will be a tree construction, mainly because of the infinitary
Q requirements. The black area expands according to the demand of the
nodes of the tree, and at most one such expansion happens during a single
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stage s (and it happens in the end of it). In particular, at the end of s we
let the least P,N or M currently accessible node which requires attention
act (note that these are finitary). But since Q is infinitary, we let every
accessible Q-node act (and possible enumerate into Z) at the substage of S
that it is accessed.

4.2.1. Q-module. This requirement is interested in

Ax ∩ Z = {b0 < b1 < . . . }.

The strategy follows the maximal set construction, when the last is done
on a tree, and so it requires nesting. Suppose that Q is sitting on β. The

possible outcomes are i < f . Let INF (β) be the Q-nodes γ with γ∗ i ⊆ β

and FIN(β) the ones with γ ∗ f ⊆ β. The outcome i involves infinitary
action and indicates

Ax ∩ Z ⊆∗ Wβ

(where Wβ is the c.e. set associated with the β’s requirement); and f
indicates

(Ax ∩ Z) ∩ Wβ finite.

The module enumerates elements of Ax ∩ Z that have not appeared in
Wβ, into Z thus trying to make almost all bn elements of Wβ. But it acts
only in expansionary stages which indicate that there is infinite potential in
Wβ. The level of bn below which the work has already been done is

ℓ(β) = min{n | bn ∈ Ax ∩ W β ∧ n > r(β)}

where r(β) is a finite restraint and the values of the parameters in the
expressions are, as usual, subject to the current stage. If β is on the true

path we will have lims ℓ(β)[s] = ∞ iff β∗ i is on the true path. The strategy
is the following:

Is there n > ℓ(β) with bn ∈ Ax ∩ (∩γ∈INF (β)Wγ) ?

• No: do nothing
• Yes: put bℓ(β), . . . bn−1 ց Z.

Then access i or f depending on whether ℓ(β) has increased (note that
if it has acted under the ‘yes’ clause above, it has increased).

Finally, the restraints will guarantee that Ax ∩ Z is infinite.

4.2.2. P-module. Suppose that P is sitting on β. The point here is that we
need to impose suitable restraints, as we want each bn to reach a final value.
And indeed, bn can be agitated either by a Z-enumeration or by an expansion
of the black area (and so by P ’s action). Moreover we want a witness for
P that is not a z-term (otherwise its enumeration may interfere with the
use of the computation we want to preserve). We have two restraints; r for
Z-enumeration and q for the expansion of the black area. In some of the
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strategies, r and q restraints are imposed by saying ‘we r-restrain . . . ’ etc.
Let s(β) (at a given stage) be the largest number that the nodes to the left
of β have mentioned so far. Then we define r(β) to be the least number
greater than |β|, s(β) and the numbers that are currently r-restrained by
the nodes above β.

We also define q(β) to be the least of xb|β|
, xs(β) and the (rational) num-

bers that are currently q-restrained by the nodes above β. This restraint
requires (q(β), 1) to stay outside the black area. Note that some xn which
contribute to q may be currently undefined. In this case we use the conven-
tion that every xi ↓ outside the black area with i < n is q-restrained (this
is reasonable since undefined terms will be later defined outside the black
area). Note that r(β), q(β) are the restraints that β should respect. The
P-strategy is the following:

(1) Pick a witness n > r(β) with n < ℓ(γ) for all γ ∈ INF (β) and xbn

is not q(β)-restrained. Now r-restrain bn and q-restrain xbn
. The

requirement n < ℓ(γ) ensures that no higher node will put bn ց
Z. And for the lower nodes this is forbidden by The r-restraint we
impose. Note that bn will keep the current value until we reach step
4.

(2) Wait until

(6) ΦAz(bn) ↓= 0;φ.

Output w . If (6) never happens, xbn
will stay outside the black

area and the disagreement will witness the satisfaction of P.
(3) Expand the black area up to the maximum z-term in the use of (6),

less than xbn
; and wait until (6) is restored. Output p . Because of

the choice of n, this action respects the restraints of higher priority
nodes. If (6) is never restored we win as before.

(4) Expand the black area up to xbn
and q-restrain the least z-term

below the use, not in the black area. Output d . We have created a
disagreement which will be preserved due to the restraints we impose.

4.2.3. N -module. In P-strategy we where able to pick a suitable witness
and, by imposing restraints, keep it suitable until we diagonalise. In the N -
strategy we describe below we don’t have this ability. We can try and find
a suitable witness, but anytime after that, it may become unsuitable and
so we have to change it. This situation may occur infinitely often and give
us a useful infinitary outcome. The key idea is not to impose any restraint
during these cycles. If N is attached to β, the strategy is the following:

(1) Pick the least n ∈ Z with xn ↓< q(β) and n /∈ W ∪ Ax.
(2) Wait until one of the following happens:

• n ց W ∪ Ax

• ΦAw(n) ↓= 0;φ
Output w .
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(3) If the first clause holds, go to step 1; otherwise proceed to the next
step. If the first clause fails and we get the computation, xn will
not be sitting on a w-term below the use (otherwise we would already
have found this out and returned to step 1).

(4) Restrain xn with q. Expand the black area up to the maximum
wi < xn with i < φ(n) and wait until ΦAw(n) ↓= 0;φ is restored.
Output p . If the computation is not restored we are done; otherwise

the use will be the same, and so xn will continue to be different than
all w-terms below the use.

(5) Expand the black area up to xn and q-restrain the least w-term

below the use, which lies outside the black area. Output d . The
disagreement will be preserved because of the remark in the previous
step.

If the module visits infinitely often steps 1,2,3, N is satisfied by its second
clause and the outcome is w . If it gets stuck in step 2, it is satisfied by
its first clause and the outcome is again w. If we get to 3 or 4 we are able
to keep a suitable witness and so it is satisfied by its second clause and the

outcome is p or d respectively.

4.2.4. M-module. This is similar to the one for N .

(1) Pick the least n with wn < q(β) and n /∈ Aw ∪ Xw.
(2) Wait until one of the following happens:

• n ց Aw ∪ Xw

• ΦAx(n) ↓= 0;φ
Output w .

(3) If the first clause holds, go to step 1; otherwise proceed to the next
step. If the first clause fails and we get the computation, wn will not
be sitting on an x-term below the use (otherwise we would already
have found this out and returned to step 1).

(4) Restrain wn by q; expand the black area up to the maximum x-term
below the use and smaller than wn. Wait until ΦAx(n) ↓= 0;φ is
restored. Output p .

(5) Expand the black area up to wn and q-restrain the least x-term below

the use and > wn. Output d .

4.3. Construction. Before stating the construction we give a brief account
of the restraints we impose. The r-restraint is only taken into account by
Q and P nodes; and only P-nodes contribute to it (in a w -outcome). The
q-restraint is taken into account by N , M, P. And in fact these are the
only modules that contribute to it.

We agree on a uniform labelling of the tree which is made out of the
outcomes we defined in the modules above. Let this labelling be based on
the following priority list

Q0 > N0 > M0 > P0 > Q1 > . . .
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The construction proceeds in stages, by accessing a branch of nodes of
length s at stage s, according to their current outcome. While accessing
the branch, we only execute the modules of the Q-nodes or the N or M
nodes that are in their first or second step (i.e. their infinitary part). For the
other nodes we follow their last outcome. In the end of the stage we run the
module of the highest accessible P, N or M node that requires attention.
These modules require attention when they are in a wait-type outcome (i.e.
w , p ) and they are ready to move on to the next step.

4.4. Verification. Obviously there is an infinite leftmost infinitely often
visited path f . By induction we show that it is the true path, i.e. that every
node on it (and its parameters) under any final (i.e. sitting on the true path)
outcome behaves as described in the analysis of outcomes above, and so the
requirement attached to it is satisfied. In other words that it satisfies the
working hypothesis as we formulate it below.

• Ax ∩ Z is infinite.
• For every β ⊂ f , r(β), q(β) come to a limit.

• If β is a Q-node and β ∗ i ⊂ f then lims ℓ(β)[s] = ∞ and |Ax ∩Z ∩
Wβ| = ∞.

• If β is a Q-node and β ∗ f ⊂ f then lims ℓ(β)[s] < ∞ and |Ax ∩Z ∩

Wβ| < ∞.

We can show straightaway that Ax ∩ Z is infinite. Indeed, if not there
would be a least n such that lims bs

n = ∞. Because of the restraints r, q,
after some stage no node to the right of f will be allowed to change the
value of bn. the same holds for the nodes to the left of f , because they
are accessed only finitely many times. And again because of the restraints,
only the nodes in f ↾ n (i.e. those of length < n) can agitate bn. By finite
induction it is easy to see that every P, N , M node in f ↾ n acts (i.e.
expands the black area) only finitely often. So they stop agitating bn and
there must be a Q-node β of maximal length in f ↾ n that enumerates the
value of bn into Z infinitely often. But this cannot be: when it does it again
(after the nodes mentioned above have stopped agitating bn and no node
<L f ↾ n becomes accessible) it will give bn a value in (∩γ∈INF (β)Wγ) ∩Wβ

and according to the module of Q, none of the nodes ⊆ β will enumerate

the current value of bn into Z (the ones with f -edges because they have
stopped acting). So, since β was chosen maximal, bn will not change again,
a contradiction.

Suppose that β ⊂ f and the working hypothesis holds for all γ ⊂ β; also
that the corresponding requirements are satisfied. We show the same for
β. Let us be in a final segment of stages such that no node <L β becomes
accessible and r(β), q(β) have reached their final values.

4.4.1. β in Q case. First suppose that β is a Q-node. We show that

• If β ∗ i ⊂ f then |Ax ∩ Z ∩ Wβ| = ∞
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• If β ∗ f ⊂ f then |Ax ∩ Z ∩ Wβ| < ∞.

If the first clause didn’t hold, there would be a least n > r(β) such that
bn /∈ Wβ. After bn takes its final value, β ceases to act (because any action

would agitate bn) which is a contradiction (since i implies infinite action).
Moreover lims ℓ(β)[s] = ∞ because otherwise there would be a bn /∈ Wβ

with n > r(β); and this cannot hold since, given that |Ax ∩Z ∩Wβ| = ∞, β

would change it to a value in Wβ. In particular we get that Ax ∩ Z ⊆∗ Wβ

and so Q is satisfied.
The second clause is obvious if we consider the module of Q. And of

course lims ℓ(β)[s] < ∞ is also easy to see.

4.4.2. β in P case. Suppose that β is a P-node. From what is said in the
induction hypothesis about the γ ∈ INF (β) it follows that β will find a
suitable witness bn. Now as long as we wait for ΦAz(bn) ↓= 0;φ, bn will not
enter Ax ∪ Z (and nor do any bt, t < n) because of r, q and the fact that
the N ,M,P nodes above have ceased to act. If we get stuck on step 2 (i.e.
w ) we are done. Otherwise we proceed to 3 and if we get stuck there (on
p ) we are done; if not, we end up in 4 where the computation is preserved

due to q, and so we are done (on a d -outcome). It is easy to see that the
restraints come to a limit.

4.4.3. β in N or M case. Suppose that β is an N -node. If we never escape
steps 1,2,3 we get Z ∩ Ax ⊆∗ W , a stable outcome w and no restraints.
If we manage to go to 4 but no further, we get a stable p and a finite

q-restraint. And if we make it to 4 we get a final d and a finite q-restraint.
The analysis for β an N -node is similar.

To finish the proof we show that the sequence x converges. We know that
Ax is infinite, and so that there exists an increasing sequence (ni) such that
the sequence (xni

) lie outside the black area. Also, according to the way
we define the terms, (xni

) is decreasing, bounded and so it converges. The
black area also converges at some y and, as in the proof of (1), it is enough
to show that the two limits coincide. Define

a1 = xn1

as+1 = y +
as − y

2

It is straightforward that lims as = y. If we prove that

as ≥ xns

for all s, using the fact that xns ≥ y for all s, we get that lims xns = y
and finish. We prove it inductively: for s = 1 it is evident. Suppose that it
holds for s. Let ys be the right end of the black area at stage s. Note that
when xns+1

is defined, xns is already defined and so
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xns+1
= yt +

yt − xk

2
for some t, k, with xk ≤ xns and yt ≤ x. By the induction hypothesis, we

also have xk ≤ as, and so

xns+1
≤ y +

y − as

2
= as+1

and we are done.
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