APPROXIMATION REPRESENTATIONS FOR REALS AND
THEIR wtt-DEGREES

GEORGE BARMPALIAS

ABSTRACT. We study the approximation properties of computably enu-
merable reals. We deal with a natural notion of approximation rep-
resentation and study their wtt-degrees. Also, we show that a single
representation may correspond to a quite diverse variety of reals.

1. INTRODUCTION

We are interested in A, reals and in particular on their effective approxi-
mation properties. For some work done in this area of computable analysis
we refer to the survey Zheng[7]. However this paper deals with a different
approach, based on earlier work by the author (see [1],[2]). By a well known
fact, these are the reals that are limits of computable sequences of rationals.
To study these properties we introduced (see Barmpalias[1],[2]) a notion of
an approximation representation of a Ay real. Let x = lim z where z is a
computable sequence of rationals converging symmetrically to (i.e. having
infinitely many terms on each side of) x. These assumptions will be made
without notice throughout this paper. We say that the set

Ar=A{i| z <z}

is the approximation representation (or simply representation) of x, corre-
sponding to z. Obviously, a real can have more than one representation.
The set A; represents the way that z approximates x. Note that we are not
studying the left cuts of Ay reals, but the set of indices of the terms of some
z converging to x, which are on the left of x. So the work in Calude et.al.
[3] is different from ours. We have shown a number of results about approx-
imation representations in [1],[2] which we do not need to discuss here. So
detail relating to any facts mentioned below which are not entirely obvious
can be found in these references.

So far we have been especially interested in c.e. representations. A rep-
resentation of a real is c.e. iff the real is c.e. (in the sense that there is a
computable increasing sequence of rationals converging to it). So in the rest

Date: October 2003.
1991 Mathematics Subject Classification. Primary: 03F60; Secondary: 03D30.
Key words and phrases. Computably enumerable reals, approximation representations,
wtt degrees.
1

2 GEORGE BARMPALIAS

of the paper we assume that all reals and representations are c.e. There are
three main questions we would like to ask:

e First, how do the representations of a fixed real x relate computa-
tionally to each other? We have shown that they are all T-equivalent
but with respect to stronger reducibilities like wtt or m, they may
(or may not, depending on the real) be very varied. Also, under a
strong reducibility r they form a substructure of the r-degrees inside
the T-degree of .

e Secondly, given some representation, how do the reals which have
this representation relate to each other computationally? Of course
they are T-equivalent, but we show in the following that they can be
quite diverse with respect to stronger reducibilities. Theorem 1 says
that there is a wtt-computably independent set of c.e. reals which
have a common representation A. A (countable) set of reals {z;} is
wtt-computably independent if z; Lyt ©j2; for all ¢. This means
that no element z; can be computed in a wtt fashion from the rest
of the elements in the set.!

e The third goal we want to achieve is a complete characterization of
the (c.e. of course) wtt degrees which contain representations (with
reference to any real). In [2] we characterized representations as the
c.e. cuts of computable orderings of order type w+w™* (here w* is the
inverse of w). So these sets are quite interesting in many ways, and it
is natural to ask which degrees they occur in. They obviously occur
in every T-degree, and so we turn to look at stronger reducibilities
(such as wtt). We have shown in [1] that any non-computable repre-
sentation (which is what we are really interested in) is a hypersimple
set; and since the wtt-complete degree contains no hypersimple sets
(by a classical result), it contains no representations. So indeed there
are representation-free c.e. wtt-degrees. But are there hypersimple
such degrees? In theorem 2 we show not only that there are, but
also that there is a certain freedom in constructing them. In fact we
construct entire upper cones of wtt-degrees, free of representations.
By an upper cone (with bottom a) we mean the set {x | a < x}
(for a fixed notion of degree, and the order associated with it). The
proof and particularly the strategy for the cone construction is espe-
cially interesting, as we have not encountered it before. In theorem
3 we show downward density of the representation wtt-degrees (i.e.
the ones containing representations) in the c.e. ones. In other words,
any non-computable c.e. set wtt-bounds a non-computable represen-
tation.

In theorem 4 we construct a non-zero 7T-degree which bounds no
bottom of a representation-free cone of wtt degrees (like the ones

Lthis is analogous to the term ‘recursively (or computably) independent’ which refers
to T-reducibility.

APPROXIMATION REPRESENTATIONS 3

constructed in theorem 2). The proof of this result is especially
interesting as it is an infinite injury where the restraint imposed by
a single requirement can tend to infinity (i.e. has no liminf).

We assume some background in computability theory and especially re-
lating to priority arguments (finite, infinite and tree arguments). For this
we refer to [6],[4], [5]. Unexplained notation in this paper is quite standard.
When we write ®4 = B; ¢ we mean that the reduction of B to A is wtt (i.e.
that the use ¢ is computable).

In priority constructions (particularly) it is very helpful to have an in-
tuitive picture of what’s going on. For this reason we describe briefly how
we picture the construction of a representation A. We define a sequence z
(which will eventually tend symmetrically to a limit) and a non-decreasing
sequence y in [0,1]. Our aim is to build A, (= A) so that it satisfies cer-
tain computational properties. Whenever we want to enumerate a number
n\, A, we wait until z,, | and let y be greater than z,. The interval [0, y,]
is called the black area (at stage s) and so enumeration into A, is done by
expansion of the black area. The distinctive feature of representation con-
structions is that when you enumerate n ™\, A, you have to enumerate all k
such that z, < z, into A,. An illustration is given in figure 1.

Zt Zj

yS Zk,‘ Zi

Figure 1: Representation constructions

2. DIFFERENT REALS WITH COMMON REPRESENTATION
We begin with

Theorem 1. There is a wtt-computably independent set of c.e. reals which
have a common representation A.

Proof. We want to build a representation A and symmetrically converging
sequences z* — x; such that A,: = A and x; Lyt @jxx; for all i € N. Our
requirements are

Nieiy O L 1y e

and we are going to build the sequences and reals in our usual framework.
For each real z; we have a sequence 3° which converges monotonically to z;.
At any stage s the interval [0,y!] is the i-black area and y! is our current
approximation for z;. At all times we ensure that all A,: are equal to the
representation A we are constructing. This means that if the i-black area
expands and covers new z'-terms, we assume that the indices of these terms
are enumerated into A. Moreover we motivate the expansion of other j-
black areas (i.e. for those j for which there are defined 27 terms outside the

4 GEORGE BARMPALIAS

j-black area) so that we preserve A = A_; for all j. This chain reaction will
happen for only finitely many j since at any given stage only finitely many
2 terms (for any j) are defined. In fact, at stage s we define 23 for all j < s
(so at s the defined z-terms are 2] for all j <t < s).

All the parameters in the construction will be finite binary rationals (i.e.
rational numbers with a finite binary expansion). The strategy to satisfy
Ny 1s the following: we start at a stage s by choosing a finite binary
sequence ¢ such that g0 C y’ (we think of rationals both as binary expansions
and binary sequences). This can be done at any stage since y' is finite
and can be assumed to have a suffix of any (finite) number of zeros. We
impose restraints (on the growth of y¢) to ensure ¢0 C ; and wait until
PI#TI (n) |= 0; ¢ where n = |¢|+ 1. If we never get this computation, our
restraints will guarantee the satisfaction of N ;.

If we get it, say at stage sg, we would like to define y* = g1 (in order to
create a disagreement). But this increase in 4* may motivate an enumeration
into A and so (by the chain reaction described above) a change in @;.;z;
below the use. In this case we will not be able to preserve the disagreement.
To deal with this problem, we first set 4° to be the largest z'-term less than
ql and j-restrain (p;, 1) where

(1) pj =y | de(n)+27%

and s; is the largest O-position in ¥ | ¢e(n), for all j involved in the
use (for those j that s; T we do not put any restrain). We also require any
new 2/ term to be defined outside (p;,1), for those j (so that a following
action y° = ¢1 will only cause changes in the expansion of x; outside the
use). Now we wait until i (n) l= 0;¢c. If we don’t get it, Ny is
satisfied as before. Otherwise the use will be the same and setting 3* = g1
will create disagreement without spoiling the computation. That is because
if z; changed below the use, this would be because some term 2] motivated a
y/ expansion (due to a t \, A enumeration). But such z} terms were defined
after stage sg, and so were defined in order not to motivate any such change
in the expansion of z; below the use (which was the same as now). Hence
this would lead to a contradiction.

Finally we will define 2 in the middle of (y%,m’) where

m' =min{m, 2] | k ¢ A[s]}

and (m,1) is the strictest j-restraint imposed currently. This ensures
that the 2/-terms are defined close enough to lim’ so that lim 2/ = lim g/.
Next, we lay out the formal module for N ; which is actually a part of
the construction. Note that here we take into account restraints imposed
by higher priority requirements. During the construction each requirement
imposes j-restraints for various j. Such a restraint is of the form ‘don’t

APPROXIMATION REPRESENTATIONS 5

let o7 enter (p,1)’. Note these restraints imply restraints on A: if (p,1) is
j-restrained and contains zi then k is restrained from A.

(1) Choose a prefix of the current y‘-approximation to x; with last digit
0, i.e. some g with ¢0 C %%[s]) such that g1 is not i-restrained by a
higher requirement, and it doesn’t sit on any defined z’-term for any
j. i-restrain (g1,1).

(2) Wait until

(2) O (n) |= 0; e

where n = |q| + 1.

(3) Let y* = 2! where 2z} is the largest z'-term less than 1. For each j
involved in the use of (2) j-restrain (pj, 1) where p; is defined in (1).
Wait until (2) is restored. By this action, A-enumeration occurs and
s0, various y’ -black areas move. This will not affect higher priority
requirements because (0,ql) is not restrained by them.

(4) Drop the i restraints of step (1) and set y° = ql; also i-restrain
(2},1) where 2} is the least z'-term > gl. The use ®;4x; | ¢e(n)
doesn’t change because for the k \, A by this action, zi were defined
after step (3) and so they are < p; (by the way we define z-terms, see
below). The disagreement will be preserved by keeping the i-restraints
of this step and the j-restraints of step (3).

Now the construction is as follows. For all j set yg =0. Ats>0

(a) Define 24 (for each j < s) in the middle of (y/,m’) where m' =
min{m, z, | k ¢ A} and (m, 1) is the strictest j-restraint imposed by
any requirement at the moment.

(b) Let the least requirement which requires attention (i.e. is ready to
move step) act and initialize lower requirements (i.e. set their mod-
ules in step (1) and cancel their restraints).

(c) Forall j, k,ify!_; <z and k € A then set y} = 2], for the max such

7. This ensures A= A_j for all j.

Now we do the verification of the construction. It is evident that for all
n,k ¢ A,

n>k <= 2 <]

for all j. And so, by step (c) of the construction, A = A,; for all j.
Now we prove by induction that each N, ;) is satisfied and eventually ceases
requiring attention. The induction step for N ;: assume that after s no
higher priority requirement requires attention. Ny ; will receive attention
and step (1) of the module will be performed. Note that y7, zj,pj, q all take
values of finite binary rationals Q9 since this set is closed under addition and
division by 2. So, since only finitely many restraints are imposed by higher
priority requirements, ¢ will be found in step (1). If we wait forever in step

6 GEORGE BARMPALIAS

(2) of the module, we are done since then z; < ql (y* /4 ql because of the
infinitely many requirements with empty functionals, and the restraint they
impose in (1)).

Otherwise we pass on to (3) and, if stuck forever, we are done for the same
reasons. Otherwise the use of the restored computation is again ¢.(n) and
®j2i%j | pe(n) same as just after we acted in (3), due to the j-restraints and
the induction hypothesis. So we pass on to (4) and the z’-terms in (y¢, q1)
have indices k > si, the stage when (3) was executed. So for those k£ and
the j involved in the use of (2), z], < p; and so, enumeration into A will not
spoil (2) (under step (c) of the construction). So at step (4) we put y* = ¢l
and preserve the disagreement by restraining (2}, 1).

This concludes the induction step and the only thing left to show is that
limy’ = lim 2* for all i. Fix 4: y’ converges as non-decreasing and bounded.
By the construction we have

Yo + AL
2

where ! = min{z} | k ¢ A[s]}. Let {js} be a monotone enumeration of
N — A. By (3),

3) Z§+1 <

) 7
P < Yjstr + “s
Js+1 — 2 :
Let
)
a0 = Zj
Xy + ag
as+1 — 5 .

For all s, ag > Z;-S; indeed, it holds for s = 0 and if a5 > Z;-S then

) 7
_ Titas > Yjoia —I—st S i
as+1 = 9 = 9 Z Zjoy1

So limg as = limg Z;-S = z;. Now it is easy to see that lim, 2! = x;, which

finishes the proof. O

3. WTT-DEGREES OF REPRESENTATIONS

We noticed in [1],]2] that any representation of a non-computable c.e. real
is a hypersimple set. And since the wtt-complete degree contains no hyper-
simple sets (by a well known result), this degree contains no representations.
This raises the question which c.e. wtt degrees contain representations (note
that every c.e. T-degree contains such). Are they the hypersimple ones? The
following theorem says that there are entire upper cones of wtt-degrees, free
of representations. Moreover the bottoms of these cones can avoid any spec-
ified non-trivial upper cone of T-degrees; and can even have hypersimple

APPROXIMATION REPRESENTATIONS 7

wtt-degree (which means that the wtt-degrees containing representations
are properly contained in the hypersimple ones).

In [2] we also noted that the representations of c.e. reals (from now on,
just representations) are exactly the c.e. cuts of computable orderings of N of
order type w+w*. So the results below can be stated in terms of computable
orderings. If A is a representation, there is a computable ordering of N
determined by a computable function ¢ (i.e. n < m <= (n,m) = 1)
whose (say) left cut is A. Then we say that A is a representation via ¢. Let
{D,} be an effective sequence of all finite sets.

Theorem 2. Let C' be a non-computable c.e. set. There is A 1 C hyper-
simple such that for all c.e. W >, A, W is not a representation.

For theorem 2 we need to satisfy the following requirements:

Nowp ®" = A;¢ = W not a representation via 1
H@ : Hn(DSD(n) NA= @)
Co: DA#£C

where ®, ¢, ¥ run over the computable functionals/functions, and W
over the c.e. sets. The strategies for C,H (guaranteeing cone-avoidance in
the Turing degrees and hypersimplicity) are well known, but we will state
them briefly. A new strategy is described for /. Roughly, to satisfy N we
will start enumerating W (via an auxiliary set D) using the hypothesis that
W is a representation via 1 (and of course oW = A, ¢). If at some point
our guess D for W fails (i.e. an element of D appears in W) then we will be
able to satisfy ®" # A; ¢ by creating and preserving a disagreement.

Let us discuss this plan in more detail. We are given W and %, and we
may assume that W is a representation via v in order to try to destroy
®W = A. If this hypothesis fails, No w,p is satisfied. So we may think
W, 1 as the construction of a sequence of rationals converging symmetrically
to a real, which produces the representation W of that real. In terms of
our framework, the black area is controlled by the enumeration in W and
the relative position of the terms of the sequence is determined by v (this
description gives us a picture of what we are trying to control, i.e. the
procedures given to us by the opponent).

The strategy consists of two recursive procedures A, B. The first one
consists of potentially infinitely many cycles A,, each of which builds upon
the work done on its predecessor A,_1. The purpose of A, is to find and
enumerate elements to D (so that we are closer to D = W). Suppose that
W is a representation via 1. The main idea behind D-enumeration is that
any d € W has only finitely many -successors. Now, considering a d which
is apparently in W (i.e. has not yet been enumerated in W) we look for a set
I of witnesses (intended for ®-diagonalizations) such that the set R of their

8 GEORGE BARMPALIAS

rectification codes (i.e. numbers currently outside W and below the use of
at least one ®-computation on an argument in I) which are 1-greater than
d is smaller (in cardinality) than [itself. Since W is a representation via 1),
there are only finitely many elements v-greater than d and so such a set I
will be found provided that d is indeed member of .

Once we find I (and d is still outside W) we have reasons to believe that
d is not going to appear in W later on, and we enumerate it in D. Our
belief comes from the following fact: if later on d \, W, every element not
1-greater than d will enter W (since the later is a representation via) and
so we hold a set I of witnesses whose overall rectification codes are less than
their actual number. This means that can we start a diagonalization ripple
which ensures a final ®" £ A; ¢ disagreement: for each I-diagonalization
at least one element of R will enter W to rectify it and so there will be a
final I-diagonalization which is impossible to rectify. The diagonalization
procedures is the content of steps B,,.

Of course there is the possibility that during the process of searching for
I, d is enumerated in W. In this case we have to pick a different d. Since W
is infinite, we will eventually come up with a suitable d. Moreover when we
enumerate d \, D we can enumerate all numbers -greater than d as well
(since if any of these appear in W, d must also appear). This feature, along
with choosing d as ¥-small as possible (see parts (a),(b),(c) of step 2 of A4,
below) ensures that if this procedure is not interrupted (e.g. by DNW # (),
it will give the whole W.

So if indeed the hypotheses of A/ hold and W is a representation via 1,
DN W = and according to the above, D = W. So W is computable. In
other words, we have satisfied the requirement:

/\/"<1>7W’¢ W = 4; ¢ = W not a representation via ¢ or W is computable.

In fact, we can let all strategies like the one described (i.e. for all &, W,)
work together without any interference. Indeed, each strategy chooses wit-
nesses from a special set (disjoint from the sets of other strategies) and so
there is no injury (the only restraints set by the strategy are on witnesses).
What we achieve is the satisfaction of all N’. But this obviously implies
that A is non-computable. Using this fact it is now clear that the satisfac-
tion of N implies the satisfaction of A/ (since the computability of W and
®W = A; ¢ implies the computability of A).

This is an interesting phenomenon: A’ can be regarded as pseudo- re-
quirements which are individually weaker than the main requirements and
whose satisfaction is the direct outcome of our strategy. However the sat-
isfaction of all of them (which is the direct outcome of our construction)
implies the satisfaction of all of the real requirements. The ‘outcome’ W
is computable can be regarded as a pseudo-outcome of N since it is never
the outcome of a strategy in the sense that no strategy will end up with
D infinite (and so, D = W according to the above analysis). This is an

APPROXIMATION REPRESENTATIONS 9

implication of the fact that A ends up incomputable (and so ®WV # A; ¢, if
W is computable, which means that we only get finitely many expansion-
ary stages and D finite). What happens here is that the D-enumeration is
a pseudo-strategy which always fails, but it pushes the satisfaction of the
pseudo-requirements in different ways (diagonalization and representation
property failure).

As a byproduct of this analysis we get that no strategy is going to run
for ever. Each family of steps Ag, A1,... must stop in a final A, (and of
course the family By, Bi, ... does not have the potential of running for ever,
see below). So, an N strategy (like the one discussed above and described
below) runs finitely often thus imposing only a finite restraint on numbers
of its special set U. This feature allows us to add the hypersimplicity re-
quirements H. These strategies will always respect the higher priority N’
strategies and when they act they will initialize the lower priority strate-
gies. Finally the only effect that the cone avoidance strategies C have in the
strategies discussed above is a Sacks restraint with liminf < co as in the
usual Sacks argument done on a tree. So if we transfer our N/, H strategies
on the usual tree that is used in the cone-avoidance strategy the whole con-
struction works without any special modifications. We now formally state
the strategy for N”.

Let n =0, D = (). We assume all functional uses increasing, and a fixed
restraint r that the strategy is asked to respect by higher priority strategies
(in the complete tree construction this will be the liminf of one or more
Sacks restraints lying on the tree above the strategy and a fixed restraint
from the nodes on the left). As mentioned above, each N’ strategy chooses
A-witnesses from a special set U disjoint from the sets of other N/’ strategies.
This very strategy imposes its own restraint but this is only on numbers of
its special use set U and so they only affect lower H requirements. The
module for Né,w,w is as follows (the various parameters like n, D may be
reassigned values after running the module):

A,, (D-enumeration step)

(1) If DNW #) then wait until some d \, W and go to step
By.. In order to start A, we must ensure that the previous A;
steps look successful, i.e. D NW = (. If they do we proceed to
the main clauses of A, ; otherwise we wait until some d; \, W ;
these elements d; control the D-enumerations in the sense that
any element t in D must have appeared ‘after’ some d; 1-less
than t was enumerated in D. So if DNW # () and W is indeed
a representation, some d; must appear in D.

(2) (a) Let £ > 0 be the maximum such that 1) has ordered N | ¢

and wait until it takes a value greater than any previous
one (including the values it took in previous A; steps).

10

GEORGE BARMPALIAS

(b) Choose the currently i-minimum element d,, in W | £
and 1-less than any number currently in D. If it doesn’t
exist, go to (a).

(c) Find k such that for the set I,, of the next k unused el-
ements in U above the restraint r (i.e. the first k ele-
ments of U — U;<,,I; greater than r) the following holds:
if v, = max;es, ¢(i) then the number of elements less
than v, and 1-greater than d is less than k. If during
this search d,, \, W, let d/, be the ¢-minimum element in
W £ — D, d, :=d, and go to (c); if it doesn’t exist, go
to (a). Otherwise, if the search is complete and d,, € W
go to step 3.

The restraint r will remain the same during the life of this strat-
eqy unless it is initialized by the global construction. If) defines
a total linear ordering of N of order type w+w* and W is its bi-
infinite left cut, this step will be completed. Indeed, ¢ — oo (so
it is impossible to be stuck on (a)) and since W has no 1-least
element, any (a)-(b)-(a) loop is only finite.

Also, no infinite loop involving (c) can occur for the following
reason: any (c)-(b)-(c) loop uses a fired € and so it must be
finite; so any infinite loop involving (c) must also involve (a).
Now every time we visit (a), € gets bigger and there will be a
stage where there is an element d' < { permanently outside W
and)-less than any element currently enumerated in D (ac-
cording to the assumptions on 1 and W). At such a stage, (b)
will pick up a d, -less than or equal to d'. Now if the loop
continues, (c¢) will have to consider d', and with this value of
the parameter d,, the (c)-search cannot be interrupted.

So eventually there will be a search in (c) which is not inter-
rupted by dn, \, W. By the assumption on ¢ and W such a
search must terminate; indeed, d, is permanently outside W
and so it has only finitely many -successors. So, as k grows
all the time and “the number of elements less than v, and -
greater than d, has an upper bound, the search will finish and
we will eventually pass to the next step.

Note that if any of the assumptions on 1 and W fails, the above
argument does not work and we may not be able to escape this
step (but this is no problem as under these circumstances N is
satisfied).

Enumerate d, \, D and fix the values of d,,, v,, and I, (as they
were last defined above). Enumerate into D all elements less
than ¢ that have been -ordered greater than d, and restrain
the witnesses I, from A. Note that in the end of A,, D only
contains elements -less than or equal to d,,. If we find out that
some element of the current D appears in W, d,, must appear

APPROXIMATION REPRESENTATIONS 11

in W (or else W is not the cut we assumed it is). Upon such
an event the construction will activate B,, which will start di-
agonalizing against ®V = A; ¢ using I,, as the set of witnesses.
Since d, \, W, the rectification positions for any such diago-
nalization are less than |I,| according to (d) of step 2. So by
the last diagonalization ®V = A; ¢ will be destroyed.

(4) Let n:=n+ 1 and go to step A,.

By, (D-failure step) We assume the values I, dg,vi, as defined in step

Ap.

(1) Wait until £(®V = A;¢) > m for all m € I, and all %-
predecessors of dj less than vy enter W. If we wait forever
here, it means that W is not the left cut of the computable or-
dering on N defined by v, and so N is satisfied. Note also that
di, has less than |Ii| 1¥-successors less than vy (as when it was
defined).

(2) (Diagonalization)

(a) Wait for a ®-expansionary stage.

(b) Put the least element of I, — A into A and go to (a).
After the first diagonalization in (b), every time we leave (a) a
rectification has occurred and so the set R, of I,-rectification
codes is reduced by one. Since initially |Ry,| < |I,| and for each
element leaving I, at least one element exits R, this (a)-(b)-
(a) loop must end up in (a), unable to get a further rectification
(and so, expansionary stage).

Analysis of outcomes.

The module runs over all Ag, A1,... and never stops. This means
that we get infinitely many ®-expansionary stages (so @V = A;¢)
and ¢ — oo (so 1 defines a linear ordering on N). It also means that
DN W = () and according to the second step of A,, D =W. So W
is computable.

At some A; we get stuck forever. Then either ®V # A;¢ (not
giving us enough ®-expansionary stages) or ¢» does not define a linear
ordering on N (not giving us enough /-expansionary stages) or there
is an infinite loop in the (a), (b), (c) clauses of step 2 of A;. If
the loop is (a)-(b)-(a) it means that W has a t-least element and
so W is not a representation via 1. Any other infinite loop must
involve step (c) infinitely often and this means again that W is not a
representation via v (e.g. see the comments following step 2 of A,,).

We end up on some By, step. In this case ®V # A; ¢ is guaranteed
as we explained above.

The analysis of outcomes shows that N is satisfied. The module for H,, is
to simply find a ¢ such that min D) > r (where r is the restraint inherited
by higher priority requirements) and then empty D¢(t) into A and initialize
lower priority N’ requirements. The module for Cg is to impose (to lower

12 GEORGE BARMPALIAS

priority strategies) the restraint r = the use of the computations ®4 = C
up to the first point of disagreement (or ® being undefined).

We picture the construction on a (downwards expanding) tree. The nodes
of the tree are effectively assigned strategies so that any infinite branch is
equipped with strategies for each of our infinitely many requirements. An
N’ or ‘H node has only one branch. A C¢ node has infinitely many branches
corresponding to (and ordered as) the natural numbers. These are meant
to be the various values that the restraint of this strategy takes during the
construction.

During a stage s we successively access the nodes of a branch of length s,
starting from the top node () and going through the branch that is activated
by the strategy that we have last accessed. For a Cy node this is the branch
corresponding to the current value of the restraint while for the others there
is only one choice. If during a stage, an H strategy « enumerates into A, we
initialize all lower priority A/ strategies (so that they start anew). Lower
priority strategies are the ones that are below « (i.e. their branch contains
a) or to the left of it (with respect to the usual lexicographical ordering of
the nodes induced by the ordering on the outcomes). Of course, when a
node a becomes accessible, all strategies sitting on nodes to the left of «
are initialized. The restraint r that a strategy « is asked to respect (often
mentioned in the above modules) is the restraint imposed by nodes above
or on the left of a.

First we verify that there is an infinite leftmost infinitely often accessible
path f and C, N are satisfied. Inductively suppose that the branch f | n
is defined (and satisfies the ‘leftmost’ properties). If node f | n is H or
N’ then we easily see that f | n + 1 defined by extending through the
unique branch of the node, satisfies the ‘leftmost’ properties. If it is C then
assuming that there is no leftmost edge infinitely often accessible we show
the usual Sacks contradiction, that C is computable. So there is such edge
and f | (n+ 1) is defined by adding this edge to f. This also shows that C
is satisfied. Now that we know that f is infinite (and so it contains nodes
for each N’) we show that any N’ strategy on f succeeds. Suppose that N’
is not initialized anymore (such stage exists since f is leftmost and there
are only finitely many H-nodes above N’). Then the strategy will work
without any distraction (lower priority H requirements respect it and other
N’ requirements use different witnesses) and will deliver one of the outcomes
justified in the analysis of outcomes above. So N’ is satisfied.

Now, as explained above, since all N7 are satisfied, A is non-computable.
So all A are satisfied and also no N’ strategy runs forever (going through
Ap, Ay, ...); in other words outcome is never realized. This means that
each N/ only imposes a finite restraint to lower priority H requirements, and
so the later are satisfied. This completes the proof of the theorem. On the
other hand we have

APPROXIMATION REPRESENTATIONS 13

Theorem 3. Fvery non-computable c.e. wtt-degree bounds a non-zero wtt-
degree containing representations.

To prove this theorem we combine our usual construction of a real with
non-computable representation (see e.g. [1]) with permitting. We build a
sequence z which converges symmetrically to a real x, and a non-decreasing
sequence y which converges monotonically to x. Let A be a non-computable
set; A, = {k | 2z < x} will be our desired representation, bounded by A.
We want to satisfy:

Pp:®#A,

So we carry on defining z-terms in decreasing order outside [0, ys] (which
we often call the black area). When we are ready to attack some Py (of
least priority requiring attention) we define the current term ys up to zi
where k is the index we want to enumerate into A, (thus expanding the
black area); and so on and so forth. The observation here is that we can
easily add permitting: we don’t want to enumerate an index k unless some
number less than k enters A at the current stage. As usual every Pg will
require attention infinitely many times unless satisfied. Now note that such
an action for satisfying P may enumerate into A, numbers other than
k (namely the indices of terms less than z; which have not yet entered
the black area). The crucial point is that all these will be greater than k
(according to the way we define z) and so they will be A-permitted whenever
k is so. Finally we need to keep an order on the witnesses: lower positive
requirements hold larger unrealized witnesses k (i.e. with ®(k) 1) and a new
witness is chosen for Pg whenever the previous one has been realized (i.e.
®(k) |). This will give a standard finite injury effect to the construction
(since whenever a new witness is chosen for Pg, all lower requirements have
to change theirs).

4. NON-BOUNDING BOTTOMS OF REPRESENTATION-FREE WTT UPPER
CONES
Our last result has perhaps the most interesting proof.

Theorem 4. There is a non-zero c.e. Turing degree which bounds no wtt-
degree whose upper cone is free of representations.

The requirements are

Qo w : ¢ =W = 34 representation(W < A)
Ps: ®#£C
and we attempt W <y A in Qg by enumerating a functional I' with
computable use v, trying to preserve and expand the agreement r4 = W .

In order to ensure that A, the set we are constructing for the sake of
Qs w, is a representation, we construct a sequence z of rationals in the

14 GEORGE BARMPALIAS

usual way such that A, = A (with an increasing ‘black area’ controlling the
enumeration into A,). By the characterization of representations as left cuts
of computable orderings of type w 4+ w* (see [2]) we only need to specify the
position of each z-term relative to the others, when constructing z (we are
not concerned with its convergence).

We define vy on numbers which are currently outside A (i.e. A,) and make
it increasing. The z-terms are defined as usual in decreasing order outside
the black area. Now the problem is that if the black area expands up to z,)
(for the sake of enumerating (k) \, A) all the defined v(n) with n > k will
enter A. When a part of N [y(k) enters A, it is not good news because
our opportunities to change computation I'(k) | (after a possible k \, W)
become fewer (as the use (k) is fixed, once defined). To make things clear,
we use a ['-marker Ty, for each k, which initially sits on the position (i.e.
value) of y(k). In general, it sits on the largest number (i.e. smallest z-term)
outside the black area and less than or equal to (k). The values that Ty,
takes are decreasing and it could happen that eventually it has nowhere to
sit (i.e. it is undefined). This is exactly what we want to avoid. We want
each I'y to eventually rest on a number outside A (so that if k& appears in
W we are able to rectify the I'-computation by enumerating the current
position of Ty into A). Hence ' being defined means that we are able to
rectify I' on k, if needed.

Now as explained above, an enumeration of some (k) into A may result
in the enumeration of other v(n) into A. This means that during the con-
struction, many I'-markers may occupy the same position. So if 'y loses its
current position (to move to a smaller one) it may not be because k \, W
(but because of some other W-enumeration). So I'y, may lose all of the posi-
tions that is allowed to have (thus ending up undefined) and still £ not have
appeared in W. A subsequent k \, W will result in I" being wrong and us
being unable to rectify it.

To avoid this situation we use ®¢ to restrain W. Whenever we define
v(k) on some number n, we make sure that the agreement ®¢ = W is
higher than n and so we can restrain a subsequent movement of I'j (due
to k \, W). More generally, whenever we place I'y in a new position, we
make sure that we can restrain I'y, from further movement (i.e. we wait until
((®° = W) is big enough before enumerating the new I'-axiom on k). Of
course this strategy results Qg 1y imposing a restraint » with liminf r = oco.
This conflicts with the satisfaction of the P requirements, which can only
accept a finite restraint (or at least with liminf < co). If we were to ensure
that beyond some stage, r is not violated anymore, then we would have that
almost all I'-markers never move from their initial position. We have space to
be more flexible. We describe the situation of a Qg y» with highest priority
and all P requirements (priority-ordered in some effective way) below it.
After we deal with this case, the rest of the Q strategies can be added with
only a finite injury effect (though the atomic case has infinitary nature).

APPROXIMATION REPRESENTATIONS 15

We will spread out 7 to the lower P requirements. So r will be violated by
lower priority requirements infinitely often, but in a nice way. In particular
we define 7, (n-restraint, for n > 0) to be the use of (®¢ = W) | (¢, + 1)
where ¢, is the index of the largest I-marker sitting on the n-th position (i.e.
number—in order of magnitude) outside the black area. If there is currently
no n-th position outside the black area, or the length of agreement is less
than ¢, + 1, let r,, = 0.

Now the n-th P-requirement below Qg v listens to the r,, restraints for
m < n;i.e. it respects R,, = max;,<p rm. To give an idea of the construction
and the movement of the I'-markers, once we state the strategy for Qg v it
will be easy to verify inductively that at any stage

n < m <= the I'-markers on m have bigger index than those on n

(iff 2z, > zy,) for all n,m not (yet) in A. Also it is obvious that each
position permanently outside the black area, will carry at least one I'-marker.
And for any n, the markers sitting on n are protected from losing their
position by restraint 7, of Q¢ w (which may be violated, but only finitely
often). The strategy for Qg v is as follows:

(1) (z-definition) Let n be the least such that z, 1. Define z, outside
the black area and less than any z-term outside the black area.

(2) (-definition) Let n be the least such that I'(n) 7. If y(n) |, enu-
merate the axiom I'(n) = W (n) with use y(n) |.

If v(n) 1, wait until £(®°, W) > n and there is a (largest) z
outside the black area which carries no markers. Then, if k£ is the
t-th (in order of magnitude) number outside the black area, define
v(n) = k (thus putting T',, on 2;) and t-restrain the C-use of I'C |
(n+1) (since only I'y, sits on zx). The t restraint ry will automatically
be applied according to its explicit definition.

(3) (T-rectification) Let k be the least such that

T4(k) |= 0 # W(k)

(if there is no such, do nothing). Then:

e FEzpand the black area up to the position (say n) of marker
I'x. By this action we remove (temporarily) all I'-markers with
index > k from the line. Later we will put them all on a single
position; namely on the largest number < n which is outside the
black area (i.e. outside A).

e Wait until £(®“, W) becomes larger than max;(y(t) |) (i.e. the
maximum argument for which we have ever enumerated an ax-
iom). Before we enumerate axioms for the arguments > k and
so place the corresponding I'-markers back on line, we want to
ensure that we are able to keep the later on their new position
(and not let them roll further down) by C-restraining.

16 GEORGE BARMPALIAS

e Enumerate I'-axioms for the arguments in [k, max(y(t) |)].
This action puts the I'-markers back on line and also activates
the C-restraint of their new position.

The module above functions as follows: when it is called for first time
(or after an initialization) it starts from step 1. Each time it is called, we
say that it executes one round. It starts a new round from the point it last
stopped. If it has stopped on the end of some step, then it starts from the
beginning of the next one (the next of step 3 is 1). In one round it can only
execute one step. If it last stopped on a ‘wait’ instruction, in the next round
it checks whether the relevant test is satisfied and waits further or moves on
accordingly.

Note that according to the definition of I'y, given above, any marker rolling
to a new position must have come (and been ‘allowed’ to roll down) from
the next higher position. The strategy for P is simply to hold a witness
x from its use-set, larger than the restraint imposed on it and wait until
®(z) |= 0 (when it requires attention). Then it puts x \, C' and initialize
higher priority (Q-) requirements (and stops requiring attention). Assume
an effective listing of all the requirements like

730>Q0>731>Q1...

Above we defined r,, (the n-restraint of a Q-requirement) and the restraint
to which a positive requirement listens, in the simpler case of a single O-
requirement above (i.e. higher than) an infinite list of positive requirements.
In the full case each Q requirement has its own n-restraints (defined in
exactly the same way) and the restraints imposed on some P on the list
are defined analogously. Namely P; listens to the i-restraint for all 0 < ¢ <
(t — k), of Qy for each k < t. Remember that there are no O-restraints.

The restraint imposed on some P may change only finitely many times;
and each time it changes we make sure that P is initialized (so that it
picks up a new appropriate witness). In particular, whenever r,, of some
Qj changes value (according to the way we defined it) we assume that all
positive requirements which listen to it, are initialized. In this case these
are the P; for i > n + k.

To sum up, positive requirements initialize the lower Q requirements,
when they act. And once they’ve acted they don’t act again and so each
of them can only cause initialization at most once. When Q is initialized,
it starts working anew (with a new, completely empty undefined T', v etc.).
A 9 requirement causes initialization every time one of its n-restraints
changes value; so it could cause initialization infinitely often. However, each
of its r, changes only finitely many times (since the residents of its n-th
position stabilize). And since a change of r,, initializes only the P; with
i > n + k, each positive requirement is initialized finitely often. Notice that
the steps in Q’s module that can cause a change on its restraints are steps
1 and 3.

APPROXIMATION REPRESENTATIONS 17

Construction. At stage s we first successively access each of Q; strategies
for i < s and run them (as described above). Then we choose the highest P
which requires attention and satisfy it.

Notice that each Q involves infinitary activity and so it must be visited
infinitely many times. A @ requirement only enumerates in its own set
A and not any set (like C) related to other requirements. Also it can be
initialized only finitely many times since it has finitely many P predecessors.
Verification. First we need to show the following

Lemma 1. Assume for some Qj, that <I>kc = Wy. Then there are infinitely
many positions which permanently stay outside the black area of O, and
each of them has only finitely many (and at least one) permanent residents
(i.e. T-markers). Also, for any position there is a stage beyond which it is
not given additional T'-markers.

Proof. By induction: assume that it holds for the first n—1 positions outside
the black area. Notice that z-positions on the real line are enumerated
from right to the left. So, when the positions are still outside the black
area, the ones with the smaller indices are on the right with respect to the
ones with the bigger indices. Say that after sg no P; with i < n + k acts
and no additional I'-marker ever occupies one of the first n — 1 positions
(permanently) outside the black area.

Since ®¢ = W, the module of Q;, doesn’t get stuck on a ‘wait’ instruction
and so it keeps on running its steps forever. After sy we keep on enumerating
positions with initial residents successive arguments for which I" (of Qy) was
previously undefined. The markers sitting on the current n-th position after
sp are not going to be moved. Indeed, according to the construction these
markers are restrained from moving by r,. And since no P; with i <n + k
acts, r, is not going to be violated anymore. For the same reason, 7,41
cannot be violated, and so no additional markers will move to the n-th
position (coming from the (n+1)-th position). This completes the induction
step. The base of the induction (i.e. the case for the 1-st position) is done
in the same way, since after Qy is initialized for the last time, r; is never
violated. In particular, no I'marker can end up undefined. O

Now suppose that ®¢ = Wj. It follows from the construction and the
above proof that I' of Qp is total. Indeed, axioms are being enumerated
infinitely often, and the use v for each of them remains the same throughout
the construction. In particular, I' is a wtt-reduction. It is also correct. Step
3 of @’s module ensures that any wrong computations are being corrected;
and this is always possible since I'-markers are always defined and they
always sit on a number outside A.

As a result of lemma 1 and the definition of r,, any n-restraint of a Q
requirement reaches a limit. This means that each P requirement has only a
finite restraint to deal with, and so it is eventually satisfied. This concludes
the proof of the theorem.

18 GEORGE BARMPALIAS

We would like to note that all representations A built in the above proof
are (automatically, as a result of the construction itself) C-computable. So
we actually build A within the C-ideal, as pictured in the first illustration
of figure 2. Furthermore, we can replace the positive requirements for C'
with the N -requirements of section 3 to guarantee that the wtt-cone above
C is representation free. The effect will be the same since A involves no
more than finite enumeration. If we also consider just the wtt-ideal below
C' (instead of the Turing ideal we considered in the proof) thus assuming
W <utt C in the Q-requirements, the construction will work as before with
the additional effect that all A built will be wtt-reducible to C' (instead
of T-reducible as before). This situation is summarised in the following
theorem.

Theorem 5. There is a wtt-degree ¢ such that for all w < c the inter-
val (w,c) contains representations (where everything is meant to be in the
structure of c.e. wit-degrees).

This theorem is illustrated in the second part of figure 2, where the cone,
the ideals and the degrees are c.e. wtt.

representation-free

C

T-ideal

wtt-cone

0 0

Figure 2: Degrees of Representations

REFERENCES

[1] G. Barmpalias, The approximation structure of a computably approximable real, J.
Symbolic Logic 68, no.3 (2003) pp.885-922

[2] G. Barmpalias, Approximation representations for A, reals, to appear in the Archive
for Mathematical logic.

[3] C.S. Calude, R. Coles, P. H. Hertling, and B. Khoussainov. Degree theoretic aspects

of computably enumerable reals. In S. B. Cooper and J. K. Truss, editors, Models and

Computability, volume 259 of London Math. Society Lecture Note Series, pages 23-39,

Cambridge, 1999. Cambridge University Press. Invited Papers from Logic Colloquium

1997, Leeds.

P. Odifreddi, “Classical recursion theory”, Amsterdam Oxford: North-Holand, 1989

P. Odifreddi, “Classical recursion theory Vol.IT”, Amsterdam Oxford: North-Holand,

1999

I

APPROXIMATION REPRESENTATIONS 19
[6] R. 1. Soare, “Recursively enumerable sets and degrees”, Berlin London: Springer-

Verlag, 1987
[7] X. Zheng, Recursive approximability of real numbers, Mathematical Logic Quarterly,

48(2002), no 4,

SCHOOL OF MATHEMATICS, UNIVERSITY OF LEEDS, LEEDS LS2 9JT, U.K.
E-mail address: georgeb@maths.leeds.ac.uk

