Applied Ontology 20 (2012) 1-3 1
10S Press

A Type-Theoretical Approach for Ontologies:
the Case of Roles.

Patrick Barlatief*, Richard Dapoigny**

aLISTIC/Polytech’Annecy-Chambéry
University of Savoie, Po. Box 80439, 74944 Annecy-le-viedbex, France
E-mail: {patrick.barlatier,richard.dapoigny}@univ-saie.fr

Abstract. In the domain of ontology design as well as in Knowledge Regmeation, modeling universals is a challenging
problem. Most approaches that have addressed this problgom Description Logics (DLs) but many difficulties remgaiine to
under-constrained representation which reduces theeinfes that can be drawn and further causes problems in sikenesss.
In mathematical logic and program checking, type theore®lproved to be appealing but, so far they have not beenreapli
the formalization of ontologies. To bridge this gap, we presn this paper a theory for representing ontologies inceddently-
typed framework which relies on strong formal foundationsluding both a constructive logic and a functional typetesys
The language of this theory defines in a precise way what ogit! primitives such as classes, relations, properies, and
thereof roles, are. The first part of the paper details howethg@imitives are defined and used within the theory. In arsgco
part, we focus on the formalization of the role primitive. éview of significant role properties leads to the specificatf a
role profile and most of the remaining work details throughmetous examples, how the proposed theory is able to fuligfgat
this profile. It is demonstrated that dependent types caretsayeral non-trivial aspects of roles including a fornwlison for
generalization hierarchies, identity criteria for roleslather contributions. A discussion is given on how the thé® able to
cope with many of the constraints inherent in a good roleasgmtation.

Keywords: Ontology, Dependent Types, Categories, Reidiype, Role Type, Context, Subsumption, Generalizatierdnchies

1. Introduction

Despite the increasing interest in the role of foundatiomatiologies for conceptual modeling and
knowledge representation, most modeling languages thatlieen proposed so far to express ontological
constraints (or rules) are based on a very simple meta-ptuel&ation as underlined in Guizzardi-et-al
(2006). Usual languages offer appropriate structuringhaeisms such as classes, relationships and sub-
sumption (subclass relations). However, in the repretientaf a formula, some structures have meaning
whereas others do not make sense. This aspect requiregbleuiintological distinctions" understood as
meta-properties of ontological structures as pointed wuBuarino (1994). The principle of identity or
rigidity are such meta-properties. In addition, the diditn of ontological meta-level categories such as
types, kinds, roles, relations, etc., further make aceumatl explicit the real-world semantics of the terms
that are involved in domain representations. Not only is @mlogy committed to represent knowledge
of reality in a way that is independent of the different usee oan make of it, but it is intended to pro-
vide a certified and coherent map of a domain. All these caimitr can only be fulfilled within a highly
expressive language built on a solid logical background tivat purpose in this paper, we propose a two-
layered theory including a higher-order dependent typerihas lower layer and an ontological layer as
upper layer. While type theory is widely used in mathematimgic Barendregt (1997, 2001); Martin-Lof
(1982); Andrews (1986) and in Computer Science BarendE2f%); Constable (1988); Reus (1999);
Oury (2008); Hancock (2000); Luo (1994), there are few waisisg it for knowledge representation. The
proposed theory called K-DTT (Knowledge-based Dependgpe Theory) is derived from Dapoigny
(2010b) for the modeling of contexts and from Dapoigny (9Gd2 the modeling of situations. The logic
in the lower layer operates on (names of) types whose meditmnstrained in the upper (ontological)
layer.

" Corresponding author: Richard Dapoigny.

1570-5838/12/$17.0®) 2012 — I0S Press and the authors. All rights reserved

2 P. Barlatier et al. / Applied Ontology

The core ingredients of dependent type theory are universgslependent types. Type theory is strat-
ified in a cumulative way with universes (types of types) idasrto solve the inconsistenc¥ype is of
type T'ype. Adopting a stratified hierarchy of universes results in iy y@werful system, in which every
universe includes the option of talking about the typeseatkst the universe below. Dependent types are
types indexed by some value and give rise to indexed fanofi¢gpes. These indexed families provide a
high expressiveness since they can represent subset tgf@mns or constraints as typed structures on
which reasoning is achieved in the form of sequences tramgfig each type in another one at each step.
The dependency could be used to enforce semantic conditfone will see in section 4. Dependent types
and universes will be exploited for representing knowleidgen elegant and secure way. The last aspect is
analyzed in Cirstea-et-al (2004) where the authors inyatgityping applied to reasoning languages of the
Semantic Web and point out that dependent types ensure liatizan. For example, type theory enjoys
the property of subject reduction which expresses thatiegsil term will appear during the execution of a
well-typed query in a well-typed program. By contrast, laages using some kind of untyped logic (e.g.,
FOL) allow to assert axioms which are not well-formed. Iniidd, many foundational ontologies have
lexical description and axioms in some controlled languageompletely separated components. From
an engineering perspective, it has been proved advantageauecent work of the FP7 European project
Enache (2011), to use a common language for both. Furtherrtteg authors have shown the ability of
the type-theoretical approach to cope with scalabilityten$UMO foundational ontology.

Type theory is a generalization of higher-order logic whk torresponding expressive power and has
variables of many different sorts imposing significant ¢aaists on the ways in which these variables can
be combined. However, a general objection against higiagrdogic is its computational intractability.
This argument is no longer valid if we consider a higher-odkpendent type theory such as the Calculus
of Constructions (CC) Coquand (1988) and its extended wmersihe Extended Calculus of Constructions
(ECC) Luo (1994) since their computational property steramfthe Curry-Howard isomorphism (more
details will be given in section 2.2). The remaining diffiguis that most ontologists and researchers in
the area of Al seem unaware of the benefits that a type theargféer for knowledge representation.

On the one hand, the topic of type theory is fundamental botbgic and computer science Reynolds
(1983, 1984) while on the other hand the topic of ontoloigychallenging from the perspective of knowl-
edge representation and reasoning. In order to bridge thégaveen these two domains, we propose
the K-DTT approach extending the works in Dapoigny (2010aNe introduce a foundational approach
departing from the existing ones such as usual first-ordge lBnd set-based theories with the purpose of
providing a simple, coherent and tractable theory. We véthdnstrate that the proposed theory is able to
satisfy most of all the constraints inherent in an expreskivowledge representation. To reach this ob-
jective, we discuss the impact of an expressive and rigovot@ogical language in a first part and then,
address the particular problem of role modeling Guarin®@2}9Steimann (2000); Masolo-et-al (2004);
Welty (2001); Guizzardi (2005)) in a second part. In Seclomwe present in an informal way the major
characteristics of the type-theoretical framework. Int®ec3, we summarize the basic syntax of the type
theoretical layer of K-DTT. Section 4 outlines the termsha bntological layer language for representing
high-level notions such as classes, relations, propeatiessubsumption. Section 5 enumerates a small
number of properties that a role structure should satigfyinfa review of related works while Section 6
explains how the representation of roles can be captureddTK Section 7 focuses on the mechanism of
subsumption and its ability to address formally the gemeatibn hierarchies problem. Section 8 considers
some role properties such as the identity problem with rotdes of roles and solves in a formal way the
so-called counting problem. The results obtained in the@sed theory are discussed and followed by the
conclusion in Section 9.

1Understood here as ontology in computer science.

P. Barlatier et al. / Applied Ontology 3

2. Motivations for a Type-Theoretical Framework
2.1. Towards a Type-Theoretical Framework

From the perspective of facilitating large-scale knowkedgegration, there is a need to constrain the
language primitives of conceptual models. These prinstivave a (subjective) cognitive interpretation
and for that purpose, require an ontological approach ierotal restrict their semantics, as advocated
e.g., in Guizzardi (2004). The term ontology here refersfarial ontology in Computer Science under-
stood as the general theory of being. A formal ontology i€igedy concerned with semantics, the actual
meaning of different notions or beings and deals with cotecepch as whole, part, event, process, etc.
Alternatively, logic defines predicates and functions ldihing relations between objects of the domain
without any assumption on the nature of these relationsurAsyy a layered structure including a logical
level subsumed by an ontological level, the meaning of basiological categories in the domain (i.e.,
the number of possible interpretations) is restricted éndhtological level.

One has to be aware of the dual nature of a dependent typeg tftkerso-called Curry-Howard isomor-
phism) leading to consider the theory both as a (constrictagic and a type system Coquand (1988);
Luo (1994). As a conseguence, we have the benefit to explomia that is neutral from an ontological
perspective together with (names of) types whose meanilid&iconstrained in the ontological level.
This last aspect is particularly appealing for restrictthg terms of the language. All these aspects are
embedded in K-DTT which extends the underlying type theoith wstructures expressed by appropriate
data types giving rise to what is known as a computationartheuo (1994). It relies on a dependent
type theory, the proof-irrelevant Extended Calculus of €arctions Luo (1994); Werner (2008) which
has been complemented at the ontological level (more deghibut this aspect are given in the next sec-
tion) with some features well suited for Knowledge Représgmm. As a consequence, all the ontological
classes introduced in the following must have correspansgiructures satisfying typing mechanisms pro-
vided at the logical level. In summary, the basic idea of tresent theory is to supplement the so-called
Curry-Howard isomorphism with ontological classes.

We will now explain in an informal way how the present typedtetical framework: (i) exploits the
Curry-Howard isomorphism to replace natural deductiorhvi§iping reductions and relates typing to
ontological categories, (ii) is able to express basic madaértions, (iii) adopts an intermediary position
between the closed-world and open-world assumptions ierd@odremain consistent with both knowledge
bases and data bases and (iv) uses stratified type universesrialize e.g., meta-properties seen as
properties of properties with distinct levels of repreaéinh as in a metalanguage.

2.2. Using the Curry-Howard Isomorphism

Type theory is known to be both a type system Whitehead (1&9dga constructive logic. Let us clarify
these two central paradigms.

First, let us recall that a typettcalculus has been shown to be appropriate for represekingledge
and more especially, ontological knowledge Uschold (1986)ong the numerous versions about the
description of what a concept is, the Fregean perspectimsiders a concept as a function whose input
value is an object and whose output value is always a trutiev&oncepts are proved if and only if the
object falls under the concept. For example the meaningabfii' dirinks” can be represented by a function
argument expressioA(x) whereA denotes a function ("drinks") andan argument to that function with
a possible value which stands for "John". It is well known that one way to malkis syntax computa-
tional is by means of lambda notation. The function expoessf this example is then written as the usual
B-reductior (\z . A)a = Ala/z], in which A[a/z] is the term that results from by substituting terna
for the free occurrences of the variabién A. Therefore, it is worth considering concepts as the regult o

2The process of substituting a bound variable in the body @fnabba-abstraction by the argument passed to the function
whenever it is applied.

4 P. Barlatier et al. / Applied Ontology

a lambda calculus. We follow that line for concepts and i@tstand argue that the theoretical framework
should be supported by a functional language because Vtehasupports the primitives of a lambda-
calculus (e.g., Lisp, ML, etc.). While the idea of using a tatta calculus is of interest for representing
knowledge, it is not sufficiently expressive and must be dempnted with a typing mechanism. The idea
of typing, which first appears in tHerincipia Mathematicaof Whitehead (1997), has been followed by a
typed version of the lambda calculus proposed in Churclpe theory, a formal logical language includ-
ing First-Order Logic (FOL), but which is more expressivaipractical sense. Many typed versions have
been proposed so far, such as the polymorphic second-gqukst tambda calculus2 known as "system
F" Girard (1971) orA P with types depending on terms (see the AUTOMATH project deijBr(1987)).
These theories have been followed by more expressive sydteawn as higher-order polymorphic De-
pendent Type Theories, e.g., the Calculus of ConstructBorpiand (1988) and the Extended Calculus of
Constructions Luo (1994) including more powerful featueg., cumulativity and/or sum-types).

Second, a type theory is not restricted to support knowlegigessentation but also provides a (construc-
tive) higher-order logic able to reason about knowledgecstires. In the classical (denotational) Tarskian
approach, any proposition is either true or false. Thentriitd of a formula results from a computation
of all truth values for each term that appears in this formGlanversely, the underlying logic of most type
theories is constructive in the Heyting sehsBhe Heyting view considers that the truth of a formula is
proved iff we have a means (function or constructor) ablertwyg@it. Furthermore, it has been shown that
a typedX-calculus is "equivalent” to a proof system in intuitiorigi.e., constructive) logic according to
the so-called Curry-Howard isomorphism Howard (1980)tdtes a correspondence between (i) a formal-
ism for expressing effective functions (thecalculus) and (ii) a formalism for expressing proofs (naku
deduction for intuitionistic logic). Type theories makesus this isomorphism viewing propositions as
types while proofs are seen as objects. In other words thabplesh an "equivalence” between a compu-
tation system (i.e., a lambda-calculus) and a logical theliney also have explicit proof objects which
are terms in an extension of the typed lambda-calculus velilee same time, provability corresponds to
type inhabitatiofi. Proofs in a computational setting can be the result of abdatlookup, the existence
of a function performing a given action or the output of a tleeo prover, given assumptions about enti-
ties, properties or constraints. If we exhibit a proof foragmsition, then the proposition is proved and it
follows that the proposition is said to be true. However,@oprs built up of premises, and using different
environments, the same assertion can have different ngsas a result, a proposition is identified with
the set of its proofs rather than verifying worlds like in FOL

Since there is an equivalence between a logic and a typinpanéxm, the use of type theory replaces
logical derivations with (computational) typing reduct® i.e., typing is proving. While type theories
have been extensively used in program verification and mahes, in the area of knowledge represen-
tation, they have been mainly used in Natural Language Bsirog Montague (1970); Muskens (1996);
Cimiano (2003); Asher (2008), and in a more expressive waly Ranta (2004); Boldini (2000); Cooper
(2005). The limitation in the development of these theorsefirst the lack of researchers having both
type-theoretical and ontology-based knowledge and sedbadack of tools allowing non familiar users
of type theory to take advantage of its benefits. In the pteserk, it is to address the first limitation that
we (i) propose a type-theoretical framework for represgnknowledge under ontological assumptions
(i) use this theory to address in a unified framework curpggnblems in role representation and (jii) test
the theoretical assumptions with a well-known theorem @rov

To reach these objectives, type theory is used as a unifompgtational language for programming,
specification and reasoning where basic ontological strestare introduced in the language as data types.
In such a way, the type theory can be used as a programmingdgaglue to its computational features.
Furthermore, the rich type structure together with the digrder internal logic allow one to consider
(meta) reasoning about structured ontological specifinati

3Also called the Brouwer-Heyting-Kolmogorov (BHK) semansti
4A proposition is true iff its set of proofs is non empty.

P. Barlatier et al. / Applied Ontology 5
2.3. Expressing Modality

Whether K-DTT addresses modal capabilities is a cruciastjme which must be clarified. These capa-
bilities appear first in modal logic which extends classfadicate logic to include operators expressing
modality in order to qualify the truth of a judgment. Theraifamily of modal logics (e.g.k, S4, S5)
constructed from basic modal operators including "nec#égsas in (¢ (read as "it is necessary thalt)
and "possibly" as irp¢ ("It is possible that"). Furthermore, to prove both soundness and completeness
of a modal logic, a formal semantics is required to definealglity and to characterize the truth behav-
ior for all the sentences of its related language. The stanslamantics for modal logics is the "possible
worlds" semantics also known as Kripke semantics Kripkés8)9A valuation ascribes a truth value to
each propositional variable for each of the possible warlds set of possible worlds. A possible state-
ment in modal logic is said to be true in at least one possildddwhile a necessary statement is said
to be true in all possible worlds. There is a close relatidmvben propositions and possible worlds since
every proposition is either true or false in any given pdssikorld. In the language of possible-world
semantics, a statement is (i) logically indeterminate fjogent) if and only if it is true in some possible
worlds and false in others, (i) logically true if and onlitifs true in all possible worlds and (iii) logically
false (contradictory) if and only if it is false in all pos&bworlds.

The possible worlds semantics is implicitly taken into agtan the type-theoretical layer of K-DTT
when considering the precise meaning for the terms trutipgsition and hypothetical judgment.

Truth Since K-DTT relies on Intuitionistic Logic (IL), it followghat the fundamental (intuitionistic)
notion of truth is formulated as 'the propositional contéhis true if and only ifP is proved’ andP
is proved if we can construct a proof for it. In other wordsrélies on a strengthening of the concept
of truth, by translating truth-conditions into proof-cdtimhs, and hence can be seen as a logic of
explicit justification. Notice that if a type is not proved lin that does not mean that it is false (it
corresponds to contingent statements of possible worlgstos). We would accep® in IL if P
is provable, therefore iP is provable, it should be trué?rovable(P) O P. By using the standard
interpretation of the modal operatht a basic axiom of the modal logig4 is: (JP > P (axiom
(T)). Since we expect to prove only formulas that are acfualle, then provability is identified with
0.

Proposition In possible world semantics a proposition is viewed as thefggossible worlds in which it
is true whereas in K-DTT a proposition is regarded as a typeseltast component is of tygerop®
(e.g.,.71 — 1Ty — ... — Prop). This type is instantiated by a proof (here the proof is uajghat
it is true. Here, proofs must be constructed for every pritjposand this is a major difference with
possible world semantics.

Hypothetical judgment Broadly speaking, a judgment is something that is knowablee type-
theoretical layer of K-DTT does not only express reasong&iiowledge contents as terms in its lan-
guage, but it distinguishes betweeategorical judgmentandhypothetical judgmentsy means of
syntactically different justification terms in the langeagach typing judgment is a truth assertion
p : P (read 'p is of type P") for the propositional content? is true" with P : Prop. In the lower
layer of K-DTT, an environment is composed of a sequence ridivies(z1, xo, . . ., x,), each term
being assigned to a variabl€ategorical judgmentsepresent a propositional content ascribed to
proofs in the empty environment, i.e., they require no aggiam for their validity (non-dependent
case). Alternativelyhypothetical judgmentassert that a judgmept: P depends on hypotheses or
assumptiongzy, z9, ..., x,). The semantic content of these hypotheses reflects in ther lgyper
the content of an ontology such as concepts, relations asllgyp the content of a database, while
the semantics oP may denote rules such as the transitivity of part-of refetiorhe use of depen-
dent justifications expresses potential (or implicit) kihestge in the sense where (i) all the needed
conditions(x1, xo, . . ., x,,) make the truth o assertable and (i) is true if the truth ofP has been
proved, that is a constructignof P is known (constructive principle). The former is a necegsar

>The typeProp is the type of propositions.

6 P. Barlatier et al. / Applied Ontology

but not a sufficient condition. It follows that if the envinment is valid (there exists a proof for
each variable), we get the potential knowledge that theemiassertiorp : P. It is only when a
constructiorp of P is known that the judgment becomes valid (proved).

An explicit way to give an account of the logical structurepofssibility and necessity talk is to observe
that IL gives us a possible-world semantics for free, thawokthe embedding of IL int&'4, proved in
Godel (1933). We refer here to the Heyting’s version Hey(it®30) of Brouwer’s intuitionistic proposi-
tional logic in terms of the modality 'it is provable’ (seete). However, modal logic, inside which in-
tuitionistic connectives can be faithfully translatednan-constructive. It has been shown that the various
logics which have been considered so far present themsalties best case as "impoverishments of intu-
itionism" Girard (2006). Therefore, the intuitionisticdis of the K-DTT lower layer appears sufficiently
expressive to take in account the modal aspects inheremtatogical structures.

2.4. Supporting the Regular World Assumption

Onthe one hand, databases describe a closed world, thalyishose entities together with their related
properties which are represented in the system exist. Artg flat have unknown truth values cannot
be represented and the closed-world assumption assumeantithing which is not contained within
the data base is assumed to be false (i.e., unknown is eguivtal false). On the other hand, ontologies
rather support the open-world assumption and related &gegisuch as Description Logics also face such
a difficulty. So, the question arises of what can be the impéathe closed world assumption in type
theory. First, the closed world assumption in type theoryldaequire that arguments of functions must
be closed, i.e., functions could not be defined on free parmneSecond, it is well known in logic that
open world assumption is typical of languages with embedaggdication and universal quantification.
Third, the universe construction renders the theory strimpen-world. Fourth, from the perspective of
constructive logic, the domain is open since new proof dbjean be added at each occurrence of a type
checking on the knowledge base. For predicates (i.e., typ€sop), unknown facts are not proved and
this does not imply that they are false (this is a propertyLdf As stated before, adding a database for
proving types in K-DTT requires the closed-world assumpfior type-inhabitation on the database (at a
given time). With regard to these constraints, the adopédien is to restrict the set of proof objects we
deem inhabited so as to enforce a Regular Word Assumptio®jBahirmann (2001). For that purpose,
we define a class of proof objects whose dynamic assumptideadethe current database in a specific
regular way. It results that the set of proof objects in thialbase is a subset of the possible proof objects
for K-DTT.

2.5. Using a Hierarchical Structure

The type-theoretical language should represent and rdasthna higher-order logic that is internal to
the language) about knowledge structures in a formal way aviyype hierarchy. The idea of a type hierar-
chy originates with Russell in therincipia Mathematicavhich thought it necessary to introduce a kind
of hierarchy, the so-called "ramified hierarchy"Russef88). One should make a distinction between
the first-order properties, that do not refer to the totadityproperties and consider that the second-order
properties refer only to the totality of first-order propest This clearly eliminates all circularities con-
nected to impredicatiedefinitions (e.g.Type : Type). While any term has a type in a type theoretical
framework, one can wonder if a type can itself have a type.affssver is yes, and leads naturally to what
is called a universe (a collection of types). These uniwgecsa be partially ordered and are organized into
a (non finite) hierarchy of universes called the universeahn@hy. The universe hierarchy may rely on the
notion of impredicativity because impredicative systeniegrate an important idea of polymorphic type
which allows quantification over all propositions or typeddrm a new proposition or type. For example,
the output ofV P : Prop.P is a proposition (of type’rop) which is impredicative since it is formed by

SImpredicativity is a kind of conceptual circularity.

P. Barlatier et al. / Applied Ontology 7

guantifying over all propositions including itself. Theeusf impredicative universes gives the system both
a strong logical power Barendregt (1992) (i.e., the exjwessss of the intuitionistic higher-order logic)
and a strong computational power (see Girard (1973)). If sgeiae that both universes for types and the
universe for propositions are impredicative, then usimgppsitions to represent data types would result
in a non-conservative extension of higher-order intuisba logic (see Luo (1990) for more details). Fol-
lowing Luo (1992), a possible solution to this problem istite that there is a formal distinction between
the notions of logical formula and data type in the type-th&@ocal layer. It yields a conceptual universe of
types which consists in two parts, an impredicative unwétsop for propositions and a predicative hier-
archy of data types (in the spirit of Russell). The resultiyyge theory Luo (1992, 1994); Werner (2008)
at the basis of the lower layer in K-DTT is (globalfyimpredicative.

The theory comprises an infinite hierarchy of predicatiieetyiniverses denoteéBypeq, Typeq, ...
and an impredicative universe notétrop. The universed ype; are the universes for data types while
Prop is the universe for logic. The hierarchy is cumulative, tisatl"ype; is contained inl"ype;,; for
everyi. A universe is seen as a type that is closed under the typairfgroperations of the calculus. Since
impredicativity exists only forProp®, Type; may contain only types from universéd-op, Typey, . . .,
Type;_1 while Prop may be constructed with types frofrop, Typey, ..., Type;, etc. Viewing types
as sets, we have intuitiveliyrop C Typey C T'ypey C The hierarchy of universes is partially ordered
by a cumulativity relationg also called subtyping in the following part of the paper.

Lemma 1. Luo (1994) The cumulativity relatiog is the smallest partial order over terms such that
Prop < Typey < Typer < ... < Type;....

wherei € N andT'ype; are type universes. Since a term within a universe may dyanter terms in
the lower universe, stratification has a natural capalfiityepresenting meta-reasoning.

3. K-DTT: the Type-Theoretical Layer
3.1. Syntactic Sugar

The terms of the Type-Theoretical layer are generated bfotloaving grammar Luo (1994):
T ==V |Prop|Type; |IIV : T T|AXV :T.T|(TT) |V :T.T|(T,T)r|m(T)|mA(T)

in which, V is a set of variables?rop andType; (i > 0), are type universes as described abdve,7)
stands for pairs in which the subscript denotes the type efpthir. A pair of elementd/ and N is
written as(M, N)r, the typeT of the resulting pair has to be added for reasons of typeentas, but
when no confusion occurs we will abbreviatg¢/, N); as (M, N). In what follows, we denote by
an environment to avoid confusions with the notion of cont&ach typing assertion is made with first
checking its environment. The environment is a finite seqefeaf expressions of the form; : T; where
x; is a variable and; a term. The fundamental notion of typing judgmént A : T whereM andT are
terms is read asVl has typel’ in I,

Definition 1. LetI" be a valid environment.
AtermT is called atype il if ' - T : U for some universé/.
AtermM is called an object i if ' - M : T for some typd’.

A concise system of rules govern the behavior of the typertitecal layer. They can be broadly di-
vided into three categories, type formation rules, intadtun rules and elimination rules. Type formation
rules define how elements of the type univergesp andType; can be constructed. Introduction rules,
describing how canonical elements of the respective deerigipes are formed. The elimination rules
define how elements of dependent types can be applied.

’Since a part of the system is impredicative, the whole sys&mains impredicative.
8Prop is seen as an object Bfypeo.
®The sequence is ordered because any type in the sequencepeagddn the previous variables.

8 P. Barlatier et al. / Applied Ontology

Definition 2. AtermM is well-typed if for some environmelitwe havel’ - M : T for someT'.
Definition 3. A typeT is inhabited in the environmemtif I" = M : T for somel.

To show thatM : T holds in a given environmenrit, one has to show that eithér contains that
expression or that it can be obtained from the expressioisviith the help of type deduction rules.
Notice that a term has a single type (up to subtyping) whilecafpcan be related to several terms.

While types can be as simple as e.g., the type "int" whichdstdar integers, more interesting types
are dependent types, i.e., dependent sums (also caligpes or sum types) and dependent products
(also referred to a$l-types or product types). The characteristic feature oeddpnt type theories is
precisely that they allow a type to be predicated on a valties pgroperty makes them much more flexible
and expressive than conventional type systems McKinnag(2@0core notion is that a family of types
is indexed by a term (having itself a type). Product typesfanetions whose result type depends on
the argument while sum types denote pairs, where the firstezle determines the type of the second
element. The non-dependent versions of these types amectesgy denoted by (functions) and byx
(non-dependent pair).

The product type has functions as objects. The intuitive frap x to M [z] is written Az . M[z]. For
atypeA and any family of types3|x] indexed by arbitrary objects of type A,

IIz : A . B[z]

is the type of functiong’ such that for any object of type A, applying f to a yields an object of type
Bla]. Intuitively it represents the set of (dependent) fundifmom A to B[x]:

{f| fa : Bla], Ya: A}

Thus B[M/z] is a type whenevel is a term of typeA. As a consequence, product types express the
universal quantificatioiv.

Sum types are types of pairs of objects. For any ty@and any family of type®3[x] indexed by arbitrary
objectsx of type A,

Yx:A. Blx]

is the type of pairga, b) wherea is an object of typed andb is of type B[a]. Intuitively it represents the
set of (dependent) pairs of elements/oénd B[z]:

{{a,b) |a : A, b : Bla]}

WhenB is a predicate oved, it expresses the subset of all objects of typsatisfying the predicat&*°.
In each pair, m-elimination rules extract the first and the second compowéh the respective functions
m1(s) andm(s). In the following part of the paper we drop the parenthesethf sake of simplicity. As
a consequence, we can express a subset with a dependentpgadiaty. S . P[x] which corresponds to
the set-based expressidn: € S | P[z]}.

The type forming rules for dependent types, and more phgciee sum types allow to compute the
resulting universe of a dependent type as follows.

Lemma 2. Luo (1994); Coq Development Team (2010) KetB, two types defined in the current envi-
ronmentl” such thatl’ - s : (¥z : A. B[z]), then the universe dfz : A . Blz] is the maximum universe
among the universes ¢f and B w.r.t. the subtyping relation.

Equality between types is understood in terms of proposti@quality (Leibniz equality). It is intro-
duced such that it complies to the Leibniz principle, i.e@ tobjectsa anda’ of the same typed are
propositionally equal if and only if they are indistinguidite from each other with respect to all logical
properties.

ynlike Martin Lof type theory, sum types are not logical posjtions and cannot represent the logical existential tifiem

P. Barlatier et al. / Applied Ontology 9
3.2. Subtyping

Subtyping (or cumulativity) formalizes a subset relati@tviieen type universes, function spaces and
Cartesian products built on top of universes. The (Sleb) is the basic subtyping relation over terms.
Notice that according to this rule, a given term may have reéwgpes. However, it can be shown that
whenever a term is typeable, it has a uniquely determinagtipal type (see, e.g., Luo (1994) for more
details). This principal type is the minimum type of the tewith respect to théSub) rule and relatively
to a given context. As a particular case of {Sab) rule, a(Conv) rule says that two terms are convertible
if their corresponding types are equal.

M : A TEHA : Type A< A M : A TEHA : Type A~ A
=M : A I'eM . A
The (Conv) rule has an intensional nature and reflects what is calleddhgutationalequality. How-

ever, this result does not rule out its (implicit) extengibmeaning, i.e., the fact that if two types are
computationally equal, then they have the same objects.

(Sub) (Conv)

Lemma 3. Luo (1994) The subtyping relation is a partial order ovemterwith respect to conversion.

The following meta-theoretic property from Luo (1994),roduced as a corollary, will be useful for
our purpose:

Corollary 1. Luo (1994) The relatior is the smallest partial order over terms with respect to &rgion
such that:

1. fA~A"andB<B',thenllz: A.B<1lz: A" . B
2. fA< A andB=<DB',thenXz: A.B<Yzx:A".B

The logical consistency of the core theory has been demonstrated and the deciggiitiperty has
been deduced as a corollary Luo (1994); Werner (2008). IrKHDET T type theoretical layer, the usual
logical operators follow the syntax of higher order logiaRitz (1965); Coquand (1985) and can be
expressed using the (dependent) product. For examplepgiwal implicationA D B is expressed with
the non-dependent produgt — B'? while the logical connectives, i.e., the conjunctidn& B, the
disjunctionA Vv B and the negatior A are respectively defined wifiiR : Prop.(A -+ B — R) — R,
IIR: Prop.(A— R) — (B — R) - RandA — L.

4. K-DTT: the Ontological Layer

To build the ontological layer of K-DTT, we have considerdr tDOLCE ontology of particulars
Masolo-et-al (2003); Gangemi-et-al (2002) because (ifldpds both a descriptive and multiplicathe
approach which does not classify universals leaving roontdmceptual choices about universal struc-
tures, (ii) it is designed to be minimal, in that it includeslyothe most reusable and widely applicable
upper-level categories and (iii) it remains neutral abtwat $patio-temporal properties (see Masolo-et-
al (2003) for more details) and thus, provides a significamell of interoperability. The logical part of
DOLCE is replaced here with a core type theory with the consrge that all relations defined in DOLCE
are expressed in K-DTT using this core (for example, theanidical relatioris_a is derived from the
subtyping rule). The hierarchical taxonomy of particulategjories will serve as a backbone, referred to
as DOLCE backbone, for defining the stratification whichvaianore fine grain categories in the final
domain ontology. Finally, the DOLCE backbone plus ontatagcommitments on appropriate structures

For a type theory, the logical consistency is identified wétmination.

12The "equivalence" between the logical readin@nd the computational reading is a consequence of the Curry-Howard
isomorphism.

3Different entities can be co-located in the same spatigetead location.

10 P. Barlatier et al. / Applied Ontology

expressed within type theory will form the ontological lagéthe K-DTT theory. It can be used to express
knowledge as long as the added features respect the cattusditogether with their logical constraints
(see e.g., Dapoigny (2010a)).

4.1. Expressing Knowledge with K-DTT

Most formal ontologies refer to universals and particulatsch are further refined in subcategories
(e.g., relations). Universals behave like general inveiatterns while types correspond to the result of a
categorization procedure, hence types have a natural adewith universals. However, it is worth notic-
ing that the term "type" denotes here type in the sense ofthgary, that is, it covers a broader spectrum
that its usual meaning in philosophy as well as in objeasigd languages. K-DTT objects are equipped
with meanings using the Curry-Howard isomorphism in suctag thiat any type expressing some knowl-
edge corresponds to a logical formula, therefore it behasestheory of reasoning and knowledge. The
constructive semantics asserts that a type gains meaningj(stification) from its constructor. In other
words, a type in the K-DTT lower layer becomes a category énugper layer. Then, deciding a category
for a proof object corresponds to assigning ontological mrgato the object. We assume that categories
are intensional entities and that ontological classesygressed by categories representing universals as
well as sets of particulars. Notice that we can go furtheutheal notion of type with dependent types in
which we can mix instance-level and type-level information

In the K-DTT theory the abstract entities become represebyecertain symbol configurations called
terms. The concept of universe is replaced with the condeghtological category and the cumulativity
is related to the so-called subsumption (see subsectign\What is termed category here refers to what
is called concept in Description Logics, the main differerizing that a category is expressible by a
(dependent) type with all the capabilities that such a cptuze choice offers.

Definition 4. Terms of the K-DTT upper layer are built up from a ¥edf variables together with a set of
categorieCat including a subset of primitive categorié¥; = { Prop, Thing, PT, AB,R,TR,T, PR,

..., STV, ST, PRO} (where the sequenc®T, ..., PRO refers to the DOLCE set of basic classes), and
the following category forming sets:

— Pr =11V :T.PwithT € Catu Rel for rigid property types,

— Par =3V : T .CapWithT € CatuRel for anti-rigid property types,
— Rel =XV 7. ... XV, T, P for n-ary relation types,

- C =XV T . XV, T, P for context types and,

— TRol =3V :T .CwithT € Dg URol for role types,

— Sortal ==XV : T.ICwithT € DgURol forsortal types.

where T, 7; stand for termsC i for an anti-rigidity criterion,/C for an identity criterion andP
denotes some predicate depending on appropriate argumentslomain ontology can be derived from
this ontology by adding sub-categories of some categdfiesCat.

Definition 5. Aterm7 is well-formed if for some foundational ontolo@yproviding the environment, we
haveO + T : K for some category € Cat.

For example, the judgmerfiegal Person : SAG + x : LegalPerson asserts that the variable
belongs to the categorkegal Person provided that it is a well-formed term, i.eLegal Person : SAG
(Social AGent). In the following, we often forget the enviroent for the sake of clarity, however it must
be kept in mind that any assertion is relative to an explioiti®nment constituted by the foundational
ontology and involving all the arguments of the new defingubty

All ontological structures are defined and checked withim @oq proof-assistant Coq Development
Team (2010). Already used for proving e.g., reliable knalgkrbased system design Calegari-et-al
(2010), relational database management systems Maleeid2910) and software certification Bruni-et-
al (2007), the Coq proof assistant will serve as a platfornpfoving the ontological assertions. The Coq

P. Barlatier et al. / Applied Ontology 11

system results of over ten years of research at the INRIA anddes a proof assistant whose underlying
metalanguage is the Calculus of Inductive Constructioastths been extended with an infinite hierarchy
of universes ¢C'C%). The core of the system is a proof-checker allowing theatatibn of axioms and
parameters, the definition of any types and objects and thkcixconstruction of proof-objects repre-
sented as lambda-terms. The interactive theorem proveutsgtactics written in Carfland proofs can
be built progressively by means of this tool in a top-downestiiat generates subgoals and backtracking
as needed.

4.2. Representing Ontological Classes

The two basic entities of ontologies, i.e., particulars anidersals are respectively understood in terms
of proof objects and categories in K-DTT. Universals arecdbed (i) with primitive categories, (ii) with
property types and (iii) with relation types. Primitive egories are in line with the existence of "natural
types", i.e., they can be identified as types in isolatioe €g., Sowa (1988)). What is called a property
type here, is close to the relational moment type Guizz&@b$) which is existentially dependent on other
particulars. Let us consider how a moment universal can beusted for in K-DTT. We only consider
here (for the sake of simplicity) an intrinsic moment whiafiquely depends on a single particular. The
inherence relation is isomorphic with type dependence duega An electric charge is an example of a
moment universal since this charge only exists if there igradactor which supports it. It follows that a
moment universal can be described with a sum type where {hendent family, i.e., the electric charge
depends on a value having the categbonductor. The example is summarized in figure 1 in the context
of the so-called Aristotelian Square. Property types aneléld into mandatory properties (rigid properties)

Object Universal <¢————— Moment Universal PT - - ¥ x:PT . M[x]
characterizes characterizes
instantiates T Tfnstantiates ‘ < T < T
inheres in inheres in
Object ¢———— Moment Conductor <—— 3 x : Conductor . ElectricCharge[x]

Fig. 1. Revisiting the ontological square in K-DTT.

and possible properties (anti-rigid properties). Two imi@at subcategories of anti-rigid properties are
role types and sortal types. A role type includes a contepe fyself arranged with relation types. Role
types will be discussed in detail in section 6. All K-DTT sttures and their corresponding classes in a
foundational ontology are reported on figure 2. The DOLCEkbane classifies categories of particulars
such as4d PO (which stands for Agentive Physical Object) and descrihescttegory of these particulars.
The categories of particulars which belong to the DOLCE baok are described with a K-DTT primitive
category where each position of the category in the backlimmemputed automatically by the Coq
theorem prover. We assume that a category is never subtedmanore than one higher category within
the backbone. Even if in some cases there are counterexamipliis, it is however always possible to
remove these overlapping categories Guarino (2002). Baxchwe are interested in a certain collection
of categories that share some common properties, thenrsag/ean be introduced. Every category that
belongs to a universe is considered as an object of uppegnseis. For example, in the Coq proof assistant,
the compiler generates for each new category which is aarinstof "Type" a new index for the universe
and checks that the constraints between these indexes caived. In summary, primitive categories of
particulars are the basic components from which all typedtgires are built. The following fragment of
Coq code describes an excerpt of the DOLCE backbone.

Ysee the site http://caml.inria.fr/index.en.html.

12 P. Barlatier et al. / Applied Ontology

Definition Thing 1= Type.
Definition PT i Thing : = Type.
Definition ED : PT = Type.
Definition PD PT = Type.
Definition Q : PT = Type.
Definition AB : PT = Type.
Definition SAG : ASO = Type.
Definition SC . ASO = Type.
Definition Person : APO = Type.

subsume

\ instanceOf

Category
standFor
Primitive category ‘Relatlon type‘ Property type

Logic A VAN
|nstanceOf [

i o Proof |_

Prop - ‘Ant|-r|g|d property tYDG‘ Rigid property type obiect
/N ! P
Higher _ Q

-order NENE
TANSVAS A AN

Logic

standFor
: Conte@
standFor ? instanceOf

_ —_ — - — - = = = _ —_ —_——_ —_] — —_— - - = = = A

subsume { standFor 3 standFor "standFor
Class n- ary ¥ Relational Moment
e. g DOLCE relatlon [Role| | context universal

T f instanceOf

instanceOf

instanceOf

Foundational
Ontology

o
Q

Universal

Fig. 2. Ontological categories in K-DTT.

These definitions will be implicitly included in further cedragments. The highest level is assumed for
the categoryl'hing which covers all categories whilBT' stands for the type of primitive categories for
particulars. Then all other types are ordered accordingdin place in the DOLCE backbone. Since it has
only a type affectation, the ontological class "person"asdatibed by the primitive catego#erson in
Person : APO F z : Person and may correspond e.g., to the proof (instange¥: JohnDoe while
Person : APO asserts thaPerson is well-typed. The relation of instantiatior) petween a universal and
its instance corresponds here to type inhabitation. Urii®& -based ontologies, it describes in a natural
and simple way the relation between universals and paatiswithout the need to introduce specialized ad
hoc formulations. For example, in Smith (2004), the autliggest a formal theory dfs_a and Part_of
based on a relation of instantiation between an instanca afass. This relation needs axioms governing
its use while in K-DTT, the relation of instantiation is ady part of the theory and does not require any
further axioms.

The equality between terms in the ontological layer is &gctito be coherent w.r.t. the Leibniz equality
of the lower layer. It relates to the usual definition of theritity condition for an arbitrary proper, i.e.,
P(z) A P(y) — (R(z,y) < x = y) with a relationR satisfying this formula. This definition is carried
out for any type in K-DTT since equality between types reggithe Leibniz equality (see subsection 4.1).
The major reason is that identity can be uniquely charadrif the language is an higher-order language
in which quantification over all properties is possible Naonr(2011). This higher-order property yields

P. Barlatier et al. / Applied Ontology 13

that Leibniz’s Law, which is at the basis of identity in thevier layer of K-DTT is expressible in this
language.

4.3. Representing Propositions, Facts and Predicates

At the ontological level, a proposition is a sentence exgngsthat something has/can have a truth
value, expressing whatever it expresses. Let us considesetitence "this ball is red". If this sentence is
true, then it is in virtue of the being red (the redness) of tall, and if no such redness exists, then "this
ball is red" is false. The redness we are speaking of hereasteglar which depends on the ball, and not
a universal redness shared by all red things. Dependerd ggmly address this kind of subtlety with the
dependent familyRed[a] with a a particular such that : Ball: Red|a] is a (dependent) category which
denotes here the redness indexed by the particularbhrlset theoretic frameworks, a proposition is the
set of possible worlds in which it is true. Type theory trgatspositions as primitives rather than treating
them as sets of worlds (the so-called possible-worlds sBosaursince the notion of truth in a possible
world is replaced by the notion of proof. Therefore, eactppsition is represented with a type, the type
of its proofs.

Definition 6. Every typeP of the categoryProp is called a proposition. If a term; is of the typeP, then
p1 is called a proof® for P.

As a consequence, propositions are seen as categories (if/peoofs) and the semantic value of a
predicate is roughly the set of individuals (i.e., prootsattbear it. For instance, we can find a proof
(e.g., resulting from a sensor measurement) for the varjabiat proves it is raining with the judgment
raining : Prop b p : raining. Furthermore, we assume in the following part of the papat the
category Prop is interpreted as the category of proof-irrelevant types, we cannot distinguish the
different proofs of a given proposition.

Facts are akin to states of affairs in the world. Accordingrtessell (1986) p. 163, a fact i$.".] the
kind of thing that makes a proposition true or false". A camgtive reading will change this assumption
in "a fact is the kind of thing that proves a proposition". Téfere, in the ontological layer of K-DTT they
are concrete entities of the world which we can speak abalitreay refer to an instantiation of universals.
In the lower layer, they are proof objects which instantigees.

The other kind of primitive in language areplace predicates (with = 1,2, ...), which correspond to
relations. A predicate is the result of combininghames with am-place predicate. They can represent
n-ary relations at the ontological level while at the logjieael, predicates are relations whose output is
the Prop category.

4.4. Representing Relations

The strength of dependent types in type theory allows toesgarelations as primitives of the language.
The first consequence is that they are terms of the logic amtdeavolved in complex predicates. At the
ontological level, relations are hierarchical (e.g., subgtion or part-of relatior’§) or non-hierarchical
(e.g., domain relations). They denote tuples involvingipalars (the last type of the rightest term of the
tuple is generallyProp). Tuples correspond to sum type structures having moredhsingle argument.
While binary relations require two arguments, relationetygan generally offer as many arguments as
needed. For example, the relation type:

Yx : Person.Xy : Car . Ownlz,y]

where Person and Car denote sortals andwn : Person — Car — Prop stands for
the relation in which a persons owns a car. Proof objects tmhsa relation type could Bé

5The term proof object is restricted to proofs for categories

\We refer her to the part-of relation which is transitive bynrast with the partonomic relation which is usually note(se
Dapoigny (2010a) for more explanations).

Proof objects for the variable of tyg&ar are license registration numbers as extracted from a dsgaba

14 P. Barlatier et al. / Applied Ontology

(JohnDoe, (AZT8TEK, q1)), (MikeThumb, (BC125AB, q2)), etc. withgy, g2, ... the respective proofs
for Own[JohnDoe, AZT8TEK]|, Own|[MikeThumb, BC125AB], etc. In this example, withs =
(JohnDoe, (AZT87TEK, q)), we can easily access the components of the proofsmyith= JohnDoe
andrmes = AZTSTEK1E,

A generic n-ary relation type can be constructed accordirtbe following definition.

Definition 7. (N-ary relation) A n-ary relation typdiel betweem categories is expressed with a sum
type having these categories as arguments and whose exiawisists of all the proofs for that relation.

Rel 22X a;:T;. ... S¥ivn : Tinn . Rlmg, ... Titn] (1)
withR : T; — ... = T;y,, — Prop and Rel : maz(T;,. .., Titn).

in which T; denote terms of the K-DTT language as described in subsedtidhis definition is general
and applies at different levels of abstraction w.r.t. splsty. For example, let us mention the binary rela-
tion "Participateln” described in Keet (2008). In the riglattype, the ternmParticipateln (which belongs

to the Prop category) relates a first argument that must be an endukantii DOLCE) together with a
perdurant P D). As explained in subsection 2.5, these arguments beloddfénent category levels, then
according to basic rules of subtyping (Luo (1994) and Coqdimyment Team (2010)), the type of the
whole relation must be at least in the highest level amongpoorants of the relation type.

(¥z: ED . Xy : PD . ParticipatesIn[z,y]) : PT

sinceED andPD are subcategories ¢17".

Some particular relations such as the so-called andpart_O f relations have established themselves
as foundational to domain ontologies as well as to foundati@ntologies (e.g., DOLCE). While it is
commonly assumed in the literature of knowledge represientthat the relatioris_a can be seen as the
set inclusion relation, we depart from this assumption atdder consider an intensional approach (this
aspect will be developed for role types in section 7). ptaet_O f relation can be generalized through the
notion of parameterized type (see Dapoigny (2010a) for rdetails).

4.5. Representing Properties

Properties are entities that can be attributed to thingsewigated of them and then it can be said that
objects exemplify properties. In K-DTT, properties copasd to moment universals since their existence
depends on some external entity. We first introduce rigip@riges which are expressed with product types
whose argument is a relation type taking itself categorsearguments. It yields a type which belongs to
Prop. For instance, to represent the fact that any apple is ahlore may introduce:

ITu : (Xx : Apple . Color[z]) . HasColor|[m u]

in which Color is a dependent type (i.e., a functiotpple — Color) which for each instance (e.g.,
ThisApple) of the type Apple yields a type (e.g.Color[ThisApple]) whose proof objects range over
the color domain, e.gyellow. Conversely,HasColor is a predicate having the typépple — Prop
whose proof is a truth value. In other words, it means thatgtles have a color (universal quantification).
Another interesting benefit of considering properties &péthdent) products is that variables can range
over them allowing to quantify over properties.

More complex and contingent properties can be describedbygidering a sum type as argument. A
generic complex structure may require an argument of tyls¢ioa (possibly nestedp:

RigidProp & Tlu: R. Pr{yiu,...,ypul

wheren > 1 and Pr, of the typeT} — ...T,, — Prop with +;u : T;. The relation typeR can be nested
up to a finite number of levels and eaghstands for a sequence of or 75, relative either to variable

BNotice thatr, is first applied tos, thenr is applied to this result.

P. Barlatier et al. / Applied Ontology 15

for nested sum types or to an empty sequence for categonescéh e.g., express the fact that patients
which suffer of Alzheimer disease lack autonomy:

Mu : (X : Patient . Xy : Alzheimer Disease . Suf fer From[z,y]) . Not Autnomous|miu]

Alternatively, anti-rigid properties are possible prdjes relating an entity (who has the property) with
an anti-rigidity criterion. An anti-rigid property typéntiRigid Prop is expressed as a relation type hav-
ing as left term a type, either a category or a relation, dahle subjects of the property and as right term,
a typeC 4 r which defines the criterion to be a type having this property:

AntiRigidProp £ Y :S.Caglx] with: Cag[r] an anti-rigidity criterion type

Let us consider the example of a student within a univer§iye of the basic characteristics of the
anti-rigid criterion is the fact that any student must beasteged with the corresponding definition:

Student 2 Yx : Legal Person . Yu : Univ . RegisteredIn[z,u]

and RegisteredIn : Legal Person — Univ — Prop With the DOLCE categorie§C for Society and
SAG for Social Agent, the environmemtassumes thdiniv : SC and thatLegal Person : SAG since
we are interested here in a social anti-rigid property. &dothat rigid properties are automatically applied
to non-dependent types (using the Leibniz law for types)endunti-rigid properties require sum types to
formalize the subset relation over types.

4.6. Representing Meta-properties

In K-DTT any term (i.e., anything) can possess properties.afconsequence, a property may have
properties. A meta-property which is the property of a clageundational ontologies, is described in a
uniform way i.e., the same syntax as for properties of palers. For example, as shown in subsection
4.5, distinct meta properties can be described with apfaieptypes. For example, rigid properties are
described with product types since they requiré quantifier while anti-rigid properties rather involve
sum types which approximate subset types (i.e., the prgettbfor the category which is concerned by
the anti-rigid property is a subset of the proof objects lier tategory). Let us consider the sortal property
based on the presence of one or more IC (ldentity Criteriamr®o (2000). To state that a particular
x : PT is an instance of a sortal type, we assume that not everyeilatfythe category’T may be of
the (meta)type sortal and to fulfill this constraint, we hawveonsider the categotyortal as an anti-rigid
property:

Sortal = X : PT . IC]x]

where IC' is a dependent property which formalizes an identity doter Any sortal s should be
subsumed (i.e., a subtype-of) by this definition while itstamces are pairépt,id) whereid is a
proof object for IC[pt]. It follows that in all its (proved) instanceg¢ necessarily satisfies the cri-
terion IC[pt]. It is the type-theoretical translation of the assumpti@anptoperty P carries an iden-
tity condition C' if all its instances necessarily satisfy'. We can assert for example that a person is
identified with its National Registration Identity Card (NR. This can be captured by the property
Citizen = Sz : Person.(Xn: NRIC . SignatureO f[n, z]) in K-DTT. A proof for this sortal could be
(JohnDoe, (322700051871, p1)) with pl a proof for SignatureO f[32270005187T, JohnDoe]. If we
know that the considered person is JohnDoe and that the NRMbat can be read on its card, we prove
respectivelyPerson and N RIC but if we obtain the information that the card is a fake, thegre is no
proof for SignatureO f[32270005187T, JohnDoe] and the identity criterion fails. Then, only a subset
of all particulars will also have the type sortal (those fdrieh an identity criterion exists) and the iden-
tity criterion will propagate in the subsumption only if @ygerm of the relation type is in the subtyping
relation. Let us illustrate these aspects with an exampiieebed from Guarino (2002). If we consider
the categoryl'imeDuration whose proof objects are e.dwo hours and a categoryfimelnterval
defining particular intervals of time, such4s 00 —6 : 00, 2012/17/2. One can think of"imelInterval
as a subclass &fimeDuration, since all time intervals can be considered as time duratidfhat about

16 P. Barlatier et al. / Applied Ontology

the identity criteria for such sortals? Assuming that tweations are identical iff they have the same
length and that two intervals are the same iff they have theedangth and they occur at the same time
t : StartTime, the respective properties for the identity criterion htneform:

TimeDuration
Timelnterval

Yt : Temporal Region . Lengthlt]
Yt : Temporal Region . (Xx : StartTime . LengthAt|t, x])

These two sortals describing particular time durationsiatetvals are not related by subtyping w.r.t.
corollary 1 while their left terms are. It follows that thebswmption does not hold since their identity
criteria are obviously incompatible.

L

4.7. Expressing Subsumption

Subsumption consists in deciding whether one category @érgeneral than" another one and the
subsumption relatiom subsumesB says that being & logically implies being and. The notion of
subsumption has several readings whose the more importastase extensional and intensional Woods
(1991); Napoli (1992). There are some drawbacks to the sixteal interpretation of subsumption because
(i) determining whether the extension of one concept isuithet! in the extension of another one is often
undecidable and (ii) observing that two concepts have theesextension does not mean that they are
identical. Furthermore, in the intensional reading, a ephcubsumes another concept only if this result
can be inferred from the examination of the internal stmectof this concept involving more domain
dependent inferences.

In the (intensional) theory K-DTT, we assume that the idgrdf two categories holds iff their proof
objects cannot be distinguished by any property expressaghtedicate over the category of these objects.
This ontological assumption complies with many approach&srmalizing ontologies and is a direct
translation of the Leibniz law (see subsection 3).

Definition 8. Two categories are identical iff they have the same properti

Unlike relation types described with sum types, in K-DTTe ubsumption relies on the subtyping
which is explicitly described in the type-theoretical layg the (Sub) rule (see 3.2). Notice that this def-
inition of the subsumption yields a limitation restrictitige possibilities of K-DTT to single inheritance.
Subsumption-based hierarchies take advantage of theesimgthanism of the cumulative hierarchy of
type universes. Every type that belongs to a category isideres as an object of upper categories. For
example, for the categorieggensor and Device, we can assert théfensor < Device and thatDevice
subsumesensor since a sensor has, at least, all the properties of a devitéhan, contains more precise
information than a device. In that precise case, propeatiesmplicit, but they can be explicit having the
form of product types using lemma 4. This characteristiésrseto the subsumption @s_a hierarchy in
ontologies and relates to the subtyping relation as follows

Lemma 4. Given two categorie§’ and7”, such thafl’ subsumeg§”, i.e.,7’ < T , then any property that
holds forT also holds for7”:

AP :T — Prop Nz :T .Vy: T .(Pz) = (Py)

with the corresponding Coq code:

Definition Catl = Type.

Definition Cat2 : Catl i = Type.

Hypot hesi s Property . forall x : Catl, Prop.

Lemma subsune : (forall (x : Catl) (y : Cat2), Prop).
Pr oof .

exact ((fun (x:Catl) (y:Cat2) => Property x = Property y)).
Qed.

P. Barlatier et al. / Applied Ontology 17

The is_a hierarchy of DOLCE is represented by a cumulative hierammhgategories where each node
in the tree is assigned a universe (see subsection 4.2)jghesh universe bein@hing the category of

all categories. It follows that the DOLCE backbone is ineélddn a core hierarchy of universes whose
upper universe is alwayBhing while the lowest universe depends on the user’s choicesnBtance, let

us consider some basic categories such@sng, Reading, Chemical Reaction, etc. that we expect to
relate to the DOLCE backbone of type universes. The categfiiting, Reading, Chemical Reaction

are specialized types of perdurants. Then, the smallesttikeassumed to be a universe including (at least)
Eating, Reading andChemical Reaction whereas this universe is referred tolARO (processes). At
the same timé” RO is a subtype of stative perduransI(V') themselves subtypes of perdurant typys.

It follows that:

Fating x PRO < STV < PD

The same relations hold fdReading and Chemical Reaction. In other words,Fating represents all
processes consisting in eating somethiR&O denotes all processeS7'V focuses on all stative perdu-
rants whileP D addresses all categories of perdurants. However, eachypevirisertion within this clas-
sification preserves the original order but will automdtycancrement each universe index for the upper
levels. For example, if one supposes thating belongs to the universBype; and that there exist differ-
ent kinds ofEating, like Stuf fOnesel f, Devour, NibbleAt, etc., then the insertion of these categories
(which are subsumed b¥ating) will assign them in the univers€ype;, Eating to T'ype; 1, etc. One
will write:

Stuf fOneself < Fating
Devour < FEating
Nibble At < Fating

It results that the previous hierarchy of universes is stiine level higher with the introduction of this
new level and preserves the previous classification of DOt&Egories. Notice that subsumption in FOL
can be directly expressed by a logical implication, whichlisstrated in the translation of the following
fragment. The logical formul&z : (Devour|x] — FEating[z]) where the variable: ranges over all
domain objects will express that everyone which is devauigalso eating. In K-DTT, subsumption
operates at the level of types (and therefore, of categotiest is types are considered as objects which
can be more easily manipulated and reasoned about. For ex@ragype represents a complex relation
instead of a simple category likBating, then generic rules can be applied and enhance the accuracy o
the reasoner accordingly.

Subtyping &) must not be confused with typing).(In the subtypingB < A, the category4 details
the necessary conditions to beBawhereas category definition (i.e4, £ ...) refers to the necessary and
sufficient conditions to be aA. For exampleLegal Person : SAG considers that a (legal) person has
all the properties of the category social agehti(z). The DOLCE backbone asserts that categories may
be in the subtyping relation like IFAG < ASO (ASO stands for the "agentive social object” category)
meaning thatS AG hasat leastall the properties 0fASO. These considerations are extended to relation
types. Let us consider the description of a necessary afidienf condition in K-DTT. It would require a
relation depending on a single argument.

Hepatitis = Yx : InflammatoryDisease . Liver[z] and: Hepatitis : HasLocation

Let us now consider a necessary condition. A relation typebeadefined as the subtypeg)(of a generic
one. It follows that the above expression could be written:

HL1 £ Yz : Inflammation. Endocardium[z] with: HL1 : HasLocation
andEndoCarditis < HL1

Notice that the subtyping is only implicit in Coq and, in ordie prove that this relation holds betwedn
andA’, itis first assumed that the hypothesis: A holds and then it is checked whether: A’ is proved.
If it is the case, then the subtyping < A’ holds. The Coq syntax reflects the above differences in the
following way. The definition statement e.ggfinition PD : PT := Type. means that we are defining
a new universe’ D which is a subtype of the existing universq’, that is,PD < PT. Alternatively, if

18 P. Barlatier et al. / Applied Ontology

the Coq syntax states thiypothesis x : LegalPerson., it means that the new variabieis of type
Legal Person, i.e.,x : Legal Person provided thatlegal Person has already been defined (well-typed)
e.g.,Legal Person < SAG.

4.8. Generic Rules

A generic rule uses a product type to infer a new relation fookor more existing ones. Let us consider
for example the right distributivity introduced in Artaét-al (1996). The right distributivity means that a
relation on a part may distribute its related predicate éowhole. Let us explain this rule by considering
first a generic parametfig relation typehasLocation, saying that a process occurs in some Physical
EnDurant PE D). Second, we should introduce a generic part-whole relaftartO f expressing that
some physical endurant is part of some other physical ent(itee whole). However, to express that the
part in the first relation type refers to the same object tharone which occurs in the part-whole relation
type, we rather introduce an appropriate generic relatype?® H L PO which replace the dependence
on an arbitrary term of typ# E D with the output of theH as Location relation type, i.e., a term whose
resulting type is als@®E'D. This is required to be sure that we act on the same proofbjec

HasLocation[z : PRO, y : PartPRO|x]] £ Yz : PRO. PartPRO[7]
HLPO[u : HasLocation]], z : Whole[maul] Yx : HasLocation[] . W hole[maz]
with PartPRO : PRO — PED andWhole : PED — PED. For more clarity, we do not pro-
vide the explicit arguments of parametric types since threygaven in the code below. If a part is right-
distributive, then the relation which holds for the wholalso true for the parts, i.e., more formally, the
generic rule admits a proof object for the relation typ& PO as input, and outputs a proof object for the
updated relation typél asLocation:
I1z : HLPO|) . HasLocation[|[m1m 2, m2z]
The Coq code looks like:

[1> 1]

Def i ni ti on Part PRQ(p: PRO . PED = Type.
Defini ti on Wol e(pa: PED) . PED = Type.
Def i niti on HasLocati on(x: PRO) (y: Part PRO x) = {x:PRO & (Part PRO x)}.

Definition HLPQ(u: {x: PRO & (Part PRO x)}) (z: Whole (projT2 u)) := {u:{x: PRO & (Part PRO x)}
& Whol e (proj T2 u)}.

Axiom R ghtDistrib : forall (z:{u:{x:PRO & (PartPRO x)} & Whole (proj T2 u)})(v: PartPRO
(proj Tl (projTl z)))(w: Wole v), HasLocation (projTl (projTl z)) w.

Notice that with the intermediary variable the variablew stands forrsz. Substituting variabler;; z

in HLPO with Activity, PartPRO|[m 71 2] with Room andmsz, i.e., W hole[PartPRO|m 7 z]] with
Building, it follows that the corresponding proof object fBrL PO expresses that an activity is located
in a room itself located in a building. Applying the genender yields thatH asLocation()[Activity,
Building], proving that the activity is also located in the buildingh® similar generic rule types are
defined they can be applied for all relations types as far@sdhe in the subsumption relation with each
generic rule type.

5. Modeling Roles with Dependent Types
5.1. Related Works

While the first part of the paper has presented a more expeeksiguage for expressing ontological
knowledge, this part will focus on the formalization of rel@hey are also of interest in closely related

1%Unlike usual dependence, the dependence in the paramyggteidston external variables to the environment.
2These types are parametric for more flexibility.

P. Barlatier et al. / Applied Ontology 19

domains such as knowledge engineering, object-orientdccanceptual modeling, multi-agent systems,
philosophy, cognitive semantics and linguistics since timay introduce relevant issues or solutions for
a role model. More precisely, the concept of role has redawach attention in the conceptual modeling
and object-oriented modeling literature Steimann (20@dgringa-et-al (1995), in knowledge represen-
tation Guarino (1992); Sowa (2000); Welty (2001); Masadlale(2005); Guizzardi (2005), in knowledge
engineering van Heijst-et-al (1997) and (semi-)formaplzemges such as the Unified Modified Language
(UML) Rumbaugh-et-al (1999) or Description Logics (DL) Biga-et-al (2003). There has been extensive
theoretical research about roles but no consensus on igstadding appears so far. Even a widely used
ontology language like OWL does not consider roles as a pvieiFurthermore, it is clear that an im-
proper modeling of roles would have a great impact on trutmteaance alongs-a hierarchies Guarino
(1998). Despite these difficulties, some basic considaratappear to be admitted, such as the special
relationship of roles to other objects (or roles) which axiel $0 play the role Masolo-et-al (2005); Loebe
(2007); Mizoguchi (2007). In such a fundamental scheme/gotaare entities playing a role within a given
context. This general characterization could be captuyetidfirst-order axiom Loebe (2007):

Va (Role(x) «+ Jyz (plays(y,z) N roleOf(x,z))) (2

whereroleOf denotes the relation between roles and contexts. Let ud theawell-known student
example in which the rol&tudent is associated with players of typeerson in the role specification
under the context, e.g., of a university.

Recently, Boella-et-al (2007) has isolated a small numbeowsensual role characteristics which cover
the fields of knowledge representation, conceptual mogledimd object-oriented modeling. First, roles
have a relational and interactional nature. This aspeatirggd out in Noble (2010) which claims that a
role makes sense only in the context of a relationship whermbject is playing that role. Second, roles
are associated to a social context within an organizatioaatric perspective and third behavior appears
as a main feature of roles, e.g., through the temporal aspach a characterization is not sufficient and
in order to provide a better understanding of Hieys androleO f relations, there are two problems to
address (i) a review of the common theoretical issues to lvedand (ii) the expected characteristics that
the concept of role must offer from a conceptual modelingl @ntological) perspective.

In Sowa (1988), the author first distinguishes between tahttoncepts", i.e., concepts that can stand
on their own, and "role concepts”, i.e., dependent conceyid second, asserts that role concepts are
subsumed by natural concepts. Since a role concept is mec#isgthan the natural concept and cor-
responds to a smaller extension, then this view seems apgédalt yields subtle problems due to the
dynamic nature of roles (see, e.g., Steimann (2000) for rdetails). This work has been developed in
Guarino (1992) which adds the meta property of rigidity ameltotion of founded concept. A concept is
founded if all its individuals are related to another indival, excluding the part-of relation. For example,
the conceptStudent is necessarily related to the conceptirse. A concept is rigid if it contributes to
the very identity of its instances. Conversely, a concephisrigid if its properties are non-essential for
all its instances. Above these assumptions, a concept Ie & ibis founded and anti-rigid. According to
this definition,Student is a role since it is both founded (see above) and anti-rigid. (if the individual
Johan is an instance obtudent, Johan can move in and out of th8tudent role without loosing his
identity). The introduction of founded types argues for ategt-based framework for the role whereas
the anti-rigidity has clearly a modal flavor.

The work of Masolo-et-al (2004) (in first-order logic) coasis roles as properties that can themselves
have properties while being linked to a context. The progdeemalism is based on reification and pre-
defined primitives such aBS(x) (x is a description)DF(z,y) (conceptz is defined by description),
etc. Embedding these primitives within the DOLCE ontologgddlo-et-al (2003), the basic categories of
the ontology are in the ground level while social concepts descriptions are in the (reified) conceptual
level. While this approach appears as a significant contobuo understanding the ontological nature
of roles, it suffers from some drawbacks. First, the use ibicedion is subject to discussion (viewed as
a philosophically suspect mechanism Galton (1991); Akmmiku(2000)) and second, the proposed for-
malism introduces a plethora of axioms making its assessomnplex. This approach deserves credit

20 P. Barlatier et al. / Applied Ontology

for improving the expressiveness of roles by introducingedasievel of roles (e.g., predicates on social
concepts). However, the price to be paid is an increasingotaxity due to the first-order framework.

Alternatively, Loebe (2007) characterizes three kindsoté,ri.e., relational roles, processual roles and
social roles. Relational roles are roles that depend onr qifaperties or roles while processual roles
depend on processes supplied by the context. All these asisuns are translated in the syntax with first-
order rules in which some constants refer to universals @dseothers refer to individuals. Social roles
require to adapt the relation between roles and contexts 1% plays therole Y in roleO f C" to "X
counts as Y in context C". However, due to the use of first4olalgic, some difficulties emerge with the
player-role-context approach such as i) a definition of th@ext which requires further elaboration, ii) a
clear separation between representations of universals {@th types) and individuals (e.g., with proof
objects) and iii) the inability of classical approaches:tpleit the meta-level status of roles.

In object-oriented and conceptual modeling, the focustigerato find constructs able to represent roles
in the context of classes and inheritance. Most works etbecentrate on representational issues of roles
Steimann (2000) or on object-oriented role models Wieregal (1995); Dahchour-et-al (2004). With
respect to this perspective, various modeling issues arderkest, such as multiple inheritance, dynamic
classification, object migration, etc. Most common waysepiresenting roles include named places Chen
(1976), specification/generalization Van Paesscheh+@&085) or aggregates relating an object with its
roles Steimann (2000). Difficulties arise in the specifmafjeneralization approach with tisebtype-
super typeparadox (see Steimann (2000) for more details). More Ebgisiewing roles as Object-
Oriented (OO) classes and assuming two clagsemdY’, the state of objects oX is more general than
the state of objects df’, while at the same time the behavior &fis more specific than”’s behavior.
As a consequence, roles can be super types (statically)udntgpes (dynamically), which is in contrast
with the OO notion of inheritance where states and behavieibath inherited by subtypes. However,
more recent works have addressed most of the problems whaoh wherent to OO programming (see
for example, Herrmann (2007); Baldoni-et-al (2006)).

5.2. Towards Common Requirements

From the analysis of the role-based literature, a small runolb common discussed features can be
extracted, as already suggested in Steimann (2000); L@8B&). They can provide the basis for a suitable
role representation.

1. The nature of roles, i.e., as universals or as particukssunderlined in Loebe (2007), many ap-
proaches accept both role individuals and role universals.

2. The relation between roles and behavior. For that purgbseems appropriate to distinguish be-

tween properties which are required for having the role t@xih with the properties which result

(for the player) when the role is acquired. The behaviorl{effilayer) will precisely depend on these

resulting properties.

Role and identity, i.e., whether the identity of rolesiféelent from their players.

4. Roles are modeled in terms of non-essential properties,neore precisely, of anti-rigfd unary
predicates Welty (2001). For example, if we consider $tiedent role, we can think of an entity
moving in and out of th&tudent role while being the same individual.

5. Roles are relationally dependent Masolo-et-al (2008), they require the existence of another en-
tity. Furthermore, it is claimed that a role is specified mtre nature of this entity within a context
Mizoguchi (2007). For example, the role of student depemdthe university in which he (she) is
registered. This university is supposed to be a part of tmeeticontext. Furthermore, an entity
can play a role concept only within a context Masolo-et-80@); Loebe (2007); Mizoguchi (2007)
that is composed of external concepts whose ontologicaissigheterogeneous. This constraint can
be formally addressed if the concept of context receivedfitsformal definition. For example, in

w

2ZLAll objects having such a property can lose it without losinejr identity.

P. Barlatier et al. / Applied Ontology 21

Masolo-et-al (2004) argue for a cognitive context (i.e ystam of constitutive rules) while Guarino
and Sowa associate roles to patterns of relationships.

6. Different entities can play the same role at the same fithis. assumption results from the position

of Sowa (2000) viewing role as properties. This aspect caplith the OO perspective but requires

second-order relationships between types Steimann (2000)

An entity can play multiple roles during a specific timesinial.

An entity can acquire and abandon a role (dynamic asp&stp consequence, players can lose

their membership in relations or social roles. This propetéarly relates to the meta-property of

anti-rigidity which is an extension of dynamicity toward®dality Loebe (2007).

9. An entity can play the same role several times simultasigd&iteimann (2000); Masolo-et-al (2004).
In the latter, the author distinguishes between two leuwbks,ground level dealing with the basic
classes of a ground ontology and the conceptual level dealith (reified) social concepts and their
descriptions. A structure embedding roles is a possibletavaplve this difficult issue. However, if
role types are assumed Mizoguchi (2007), then it dependsgitr on the ontological nature of the
type of role definition.

10. A role can play another role Steimann (2000). This opsueigiepends on the nature of the role
definition. For example, in an OO framework it requires rdiehave instances. For social roles
(e.g., a given human playing an employee role which plagdfitsproject leader role), Masolo-et-al
(2004) explains this situation by considering two rolestmmgame abstraction level. One social role
playing another role is the idea addressed in Searle (1988)erithe author uses iterated applications
of the formula "X counts as Y". In spite of some rare solutidmghis problem (e.g., Mizoguchi
(2007)), it can be considered so far as an unsolved issue.

© N

As underlined in Welty (2001), most features of a role moael loe formally defined with meta-properties
whereas some of the above features (e.g., 7, 8) also redfi@edt abstraction levels. Other works relate
role universals with types Steimann (2000); Guizzarddg2004) but do not exploit thoroughly the type
concept. None of the previous approaches has defined a efemasion between universals and particulars
resulting in numerous problems of identity. Finally, thguiement for role hierarchies advocate for a
subsumption mechanism able to address all the subtletiesent to the multiplicity of role constraints.
As a consequence, the interest in roles has led to the searalcbmmon ground on which the different
views of role (see above) can be judged and reconciled Mastedd (2005); Mizoguchi (2007). With
regard to this assumption, we propose a general modelirgjeotvith the help of dependent types, that is,
with a dependent type theory.

6. Roles as Dependent Types
6.1. Definition

In the ER model, roles are reduced to labels of types and mak@aossible to construct role type gen-
eralization/specialization hierarchies which would pdevbetter organized conceptual models. Among
the role-based literature, some works adhere to the pogifidroles as types" Steimann (2000); Guiz-
zardi (2005). However, this very concept of type corresgotadthe definition in use in object-oriented
languages with a limited expressiveness. For examplepthalata model suggested by Bachman (1980)
has introduced role types as super types of entity typeg;hwinas led to difficulties (e.g., when regard-
ing Student as a super type of Person it accounts for theHat@tl persons can appear in this role and
contradicts the dynamic viewpoint, namely that at any pwirttme only some of all persons existing at
that time are students Steimann (2000)). Because of thégosdiefended by Sowa (2000) and Guarino
(1992) (among others), assuming that different entitigs pglay the same role, a mere assignment of a
role to a category would seem sufficient. However, it is cidniby many researchers that roles have a
relational nature. According to Sowa, roles depend on exidit properties via patterns of relationships.
Alternatively, Guarino & Welty (Welty (2001)) rather claithat we need a kind of dependence based on

22 P. Barlatier et al. / Applied Ontology

Husserl's concept of foundation, i.e., based on a geneigtestial dependence on external properties.
This aspect can be expressed by means of what is known asdéepdgpes. The last argument deals
with the introduction of contexts. On one side, some worlchsas Searle (1995); Loebe (2007) refer to
explicit contexts while on the other side, others consigdtgons of relationships Guarino (1992); Sowa
(2000). Since an explicit context is able to encapsulaterbgeneous types in which any of them can (i)
express a relation or a sortal denoting a type of particuéags,University and (ii) depend on previous
terms within the context structure, therefore the expiititoduction of context subsumes all approaches.
In addition, the concept of context has been formally exqggdsn a variant of dependent type theory
Dapoigny (2010b) with nested sum types arranged in a parianbierarchy. Since each context type is
indexed on a player, their aggregation (for a given play&ig wider context types automatically intro-
duces several possible role types for that player. In supnaafiormal representation of roles should (i)
support a categorization mechanism, (ii) exploit depentigres, (iii) involve an explicit context defini-
tion and (iv) explain the connection between all kinds oesoand relation. The role structure proposed
in K-DTT complies with all these constraints. We consideol ias a specific anti-rigid property type in
which the context type depends on categories and relatestraots introduced in its environment. The
environmenf” provides the terms that are required for the context andatteatised to constrain the type
of the player in the following role structure:

Definition 9. Given a categoryK € Cat and a context typ€' € C, a role typeRol is an anti-rigid
property type having as left term a typge: K called the player of the role and as right term, a context
typeC' in which the player acts with:

Iz:PFC:P—...— Prop, then: |Rol £ Yx:P.Cx]

where the type aRole is the maximum universe among all types occurring in the egf@ession.

Syntactically, the role context typ@ can range from a simple context type to complex nested contex
types. Proof objects of the tyge are the players of the role aiddis the context type which constraifs
Concrete roles : Rol are pair§ M, N') where each\/ is a proof object for a player (of the role) andthe
related proof that the context exists (i.e., a predicateeddimg on the player). Semantically, the context
does not merely represent the physical environment of atydmit rather the way the entity perceives its
environment. It follows that several entities can haveeddht views on the same physical environment. If
we consider for example, a student within the context of aarsity we assume that any student must be
registered (at least once). With the DOLCE categofiésfor Society andS AG for Social Agent, if the
environmenf incorporates the typing assumptidigiv : SC and Legal Person : SAG, then terms are
well-formed. The following role definition:

Student = Yx : Legal Person . C[z] 3

introduces the context typ@[z : Legal Person| = Yu : Univ . RegisteredIn|x,u] with the predicate
RegisteredIn : Legal Person — Univ — Prop.

The context type in the role typ&tudent (3) constrains the set of proof objects tbegal Person
to a set of players for this particular role. Among all prodijexts for the player of the role, only
those for which both the categofyniv and the predicatdiegisteredin are proved will be validated.
As a consequence, the set of proof objects for the player eofrdle is a subset of the set of proofs
for Legal Person. This definition of a student role type complies with the ppgsosition (i.e., regis-
tered) provided in the role context. In the constructiveirsgt we first have to prove the relation. Let
x : Univ having the valud/ S, whereU S is a proof object for the University of Savoie. The predi-
cate RegisteredIn represents the type of proof witnessing for the status Steggd", i.e., a truth value
whenever the person is a student. For instance, the listoaff mbjects forStudent will look like e.g.,
{...(UF14553,(US, p12)), (UF14554, (U S, p13)), (UF14557,(U S, p14)), . . . } wherep;s is a proof for
RegisteredIn (UF14553,US) andU F'14553 represents a person through its registration number. Ac-
cording to that list, the first term of the nested pair sugptiee instances of the player, e.§.F'14553,

P. Barlatier et al. / Applied Ontology 23

U F'14554, etc. If some time after having checked these values we chgain the proof objects and ob-
serve that the proof obje¢t F'14553 does not occur, then we can conclude that the related pessum i
longer a student within this university (the player hasleé role). Two aspects are worth noticing about
the player of the role, (i) it has the typeegal Person in this context and (ii) its proof objects provide
the set of players for that role (not only are we able to prineerble Student, but we can list all its cor-
responding instances). The Coq code for such a role definiéiquires the definition of a category (i.e.,
Legal Person),

Definition Legal Person : SAG = Type.

Definition Univ . SC = Type.

Vari abl e Regi steredln : forall (x:Legal Person), (forall (y:Univ), Prop).
Definition C(x:Legal Person) c={ u: Univ & (Registeredin x u)}.

Definition Student = { x : Legal Person & (C x)}.

Hypot hesi s tupl el . Student.

Check Student.
Check (projT1 tuplel).

When checking the type of the roftudent, the Coq answer #8:

St udent : Type (* max(rol e_student.9, role_student.8) x)
proj T1 tuplel . Legal Person

It means that the resulting universe of the tyfiedent is assumed to be the maximum universe between
those ofLegal Person andUniv as stated in section 2.5. Proofs for the role player whicheateacted
with the first projection (i.esr1) are of the type.egal Person as expected.

6.2. Discussion

With this definition of a role structure, several aspectssgh to be detailed. First, the concept of anti-
rigidity for a role inherited from anti-rigid property typeefers to the possible existence of a proof object
for the player of the role (at a given time). As explained ibsection 2.3, each hypothetical judgment is
the K-DTT translation of the modal possibility. For exampiean environment’ assuming the existence
of a Rol type, the judgmenk’ - » : Rol introduces a potential role without providing any proof for it.
Second, the existence of a role instance requires simoltEhethe existence of a player and a context
detailing the conditions that the player has to fulfill in erdo be able to play the role. In K-DTT, a role
ceases to exist if the player and the context does not exiss. &spect relates to the ontological nature
of the context which inherits this property from the encdgng role, itself subsumed by the property
type seen as a moment universal (see subsection 4.2). Bwiscaintrasts with the view of Baldoni-et-al
(2006) where a role ceases to exist, even if both its playeitlz context which interacts with him exist.
The major reason for this divergence is the dependence ofit@xtoon something like an activity since
we cannot speak of a context in isolation but always in refeeeto something Dourish (2001). Third,
in contrast with the Object-Oriented framework in whicheatig are built by the properties of a class, in
K-DTT roles are dynamically checked by an algorithm of typkabitation and are proved (or not) at a
given iteration of the algorithm. The position defended md®ni-et-al (2006) is along this line with a
context in which objects interact only via the roles playeathuhe help of the affordances offered by their
roles. Fourth, role players correspond to a restrictedmeis the typeP, i.e., the subset aP’s for which
the role contexC' is valid. This definition also agrees with the view of Loeb&d2) where roles are
existentially dependent on their players (each proof ferrtile is a pair which requires both a proof for
the context and a proof for the player type). Fifth, with sacthefinition role types appear as a particular
(a restricted) version of anti-rigid property types, anuasgtion which is in line with the approach of
Baldoni-et-al (2007) but contrasting the view of Steimag@Q7). This last property of roles provides a
possible answer to the open question concerning the nelagitween roles and relationships Boella-et-al
(2007).

2In the Coq syntax; ol e_st udent . n refers to the nth variable in the program caltesl e_st udent . v.

24 P. Barlatier et al. / Applied Ontology

While social roles capture some individual objects on aaooitological level, one may wonder
whether the above definition also applies for other kindsot#s such as processual roles as they are in-
troduced in Loebe (2007), i.e., processual roles are papsooesses. A particular property of processual
roles is that they are two entities which are part of the pgscee. the actor and the subject of the process.
Therefore there can be two context types according to theppetive that is adopted, either from the actor
or from the subject. As a consequence, two role types can fiieedeand related. Let us explain these
aspects on the example given in Loebe (2007). In the prode3shao’s moving a pen, there is an actor
(John) and a subject (the pen). The player John belongs tcatiegoryLegal Person while its context
involves both the subject and process from which the proegssle is part-of and the predicaléoves()
as follows:

Clz : Legal Person) Ys: Pen . Moves|x, s]

Mover Yx : Legal Person . C[z]

with Mowves : Legal Person — Pen — Prop. Here, Mover describes a process in which a person
moves a pen. Alternatively, from the perspective of the pleere is a context in which the pen is moved
by John. A context typ€” and its corresponding role tyge oved will capture these assumptions with:

C'lz: Pen] £ Xl: LegalPerson . Moves|l, z]
Moved Yz : Pen.C'[x]

These two role expressions where the player is either tloe acthe subject can be seen as parts of the
situation type:S £ Yz : Legal Person .Yy : Pen. Moves|x,]. Itis worth noticing that they also reflect
the dual nature of processual roles. The author also intexitelational roles describing the way in which
an argument participates in some relation. The K-DTT alsopdies with this role type with the player as
argument and the context as the remaining part of the ralafiben, the view of roles as categorized in
three categories (i.e., social, processual and rela)iaaa be easily expressed in a single structure with
the K-DTT theory which provides a uniform approach to thecapt of role.

For some applications of roles such as RBAC (Role-Based #scCGmntrol) Sandhu-et-al (1996) and
the OO approach Baldoni-et-al (2005), the definition of & fahs to specify both what is required to
play the role and which capabilities (also called affordem)dhe players will have when playing the role.
We argue that such a position can be accounted for with r@egmditions and role postconditions. The
preconditions stand for what we have called so far "conigpé't By postconditions, we mean that a role
can represent e.g., competency to do specific tasks or magdsnauthority and responsibility. These
postconditions can be treated as properties of a givenypée Then we can separate mandatory properties
and possible properties with the respective rigid and gitt properties introduced in subsection 4.5.
The structure is similar, however the major distinctiondsah the fact that preconditions are put inside a
role (context type) whereas postconditions depend on fleearal are external to the role. It follows that
objects may behave differently when participating in dife roles. For example, being a student entails
that (s)he may pass some examination. It could be reprekastthe following anti-rigid property:

L
L

1> 1l

PassExam = Yz : Student .Yy : Examination . Pass[mix,]

The properties of the role does not include the properti@s fits player since the relation between a
role type and a player type is not a subsumptive relation diimer a subset relation (see e.g., subsection
7.3). The postconditions of a proof object playing a rolethegpostconditions which are valid for the role
itself.

The role type fully captures the notion of founded univetBaarino (1992) since it depends on a value
of another (external) category. Here, the r8te.dent depends on the objettS having the category/ niv
which is part of a relation supplied by the role context. Eatthe identifiers in the list corresponds to a
student, i.e., a player for the role student and is "foundedthe proof for the predicatBegisteredin.

All the required knowledge for the notion of role as desatilie subsection 5.2 and summarized by rule
(2) is coherent with the syntactic structure of a role tygeulgh its salient properties:

— arole is expressed with a sum type,
— dependencies appear in the notion of parameterized caanrtext

P. Barlatier et al. / Applied Ontology 25

— players (of the role) are proof objects for the argument efrtile.

Contrasting with some approaches, e.g., Sowa (1988), &#yepbf the role is not a subtype of a category
(natural type) but rather, we argue that the set of proofthi@player is a subset of the set of proofs of the
natural type. Role types are declared statically but aequdiynamically. In other words, although the role
types have to be declared during the design step (with tleitegts), proof objects can populate roles at
run-time depending on the content of the related database.

6.3. Properties of Role Players

In any role pair, as explained in subsection 6.1, the plajénerole expresses a constrained version
of the category described . This result can be easily generalized by induction on thefgeroofs for
any player typeP.

Lemma 5. (Proof inclusion) Given a set of proof objects for the role Rol and a player category’
such thatRol 2 Xz : P.C(x) whereC denotes a role context type, then the set of proof objects;far)
is a subset of the set of proof objects for

Proof. Let ©r(B) the set of all proof objects for the tyg@ in T, that is,Or(B) = {b|T b : B}.
Assuming a role (i.e., a proof objedt), c) : Rol whereRol £ Yz : P . Clx] andC describes a family
of context types, lep; a given proof object an®r(C[p;/x]), the corresponding set of proof objects. By
summing on the: valid proofspy, ..., p, for z, the set of proof objects for the rol is the cardinal of
the unionOr(C[p1/z]) U ... U Or(C|p,/x]). Then using ther; elimination rule Luo (1994), we get
a single proof for each valuyg,, 1 < k£ < n since a given player can only appear at most once in each set
of proofs form (px, cx). It follows thatn is an upper bound for the cardinal of the set of proof objemts f
(p, c). Observing that the set of proof objects for the playgp, ¢) is a constrained version of the type
we get the final result < | Op(P) |. O

If we consider the two roles fa§tudent, e.9.,(JohnD, (US, p13)) and(JohnD, (UJF, ps)) stating
thatJohn D is both registered at the University of Savoiéq) and at the University of Grenoblé&/(J F),
then it follows that (i) the two roles are distinct and (iigth; elimination rule extracts a single term, i.e.,
JohnD proving that it is the common player for the two roles.

6.4. Role Types and Time

The notion of anti-rigidity captures the intrinsic potextity in being an instance of a role and conveys
(implicitly) a temporal aspect. The relation between tighinformation and the notion of anti-rigidity
can be defined in the following way. A concept is anti-rigidaésuming a discrete timea role type is
proved for some values ofwhile it is not proved at other time instants. Role types camtnotated with
temporal information for all applications that need timmation. The type of can be extracted from
standards (e.g., the XML-supported date format ISO-8601)hich standard time zones and leap years
are taken into account. Qualitative points, metric poimts etervals may be either dates and times like
"2005-02-10" or periodic like "day". The data type DateTiméntended to specify points while the data
type TimeDuration is intended to specify intervals. Abdwese assumptions, it appears that type checking
approaches including subtyping are well-suited to rel#ferdnt time-based types Bry-et-al (2005).

In K-DTT, itis possible to consider time just as another ablé. For example, endurants are in time and
they have a temporal extension. The theory provides a sgpefdonstructors to define time-based types
like "day", "week", or "working day". Such types are decthtwy defining predicates. Dependent types
easily put constraints on different parts of a date. Let tesam example extracted from Jacobs (1999) for
representing in a concise and precise way the Gregorian date

GregorianDate = Yy : N .Ym : Nat[12] . Nat[length of month m in year y]

whereNat[n] is the type of natural numbers ranging from htandNat[length of month m in year y|
is defined by cases. In such a way a (Gregorian) date is a depetgle, e.9.(2011, (8,17)). Notice that,

26 P. Barlatier et al. / Applied Ontology

due to the Curry-Howard isomorphism, correctness of a dgteesentation becomes a well-typedness
issue.

The role definition can be extended by adding a variable,(®.gaving a time-based type to the list of
arguments of the constraint. In the student example, thst@ntC(z) becomes:

C[z : LegalPerson] = Yu : Univ . Xt : TimeDuration . RegisteredIn[z, u, t]

with RegisteredIn : LegalPerson — Univ — TimeDuration — Prop. On June 2011 we
can extract the list of proof objects from the universityatetse e.g.{... (UF'14553,(US, (2010 —
2011, p12))), (UF14554, (US, (2010 — 2011, p13))), (UF14557, (US, (2010 — 2011,p14))), ...} (since
the time type for high-schools is covering two years). Néwe consider the role type in September 2011,
we get a new list of proof objects in which students have ¢isaped while others are added for the role
type Student. It means that the disappeared players with correspondiagtifiers are no longer proofs
for the roleStudent. In other words, the role type (through its constraint) teixed on time values, while
its players (i.e., proof objects) can change accordingly.

The type inhabitation process extract proofs (data) fromatalthse and values are submitted to the same
constraints as for the temporal databases with explicie tmodels (see e.g., MacKenzie (1991)). The
process of type inhabitation needs a minimum time interwaladmplete and processes whose execution
time limits are above this time interval cannot be accoufedThis is a limitation of K-DTT but whose
target framework impacts essentially real time based syste

7. Subsumption with Roles

One major interest of role types relies on the possibilityextend them in order to cope with more
subtle representations such as complex roles or the roler@ieaThere are in general two conceptual
ways to extend knowledge about a structure, i.e., intealipbyy adding properties or extensionally by
adding data to the structure. These two notions will be spy fulfilled by the subsumption and the
partonomic relatiorf$ and we focus here on the intensional view, i.e., subsumplibe subsumption
between categories has been introduced in section 4.7.uliseimption of role types and its properties
requires first to discuss how relation types are handled suiisumption since role types involve context
types themselves made of relation types.

7.1. Subsumption between Relation Types

For the subsumption of relation types, we consider nestedtgpes in which any argument of the sum
type can itself refer to a sum type. For any argumentT;, if the typeT; refers to a sum-type, then it can
be nested up to a finite number of levels and we introdgaeith the same meaning as in subsection 4.5.
Thus, an n-ary relation type would be expressed with thertigre sump £ Sy : 7). Sz, -
Thlx1, .y Zp-1] . Pl7iz1,...,7nxys], Where ther; are bound variables denoting categofiésy,, stand
for finite sequences af; or o and P is a predicate having the typg — » — ... = 7, — Prop
with 121 : 71, ..., 7nZn : Tn. In the case wherg; does not refer to a nested sum type, we have obviously
7, = T;. From here on, we only consider relation types without restem-types because (i) simpler
expressions enhance the readability, (ii) the introdactib nested argument types does not interfere
with the lemma below and (iii) people interested in the néstersion can refer to Dapoigny (2010b)
where nested structures are detailed in context modeling.

Definition 10. Given two relation typeg andp’ suchthaip £ Yz : T} %z, : T}, . Plzy,...,xy)
andp' £ Xz : T %z, : T, . P'[z1,...,7,)], thenp subsumeg’ if:

Zplso called part-whole relations.

P. Barlatier et al. / Applied Ontology 27

(i) for non dependent categories, all the properties of eiggleT; also hold in7},

(i) for dependent categories, all the properties of eaamifg typeT’; also hold inij , that is, the
family T} is a subfamily off,

(i) the predicateP’ is a sub-predicate aP (i.e., it is more precise).

Lemma 6. (Relation type subsumption) Given two relation typesnd p’ such thatp £ Sz; :
Ty. %%, :T,.Plxy,...,z,Jandp & 3oy : T Swy T, . Plloy,... oz, FT] < T4,
..., T} < T, andP’' < P, theny’ < p.

Proof. First, let us consider a binary relation type where we hawe ¢ases w.r.t. the dependence of
arguments:

In the first case, the two arguments are non dependent. Thien2 rof the corollary 1 can be easily
extended for a binary relation typer, : 77 . Xxo : Ty . Pz, x9], then the property holds for sum
types with multiple arguments. Since relation types areesged with sum types, the result also holds for
relation types.

In the second case, we ha¥e : T} . Xxg : To[z1] . Plxy,x2]. SinceT] < Ty andT} is a subfamily
of Ty (i.e., Ty < T»), applying the rule 2 of corollary 1 yields th&te; : T3 . Th[x1] < Xaq : 17 . Th[xq].
Then applying again the corollary with z; : 77 . Yz : Tz[x;] and P standing respectively fad and
B, one gets the final result.

Finally, the case of n-ary relation types is easily provedhojction over the structure of sum typés.

Let us consider, for example the relatitarticipateIn described in Keet (2008). Individual qualities
are elements of the DOLCE backbone so that one can referrnodirectly in formal expressions. In the
relation type, the predicatBarticipateln relates a first argument that must be an endur@f)together
with a perdurant P D). In K-DTT, a relation typeParticipate requires the appropriate arguments within
a sum type as follows:

Participate = Yz : ED . Xy : PD . ParticipateIn[z, 1]

Now, let us consider the enzyme (endurant) that participatea catalytic reaction (process). This is
expressed as the relation type:

Yx : Enzyme . Ly : CatalyticReaction . ParticipatelIn[z, y]

with ParticipateIn : Enzyme — CatalyticReaction — Prop. According to lemma 6, this re-
lation type is also of typ&lx : ED . Xy : PD . ParticipateIn|x, y| since Enzyme =< ED,
CatalyticReaction < PD andParticipateln : ED — PD — Prop.

7.2. Subsumption between Roles

The subsumption between role types looks very similar tostifgssumption between relation types.
This is not surprising, since in K-DTT context types that pagt of role types are subsumed by relation
types, as stated before (see subsection 4.2). Thus, we doctiie social and processual roles through a
comprehensive example. For that purpose, let us revisiexbenple provided in Loebe (2007) where a
medical unit forms a social context and creates its own pat@e individuals. A patient in the clinical
trial is treated within the medical unit by a physician. Taiample demonstrates the two aspects of the
role structure (i) a social role (physician) where the ptaygerates in the context of a medical unit and (ii)
a processual role (patient) arranged with a clinical precksines the context initiated by the physician
in which a person patrticipates. The first role type is theaaaile involving a player whose category is
Legal Person.

Cl[z : Legal Person) Ym : MedicalUnit . TryOutIn|x, m]
Physician Yx : Legal Person . C1[z]

with LegalPerson < SAG, MedicalUnit < NAPO and TryOutln : LegalPerson —
MedicalUnit — Prop (the DOLCE backbone is assumed to be already included inabie lsontext).

L
L

28 P. Barlatier et al. / Applied Ontology

Then, the clinical process type is introduced as a process:
Clinical Process = Y : Physician . Xy : ClinicalTrial . Per form|mix, ¥
from which the processual role type can be defined:

C2[z : HumanPerson)| Yp : Clinical Process . ParticipateIn|x, mmap]

Patient

with ClinicalTrial < Trial, Trial < PRO, Perform : LegalPerson — ClinicalTrial —
Prop, HumanPerson < APO and Participateln : HumanPerson — ClinicalTrial — Prop.
The term patient is understood here as a processual rolersalvThis modeling decision is based on the
fact that the patient is seen as a participant of a procedmieat trial).

These definitions may be described at a higher level takiogaiccount the previous subtyping relations.

> 1>

Yx : HumanPerson . C2[x]

C'lz : SAG] £ Xz:NAPO . Actln[z, 2]
Social Role £ Yz:SAG.C'l[z]
Trial Process = Yz : SocialRole . Xy : Trial . Make[m z, v
C'2[x : APO] & Yp:TrialProcess . InvolvedIn[z, T map]
ProcessRole = Yx:APO . (C'2[x]
with Actin : SAG — NAPO — Prop, Make : SAG — PRO — Prop and InvolvedIn :

APO — Trial — Prop®*. According to lemma 2 of subsection 3.1, the universe of eateh type
is computed as the maximum of its composing universes anddaa thatTryOutIn, Per form and
Participateln are the respective sub-predicatesdetIn, Make andInvolvedIn, then lemma 6 can be

applied with the results:
Patient < ProcessRole and Physician < Social Role

The following fragment of Coq code proves all these asp@cistéxts are implicit in order to simplify
the writing).

Definition Medical Unit NAPO = Type.
Def i ni ti on HumanPer son APO = Type.
Definition Legal Person SAG = Type.
Definition Trial PRO = Type.
Definition Cinical Trial Tri al = Type.
Hypot hesi s TryQutln forall (x:Legal Person), (forall (y:MedicalUnit), Prop).
Def i ni ti on Physician SAG : = {x: Legal Person & C1(x)}.
Hypot hesi s Perform : forall (x:Legal Person),(forall (y:CdinicalTrial), Prop).
Definition CinicalProcess: Trial := {x:Physician & ({y:Clinical Trial &
(Perform (projT1l x) y)})}.
Hypot hesi s Participateln forall (x:HumanPerson), (forall (y:CdinicalTrial), Prop).
Definition Patient Trial := {x:HumanPerson & C2(x)}.
Hypot hesis Actln forall (x:SAQ, (forall (y:NAPO, Prop).
Definition Social Rol e SOB : = {x: SAG & C 1(x)}.
Hypot hesi s Make forall (x:SAQ, (forall (y:PRO, Prop).
Definition Trial Process PRO : = {x: Social Role & ({y:Trial & (Make (projTl x) y)})}.
Hypot hesi s | nvol vedl n forall (x:APO, (forall (y:Trial), Prop).
Definition ProcessRol e PRO : = {x: APO & C 2(x)}.
Hypot hesis testl : POB->Prop.

Check (testl ProcessRole).
Check (testl Patient).

Hypot hesis test2 : SOB->Prop.
Check (test2 Social Rol e).
Check (test2 Physician).

Z4Notice that the predicate names may be more carefully selent the basis of terminological analysis.

P. Barlatier et al. / Applied Ontology 29

and whose results are:

testl ProcessRol e : Prop
testl Patient . Prop
test2 Soci al Rol e : Prop
test 2 Physician . Prop

As it can be noticed, it proves that the subtyping ri#eb) holds between the complex role typBatient
and ProcessRole since the type Patient) can be used instead of its parent tyge-¢cessRole). The
same arguments hold féthysician andSocial Role.

Corollary 2. (Proof inference) Given two relation typesand p’ such thaty’ < p, then any proof that
holds forp’ also holds forp.

Proof. Sincep’ < p, it is obvious to see that any proof of typéis also of typep up to the subtyping
relation. O

Turning back to the role typ@hysician, assume that a database provides a proof oldjéttl for
MedicalUnit and a list of proof objects for the term of ty@egal Person, e.g.,P0247, HT155, P0801,
HP243,... , HP122,.... In this list which collects all persons standing MiU'1 (within a given time
interval), persons having Rzxxz identifier are patients, persons havingdaPxzx identifier denote
physicians operating id/U1 and persons corresponding 67" zzx identifiers belong to the technical
staff. Then, the constructor of the last teffmyOutIn will filter the previous list and provide a typ@rop
that is only proved folH Pzxx identifiers. For example, some proof objects for the ile;sician could
be (HP122,(MU1,p1)), (HP243,(MU1,p2)), ... wherep;, p» denote the respective proofs for the
typesTryOutIn[H P122, MU1] andTryOutin|H P243, MU1].

From corollary (2), it follows thatH P122, (MU1,p1)), (HP243,(MU1, ps)), ... are also valid
proofs forSxz : SAG . ¥y : NAPO . ActIn[z,y]. In other words, it means that we have proofs saying
that someS AG are working within someéV APO.

7.3. Addressing the Generalization Hierarchies Problem

In Steimann (2000), the author has pointed out that someuliifes arise in specifying admissible types
for roles that can be filled by instances of disjoint typesef,the argues that the solution to this problem
lies in the separation of role and type hierarchies. Howeagunderlined in Guizzardi (2005), this solution
would result in a significant (and counterintuitive) rewisiof the UML meta-model. A running example
starts from the fact that attempts to relate customer, pessd organization within a single hierarchy is
problematic. To solve this problem, Guizzardi has suggesate"ontologically correct" solution with the
introduction of what is called "role mixins", i.e., abstratasses with disjoint subclasses (only subclasses
can have instances). Two roles are defined, i.e., the rates/itlual customer" and "Corporate customer"
are respectively subsumed by the kinds "Person" and "Qzgtoin" whereas a role mixin "Customer"
subsumes both "Individual customer" and "Corporate custbnT his solution appears more interesting
since it explicitly states that role mixins are relatiogallependent (thus, giving the so-called context).
Furthermore, it can be incorporated in a conceptual moglelesign pattern without difficulties. What is
lacking is the theoretical part making these conceptuaicelsceffective and provable. For that purpose
we suggest to express these choices in K-DTT.

Instead of an abstract class we introduce first a generictal€omer involving the categoryASO.
Then, we have here two modeling choices for defining the pageliwhich will appear in each context
type. On the one hand, it seems interesting to define a unigakcate at the highest abstraction level (i.e.,
BuyTo : ASO — ASO — Prop) and then to use polymorphism for all subsumed contexts.nf&ie
advantage of this solution holds in a significant code sifigglion. This is the solution adopted below
for the theoretical description. On the other hand, in a ncoraplex approach, each context uses its own
predicate closely related to the type of its built in data.ntain benefit is a conceptually clearer model
for the (conceptual) name which is used since each diffgegdicate definition becomes independent

30 P. Barlatier et al. / Applied Ontology

from data types, its name reflecting a different level. Fanegle the highest level predicate is denoted
AskServiceT o and relates arguments of the categdiyO instead ofBuyT o (with the same arguments)
for the previous approachBuyTo should be conceptually restricted to a subsetdsfO objects and
lacks generality). This is the approach that has been eegbliorthe code fragment given at the end of the
subsection. The generic role typaistomer and its context is defined as:
Clz: ASO] £ Xy:ASO.BuyTo[z, y
Customer = Yx:ASO . Clx]

Then, we introduce the categoriésgal Person andOrganization which can be easily related to the
DOLCE hierarchy observing thdtegal Person is a Social Agent§ AG) andOrganization is a society
(SC). Using the subtyping relation®@rganization < SC, Legal Person < SAG, SC < ASO and
SAG = ASO together with the transitivity of subtyping, it follows th&egal Person < ASO and
Organization < ASO. The two roles "Individual customer” and "Corporate custdhare respectively
denoted/C andC'C and require the dedicated context tyggsandC’,. These contexts share the common
categoryCorporation which the respective categoriéggal Person andOrganization are customers
of. Using corollary 1, the subtyping holds between these typpes and their generic tygéustomer w.r.t.
the DOLCE hierarchy. The two roles typ&§' andC'C subsumed by the generic role type.stomer are
such that:

Cilx : Legal Person] = Xy : Corporation . BuyTo[z, y]
IC 2 Xux: LegalPerson . C1[x]

Colx : Organization] = Yy : Corporation . BuyTo[z, v]
CC %= Xaz:Organization . Cy[z]

With BuyTo : ASO — ASO — Prop, the IC role tells us that if one obtains proof objects for
some corporation able to sell products e(@o; and some person e.glphnDoe, using polymorphism
we get the proofy, for the predicateBuyTo[JohnDoe, Co;]. The CC role is defined in a similar way.
In other words,JC are constrained persons (customers of a given corporatibit®d C'C' are constrained
organizations which are also customers of a given cormmra®n the one hand, subsumption yields that
I1C % Customer andC'C < Customer whereCustomer is constrained by the common generic context
type C(ASO). On the other hand, the set of proof objects for the respectie playerriz in z : IC
andmy in y : CC are the respective subsets of the proof objects for the @désg .egal Person and
Organization according to lemma 5. At the same time, the set of proof objemtthe role playetr; z
in z : Customer is a subset of the catego”/SO. It follows that we have two parallel hierarchies, a role
and a player hierarchies (see figure 3).

subsetOf

. C[x]

Organization

subsetOf

Person

Customer:=

subsetOf

IC:= X x:LegalPerson - C,[x] CC:= ‘Zx:Organization - C,lx]
Player type
Role type

Fig. 3. Subsumption with roles in K-DTT.

With the same DOLCE categories, the role definitions are nescidbed using the second approach
with the following Coq code (contexts are not explicitly delsed for the sake of clarity):

P. Barlatier et al. / Applied Ontology 31

Definition Legal Person : SAG = Type.
Definition Corporation : SC = Type.
Definition Organi zation: SC = Type.

Hypot hesi s AskServiceTo : forall (x:ASO, (forall (y:ASO, Prop).

Hypot hesi s IndivBuyTo : forall (x:Legal Person), (forall (y:Corporation), Prop).

Hypot hesi s Coll ecBuyTo : forall (x:Organization),(forall (y:Corporation), Prop).
Definiti on Custoner : SOB :={ x:ASO & { u:ASO & (AskServiceTo x u)}}.

Definition IC : SAG := { x:Legal Person & { u:Corporation & (IndivBuyTo x u)}}.
Definition CC : SC:={ x:Oganization & { u:Corporation & (CollecBuyTo x u)}}.
Hypot hesi s Test : SOB- >Pr op.

Check (Test Custormer).
Check (Test 10).
Check (Test CC).

whose output is:

Test Custoner : Prop
Test IC : Prop
Test CC : Prop

This simple test proves that the subtygésandC'C can be used instead of their parent typestomer.
The dependent types make the difference with standardeslg$goes) of OO programming since we
are able to treat simultaneously the two constraints withoy extra programming technique or without
separating hierarchies between classes as suggestedhmastg2000). Furthermore, this solution avoids
the introduction of mixins Guizzardi (2005); Loebe (200¥)Using a more formal and elegant mechanism
based on subtyping at the type-theoretical level.

8. Roles Properties
8.1. Identity Criteria for Roles

Another debate in role modeling is whether or not roles ctndlchssigned an identity. We focus here
on material roles, that is roles which have an identity. Bsai¢ whether roles carry their own identity has
been addressed in many works and several authors AlbasloE293); Kristensen (1995) claim that the
identity of a role instance is inherited from a universalsuhing the role type whereas some others do
not share this view (see e.g., Wieringa-et-al (1995); Saeim(2000)). Since the role has an IC, it follows
that a role cannot subsume a property having no IC as poinieih &Velty (2001). In K-DTT, all proof
objects can be distinguished and thus have an identity.fBfgjects for the role type are distinguishable
and their respective values count as an identification. dtgar that, for instance, as a studéitke has
a student ID and as soon as he ceases to be a student, thershthiadD while always holding his own
social insurance number (i.e., being a person). More plgigne can get a proof object for the argument
of type Legal Person in the example given in subsection 6.1 while there are nofprimo the predicate
RegisteredIn and as a consequence for the tfftedent. It follows that advocating dependent role types
yields the acceptance of identity for players in line witle thiew of Guizzardi (2005). Notice that the
player of a role has an identity only when playing the role.

8.2. Simultaneous Roles

Let us examine the case where an entity can play differeas rsimultaneously. For that purpose, one
can introduce two different roles, a student and a workdn @it additional constraint, i.e., a student in that
case is also a worker. The second role depends on the firstwmare interested in "simultaneous” roles,
then, it is advised to first introduce a constraihtr) in which we restrict the student role (see subsection
6.1)

32 P. Barlatier et al. / Applied Ontology

C[z : Legal Person] = Yu : Univ . RegisteredIn[z, u]
and then introduce the student role whose constraint fdnmbasis for the constraint of the worker role:
Student & Nz : Legal Person . Cx]
WorkStud = Sz : Legal Person . C'[z]

We have introduced the nested constraint tygér : LegalPerson] £ Xy : Clz] . 3z
Corporation . HiredAt|x, z] such that it requires the student context typle|. The result, i.e., the set
of proof objects will enumerate all the students having agolcurrently to their studies.

Definition 11. Two simultaneous roles are specified with first introducingle type and then defining
a second role type having (i) as player the same player as itbteaind (i) as context type, a sum type
depending on the first context w.r.t. the structure:

Rol & Yz : P . Clx]
SimRol & Yz : P.C'[z] with C'lz: P2 Xz:Clz].dz...]

Major benefits of this definition are (i) the limitation of teearch space by admitting only student ob-
jects in the new context, (ii) the flexibility allowing rolgges to be easily extended and (iii) the indepen-
dence of subsumption of multiple role players from the nundbeoles.

8.3. Role of Role

If we consider the example given in Masolo-et-al (2004) wteam employee plays the role of a project
leader, the suggested solution solves the issue by coimgjdérat roles are in fact additive. Following
that argument, roles of roles can be solved by specializigsr This aspect can be related to the notion
of complement for a role. In Loebe (2007), the author defihesibtion of complement for a given role
universal which says that a (universal) context is assigoedset of role universals through the notion of
"role base". In contrast with this relation-centered viewm, rather consider a player-centered view where
the player is the central part of the role. In this alternatategy, a given context typ@ can be extended
either by adding properties @ (the intensional perspective) or by extending its datactire with new
information (the extensional perspective). Furthermdiféerent players may have different views on their
environment and then, they may be related to different cotgpes. This player-centered view is coherent
with the assumption that context types describe momentsals.

More precisely, in K-DTT, we follow the view already explathin Dapoigny (2010b) which assumes
(i) that a context type is related to a single intention (hereole type) and (ii) that a context type is
extensible either to the aggregation of disjoint contegetyor to a partonomic hierarchy of nested context
types (see definition 4). It follows that each time a contex¢xtended with new information then it is
related to a distinct role type. Let us explain these assiampbn the example given in Loebe (2007), i.e.,
John is a student of mathematics at the University of Leipzig.ndgheStudent role of definition (3), a
new roleStudentInField is introduced as a specialization of tBeudent role:

C'[z : Student] = Yc: CourseO fStudy[mmez] . StudiesIn[m z, c]
StudentInField = Yz : Student.C'[x]

Notice thatCourseO f Study depends om;mox, that is a value which belongs to the categbnyiv. In
other words we restrict the categapurseO f Study to be the course of study in the precise university
where the student is registered. Then using the definitidftoflent, the-elimination rules and variable
renaming, we get the expression:

StudentInField = Xl : LegalPerson .Yz : C[l].YXc: CourseO fStudy[m 2] . StudiesIn][l, c|
The interesting result is that, with:
C”[l : Legal Person] = Xz : C[l] . Xc : CourseO f Study|r1z] . StudiesIn]l, c],

P. Barlatier et al. / Applied Ontology 33

the resulting expression preserves the player and extéedsontext w.r.t. definition (3) fron®'[{] to
C”[l]. This result can be generalized from the equivalence betwee two expressions: following the
view of Masolo-et-al (2004), a role of a role seen as a speat#n preserves the player and extends its
initial context.

8.4. Reuvisiting the Counting Problem

The identity criteria have also a strong impact on the stedatounting problem, a recurrent prob-
lem involving role individuals with multiple instantiatioGupta (1980) which can be formulated in the
following way:

- KLM served four thousand passengers in 2010.
- Every passenger is a person.
- Ergo, KLM served four thousand persons in 2010.

The assertions state that if a given person is registeredvieral flights of KLM in 2010, which is
more than likely, the conclusion is false Wieringa-et-&98); Guizzardi (2005). This example has been
throughly discussed, focusing on the relationships betviiee identity criteria (or coincidences) for pas-
sengers and persons. The basic problem is that countingnupes does not reduce to count persons, then
a clear understanding of the relation person-role is reduikany solutions are given but what is needed
is a comprehensive theory able to take into account all éspéa role modeling.

Since they are passengers that can register more than oseegexal flights, counting persons cannot
reduce to count passengers. This problem clearly refetet@ssue whether roles carry their own identity
and has been addressed in many works in which no consensesneaged. However, it can be solved
rigorously in K-DTT by using the following definitions:

Yt : Date . Xf : Flight[t] . BookedAt[p,t, f]
Yp : Legal Person . C[p]

Clp: LegalPerson| =
Passenger =

with BookedAt : Legal Person — Flight — Date — Prop. This role type describes a situation
in which a reservation has been made on a given flight at a glaée For each proof of this type of
situation there is a corresponding playerin D, such that JohnD, (K L312, (Apr7 : 6PM,q))) is a
proof object forPassenger wheregq; is a proof for Booked At[JohnD, K L312, Apr7 : 6 PM]. Using
lemma 5, it is straightforward to deduce that the set of paimécts which occurs for the left argument
of Passenger is a subset of the set of proof objects fozgal Person and then, one can no longer say
that KLM served four thousand passengers in 2010. Diffepeodf objects forPassenger correspond
to different pairs but this does not exclude the first term (the player) to be identical. The conclusion,
sharing the view of Guizzardi (2005), is that the principlédentity of passengers is supplied by a unique
universal described by a free variable: LegalPerson such that the player described by the bound
variablex : Legal Person within Passenger, is a subset of it.

8.5. Discussion

In order to summarize what can be exactly covered by the gbraferole, we suggest to draw some
distinctions between OO representations, FOL-based anl4DTT view. For that purpose let us focus
on some items that have been enumerated in subsection 5.2.

1. Many approaches consider roles are universals. For dgamithin an ontological perspective, roles
are seen as specific classes Loebe (2007), in the OO domgiarthbound to classes with relations
Herrmann (2007) or collections of properties Kristense®®g) while using FOL, roles are either
manipulated through predicates acting on entities Mastia-(2004) or considered as sorts in an
order-sorted logic Steimann (2000). In Loebe (2007), theathas advocated for a categorization of
roles into relational roles, processual roles and soclasrdssuming this view, we suggest to relate
a role category with the category that its player belongdnt@uch a way, the role definition (see

34

P. Barlatier et al. / Applied Ontology

Definition 9) could be extended to express category-baded sobsumed by the general definition:
Role £ Yx : PT . Clz].

SocialRole £ Yx : ASO . Olx]
Processual Role = Yz : ED . C[x]

We assume that players of processual roles are endurants.

. Roles can be related to one or more behaviors. In K-DTTawiels can be introduced as role prop-

erties. However this possibility has not been investigatedis left for a future paper.

. The problem of identity in a model supporting roles asimtigtishable instances provides greater

flexibility, because such a model admits dynamic structtimat cannot be captured otherwise. We
assume that roles have an identity different from their @layince we define an identity for the role
while maintaining the identity of the entity playing the@oOur approach is consistent both with the
OO0 view, which clearly separates the role definition fromgtager’s definition, and the FOL-based

perspective using the so-called "qua-individu#is"

. Roles are anti-rigid, that is role is not a permanent featfian entity. A (realist) view would assume

that a role exists iff there is (at least) a player togethéhwan existing context. As underlined in
Mizoguchi (2007), this assumption would lead to reject a ediadwhich an instance of a role exists
without being played by anything. The K-DTT theory solvess tbroblem in the following way. A
role type intensionally exists if we have a means to consthat type (e.g., having a structure relat-
ing this type with other types). This last aspect is in linéhwthe view of Boella-et-al (2007) where
the existence of a role type depends on the existence of axtagpe. A role type extensionally
exists if we can collect proof objects for it (type inhakiba). Furthermore, the constructive view
only argues for the existence of a means and not for the sestiichieving this means, i.e., with
proof objects.

. As in most approaches, role types are relationally degr@ndhat is they require some external

concepts to define them. The definition of roles types in K-Pariibeds external concepts within the
context of the role while the relation is arranged betweelagagp and its context. By contrast with
the OO approaches, in K-DTT the role is not an integral pathefobject, it is a specific relation,
or more generally, a specific interaction that can be progeddme existing objects. An entity can
play a role concept only within a context. This property i®gital consequence of Definition (9)
in which a context can range from a simple sortal to a compéotrelation types. The context
type describes explicitly the requirements that a pawicuhust fulfill to be a player for that role
according to Husserl’s notion of foundation Guarino (19%ince a theory of context types has
already been investigated (see Dapoigny (2010b) for mdeslsle the definition of context types in
K-DTT can take advantage of this study.

. Different entities can play the same role at the same fithese entities are those accounted for in

the list of proof objects corresponding to the player of thle and result from the existence of proof
objects at a given time.

. An entity can play multiple roles during a specific timesival. In K-DTT the proof objects for the

player category are marked by the fact that they share a cormobe type (i.e., they are part of the
tuple proving the role type) but nothing prevents some o$e¢hgroof objects to occur in other role
types provided that the category of the player is the same.

. An entity can acquire and abandon roles (dynamic asgeadf objects can be involved in different

role types, that is, in different interactions which are wefi and then manipulated as types. The
time is explicitly taken in account inside temporally ct@esized structures in which the temporal
argument only constrains the validity of the structure wihk usual ordering. Proof objects for
all these types are quantified at each iteration of the tymelgéhg algorithm, with the intuitive
consequence that K-DTT can hardly satisfy strong real-twormstraints. However the dynamicity

They refer here to the set of proof objects for the player efrtie.

P. Barlatier et al. / Applied Ontology 35

relies on the ability of proof objects to populate the difier categories at each iteration of the type
checker. In such a way any proof object is susceptible ta bif a typed structure to another one.
9. An entity can play the same role several times simultasigoAccording to the interpretation given

in Masolo-et-al (2004) a player is involved in several radlleat are all specializations of a more
general one. It can be considered as a particular case of il roles issue which is easily
represented in K-DTT.

10. Arole can play another role. In the general definitionf{itiéon 9), it is possible to define the player
as a role type, but what is the expected meaning of such amptisn? As a consequence, we limit
the semantics of K-DTT to additive roles as in Masolo-et28l04).

In OO programming languages, the status of role has beeougbly investigated, e.g., in Bachman
(1980); Steimann (2000); Herrmann (2007); Steimann (203W8re a great expressiveness for knowledge
representation is highlighted. Among role-oriented apphes in software modeling, the programming
language ObjectTeams/Java Herrmann (2007) is a signifaantWhile it technically supports the fact
that roles come with their own behavior, this property app@aore dedicated to OO programming and
weakly addresses ontology modeling problems.

An alternative approach in OO programming considers rofeseds of affordances (see Baldoni-et-
al (2006)). However, explaining roles in such a way, we havedlect all items of these sets for each
role. A different perspective that is suggested here, stsén first expressing types of roles and then
relating a minimal set of power (authority relationships) éach proved role. Types have a natural fit with
observation since a type is inhabited if we collect in a dasalsome proof objects having this type. Then,
perceiving what objects afford boils down in K-DTT to poptelshe types which represent the affordances.

The first-order model of Masolo-et-al (2004) characteriz#es as the properties and relations reified
at the object level for which it is possible to explicitly dede some aspects of the social contexts. Such
a formalism could be easily translated in K-DTT with speeifions but we do not follow this road here
since we can support all the requirements for roles usiniggnigrder capabilities. For example, the "Spe-
cialization" of roles is treated with subsumption whileduirements" generally correspond to the fact that
roles can play roles (see subsection 8.3). Furthermorieuttie first-order model, the K-DTT solution
addressing the counting problem allows such a property ttebiged from the modeling constructs used
in representing knowledge (see lemma 5).

9. Conclusion

The obstacles standing in the way of the extension of a fdiord ontology using expressive primi-
tives are the lack of a unifying theory both sufficiently esgsive and logically founded together with a
logic which supports different abstraction levels. Duasmatural abstract character, it is a natural choice
to describe an ontology in a high-level language. For thgbgee, we have introduced the theory K-DTT
which uses dependent types for their ability to support legressiveness and powerful reasoning.

In a first part, we have shown how a type theory can be used tadera highly-expressive language
for ontologies. It is demonstrated that dependent typesnuadel several non-trivial aspects of classes
such as meta-level properties (rigidity, identity criteri etc.). On the one hand, the present theory is more
expressive than usual predicate logic in which it is neiffessible to apply a function symbol to a propo-
sition, nor to bind a variable except with a quantifier. In iidd, the language of K-DTT is richer than
the language of usual FOL-based systems in allowing procdgpear as parts of the propositions so that
the propositions can express properties of proofs (and migtaf individuals like in FOL). This makes
it possible to strengthen the axioms for existence, disjoncabsurdity and identity. On the other hand,
the relation between OO programming and type theory reliehe ability of their representative compu-
tational structures to correctly express the semanticsaflegical components. While their expressive-
ness is comparable, many aspects of object-oriented pnogirag can be preserved in type theory since it
unifies functional programming, component based programgnmeta-programming (MDA), and logical
verification (see Setzer (2007) for more details).

36 P. Barlatier et al. / Applied Ontology

The second part aims at proposing a formalization of rolé wépendent types. The objective was to
maintain an interdisciplinary character of roles by umifyiideas from prior research models within the
logical framework and to give a more practical view of thetedxs theory with (i) a significant number
of examples and (ii) code fragments which detail the comedmng implementation with the Coq proof
assistant. The role modeling is kept simple partly due tofaélsethat contexts are first class citizens of
the theory (i.e., contexts as types). Notice that OO apbemprovide solutions to role modeling that
technically overlap K-DTT while lacking formal foundatismand support for reasoning. This last aspect is
very appealing for ontologies and is fully supported by K3Ddut it has not been developed here due to
lack of place. However, the interested reader could find sexamples on reasoning with dependent types
e.g., for the correct specification of part-of relations matogies Dapoigny (2010a). The contribution
includes a first formal solution for generalization hieraes, identity criteria for roles, roles of roles and
the counting problem.

We think that this paper can shed new light (i) on the ability dype-theoretical language to support
expressive ontologies and (ii) on a highly expressive doution to role formalization. Some important
problems have been left aside (e.g., role and behaviopmeagabout role types) due to the lack of space,
but the K-DTT theory has the power to address them and it izneld for a future work.

References

Abadi, M. and Cardelli, L. (1998). A Theory of Objectdpnographs in Computer Scienc®pringer Verlag.

Akinkunmi, B. (2000). On the expressive limits of reified dhies,Journal of Logic and Computatiod0(2), 297-313.

Albano, A. and Bergamini, R. and Ghelli, G. and Orsini, R.93p An Object Data Model with Role®roceedings of the 19th
International Conference on Very Large Data BasésDB’'93, 39-51.

Andrews, P. (1986). An Introduction to Mathematical Logicalype Theory: to Truth through Prodfcademic Press

Armstrong, J. (2009). Ii€oders at Work: Reflections on the Craft of Programm@b—241, Peter Seibel, ed.

Artale A. and Franconi E. and Guarino N. and Pazzi L. (1996)t-Rhole relations in object-centered systems: An oeswvi
Data & Knowledge Engineerin@0, 347-383.

Asher, N. (2008). A Type Driven Theory of Predication withr@gex TypesFundamenta Informatica@4(2), 151-183.

Baader, F. and Calvanese, D. and McGuinness, D. and NaraindPatel-Schneider, P. (2008he Description Logic Handbopk
Cambridge University Press.

Bachman, C.W. (1980). The role data model approach to datetstesProcs. of the International Conference on Data Bases
S. M. Deen and P. Hammersley eds., 1-18.

Baldoni, M., Boella, G. and van der Torre, L.W.N. (2005). Bbooles, from agents back to object¥prkshop From Objects to
Agents (WOA)164-170.

Baldoni, M., Boella, G. and van der Torre, L. (2006). Moddlithe Interaction between Objects: Roles as AffordarioeBtoc.
of Knowledge Science, Engineering and Management, KSEMNGS 4092 42-54, Springer.

Baldoni, M., Boella, G. and van der Torre, L. (2007). Relasibips meet their roles in object oriented programmindgroc. of
the 2nd International Symposium on Fundamentals of Softkagineering Theory and Practice (FSEN'QZNCS 4767,
440-448, Springer.

Barendregt, H. (1992). Handbook of Logic in Computer Saéehambda Calculi with Type®, Oxford University Press, 117—
309.

Barendregt, H. (1997). The impact of the lambda calculusgicl and computer sciencBulletin of Symbolic Logic3(2),
181-215.

Barendregt, H. and Geuvers, H. (2001). Handbook of AutothBteasoningProof-Assistants Using Dependent Type Systems
Elsevier and MIT Press, 1149-1238.

Barlatier, P. (2009). Conception et implantation d’'un med#e raisonnement sur les contextes basé sur une théotigpasset
utilisant une ontologie de domainehd Thesis (in frenchlUniversity of Savoie.

Bittner, T. and Donnelly, M. and Smith, B. (2004). IndividsidUniversals, Collections: On the Foundational RelatiohOntol-
ogy, In Procs. of the International Conference on Formal Ontglag Information Systems (FOISQ&7-48, I0S Press.

Boella, G. and van der Torre, L. and Verhagen, H. (2007). Rale interdisciplinary perspectivépplied Ontology2(2), 81-88.

Boldini, P. (2000). Formalizing Context in Intuitionisfitype theoryFundamenta Informatica&?2(2), 1-23.

Bruni, R. and Lluch Lafuente, A. and Montanari, U. and Tup&0o(2007). Service Oriented Architectural Designocs. of the
3rd International Symposium on Trustworthy Global CommytLNCS 4912 Springer, 186—203.

Bry, F. and Lorenz, B. and Spranger, S. (2005). CalendarsTepdlogies as Typedsnowledge-Based Intelligent Information
and Engineering SystemsNCS 3684

Calegari, D. and Luna C. and Szasz, N. and Tasistro, A. (2BR€)resentation of metamodels using inductive types inp@-Ty
Theoretic Framework for MDBnstituto de Computacion Facultad de Ingenieria Univessidie la Republica Montevideo,
Uruguay, tech. report RT 10-01.

Chen, P.P. (1976). The entity-relationship model: Towardsified view of dataACM Trans. on Database Systerhgl), 9-36.

Cimiano, P. (2003). Translating Wh-Questions into F-Ld@igeriesProcs. of the 2nd CoLogNET-EISNET Symposilad—-137.

P. Barlatier et al. / Applied Ontology 37

Cirstea, H. and Coquery, E. and Drabent, W. and Fages, F. odner, C. and Maluszynski, J. and Wack, B. (2004). Types fo
Web Rule Languages: a preliminary stutBchnical report AO4-R-56(PROTHEO - INRIA Lorraine - LORIA.

Cooper, R. (2005). Records and Record Types in Semantiay,he@f Logic and Computatiori5(2), 99-112.

Coq Development Team (2010). The Coq Reference Maiveasjon 8.3.INRIA, France.

Coquand, T. and Huet, G. (1985). Constructions: A HighereDRroof System for Mechanizing Mathematics, EUROCAL'85:
Invited Lectures from the European Conference on CompugelXa-\Volume |, Springer-Verlag, 151-184.

Coquand, T. and Huet, G. (1988). The calculus of constrastlaformation and Computatiqry6(2—3), 95-120.

Constable, R. L. (1991). Theoretical Aspects of Computdtvw&ae, Type theory as a foundation for computer scienddCS
526, Springer, 226—-243.

Costa, P.D. and Guizzardi, G. and Almeida, J.P.A. and RirEsand van Sinderen, M. (2006). Situations in Conceptuadi®ling
of Context,Procs. of the 10th IEEE on International Enterprise Distribd Object Computing Conference Workshdps
IEEE Computer Society.

Dahchour, M. and Pirotte, A. and Zimanyi, E. (2004). A roledaband its metaclass implementatidmf, Syst, 29(3), 235-270.

Dapoigny, R. and Barlatier, P. (2010a). Towards Ontolddgiarectness of Part-whole Relations with Dependent Typescs.
of the Sixth International Conference (FOIS 20145-58.

Dapoigny, R. and Barlatier, P. (2010b). Modeling Contexith \Wependent Types;undamenta Informaticad 04(4), 293-327.

Dapoigny, R. and Barlatier, P. (2012). Formal Foundation&ftuation Awareness based on Dependent Type Thedoymation
Fusion (accepted for publication), doi 10.1016/j.inffus.2012006.

de Bruijn, N. (1987). Generalizing Automath by means of alddatyped lambda calculus, in D. Kueker, E. Lopez-Escobdr a
C. Smith (eds), Mathematical Logic and Theoretical Comp8t#ence, Lecture Notes in Pure and Appl. Mall®g Marcel
Dekker, New York, 71-92.

Dourish, P. (2001). Seeking a foundation for context-avearaputing,Human-Computer Interactiori6(2-3), 229-241.

Enache, R. and Angelov, K. (2011). Typeful Ontologies wiihebt Multilingual VerbalizationProcs. of the Controlled Natural
Languages Workshop (CNL 2010)

Gangemi, A. and Guarino, N. and Masolo, C. and Oltramari,nd. &chneider, L. (2002). Sweetening ontologies with DOLCE,
Procs. of the 13th International Conference Knowledge Begiing and Knowledge Management (EKAW2082fsomez-
Perez and V.R. Benjamins eds., LN@&73 Springer, 166-181.

Galton, A. (1991). Reified Temporal Theories and How To Ugréhem,Proceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI'91)1177-1182.

Girard J.Y. (1971). Une Extension de I'Interprétation del€lta I'Analyse, et son Application a I'Elimination des Caups dans
I’Analyse et la Théorie des Types Procs. of the Second Soawidin Logic Symposium, Amsterdam, 63-92.

Girard J.V. (1973). Quelques résultats sur les intergogtafonctionnelleslecture Notes in Mathematic337, Springer.

Girard, J.-Y. (2006). The Blind Spadbttp://iml.univ-mrs.fr/ girard/coursang/coursang.htm

Girard J.Y. and Lafont Y. and Taylor P. (1988). Proofs andeBy@ambridge University Presg, Cambridge Tracts in Theoretical
Computer Science.

Godel, K. (1933). Eine Interpretation des intuitionistisn Aussagenkalkilgrgebnisse eines mathematischen Kolloquiwns
39-40.

Guarino, N. (1992). Concepts, attributes and arbitragti@hs,Data & Knowledge Engineerin@3, 249-261.

Guarino, N. (1994). The Ontological Level, In R. Casati, Bith and G. White (eds.Rhilosophy and the Cognitive Science
Holder-Pivhler-Tempsky, 443—-456.

Guarino, N. (1995). Formal ontology, conceptual analysisknowledge representatidnt. J. Human-Computer Studiet3(5—

6), 625-640.

Guarino, N. (1998). Some Ontological Principles for Desigripper Level Lexical ResourceSpRR cmp-1g/9809002.

Guarino, N. and Welty, C. (2000). A Formal Ontology of Prdjeey, Procs. of EKAW 2000, R. Dieng and O. Corby eds., LNAI
1937, Springer, 97-112.

Guarino, N. and Welty, C. (2002). Evaluating Ontologicati3@®ns with OntoClearCommunications of the ACM5(2), 61-65.
ACM Press.

Guizzardi, G. and Herre, H. and Wagner, G. (2002). On the aé@mtological Foundations of Conceptual ModeliRgocs. of
the 21th International Conference on Conceptual ModellBB2002) Springer-Verlag, 65—78.

Guizzardi, G. and Wagner, G. and Guarino, N. and Van Sindé/leii2004). An Ontologically well-Founded Profile for UML
Conceptual Modeldn Procs. of the 16th Int. Conf. on Advanced Information &yst Engineering (CAISE’04$pringer,
112-126.

Guizzardi, G. and Wagner, G. (2004). Towards Ontologicairiations for Agent Modelling Concepts Using the Unified +un
dational Ontology (UFO)AOIS 110-124.

Guizzardi, G. (2005). Ontological Foundations for StruatWConceptual ModeldJniversity of Twente (Centre for Telematics
and Information Technology)

Guizzardi, G. (2005). Agent Roles, Qua Individuals and tber@ing ProblemSELMAS 143-160.

Guizzardi, G. and Masolo, C. and Borgo, S. (2006). In Defesfsa Trope-Based Ontology for Conceptual Modeling: An
Example with the Foundations of Attributes, Weak Entitied ®atatypesProcs. of ER’2006LNCS 4215 112-125.

Gupta, A. (1980)The Logic of Common Nouns: an investigation in quantifiedahlagjic, PhD, Yale University.

Hancock, P. and Setzer, A. (2000). Interactive Programseipedent Type TheorZSL, 317-331.

van Heijst, G. and Schreiber, A. Th. and Wielinga, B. J. (J9®Rbles are not classes: a reply to Nicola Guarimb, J. of
Human-Computer Studig46(2), 311-318.

Herrmann, S. (2007). A precise model for contextual roldge programming language ObjectTeams/J&gplied Ontology
2(2), 181-207.

Heyting, A. (1930). Die formalen Regeln der intuitionistien Logik, Sitzungsberichte der Preussischen Akademie der Wis-
senschafterd2-56.

38 P. Barlatier et al. / Applied Ontology

Hickey, R. (2009). keynote @M Languages Summit

Horrocks, I. and Patel-Schneider, F. (2004). A proposalafotOWL Rules Languagdlrocs. of the Thirteenth International
World Wide Web Conference (WWW 2Q04)3-731.

Howard, W. A. (1980). To H.B. Curry: Essays on CombinatorgicoLambda Calculus and Formalisithe formulae-as-types
notion of constructionAcademic Press, 479-490.

Jacobs, B. (1999). Categorical Logic and Type TheStydies in Logic the Foundations of Mathematicl, Elsevier.

Keet, C.M. and Artale, A. (2008). Representing and reagpouer a taxonomy of part-whole relatiodgplied Ontology3(1-2),
91-110.

Kripke, S. (1963). Semantical Considerations on Modal tp§cta Philosophica Fennicd 6, 83—94.

Kristensen, B. B. (1995). Object-Oriented Modeling withi€gProcs. of the 2nd International Conference on Object-Cigen
Information System&7-71.

Krohs, U. (2011). Functions and fixed types: Biological atfteofunctions in the post-adaptationist ekpplied Ontology),
125-139.

Loebe, F. (2007). Abstract vs. social roles - Towards a gerleeoretical account of roleApplied Ontology2(2), 127-158.

Luo, Z. (1990). A problem of adequacy: conservativity ofccdlis of constructions over higher-order logi@chnical report
ECS-LFCS-90-121Department of Computer Science, University of Edinburgh.

Luo, Z. (1992). A Unifying Theory of Dependent Types: The &ciatic ApproachProcs. of Logical Foundations of Computer
Science (LFCS'92P93-304.

Luo, Z. (1994). Computation and Reasonifixford Science Publicationsl, International Series of Monographs on Computer
Science.

Malecha, G. and Morrisett, G. and Shinnar, A. and Wisnesky2B10). Toward a Verified Relational Database Management
System37th ACM SIGACT-SIGPLAN Symposium on Principles of Programg Languages237—248.

Martin-Lof, P. (1982). Constructive Mathematics and Cotep®rogrammingl.ogic, Methodology and Philosophy of Sciences
6, 153-175.

Masolo, C. and Borgo, S. and Gangemi, A. and Guarino, N. atdu®éri, A. (2003). Ontology Library (D18),aboratory for
Applied Ontology-ISTC-CNR

Masolo, C. and Vieu, L. and Bottazzi, E. and Catenacci, C Faerdario, R. and Gangemi, A. and Guarino, N. (2004). Soolakr
and their descriptiondn Proc. of the Conference on the Principles of Knowledger&ssmtation and ReasoningAAl
Press, 267-277.

Masolo, C. and Guizzardi, G. and Vieu, L. and Bottazzi, E. Badario, R. (2005). Relational Roles and Qua-individuakAl
Fall Symposium on Roles, an Interdisciplinary Perspectetologies, Programming Languages, and Multiagent 3gste
AAAI Press, 103-112.

McKenzie, E. and Snodgrass, R. (1991). An evaluation oficelal algebras incorporating the time dimension in dageba
ACM Computing Survey&3, 501-543.

McKinna, J. (2006). Why dependent types mattmgcs. of the 33rd ACM SIGPLAN-SIGACT symposium on Priasiplf
programming language#1(1), 1-1.

Mizoguchi, R. Ikeda, M. and Sinitsa, K. (1997). Roles of Sta®ntology in Al-ED Research — Intelligence, Conceptuasion,
Standardization, and ReusabiliBsoc. of AIED-97 537-544.

Mizoguchi, R. (2007)The model of roles within an ontology development tool: Héqplied Ontology2(2), 159-179.

Montague, R. (1970). Pragmatics and intensional Idgyeithésg22, 68—94.

Munn, K. Smith, B. (2008). Applied Ontology. An IntroductioMetaphysical Research, Ontos Verlag.

Muskens, R. A. (1996). Combining Montague Semantics anddbise Representationinguistic and Philosophyl 9, 143-186.

Napoli, A. (1992). Subsumption and classification-basegering in object-based representatidtecs. of the 10th European
Conference on Artificial Intelligence (ECAI92)25—-429, John Wiley & Sons Ltd.

Noble, J.R. (2010). Roles and Relationships, Procs. of ggsiihl Workshop on Relationships, Objects, Roles, andi€um
Modern Programming Languages.

Noonan, H. (2011). Identity, The Stanford Encyclopedia of PhilosophyEdward N. Zalta (ed.),
<http://plato.stanford.edu/archives/win2011/entitestity/>.

Van Paesschen, E. and De Meuter, W. and D’Hondt, M. (2009 Rodelling in SelfSync with warped hierarchiés,Procs.
of the AAAI Fall Symposium on Rojdgl9-155.

Poli, R. (2010). Philosophical Perspectives, Poli, R.b§di; Healy, M.; Kameas, A. ed3.heory and Applications of Ontology
1, Springer.

Prawitz, D. (1965). Natural Deduction: A Proof-Theoreti8eudy, Almquist & Wiksell eds., Dover Publications.

Oury, N. and Swierstra, W. (2008). The power of BiGPLAN NoticeA3(9), ACM, 39-50.

Ranta, A. (2004). Grammatical Framework: A Type-Theogti@rammar Formalismjournal of Functional Programming
14(2), 145-189.

Reus, B. and Streicher, T. (1993). Verifying Properties afddle Construction in Type Theorly Proc. MFCS'93 LNCS 711,
Springer, 660-670.

Reynolds, J. (1983). Types, Abstraction and ParametrigniRaiphism,IFIP Congress Paris, 513-523.

Reynolds, J. (1984). Polymorphism is not set-theoretim&#ics of data types, LNCE/3 Springer, 145-156.

Rumbaugh, J. and Jacobson, I. and Booch, G. (1998).Unified Modeling Language Reference Mandaldison Wesley.

Russell, B. (1986) The Philosophy of Logical Atomism and @tBssays, 1914-19, John G. Slater ed., London: George Allen
& Unwin.

Schirmann, C. (2001). Recursion for Higher-Order EncagliRgocs. of the 15th International Workshop on Computesrie
Logic (CSL'01), 585-599.

Sandhu, R. and Coyne, E.J. and Feinstein, H.L. and Youm&n (£996). Role-Based Access Control Mod#<EE Computer
292), 38-47, IEEE Press.

P. Barlatier et al. / Applied Ontology 39

Searle, J. R. (1995). The Construction of Social Realigw York: Free Press

Setzer, Anton (2007). Object-Oriented Programming in Dejpat Type Theoryfrends in Functional Programming, Intellect,
91-108.

Smith, B. and Rosse, C. (2004). The Role of Foundationalt®ekin the Alignment of Biomedical OntologieSJEDINFO
2004 M. Fieschi et al. (Eds), Amsterdam, |10S Press.

Smith, B. and Ceusters, W. and Klagges, B. and Kéhler, J. amdef, A. and Lomax, J. and Mungall, C. and Neuhaus, F. and
Rector, A. L. and Rosse, C. (2005). Relations in biomedintdlogies,Genome Biology6(5), R46.

Sowa, J. F. (1988). Using a lexicon of canonical graphs imaasgic interpreterRelational models of the lexico@ambridge
University Press, 113-137.

Sowa, J. F. (2000). Knowledge representation: logicallophphical and computational foundatiof&rpoks/Cole Publishing
Co,, Pacific Grove, CA, USA.

Steimann, F. (2000). On the representation of roles in tlajgented and conceptual modeliridata & Knowledge Engineering
35(1), 83-106.

Steimann, F. (2007). The role data model revisitgoplied Ontology2(2), 89—103.

Uschold, M. (1996). The use of the typed lambda calculus @idigg naive users in the representation and acquisitiqgradf
whole knowledgeData & Knowledge Engineerin@0, 385-404.

Welty, C.A. and Guarino, N. (2001). Supporting ontologi@aalysis of taxonomic relationshig3ata & Knowledge Engineering
39(1), 51-74.

Werner, Benjamin (2008). On the strength of proof-irrefevstpe theoriesl.ogical Methods in Computer Scieneg3).

Whitehead, A.N. and Russell, B. (1997). Principia Mathéoaatre-printed version.

Wieringa, R.J. and de Jonge, W. and Spruit, P.A. (1995). dJdymamic classes and role classes to model object migration
Theory & Practice of Object Systenig1), 61-83.

Woods, W.A. (1991). Understanding Subsumption and Taxgnarramework for progress, ifrinciples of Semantic Net-
works J. Sowa Ed., Morgan Kaufmann, 45-94.

