
Bayesian Methods for Supervised Neural Networks

David Barber

Division of Informatics, University of Edinburgh

dbarber@anc.ed.ac.uk

Phone +44 (0) 131 650 4491 Fax: +44 (0) 131 650 6899

May 15, 2002

1

David Barber: Bayesian Methods and Neural Networks 2

Introduction

An attractive feature of artificial neural networks is their ability to model highly complex non-linear relationships in

data. However, choosing an appropriate neural network model for data is compounded by the difficulty of assessing

the network complexity. Since we are rarely certain about either our data measurements or model beliefs, a natural

framework is to use probabilities to account for these uncertainties. How can we combine our data observations with

these modelling uncertainties in a consistent and meaningful manner? The Bayesian approach provides a consistent

framework for formulating a response to these difficulties, and is noteworthy for its conceptual elegance(Box and

Tiao 1973; Berger 1985; MacKay 1992). The fundamental probabilistic relationship required for inference is the

celebrated Bayes’ rule which, for general events A,B,C is

p(A|B,C) = p(B|A,C)p(A|C)
p(B|C) (1)

It is convenient to think of different levels of uncertainty in formulating a model. At the lowest level, we may assume

that we have the correct model, but are uncertain as to the parameter settings θ for this model. This assumption

details how observed data is generated, p (data|θ,model). The task of inference at this level is to calculate the

posterior distribution of the model parameter. Using Bayes’ rule, this is

p(θ|data,model) =
p (data|θ,model) p (θ|model)

p (data|model)
(2)

Thus, if we wish to infer model parameters from data we need two assumptions: (1) How the observed data is

generated under the assumed model, the likelihood p (data|θ,model) and (2) Beliefs about which parameter values

are appropriate, before the data has been observed, the prior p(θ|model). (The denominator in equation (2) is

the normalising constant for the posterior and plays a role in uncertainty at the higher, model level). That these

two assumptions are required is an inescapable consequence of Bayes’ rule, and forces the Bayesian to lay bare all

necessary assumptions underlying the model.

Coin Tossing Example

Let θ be the probability that a coin will land up heads. An experiment yields the data, D = {h, h, t, h, t, h, . . .},
which contains H heads and T tails in H+T flips of the coin. What can we infer about θ from this data? Assuming

that each coin is flipped independently, the likelihood of the observed data is

p (D|θ,model) = θH (1− θ)T (3)

A standard approach in the statistical sciences is to estimate θ by maximising the likelihood, θML = argmaxθ p(D|θ,model).

This approach is non-Bayesian since it does not require the specification of a prior and, consequently, theories which

deal with uncertainty in ML estimators are primarily concerned with the data likelihood, and not directly posterior

David Barber: Bayesian Methods and Neural Networks 3

parameter uncertainty (LEARNING AND GENERALIZATION: THEORETICAL BOUNDS). In the Bayesian ap-

proach, however, we need to be explicit about our prior beliefs p(θ|model). These are updated by the observed data

to yield the posterior distribution

p (θ|D,model) ∝ θH (1− θ)T p (θ|model) (4)

The Bayesian approach is more flexible than maximum likelihood since it allows (indeed, instructs) the user to

calculate the effect that the data has in modifying prior assumptions about which parameter values are appropriate.

For example, if we believe that the coin is heavily biased, we may express this using the prior distribution in fig(1a).

The likelihood as a function of θ is plotted in fig(1b) for data containing 13 Tails and 12 Heads. The resulting

posterior fig(1c) is bi-modal, but less extreme than the prior. It is often convenient to summarise the posterior

by either the maximum a posteriori (MAP) value, or the mean, θ̄ =
∫
θp(θ|D)dθ. Such a summary is not strictly

required by the Bayesian framework, and the best choice of how to summarise the posterior depends on other loss

criteria(Berger 1985).

Model Comparison and Hierarchical Models

The above showed how we can use the Bayesian framework to assess which parameters of a model are a posteriori

appropriate, given the data at hand. We can carry out a similar procedure at a higher, model level to asses which

models are more appropriate fits to the data. In general, the model posterior is given by

p(M |D) = p(D|M)
︸ ︷︷ ︸

Model Likelihood

p(M)
︸ ︷︷ ︸

Model Prior

/p(D) (5)

If the model is parameterised by some unknown variable θ, we need to integrate this out to calculate the model

likelihood,

p(D|M) =

∫

p(D|θ,M)p(θ|M)dθ (6)

Comparing two competing model hypotheses M1 and M2 is straightforward

p(M1|D)

p(M2|D)
=

p(D|M1)

p(D|M2)
︸ ︷︷ ︸

Bayes Factor

p(M1)

p(M2)
(7)

In the coin example, we can use this to compare the biased coin hypothesis (model M1 with prior given in fig(1a))

with a less unbiased hypothesis formed by using a Gaussian prior p(θ|M2) with mean 0.5 and variance 0.12 (model

M2). This gives a Bayes factor p(D|M1)/p(D|M2) ≈ 0.00018. If we have no prior preference for either model M1

or M2, the data more strongly favours model M2, as intuition would suggest. If we desired, we could continue in

this way, forming a hierarchy of models, each less constrained than the submodels it contains.

David Barber: Bayesian Methods and Neural Networks 4

Bayesian Regression

Neural networks are often applied to regression in which we wish to infer an unknown input-output mapping on the

basis of observed data D = {(xµ, tµ), µ = 1, . . . P}, where (xµ, tµ) represents an input-output pair. For example, fit

a function to the data in fig(2a). Since there is the possibility that each observed output tµ has been corrupted by

noise, we would like to recover the underlying clean input-output function. We assume that each (clean) output is

generated from the model f (x;w) where the parameters w of the function f are unknown and that the observed

outputs tµ are generated by the addition of noise η to the clean model output,

t = f (x;w) + η (8)

If the noise is Gaussian distributed, η ∼ N(0, σ2), the model M generates an output t for input x with probability

p(t|w,x,M) = exp

{

− 1

2σ2
(t− f(x;w))

2

}

/
√
2πσ2 (9)

If we assume that each data input-output pair is generated identically and independently from the others, the data

likelihood is

p(D|w,M) =

P∏

µ=1

p(tµ|w,xµ,M) (10)

(Strictly speaking, we should write p(t1, . . . , tP |w,x1, . . . ,xP ,M) on the left hand side of the above equation.

However, since we assume that the training inputs are fixed and non-noisy, it is convenient and conventional to

write p(D|w,M)). The posterior distribution p(w|D,M) ∝ p(D|w,M)p(w|M) is

log p(w|D,M) = −β
2

∑

µ

(tµ − f(xµ;w))
2
+ log p (w|M) +

P

2
log β + const. (11)

where β = 1/σ2. Note the similarity between equation (11) and the sum square regularised training error used in

standard approaches to training neural networks(see GENERALIZATION AND REGULARIZATION IN NONLIN-

EAR LEARNING SYSTEMS and Bishop 1995). In the Bayesian framework, we can motivate the choice of a sum

square error measure as equivalent to the assumption of additive Gaussian noise. Typically, we wish to encourage

smoother functions so that the phenomenon of overfitting is avoided. One approach to solving this problem is to

use a regulariser penalty term to the training error. In the Bayesian framework, we use a prior to achieve a similar

effect. In principle, however, the Bayesian should make use of the full posterior distribution, and not just a single

weight value. In standard neural network training, it is good practice to use committees of networks, rather than

relying on the prediction of a single network(Bishop 1995). In the Bayesian framework, the posterior automatically

specifies a committee (indeed, a distribution) of networks, and the importance attached to each committee members

prediction is simply the posterior probability of that network weight.

David Barber: Bayesian Methods and Neural Networks 5

RBFs and Generalised Linear Models

Generalised linear models have the form

f(x;w) =
∑

i

wiφi(x) ≡ wTΦ(x) (12)

Such models have a linear parameter dependence, but nevertheless represent a non-linear input-output mapping

if the basis functions φ(x), i = 1, . . . , k are non-linear. Radial basis functions (RADIAL BASIS FUNCTION

NETWORKS) are an example of such a network(Bishop 1995). A popular choice is to use Gaussian basis functions

φi(x) = exp(−
(
x− µi

)2
/(2λ2)). In this discussion, we will assume that the centres µi are fixed, but that the

width of the basis functions λ is a hyperparameter that can be adapted. Since the output is linearly dependent on

w, we can discourage extreme output values by penalising large weight values. A sensible weight prior is thus

log p(w|α) = −α
2
wTw +

k

2
logα+ const. (13)

Under the Gaussian noise assumption, the posterior distribution is

log p(w|Γ, D) = −β
2

P∑

µ=1

(tµ −wTΦ(x))2 − α

2
wTw + const. (14)

where Γ represents the hyperparameter set {α, β, λ}. (We drop the fixed model dependency wherever convenient).

The weight posterior is therefore a Gaussian, p(w|Γ, D) = N(w̄,S) where

S =

(

αI+ β

P∑

µ=1

Φ(xµ) ΦT (xµ)

)−1

w̄ = βΣ

P∑

µ=1

tµΦ(xµ) (15)

The mean predictor is straightforward to calculate, f̄(x) ≡
∫
f(x;w)p(w|D,Γ)dw = w̄TΦ(x). Similarly, error bars

are straightforward, var(f(x)) = Φ(x)TSΦ(x) (predictive standard errors are given by
√

var(f) + σ2). In fig(2b),

we show the mean prediction on the data in fig(2a) using 15 Gaussian basis functions with width λ = 0.03 spread

out evenly over the input space. We set the other hyperparameters to be β = 100 and α = 1. The prediction

severely overfits the data, a result of a poor choice of hyperparameters.

Determining Hyperparameters: ML-II

How would the mean predictor be calculated if we were to include the hyperparameters Γ as part of a hierarchical

model? Formally, this becomes

f̄(x) =

∫

f(x;w)p(w,Γ|D)dwdΓ =

∫ {∫

f(x;w)p(w|Γ, D)dw

}

p(Γ|D)dΓ (16)

The term in curly brackets is the mean predictor for fixed hyperparameters. We therefore weight each mean

predictor by the posterior probability of the hyperparameter p(Γ|D). Equation (16) shows how to combine different

David Barber: Bayesian Methods and Neural Networks 6

models in an ensemble – each model prediction is weighted by the posterior probability of the model. There are

other non-Bayesian approaches to model combination in which the determination of the combination coefficients is

motivated heuristically (ENSEMBLE LEARNING).

Provided the hyperparameters are well determined by the data, we may instead approximate the above hyper-

parameter integral by finding the MAP hyperparameters Γ∗ = argmaxΓ p(Γ|D). Since p(Γ|D) = p(D|Γ)p(Γ)/p(D),

if the prior belief about the hyperparameters is weak (p(Γ) ≈ const.), we can estimate the optimal hyperparameters

by optimising the hyperparameter likelihood

p(D|Γ) =
∫

p(D|Γ,w)p(w|Γ)dw (17)

This approach to setting hyperparameters is called ‘ML-II’ (Bishop 1995; Berger 1985) and assumes that we can

calculate the integral in equation (17). In the case of GLMs, this involves only Gaussian integration, giving

2 log p(D|Γ) = −β
P∑

µ=1

(tµ)
2
+ dTS−1d− log |S|+ k logα+ P log β + const. (18)

where d = β
∑

µ Φ(x
µ)tµ. Using the hyperparameters α, β, λ that optimise the above expression gives the results in

fig(2c) where we plot both the mean predictions and standard predictive error bars. This solution is more acceptable

than the previous one in which the hyperparameters were not optimised, and demonstrates that overfitting is avoided

automatically. A non-Bayesian approach to model fitting based on minimsing a regularised training error would

typically use a procedure such as cross validation to determine the regularisation parameters (hyperparameters).

Such approaches require the use of validation data(Bishop 1995). An advantage of the Bayesian approach is that

hyperparameters can be set without the need for validation data, and thus all the data can be used directly for

training.

Relation to Gaussian Processes

The use of GLMs can be difficult in cases where the input dimension is high since the number of basis functions

required to cover the input space fairly well grows exponentially with the input dimension – the so called ‘curse of

dimensionality’(Bishop 1995). If we specify n points of interest xi, i ∈ 1, . . . n in the input space, the GLM specifies

an n-dimensional Gaussian distribution on the function values f1, . . . , fn with mean f̄i = w̄
TΦ
(
xi
)
and covariance

matrix with elements cij = c(xi,xj) = Φ
(
xi
)T

ΣΦ
(
xj
)
(see GAUSSIAN PROCESSES). The idea behind a GP

is that we can free ourselves from the restriction to choosing a covariance function c(xi,xj) of the form provided

by the GLM prior – any valid covariance function can be used instead. Similarly, we are free to choose the mean

function f̄i = m(xi). A common choice for the covariance function is c(xi,xj) = exp
(
−|xi − xj |2

)
. The motivation

is that the function space distribution will have the property that for inputs xi and xj which are close together,

the outputs f(xi) and f(xj) will be highly correlated, ensuring smoothness. This is one way of obviating the curse

David Barber: Bayesian Methods and Neural Networks 7

of dimensionality since the matrix dimensions depend on the number of training points, and not on the number of

basis functions used. However, for problems with a large number of training points, computational difficulties can

arise, and approximations again need to be considered.

Multilayer Perceptrons

Consider the case of a single hidden layer neural network

f (x;w) =

H∑

i=1

vig
(
xTui + bi

)
(19)

where g(x) is a non-linear sigmoidal transfer function, for example g(x) = 1/(1 + exp(−x)). The set of all weights

(parameters), including input-hidden weights ui, biases bi, and hidden-output weights vi, is represented by the

vector w. If the weights are small, the network function f will be smooth since only the near linear regime of the

transfer function g will be accessed. An appropriate prior to control complexity is therefore

log p(w|α) = −α
2
wTw +

k

2
logα+ const. (20)

where k = dim(w). For the moment, we will assume that we know the value of the parameter α. This gives the

weight posterior as

log p(w|α, β,D) = −β
2

P∑

µ=1

(tµ − f (xµ;w))
2 − α

2
wTw + const. (21)

where β = 1/σ2. In fig(3) we show the result of using a 6 hidden unit network to fit the training data in fig(3). With

α = 0.1 and β = 1000, we drew a number of weight vectors wl, l = 1,15 from the weight posterior p(w|D),

equation (21) and considered the corresponding functions f(x;wl). The mean and standard error bars calculated

from these samples are plotted in fig(3). How these samples are obtained is discussed below. Note how the error

bars automatically increase in regions of low data density.

Monte Carlo Sampling

In general, the posterior distribution p(w|Γ, D) is non-Gaussian, and the integration required over the weight space

to find, for example, the mean predictor

f̄(x) =

∫

f (x;w) p(w|Γ, D)dw (22)

is difficult. An approximate solution is provided by Monte Carlo sampling(Neal 1996; Bishop 1995)

∫

f(x;w)p(w|Γ, D)dw ≈ 1

L

L∑

i=1

f(x;wi) (23)

David Barber: Bayesian Methods and Neural Networks 8

where the sample weights wi are drawn from the posterior distribution. In principle, this procedure is exact in the

limit L→∞. The great difficulty, however, is in constructing a finite, representative set of samples {wi}, and it is

easy to remain trapped in un-representative parts of the posterior distribution (Neal 1996).

Consider the problem of drawing samples from a general distribution p(x) ∝ ψ(x) – see fig(4). Let xold be a

sample point from p(x). We propose a new sample point xnew = xold + η where each element ηi is sampled from a

zero mean Gaussian distribution with variance τ 2. We accept xnew if ψ(xnew) > ψ(xold), since the new candidate

sample point is more likely than the old sample point. However, this does not constitute a valid sampling scheme

since we only accept increasingly likely points, targeting therefore only the modes of the distribution. To correct

for this, we accept a less likely candidate with probability ψ(xnew)/ψ(xold). This valid sampling scheme is called

the Metropolis method and forms the basis for many generalisations(Neal 1996; Neal 1993).

In high dimensions, Metropolis sampling can be inefficient since it is unlikely that testing a new point a long way

from the current sample point will result in a more likely point (if you’re standing on a mountain and jump, it’s more

likely that you’ll end up at a point lower than your current point). Thus only very small jumps will be accepted

in high dimensional spaces, and many samples are required to form a good representation of the distribution. The

Hybrid Monte Carlo scheme attempts to improve sampling efficiency and allow larger jumps by exploiting gradient

information about the distribution and has been successfully employed in Bayesian neural networks(Neal 1996).

Laplace’s Method

Whilst sampling techniques can be attractive, convergence to a representative set of samples is difficult to assess

and can be very slow. Laplace’s method is a perturbation technique motivated by the fact that as the number P of

training data points is increased, the posterior distribution typically approaches a Gaussian (Walker 1969) whose

variance goes to zero in the limit P →∞ (we leave aside here the issues of inherent network symmetries). In order

to calculate this Gaussian approximation, we consider the posterior distribution, equation (21)

p(w|D,Γ) ∝ exp (−φ (w)) (24)

and expand φ around a mode of the distribution, w∗ = argminφ (w),

φ (w) ≈ φ (w∗) +
1

2
(w −w∗)

T
H (w −w∗) , (25)

where

H = ∇∇φ (w)|
w∗

(26)

is the local Hessian matrix. This local expansion defines a Gaussian approximation

p(w|D,Γ) ≈ |H|1/2
(2π)k/2

exp

{

−1

2
(w −w∗)

T
H (w −w∗)

}

. (27)

David Barber: Bayesian Methods and Neural Networks 9

The expected value of f(x;w) as required in equation (22) can be evaluated by making a further local linearization

of the function f(·,w) around the point w∗. In a practical implementation, a standard non-linear optimization

algorithm such as conjugate gradients is used to find a mode w∗ of the log posterior distribution(Bishop 1995).

Determining Hyperparameters

So far we have assumed that the hyperparameters of the MLP are fixed. In a fully Bayesian treatment we would

define prior distributions of the hyperparameters and then integrate them out. Since exact integration is analyti-

cally intractable, we can use ML-II to estimate specific values for the hyperparameters by maximizing the marginal

likelihood P (D|Γ) (equation (17)) with respect to Γ. Using MLPs, the integrand in equation (17) is non-Gaussian

and p(D|Γ) needs to be approximated. This can be achieved using Laplace’s method by locally expanding the inte-

gral to second order in the weights. This leads to simple re-estimation formulae for the hyperparameters expressed

in terms of the eigenvalue/eigenvector decomposition of the Hessian matrix. This treatment of hyperparameters is

called the evidence framework (MacKay 1995) and involves alternating the optimization of w (mode finding) for

fixed hyperparameters with re-estimation of the hyperparameters by re-evaluating the Hessian matrix for the new

value of w. The various approximations involved in this approach improve as the number of data points P → ∞.

However, for a finite data set it can be difficult to asses the accuracy of the method. One obvious limitation is that

it only takes account of the behavior of the posterior distribution at the mode.

The KL Variational Approach

The Kullback Leibler divergence is a measure of the difference between two probability distributions p(x) and

q(x)(Cover and Thomas 1991)

KL(q, p) =

∫

{q(x) log q(x)− q(x) log p(x)} dx (28)

This has the advantageous properties KL ≥ 0 and KL = 0 if and only if p ≡ q. Consider the KL divergence

KL(q(w), p(w|Γ, D)) ≥ 0 (29)

Finding the best distribution q(w) in a restricted set of possible distributions by minimising KL(q, p) gives the best

estimate (in the KL sense) to the posterior distribution. From equation (29) we immediately have the bound

log p(D|Γ) ≥
∫

−q(w) log q(w)dw +

∫

q(w) log p(D|Γ,w)p(w)dw (30)

We can make use of this lower bound to carry out an approximate ML-II hyperparameter optimisation by

the following two step procedure: First fix the hyperparameters Γ and optimise the bound, equation (30), with

respect to q(w). Then, for fixed q(w), optimise the bound with respect to Γ. This scheme is a generalisation of

David Barber: Bayesian Methods and Neural Networks 10

the Expectation-Maximisation procedure (see the article by Neal and Hinton in Jordan 1998), and is also called

‘ensemble learning’(Barber and Bishop 1997).

Bayesian Pruning

In the previous sections, we discussed the idea of using a prior which encourages smoothness of the input-output

mapping. Since neural networks are non-linear functions of a linear combination of inputs, it is reasonable to

use a prior which encourages small weights, p(w) ∝ exp
(
−wTAw/2

)
. Typically, only diagonal matrices A are

considered. We can group weights into clusters containing one or more weights and associate with each cluster c a

common hyperparameter αc. The Bayesian approach results in a posterior distribution over these hyperparameters

αc. Alternatively, we can optimise the hyperparameters using ML-II. If the posterior distribution favours large αc

values, then effectively the weight cluster c is not contributing to the network, and may be pruned. A useful choice

of clustering is to group all the weights from a single input xi into the hidden units (note that these weights are

different from the weights which fan in to a hidden node). If the hyperparameter αi (after ML-II optimisation)

associated with the weights fanning out from input xi is large, the contribution of input xi is negligible, and can

be excluded. This is called ‘automatic relevance determination’(MacKay 1995).

The Relevance Vector Machine

In the discussion regarding GLMs, f(x) =
∑

i wiφi(x), we fixed the centres of the basis functions φi. Similarly, in

the RVM we use fixed basis functions(Tipping 2001). By associating with each weight wi a regularising prior p(wi) ∝
exp(−αiw2i /2), we can perform ML-II to optimise the hyperparameters αi. After optimisation, typically many of

the αi will become very large, effectively removing the basis function φi from the model. This pruning procedure

often results in a much sparser representation of the data in terms of only the ‘relevant’ basis functions; this scheme

is therefore particularly useful for compression. This sparseness effect is similar –although not equivalent– to the

support vector machine (SUPPORT VECTOR MACHINES), in which training points are effectively removed if

they do not affect the prediction of the model.

Classification

The previously described methods can be applied to classification, usually with only minor modification. For

convenience, we consider here only problems with two classes. The dataset is D = {(xµ, tµ) , µ = 1, . . . , P} where

tµ ∈ {0, 1}. In a probabilistic framework, we use the output of the network f(x;w) to represent the probability

David Barber: Bayesian Methods and Neural Networks 11

that the input is in class 1. In this case, the likelihood is

p(D|w) =

P∏

µ=1

f(xµ;w)t
µ

(1− f(xµ;w))
1−tµ

(31)

For example, we could take f(x) = g(wTx), where g(x) = 1/(1+exp(−x))(Bishop 1995). In the Bayesian approach,

we need to specify a prior belief about the weights. As before, a sensible choice is p(w) ∝ exp(−αwTw/2) since

smaller weights will give less certain predictions. This results in a posterior distribution p(w|D) ∝ p(D|w)p(w).

For a novel input x the probability that it belongs to class 1 is

p(t = 1|x, D) =

∫

p(t = 1|x,w)p(w|D)dw =

∫

g(wTx)p(w|D)dw (32)

Consider, for example, fitting the data in fig(5a). The posterior distribution is given in fig(5d). The decision

boundary (p(t = 1|x,w, D) = 0.5) for the MAP solution is given in fig(5b) along with the 0.1 and 0.9 decision

contours. Another decision boundary associated with the posterior weights wA is plotted in fig(5b). Because the

decision boundaries are linear, the predictions of these single networks away from the data remain overly confident.

The Bayesian prediction, equation (32), is plotted in fig(5c), and has decision boundaries which properly account

for the uncertainty in the predictions away from the training data.

Since the final integrand in equation (32) depends only on the weight vector through the ‘activation’ a = wTx,

we only need to know the distribution of this one dimensional quantity. A reasonable assumption is that the

activation will be Gaussian distributed p(a) = N(ā, var(a)), and the resulting one dimensional integration p(t =

1|x, D) =
∫
g(a)p(a)da can be efficiently performed using quadrature. The statistics of the activation are

ā = w̄Tx, var(a) = xTΣx (33)

where w̄ and Σ are the mean and covariance of the weight posterior p(w|D). It is convenient to approximate these

statistics using Laplace’s method.

Discussion

The Bayesian framework deals with uncertainty in a natural, consistent manner by combining prior beliefs about

which models are appropriate with how likely each model would be to have generated the data. This results in

an elegant, general framework for fitting models to data which, however, may be compromised by computational

difficulties in carrying out the ideal procedure. There are many approximate Bayesian implementations, using

methods such as sampling, perturbation techniques and variational methods. Often these enable the successful

approximate realisation of practical Bayesian schemes. An attractive, built-in effect of the Bayesian approach is an

automatic procedure for combining predictions from several different models, the combination strength of a model

David Barber: Bayesian Methods and Neural Networks 12

being given by the posterior likelihood of the model. In the case of models linear in their parameters, Bayesian

neural networks are closely related to Gaussian Processes, and many of the computational difficulties of dealing

with more general stochastic non-linear systems can be avoided.

Bayesian methods are readily extendable to other areas, in particular density estimation, and the benefits of

dealing with uncertainty are again to be found (see the article by Bishop in Jordan 1998). Traditionally, neural

networks are graphical representations of functions, in which the computations at each node are deterministic. In the

classification discussion, however, the final output represents a stochastic variable. We can consider such stochastic

variables elsewhere in the network, and the sigmoid belief network is an early example of a stochastic network (Neal

1992). There is a major conceptual difference between such models and conventional neural networks. Networks

in which nodes represent stochastic variables are called Graphical Models (see BAYESIAN NETWORKS) and

are graphical representations of distributions (GRAPHICAL MODELS, PROBABILISTIC INFERENCE). Such

models evolve naturally from the desire of incorporating uncertainty and non-linearity in networked systems.

David Barber: Bayesian Methods and Neural Networks 13

References

Barber, D. and Bishop, C. (1997). Ensemble Learning in Bayesian Neural Networks. In C. Bishop (Ed.), Neural

Networks and Machine Learning, NATO ASI Series. Springer.

* Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second ed.). Springer.

* Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

Box, G. and Tiao, G. (1973). Bayesian Inference in Statistical Analysis. Reading, MA: Addison–Wesley.

Cover, M. and Thomas, J. (1991). Elements of Information Theory. Wiley.

Jordan, M. (Ed.) (1998). Learning in Graphical Models. MIT.

MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation 4 (3), 415–447.

* MacKay, D. J. C. (1995). Probable Networks and plausisble predictions – a review of practical Bayesian methods

for supervised neural networks. Network: Computation in Neural Systems 6 (3).

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence 56, 71–113.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-

TR-93-1, Department of Computer Science, University of Toronto, Cananda.

* Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer. Lecture Notes in Statistics 118.

Tipping, M. E. (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning

Research (1), 211–244.

Walker, A. M. (1969). On the asymptotic behaviour of posterior distributions. Journal of the Royal Statistical

Society, B 31 (1), 80–88.

David Barber: Bayesian Methods and Neural Networks 14

Figure 1: Coin Tossing: (a) The prior: this indicates our belief that the coin is heavily biased. (b) The likelihood

after 13 Tails and 12 Heads are recorded, θML = 0.48. (c) The posterior: the data has moderated the strong prior

beliefs resulting in a posterior less certain that the coin is biased. θMAP = 0.25, θ̄ = 0.39

Figure 2: Along the horizontal axis we plot the input x and along the vertical axis the output t. (a) The raw

input-output training data. (b) Prediction using regularised training and fixed hyperparameters. (c) Prediction

with error bars, using ML-II optimised hyperparameters.

Figure 3: The raw input-output training data, with mean Bayesian MLP predictions (solid curve) and standard

error bars (dashed curves). Note how the error bars increase away from the data.

Figure 4: Metropolis Sampling from p(x) ∝ ψ(x). Let xold be a sample from the distribution p(x). We propose a

new candidate xnew by sampling from a Gaussian around xold with width τ . More likely candidates such as xa are

accepted. Less likely candidates such as xb are accepted with probability ψ(xb)/ψ(xold).

Figure 5: (a) The decision boundary and 0.1, 0.9 decision contours for the most likely predictor wMAP . (b) The

predictions for wA. (c) The posterior averaged predictors. (d) The weight posterior distribution.

David Barber: Bayesian Methods and Neural Networks 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c)

prob of head

David Barber: Bayesian Methods and Neural Networks 16

(b)

(a)

(c)

David Barber: Bayesian Methods and Neural Networks 17

David Barber: Bayesian Methods and Neural Networks 18

x
τ

a

bx

x
old

David Barber: Bayesian Methods and Neural Networks 19

x
o

o
o

o

o

o

o

o
o

x
x

x x

x

x

x

(a)

x
o

o
o

o

o

o

o

o
o

x
x

x x

x

x

x

(b)

o
x

x

x

x

xx

x
x

o
o

o

o

o

o

o
o

(c)

w

A

MAP

w

w

2

1

w
(d)

