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Abstract

The debate about the foundations of mathematical sciences traces back to Greek
antiquity, with Euclid and the foundations of geometry. Through the flux of
history, the debate has appeared in several shapes, places, and cultural contexts.
Remarkably, it is a locus where logic, philosophy, and mathematics meet. In
mathematical astronomy, Nicolaus Copernicus’s axiomatic approach toward a
heliocentric theory of the universe has prompted questions about foundations
among historians who have studied Copernican axioms in their terminological
and logical aspects but never examined them as a question of mathematical
practice. Copernicus provides seven unproved assumptions in the introduction
of the brief treatise entitled Nicolaus Copernicus’s draft on the models of celestial
motions established by himself, better known as Commentariolus (ca. 1515),
published circa 30 years before the final composition of his heliocentric theory
(On the revolutions of the heavenly spheres, 1543). The assumptions deal with the
renowned Copernican hypothesis of considering the Earth in motion and the Sun,
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not affected by motion, near the center of the universe. Although Copernicus
decides to omit the proofs for the sake of brevity, the deductions in the
Commentariolus are supposed to be drawn from the initial seven assumptions.
Questions on the nature (are they postulates or axioms?) and the logic (is there an
internal rigor?) of those assumptions have yet to be fully explored. By examining
Copernicus’s seven assumptions as a question of mathematical practice, it is
possible to hold historical, philosophical, and logical aspects of Copernican
axiomatics together and understand them as part of Copernicus’s intuition and
creativity.
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1 Introduction

The first written draft of the heliocentric theory by Nicolaus Copernicus dates back
to circa 1515 and is attested in an unpublished manuscript, which was known –
already among Copernicus’s peers and acknowledged then among later generations
of scholars and historians – as Commentariolus (brief commentary). The full title
sounds Draft on the hypothesis on celestial motions established by Nicolaus Coper-
nicus (Nicolai Copernici de hypothesibus motuum caelestium a se constitutis
commentariolus). This work was likely composed between 1510 and 1515. It
would later attract the attention of historians of astronomy, especially in the twentieth
century (Swerdlow 1973; Goddu 2010, 243–274, 291; Folkert et al. 2019, 7–111). In
history, among the scholars who had in their hands a copy of the Commentariolus,
some renowned astronomers and mathematicians are to be mentioned: Joachim
Rheticus, Duncan Liddel, and Tycho Brahe (Dobrzycki and Szczucki 1989; Omodeo
2016, 11; Folkert et al. 2019, 8–14). This aspect is particularly telling of the
relevance that the Commentariolus assumed in the sixteenth century, let alone for
the wide circulation and discussion of Copernican theory in Europe. Particularly
noteworthy is the so-called Aberdeen edition, because it contains the pages of
Commentariolus and De revolutionibus orbium coelestium (On the revolutions of
the heavenly spheres, Copernicus’s major work, see Copernicus 1978) in parallel,
according to apparent affinity between the topics. This shows that the generation
immediately following Copernicus considered the two works to be complementary
and not mutually exclusive, though they do not exactly match: in fact, Copernicus
refined, polished, and improved his theory between the composition of
Commentariolus and the publication of De revolutionibus in 1543 (Dobrzycki
1973; Folkert et al. 2019: 8–9).
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The Commentariolus has left historians puzzled on several issues. On the one
hand, the aspects regarding the details of the motion of the Earth and the mathemat-
ics implicit in the text as well as the question on the derivation of the heliocentric
hypothesis (i.e., whether Copernicus arrived at the models independently or was
possibly inspired by geometric models developed by Arabic astronomers) are still
debated to this day (Swerdlow 1973; Blåsjö 2014; Ragep 2016; Swerdlow 2017;
Blåsjö 2018). On the other hand, the seven propositions that introduce the heliocen-
tric hypothesis in the Commentariolus have been the object of much scholarly
discussion (Swerdlow 1973; Rosen 1976; Goddu 2010; Vesel 2014; Lerner and
Segonds 2015; Folkert et al. 2019, 24–28). On the latter issue, the basic questions are
as follows: What kind of propositions are they? Postulates, axioms, or something
else? How should they be conceived and what kind of meaning does Copernicus
attach to axioms? Do they have an internal rigor? Was Copernicus looking for logical
rigor?

Copernicus does indeed adopt an axiomatic approach to his mathematical–as-
tronomical theory, but the nature of his principles has confounded historians of
science and generated a debate which continues to this day. Questions about
Copernicus’s axioms have hitherto been confined to historians of science, and
studies of mathematical practice have never been employed to tackle such a problem.

This chapter examines Copernicus’s axiomatic approach as a question of math-
ematical practice. First, it illustrates the main features of pre-modern axiomatics,
evaluates the interpretations on Commentariolus’s principles advanced so far by
historians, and eventually offers a new interpretive framework in which historical,
philosophical, and logical details are comprehensively considered.

2 Axiomatics Before Axiomatics

One may ask: What does Copernicus have to do with axiomatics? Copernicus and
his time seem far too distant from us today to suggest that there is any link to
questions concerning “axiomatics” (in the modern sense of the term). In fact, the
kind of questions that recent literature on mathematical practice has been tackling
regarding axioms and their use is present already in the history of the reflections,
discussions, and debates on the foundations of mathematical sciences (Schlimm
2013). These debates have their roots in Greek antiquity. For instance, there are
traces of debates on foundational issues of mathematics in ancient and Hellenistic
times (Acerbi 2010; Acerbi 2013; De Risi 2016). For centuries, the most successful
reference work for Western mathematical sciences has been Euclid’s Elements, and
this work has also been taken as emblematic of axiomatic rigor. On the one hand, the
theorems taken from the Elements were employed to build mathematical theories; on
the other hand, the hypothetico-deductive structure of Elements was deemed the
prototype of reason and certainty. On these grounds, it soon became an important
object of study not only for mathematicians, but also for philosophers and logicians.
The Elements’ deductive system is based on principles, from which all subsequent
deductions are to be drawn. A set of principles opens Euclid’s Elements, Book One:
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definitions of the subject addressed, postulates, and axioms (common notions). The
distinction between postulates and axioms was a topic of debates and controversies
already in ancient times. However, the ancient conception of axiomatization was
very different from our own. For centuries, mathematicians, logicians, and philos-
ophers did not look upon the definition of axioms as logically necessary, but rather
saw them in light of the need to justify a “weak” science, which would not need to
justify its principles if it was already consistent and, roughly speaking, logically
coherent. This explains why the foundations of arithmetic had been (largely though
not entirely) neglected until the nineteenth century, while the foundations of geom-
etry were discussed since Antiquity, making Euclid’s Elements the canon for West-
ern mathematics (De Risi 2016).

Euclid’s prevalence notwithstanding, the questions raised about principles were
quite heterogeneous. Notably, influential scholars of the Greek tradition, such as
Archimedes, Aristarchus, Apollonius, and others, did not assume principles in the
same manner as Euclid did in the Elements and, in applied mathematics, such as
optics, Euclid himself did not employ the same axiomatics as in the Elements
(Capecchi 2018: 6–13). However, there was no homogeneity on the nature of
principles even at a more general level. Notably, Aristotle’s definition of postulates
does not coincide with the Euclidean use, and Proclus, reprising Geminus (first
century BCE), differs from other Greek philosophical schools (Bobzien 1996;
Acerbi 2010; Acerbi 2013; Bobzien 2019).

In sum, the history of axiomatics has never been monolithically Euclidean.
However, the focus on axiomatization of arithmetic in the nineteenth and twentieth
centuries, after the works of Dedekind, Klein, Hilbert, Peano, Frege, and so on and
the reflections on axiomatics by logicians like Carnap, Gödel, and Tarski and his
followers, has led historians, philosophers, and logicians to study traces of “axiom-
atics before axiomatics” in mathematical sciences (optics, astronomy, mechanics),
logic, and philosophy of antiquity till early modernity (Henkin et al. 1959; Hintikka
et al. 1981; Novaes 2020; Cantù and Luciano 2021). Some influential works are
worthy of note in this regard. Arpad Szabó was pioneering in his studies of the
interplay of philosophical and mathematical influences in the development of Greek
axiomatics and claimed that the Eleatic school influenced the rise of the deductive
method in early Greek mathematics (Szabó 1964). Contrary to Szabó, Wilbur
R. Knorr argued that the deductive procedures evident in fifth-century Greek
works are intrinsic to mathematics and that the influence of the Eleatic dialectic on
the development of axiomatics in arithmetic and geometry could only have occurred
later, in the environment of the fourth-century Academy, in which the interest in
mathematics merged with a renewal of the logical and philosophical views espoused
by the Eleatics (Knorr 1981). Later on, Patrick Suppes shed light on axiomatics in
Greek and Hellenistic science, pointing out their similarities with contemporary
philosophical and scientific endeavors:

the admiration many of us have for the rigor and relentlessness of the axiomatic method in
Greek geometry has given us a misleading view of the role of this method in the broader
framework of ancient Greek mathematical sciences. By stressing the limitations of the
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axiomatic method or, more explicitly, by stressing the limitations of the role played by the
axiomatic method in Greek mathematical science, I do not mean in any way to denigrate
what is conceptually one of the most important and far-reaching aspects of Greek mathe-
matical thinking. I do want to emphasize the point that the use of mathematics in the
mathematical sciences and in foundational sciences, like astronomy, compare rather closely
with the contemporary situation. (Suppes 1993, 25)

As the above claims suggest, the possibility of external influences (from philos-
ophy or logic) on an axiomatic method in mathematical sciences is a widely explored
topic, and questions on this issue are also raised by the use of axioms in
Commentariolus. Whereas this text has indeed pushed historians to search for
possible philosophical influences on Copernicus’s axiomatic approach, the possibil-
ity of this approach as intrinsic to Copernicus’s mathematical practice has yet to be
considered.

3 Questions About Copernicus’s Axioms

Philadelphia, PA, 1973. At a symposium marking the 500th anniversary of
Copernicus’s birth, the eminent historian of science Noel Swerdlow presents a
paper on the Commentariolus along with a translation into English and a commen-
tary thereon. He states that Copernicus incorrectly called the seven sentences in the
first section of the Commentariolus “axioms” and that those assumptions are illog-
ically structured – the question on axioms in the Commentariolus became a topic of
interest immediately following Swerdlow’s translation of the Latin text (Swerdlow
1973). I will therefore report Swerdlow’s translation since it is the one from which
the discussions on axioms proceeded.

Swerdlow’s critique refers to the first passages of Commentariolus, where Coper-
nicus claims that Claudius Ptolemy and his predecessors were not coherent with the
axiom of uniform circular motion, for they introduced geometrical devices which
ultimately contradicted that principle and made cosmology excessively complicated.
Ultimately, his predecessors failed to conceive of the universe as an integral whole
(Goddu 2009). In the following, the words of Copernicus, writing in first-person
singular, account for this state of the art:

Therefore, when I noticed these [difficulties], I often pondered whether perhaps a more
reasonable model composed of circles could be found from which every apparent irregular-
ity would follow while everything in itself moved uniformly, just as the principle of perfect
motion requires. After I had attacked this exceedingly difficult and nearly insoluble problem,
it at last occurred to me how it could be done with fewer and far more suitable devices than
had formerly been put forth if some postulates, called axioms, are granted to us, which
follow in this order:

First Postulate There is no one center of all the celestial spheres (orbium) or spheres
(sphaerarum).

Second Postulate The center of the earth is not the center of the universe, but only the
center towards which heavy things move and the center of the lunar sphere.
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Third Postulate All spheres surround the sun as though it were in the middle of all of
them, and therefore the center of the universe is near the sun.

Fourth Postulate The ratio of the distance between the sun and earth to the height of the
sphere of the fixed stars is so much smaller than the ratio of the semidiameter of the earth to
the distance of the sun that the distance between the sun and earth is imperceptible compared
to the great height of the sphere of the fixed stars.

Fifth Postulate Whatever motion appears in the sphere of the fixed stars belongs not to it
but to the earth. Thus the entire earth along with the nearby elements rotates with a daily
motion on its fixed poles while the sphere of the fixed stars remains immovable and the
outermost heaven.

Sixth Postulate Whatever motions appear to us to belong to the sun are not due to
[motion] of the sun but [to the motion] of the earth and our sphere with which we revolve
around the sun just as any other planet. And thus the earth is carried by more than one
motion.

Seventh Postulate The retrograde and direct motion that appears in the planets belongs
not to them but to the [motion] of the earth. Thus, the motion of the earth by itself accounts
for a considerable number of apparently irregular motions in the heavens. (Translation
Swerdlow 1973, 435–436)

In response to Swerdlow’s criticism, Edward Rosen attempted to do justice to
Copernicus’s axiomatics (Rosen 1976). The problem would also be taken up again
later (Goddu 2010; Vesel 2014; Lerner and Segonds 2015; Folkert et al. 2019;
Goddu 2019, 162–163; more on this below). In sum, the questions on Copernicus’s
axiomatic approach touch on two key areas: terminology and logic.

3.1 Terminology

Let us recall Copernicus’s words in Commentariolus:

[. . .] it at last occurred to me how it could be done with fewer and far more suitable devices
than had formerly been put forth if some postulates, called axioms, are granted to us, which
follow in this order. (Swerdlow 1973, 435, emphasis added)

The original Latin text reads petitiones quas axiomata vocant, where petitio
conveys a variety of meanings: requirement, statement, assumption, axiom, and
postulate.

According to Swerdlow (1973, 437):

The seven postulates, incorrectly called axioms since they are hardly self-evident, take the
place of the general description of the universe in the opening chapters of the Almagest, the
Epitome, and later, De revolutionibus. [. . .] There is no reason to doubt that he also believes
these postulates to be true.

Swerdlow was undoubtedly referring to a precisely connotated meaning of
axioms and postulates, where axiom is exclusively connected to self-evidence.
This distinction is not modern; it traces back to the debates on Euclid’s Elements,
more precisely to the Greek philosopher Geminus (first century BCE), as attested in
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Proclus’s Commentary on the First Book of Euclid’s Elements (Acerbi 2010).
According to Geminus-Proclus, the postulates of Euclid’s Elements can be divided
into two groups, reflecting their different nature: constructions are required in
postulates 1–3, while postulates 4–5 state properties of particular geometric objects.
As for the axioms (or common notions), they were generally conceived as assump-
tions conveying self-evident truths, hence requiring no proofs. Yet, not every author
of mathematics assumed principles in the same manner as Euclid did. As anticipated
above, Archimedes used axioms as true statements to describe the physical world,
for example, Archimedes’s On the Sphere and the Cylinder opens with axioms (Netz
2004, 34–36); Aristotle thought that “an axiom is a primary proposition which must
be possessed by whoever is to gain any knowledge”; “the axioms are the primary
propositions from which a proof proceeds” (Aristotle 2002, I, 2: 72a17; I,
10: 76b14–15); the Stoics considered axioms as kinds of assertibles but did not
employ the category of self-evidence in their logic, much to Proclus’s disappoint-
ment (Ierodiakonou 2006).

Edward Rosen, author of translations of several Copernican treatises,
Commentariolus included, accused Swerdlow of anachronism (Rosen 1976): Coper-
nicus was not taking part in any Hilbertian program. Rosen’s reply was beneficial to
future generations of Copernicus scholars. André Goddu (Goddu 2010) undertook
detailed research on the making of Copernican cosmology and his possible sources,
detected his logical and philosophical backgrounds, and surmised a plausible
method of reasoning in a Socratic-dialectic process, used by Copernicus in setting
out his axioms. Goddu claimed that axioms are to be intended in the sense of
common notions, assumptions to be taken for granted, where no self-evidence is
needed:

Copernicus began Commentariolus controversially with “petitiones” that he also called
“axioms.” If we set aside the personal attacks by some commentators, the experts agree,
even if inadvertently, that he did not mean the word “axiom” in the sense of self-evident
principles but rather in the sense of assumptions or common notions. As Copernicus himself
made abundantly clear, the rest follows only if the seven postulates or assumptions are
granted him. It is evident that he arrived at these seven propositions by working his way back
to them as the ones necessary and sufficient from which to derive the remaining propositions.
(Goddu 2010, 243)

Matjaž Vesel proposed a different interpretation. The axioms are set out and
Copernicus draws his conclusions directly from them, and his source should be
Proclus’s commentary on Timaeus:

I believe Copernicus’ manner of exposition and the nature of petitiones quas axiomata
vocant find their explanation in Proclus’ Commentary on Plato’s Timaeus II, 3 [. . .]. Proclus
explains that Plato is not an empiricist: Plato will not start with experiences and then draw
conclusions from them. Plato’s methodos is hypothetical, or, rather, Plato uses the method of
the hypothesis. He sets out fundamental axiômata and hypotheseis and draws conclusions
from them. Proclus presents first a list of five axiomata, and then follows another list of seven
axiômata. Describing Plato’s “hypothetical method” Proclus does not refer to Plato’s own
description of hypothetical method but explicitly refers to the methodos used by geometers.
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They first postulate, define and name their key principles before proceeding to their
demonstrations based on them. And he cites an example from Euclid. On the basis of the
fundamental principles or hypotheses Plato’s Timaeus then proceeds, in Proclus’ reading of
the text, to a number of “demonstrations” (apodeixeis) based on them and required in order
to solve the problems [. . .]. Copernicus’ method in the Commentariolus is highly reminis-
cent of Proclus: he first establishes seven petitiones quas axiomata vocant and then promises
to provide mathematical demonstrationes in a larger book. (Vesel 2014, 269–270)

Michel-Pierre Lerner and Alain Segonds agree in part with Swerdlow on the first
objection, for they claim that Copernicus’s axioms are not self-evident (Lerner and
Segonds 2015, 233). To some extent, they agree with Goddu when he writes that
“the postulates are not axiomatic in the Euclidean sense, there is not a logically
deductive relationship between the postulates, and the results described later in the
text derive from the postulate of a moving Earth” (Goddu 2019, 163).

All things considered, two things are noteworthy here. First, there is no occur-
rence of the equivalence petitio as a synonym of axioma in the Euclidean tradition
(De Risi 2016). It is likely that Copernicus knew that axioms were known and
evident to everybody, which could explain why he names his principles such.
Second, the word axioma in Latin was extremely rare around 1515, when Coperni-
cus composed the Commentariolus. Indeed, the only occurrence is in Giorgio Valla’s
De expetendis et fugiendis rebus (Valla 1501: Book 10, ch. 110), an encyclopedic
work of sciences and arts. Valla was a humanist who was keen on transliterating
Greek words into the Latin alphabet (De Risi 2016, 643; Goddu 2010, 229–236). In
the passage in question, Valla is rephrasing the distinction between postulates and
axioms, drawing from Proclus:

But a postulate prescribes that we construct or provide some simple or easily grasped object
for the exhibition of a character, while an axiom asserts some inherent attribute that is known
at once to one’s auditor. (Proclus 1970, 142)

It is likely that Copernicus read this work by Valla and thus wished to commu-
nicate to his readers that some humanists call the mathematical principles “axioms”
and that it is not a case of distinguishing the Euclidean meaning of postulates and
axioms because he is using axioms as a generic term for a principle to be taken for
granted. In addition, as a trainee of mathematics and logic in Italy and Poland,
Copernicus was certainly aware of the Euclidean meaning.

All this confirms that Swerdlow’s interpretation has aprioristically assumed that
axioms must be intrinsically connotated with self-evidence. As mentioned, Coper-
nicus does not adhere to any Hilbertian project, nor is he dealing with geometry in
the fashion of Peano’s program on the foundations of geometry (Rosen 1976).
Therefore, there is good reason to leave aside the option of “self-evidence” and
instead look for an interpretation in the literature that Copernicus had at his disposal.

What has gone unnoticed so far is that Copernicus could refer to the Greek
tradition of mathematical sciences, which was keen on using the axiomatic approach.
For instance, several Greek works of mathematical sciences often adopted seven
unproved assumptions to open treatises, such as Euclid’s Optics (Burton 1945) and
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Archimedes’s On the Equilibrium of Planes (Heath 2002, 189–190). It is likely that
Copernicus arranged his treatises on seven principles in order to refer to that
tradition, which could well have served as a model for him. Archimedes’s On the
Equilibrium of Planes was circulating in Italy thanks to the Latin translation of
William of Moerbecke and that work opens with the word petimus (the verb linked to
petitio, meaning “we require,” “we state some principles”), which is followed by
exactly seven principles (Clagett 1976, 116). Moreover, Elementa Jordani (Elements
of mechanics by Jordan of Nemore) provides seven initial unproved assumptions
(Clagett and Moody 1952, 154–155). Further research will clarify whether Coper-
nicus could have had access to these sources, but it is likely that he could have
assimilated, if not read, this literature in excerpts or classes at the universities he
attended in Poland and Italy.

3.2 Logic

The second point of criticism aimed at Copernicus’s axiomatic approach deals with
the internal logic of his assumptions. According to Swerdlow:

He [i.e. Copernicus] has, however, made more assumptions than were necessary. Since his
adoption of heliocentric theory followed from his study of possible rearrangements of
planetary models, only postulates 3 and 6 are temporally prior to his planetary theory. In
fact only postulates 3 and 6 are logically prior while postulates 2, 4, 5, and 7 are conse-
quences of 3 and 6, and postulate 1 stands by itself. Thus, if 3 and 6 are true, then 2, 4, 5, and
7 can be proved. Postulates 3 and 6 cannot be proved, and the evidence for their truth is the
sense of the heliocentric theory itself, that is, the fixing of the order and distances of the
planets, and the explanation of the second anomaly, gratuitously given here as the seventh
postulate. It is also worth noting that the postulates, with the exception of the first, have no
connection with the objections to Ptolemy’s representation of the first anomaly stated earlier
nor with Copernicus’s own model for the first anomaly, but are concerned only with the
heliocentric theory. Since Copernicus has raised no objection to Ptolemy’s representation of
the second anomaly, the introduction of these postulates at this point appears unmotivated.
Perhaps this flaw and the logical error of stating postulates 2, 4, 5, and 7 as postulates rather
than deductions from postulates 3 and 6 are intelligible if one considers that the
Commentariolus may well have been written in haste with no revision. (Swerdlow
1973, 437)

It is true that some axioms can be derived from others, but the whole problem
cannot be comprehended if one does not advance another question, which in the
logic of historical inquiry precedes Swerdlow’s question: Is Copernicus seeking
internal rigor in his assumptions? And what kind of rigor is required in the sixteenth
century for a brief text of mathematical astronomy? Is he striving to give a list with as
few assumptions as possible?

There is indeed a logic in Copernicus’s axioms, although they are – strictly
logically speaking – redundant, and this logic was brilliantly exposed by Edward
Rosen (1976). The passage is reported here in full, and axioms are mentioned by
numbers between parentheses.
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(1) undermines Eudoxus’ principle of homocentricity by denying that everything in the
universe is centered on the earth: “There is no one center.” Consequently there are multiple
centers, of which the earth is one. (2) puts the earth at the center, not of the universe, but of
the moon’s motions. Another center is the sun, placed by (3) near the center of the universe.
The distance between these two centers, earth and sun, is said by (4) to be imperceptible in
comparison with their distance from the stars. (5) The stars do not move, their apparent daily
motion being due to the earth’s axial rotation. (6) The sun does not move, its apparent motion
being due to the earth’s orbital revolution. (7) The apparent retrogression of the planets is
likewise only an appearance due to the motion of the terrestrial observer. By common
consent, (7) is Copernicus’ single most valuable contribution to technical astronomy.
(Rosen 1976, 47)

Later, the examination of Copernicus’s logical background will allow André
Goddu to convincingly describe the Copernican heliocentrism as an attempt toward
envisioning the universe as an integral whole, thus in need of a “unique,
non-arbitrary, and commensurable structure benefitting the exquisite craftsmanship
of its architect” (Goddu 2009, 332). Copernicus was indeed trained inmereology, the
branch of medieval logic which deals with the relations between the whole and the
parts (Goddu 2009).

Moreover, as anticipated above, the need for axioms in Copernicus’s times was
not seen as a logical necessity; indeed, it could even be seen to signal a lack of rigor,
since a science should be justified without principles. The main axiom of astronomy
was that celestial bodies move along uniform and circular motions, and Copernicus
did not need to mention it in his list. In sum, Copernicus and his contemporaries
would not deem the “redundancy” of axioms to be a mistake or a problem in the
context of Commentariolus and the literature to which it refers (Ptolemy and ancient
astronomers).

By considering all terminological and logical concerns in relation to Copernicus’s
assumptions, it is evident that Swerdlow (1973) was moving his objections from
applying a part of the developments of modern axiomatics to a sixteenth-century
context. It is therefore expedient to explore what contemporary studies on axiomatics
might have to say about Copernicus’s mathematical practice. Moreover, it is worth
examining whether one should look for an external source or to study the axioms in
Commentariolus as an integral part of Copernicus’s creativity, a key feature in his
development of the mathematical theory for heliocentrism.

4 Copernicus’s Axiomatic Approach

Historians have focused on the terminology and the logic that the seven assumptions
bring to the fore, but nobody has yet stressed that there is another axiom, which
precedes the seven axioms and which was the common assumption for all scholars
dealing with astronomy since antiquity. The additional axiom runs as follows: all
celestial bodies move according to uniform and circular motions (Taub 1993; Feke
2018). In this instance, reflections on axiomatics in mathematical practice provide
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new tools to build an interpretive framework which unifies the shared fundamental
axiom along with the seven axioms and their historical and philosophical aspects.

Dirk Schlimm (2013) has analyzed the use of axioms in contemporary mathe-
matical practice and argued that “axioms can play many roles in mathematics and
that viewing them as self-evident truths does not do justice to the ways in which
mathematicians employ axioms” (Schlimm 2013, 73). As the ancient world was not
monolithically Euclidean in assuming principles in mathematical sciences, so the
contemporary mathematical, philosophical, and logical disciplines are similarly not
attached to the notion of self-evidence and perfect rigor when it comes to issues of
axiomatics. As for questions of redundancy and internal logic among axioms,
Schlimm’s study offers a significant remark: “Popular criteria for axioms, e.g., that
they should be as few, simple, and self-evident as possible, are highly idealized
desiderata and by no means necessary conditions for systems of axioms” (Schlimm
2013, 39).

Most importantly, before the time of Hilbertian and formalistic interpretations of
Copernicus’s axioms, professional mathematicians were also raised on the axiomatic
approach. Notably, the renowned collective of mathematicians under the name of
Nicolas Bourbaki stated that the essential aim of the axiomatic method “is exactly
that which logical formalism by itself can not supply, namely the profound intelli-
gibility of mathematics” (Bourbaki 1950, 223). The same Bourbaki argued that
formalization is “but one aspect of this [axiomatic] method, indeed the least inter-
esting one” (Bourbaki 1950, 223).

All this speaks in favor of considering Copernicus’s method as axiomatic even
from a contemporary perspective. On this account, nothing should prevent historians
from regarding Copernicus’s petitiones as proper axioms.

As noted previously, historians of astronomy have inquired into Copernicus’s
possible sources in his use of axioms. By dealing with this puzzle in mathematical
practice, another question arises: Does Copernicus need a source for establishing
axioms? On the one hand, the historian can answer that Copernicus is likely seeking
to contribute to the Greek tradition of mathematical sciences, with which he could
have come into contact via Latin translations of Archimedean works, in which
axioms are used in a somewhat generic sense and as true statements about the
universe and nature. Thus, Copernicus is striving to give a list of seven assumptions
to engage with that tradition, conforming to a model. On the other hand, Copernicus
knows his mathematics: his intuition might well form part of his practice, that is,
from the experience he assimilated with ancient astronomical mathematics and the
observations he conducted. Copernicus’s axiomatic approach might be the outcome
of his mathematical practice, not necessarily the derivation from philosophical
notions or other scientific sources he could have encountered during his career.
This hypothesis is further supported by an idea that several professional mathema-
ticians have shared on the intelligibility of mathematics and its intrinsic creativity.
For instance, André Weil has claimed that:

The views of Greek philosophers about the infinite may be of great interest as such; but are
we really to believe that they had great influence on the work of Greek mathematicians?
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Some universities have established chairs for “the history and philosophy of mathematics”: it
is hard for me to imagine what those two subjects can have in common. (Weil 1980, 230)

5 An Interpretive Framework

It is clear that Copernicus employs a non-Euclidean approach in axiomatics, driven
by the needs of reforming Ptolemy and his predecessors toward a new vision of the
universe as an integral whole. Interestingly, Copernicus would refine his heliocentric
theory after completing Commentariolus, outlining his definitive theory only in 1543
(in De revolutionibus orbium coelestium – On the revolutions of the heavenly
spheres). The latter work does not list the seven axioms but presents their content
along with theorems and proofs. On this account, it is likely that the seven axioms
fed Copernicus’s creativity and were engines for new discoveries during the com-
position of the final heliocentric theory. Further research will surely shed light on this
issue.

The details of Copernicus’s axiomatic approach could be described by adopting
the guidelines set out by Dirk Schlimm in his study on the use of axioms in
contemporary mathematical practices (Schlimm 2013). Such an attempt toward a
new interpretation is also needed to counteract a Copernican literature which has
been almost Euclidean or has tended to see Copernican axioms in a single dimen-
sion, that is, as dependent on an external source, and not in terms of their intrinsic
mathematical and practical dimension – here one could well recall Bourbaki’s and
Weil’s words on mathematical intuition and creativity. According to Schlimm, there
are four main points in a comprehensive study on the use of axioms (Schlimm 2013,
39–40; points quoted in the following).

(a) “Axiomatics is an epistemic and methodological tool that can be employed
in various ways. In other words, there is no single role that axioms play in
mathematical practice; rather, the same set of axioms can be employed in
different roles.”

This is in accordance with the non-monolithically Euclidean axiomatics since
Greek Antiquity, which is useful to recall in order to understand why Copernicus
considered “postulate” as being equivalent to “axiom.”

(b) “Popular criteria for axioms, e.g., that they should be as few, simple, and self-
evident as possible, are highly idealized desiderata and by no means necessary
conditions for systems of axioms.”

This point has been extensively developed in treating the logic of Copernican
axioms.

12 A. Bardi



(c) “The practical usefulness of axioms goes well beyond the context of justification
and the aim of clarifying and providing foundations for mathematical theories;
they are also engines for discovery in mathematics.”

This point can be seen in the fact that Copernicus continued to develop his theory
after redacting Commentariolus. It took him around 30 years to publish his final
heliocentric theory.

(d) “The dimensions of presentation, role, and function allow us to characterize
different uses of axioms and to compare them along these three axes, with the
purpose of clarifying discussions of axiomatics in mathematical practice.”

Schlimm provides this framework for one interpretation among many, but this is
in keeping with the historical case presented above. While it is evident how points a,
b, and c have been already touched on in Copernicus’s case, point d needs to be
further articulated. It is necessary to recall that the Copernican axioms are seven plus
the common fundamental axiom of ancient astronomy. On this account, the function
of the axioms is to set the foundations for the geometry describing a heliocentric
universe and to develop it further; the Copernican axioms present the main points of
a new theory, marking a strong break from the astronomers of the past. The axiom of
uniform and circular motion and the seven others have different roles. To describe
this feature, it is worth introducing the distinction between structural and founda-
tional axioms as suggested by Solomon Feferman (Feferman 1999) and adapt it to a
context of sixteenth-century mathematical astronomy and logic. As for the structural
axioms, Feferman claims:

When the working mathematician speaks of axioms, he or she usually means those for some
particular part of mathematics such as groups, rings, vector spaces, topological spaces,
Hilbert spaces, etc. These axioms have nothing to do with self-evident propositions, nor
are they arbitrary starting points. They are simply definitions of kinds of structures that have
been recognized to recur in various mathematical situations. (Feferman 1999, 100)

This is an apt definition for the seven Copernican assumptions, for in
Copernicus’s case there are seven not self-evident propositions to define a heliocen-
tric structure of the universe, and he conceives them as non-arbitrary assumptions
about physical hypotheses to envision the universe as an integral whole (Goddu
2009). As such, it makes sense to define them as structural in their context.

Concerning foundational axioms, Feferman states that:

in contrast to the working mathematician’s structural axioms, when the logician speaks of
axioms, he or she means, first of all, laws of valid reasoning that are supposed to apply to all
parts of mathematics, and, secondly, axioms for such fundamental concepts as number, set,
and function that underlie all mathematical concepts; I call the latter foundational axioms.
(Feferman 1999, 100)
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Commentariolus contains the fundamental axiom of ancient astronomy, which
underlies all the other assumptions, namely, all motions of celestial bodies must be
uniform and circular. This could well serve as a foundational axiom in Copernicus’s
composition, and it is also coherent with his vision of a whole and integral universe
(Goddu 2009). On these grounds, adapting Feferman’s distinction to
Commentariolus would build a comprehensive interpretive framework for
Copernicus’s axiomatic approach.

A Schlimm-Feferman framework integrates aspects of mathematical practice with
the historical questions noted above on terminology and logic. In such a framework,
the foundational axiom of uniform and circular motion can be deemed the one which
triggers Copernicus’s creativity. As Copernicus would continue to further elaborate
his theory leading up to the publication of his major work, circa 30 years later, the
seven axioms can be considered engines of discovery and aids to mathematical
creativity.

6 Conclusion

Copernicus’s axiomatic approach toward a heliocentric theory of the universe, as
exposed in his Commentariolus, has triggered a range of questions among historians,
who have studied his axioms in their terminological and logical aspects. Termino-
logically, given the rarity of the term axioma in Latin literature before the first half of
the fifteenth century, Copernicus likely encountered the term in some Latin humanist
work (probably Giorgio Valla’s De expetendis) and thus became aware that some-
body was referring to petitiones as axiomata. As a result, he added the term axioma
with the intention of conveying that some humanist authors may call mathematical
principles axiomata. Humanism was indeed the cultural climate in which Copernicus
was living during the years of his Italian apprenticeship. He did not need to enter the
post-Euclidean debate on the difference between postulate and axiom because he
was not writing a treatise on geometry but a draft on astronomy, that is, mathematics
applied to a branch of natural philosophy: he considered his models as physically
real, not instrumental.

It is notable that there was no controversy concerning Copernicus’s axioms prior
to 1973. What Swerdlow provided was a kind of formalistic criticism that morphed
into a debunking of Copernicus’s logic, which proved to be anachronistic: such
criticism was based on a strict interpretation of axiomatics applied to history, which,
in turn, does not reflect the current scenario of axiomatics in logic and mathematics.
For instance, the rigor and logic for which Swerdlow was advocating with regard to
axioms did not correspond to what professional mathematicians such as Nicolas
Bourbaki and André Weil were thinking on axiomatics and the potential of the
axiomatic method in the second half of the twentieth century.

Moreover, this case study has shed light on the similarities between axiomatics in
early modern and contemporary times, a sort of bridge with the axiomatics of the
present and the past, a task which was already undertaken some time ago by Patrick
Suppes. Indeed, Suppes claimed that:
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There was certainly a sense of methodology deeply embedded in Euclid, Archimedes, and
Ptolemy, but it was not a sense of methodology that was completely explicit or totally
worked out, just as Aristotle’s own general principles are never exemplified in any detailed
and complicated scientific examples of an extended sort. The gap between philosophical
analysis, canons of axiomatic method, and actual working practice was about the same order
of magnitude that it is today. What is surprising, I think, from a philosophical standpoint is
that the gap seems, if anything, to have widened rather than narrowed over the past
2000 years. (Suppes 1993, 40)

The gap between historical–philosophical, logical, and mathematical (practical)
plans is what is evident in the history of the scholarship on Copernicus’s
Commentariolus. Studies on mathematical practice have proven beneficial to better
comprehend the Copernican axiomatic approach and provide some order to such
plans. In sum, to speak about Copernicus’s assumptions as axioms and to consider
the assumptions (petitiones) as synonymous with axioms (axiomata) is to give a
correct translation of the Copernican text even from a contemporary and not mono-
dimensional (self-evident) perspective on axiomatics, thereby avoiding the pitfalls of
anachronism.

Unlike past considerations of Copernican axioms, this study has pointed out that
the seven unproved assumptions set out by Copernicus are linked to the axiom of
uniform circular motion. To better comprehend this feature in Commentariolus, an
interpretive framework based on Schlimm and Feferman sheds new light on the
different features of Copernican axioms and enables an understanding of them
through the lens of pluralism. The utility of the Schlimm-Feferman framework is
at least twofold: first, it holds together the plurality of the uses of axioms
(by considering the use of the term in the literature before Copernicus) and the
difference in the kinds of axioms (foundational and structural); second, it points to
the potentiality of Copernicus’s axioms as tools for mathematical creativity and
engines of discovery in light of Copernicus’s final elaboration of the heliocentric
theory.

Ultimately, Copernicus’s mathematical practice adds another nuance to the pos-
sibility of considering the importance and applicability of mathematics and its
history: as Wittgenstein famously observed, “mathematics is a colorful conglomerate
of techniques of proof.” [Full original quotation: “Ich möchte sagen: Die
Mathematik ist ein BUNTES Gemisch von Beweistechniken.-Und darauf beruht
ihre mannigfache Anwendbarkeit und ihre Wichtigkeit.”] (Wittgenstein 1956, p. 84,
author’s translation). Indeed, the Copernican axioms set out in Commentariolus
would form the basis on which to draw proofs at a later stage, in De revolutionibus
(1543), but the history of mathematical creativity toward heliocentrism – between
the compositional stages of Commentariolus and De revolutionibus – remains to be
written. At any rate, if the Commentariolus per se does not explicitly contain
techniques of proof, historians dealing with the Copernican axioms have certainly
given birth to a colorful conglomerate of interpretations. Taking a closer look at
axiomatics, drawing on the work of mathematicians, logicians, and philosophers of
mathematical practice, has offered a new interpretation and has hopefully brought
some order and clarity to such a historical conglomerate.
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7 Cross-References

▶Euclidean and Non-Euclidean Geometry in the History and Philosophy of Math-
ematics Practice

▶Historiography of Mathematics from the Mathematician’s Point of View
▶ Implicitly Defining Mathematical Terms: A Path Toward Pluralism
▶ Introduction to the Origins of the History and Philosophy of Mathematical
Practice

▶Logic in the History and Philosophy of Mathematical Practice
▶Non-deductive justification in mathematics
▶One Mathematic(S) or Many? Foundations of Mathematics in 20th Century
Mathematical Practice

▶The Values of Mathematical Proofs
▶What Mathematicians Do: Mathematics as Process and Creative Rationality
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