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Abstract

It is standard in set theory to assume that Cantor’s Theorem
establishes that the continuum is an uncountable set. A challenge
for this position comes from the observation that through forcing
one can collapse any cardinal to the countable and that the con-
tinuum can be made arbitrarily large. In this paper, we present a
different take on the relationship between Cantor’s Theorem and
extensions of universes, arguing that they can be seen as show-
ing that every set is countable and that the continuum is a proper
class. We examine several principles based on maximality con-
siderations in this framework, and show how some (namely Or-
dinal Inner Model Hypotheses) enable us to incorporate standard
set theories (including ZFC with large cardinals added). We con-
clude that the systems considered raise questions concerning the
foundational purposes of set theory.
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Introduction

The notion of maximality has been mobilised in favour of several ax-
iom systems extending ZFC. However it has been little considered
whether the notion of maximality might contradict ZFC.1

In this paper we provide exposition of some systems of set theory
based on an interpretation of maximality on which every set is count-
able and the continuum is a proper class. We identify some pleasing
features of the view and argue that it does not prevent set theory from
fulfilling its foundational roles. This presents a challenge for those
who think that ZFC-based set theory is true and that maximality con-
siderations should figure into the justification of set-theoretic axioms,
since there appear to be legitimate perspectives on maximality in set
theory which violate the ZFC axioms.

Here’s the plan: After these introductory comments, in §1 we pro-
vide some philosophical and historical remarks outlining why it might
not be such a heresy to hold the countabilist position that every set is
countable, and describe some challenges for the view concerning how
set theory is meant to provide a foundation. In §2 we set up some
preliminaries regarding removing the Powerset Axiom, before (§3) ex-
amining the possibility of simply brute-forcing large cardinal strength.
§4–§7 examine more natural maximality principles, culminating in a
theory with substantial large cardinal strength up to the level of 0].
§4 considers a formal system Forcing Saturated Set Theory (or FSST)
which uses inspiration from maximality in the context of forcing ax-
ioms to develop an axiom which implies that every set is countable
and the continuum is a proper class. We then show that the axiom is
comparatively weak—it is consistent relative to ZFC - Powerset and
consistent with V = L. Next (§5) we consider a principle of absoluteness
we call the Axiom of Set-Generic Absoluteness. This axiom implies that
V 6= L but nonetheless is still consistent relative to ZFC - Powerset. §6
builds on this idea by developing extreme versions of the Inner Model
Hypothesis—however we show that they go too far and conflict with
reasonably weak theories (Theorem 25). In §7 we consider weakenings
of these assumptions—Ordinal Inner Model Hypotheses—and show that
one such (i) implies that every set is countable and the continuum is a

1One exception is [Holmes, 2017] who considers a set theory on which every set
is countable that he calls Pocket Set Theory:

We do remark that it is not necessarily the case that the hypothetical
advocate of pocket set theory thinks that the universe is small; he or
she might instead think that the continuum is very large... [Holmes,
2017]
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proper class, (ii) is consistent relative to ZFC + PD (Theorem 28), and
(iii) implies that “0] exists” (Theorem 31) and hence implies the exis-
tence of inner models satisfying ZFC with large cardinals. From this
we argue for our main claim:

Main Claim. There are well-motivated perspectives on maximality in
set theory on which every set is countable and set theory is able to do
its usual foundational duties.

This presents a challenge for those who wish to say that ZFC is
true—there seem to be perfectly good interpretations of set-theoretic
discourse on which the Powerset Axiom is false. Whilst we do not re-
pudiate ZFC-based set theory, the current paper presents a challenge
as to what we require from a satisfactory set-theoretic axiomatisation.
Should it merely be a theory for interpreting mathematics? Or is it
necessary for it to provide a hierarchy of actual uncountable transfi-
nite infinities?

1 Desiderata on a set-theoretic foundation

In this article, we will consider set theories that imply the following
position:

Countabilism. Every set is countable.

We’ll refer to the position that there are uncountable sets as un-
countabilism, and the proponents of the two positions as the count-
abilist and uncountabilist respectively. Given the contemporary per-
spective, one might regard countabilism as anathema to the practice
of set theory. After all, isn’t a lot of set-theoretic discourse directed at
the study of uncountable sets? It is one objective of this article to argue
that this might not be the case. To begin, we provide some philosophi-
cal motivation to convince the reader that countabilism is a perspective
worth studying, and that’s what we’ll do in this section.

We start with a puzzle that we’ll call the Cohen-Scott Paradox. It
depends on three observations:

Observation A. (Cantor’s Theorem) The Powerset Axiom implies that
there are uncountable sets.2

2Obviously one needs to work over some suitably strong base theory to prove
this result. In this article, we won’t work with anything weaker than the family of
theories obtained from removing Powerset from ZFC (see §2 for some discussion of
these theories).
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Observation B. Given any model of set theoryM , and anyM -cardinal
κ, there is forcing partial orderCol(ω, κ) which forces κ to be countable
in the extension.

Observation C. Given any model of set theoryM and anyM -cardinal
κ, there is a forcing Add(PM(ω, κ+)) that pushes the value of the con-
tinuum above κ in the extension.3

If we think of forcing as a way of adding subsets, and we think that
the universe contains all possible subsets, we can generate a paradox
as follows:

The Cohen-Scott Paradox. We think that there are uncountable sets
(in particular the set of all real numbers) by Cantor’s Theorem. But
by Observation B, we (in some sense) ‘could’ collapse any set x to the
countable by adding a surjection f : ω → x, and in particular (by Ob-
servation C) we ‘could’ make the reals bigger than x. On the assump-
tion that the universe should contain all possible sets, we have a puz-
zle. On the one hand we think that the V should contain uncountable
sets, but on the other hand if the universe does contain uncountable
sets it appears to be missing all sorts of collapsing generics for partial
orders, and in particular the reals seem smaller than they might have
been.

Of course the standard response to the Cohen-Scott Paradox is that
it shows that various kinds of models are unintended in some sense—

3This is what perhaps influenced Cohen, in the Conclusion to his seminal [Cohen,
1966] (in which he presents forcing), to write:

“A point of view which the author feels may eventually come to be ac-
cepted is that CH [the continuum hypothesis] is obviously false. The
main reason one accepts the Axiom of Infinity is probably that we feel
it absurd to think that the process of adding only one set at a time can
exhaust the entire universe. Similarly with the higher axioms of infinity.
Now ℵ1 is the set of countable ordinals and this is merely a special and
the simplest way of generating a higher cardinal. The set C [the con-
tinuum] is, in contrast, generated by a totally new and more powerful
principle, namely the Power Set Axiom. It is unreasonable to expect that
any description of a larger cardinal which attempts to build up that car-
dinal from ideas deriving from the Replacement Axiom can ever reachC.
Thus C is greater than ℵn, ℵω , ℵα where α = ℵω etc. This point of view
regards C as an incredibly rich set given to us by one bold new axiom,
which can never be approached by any piecemeal process of construc-
tion. Perhaps later generations will see the problem more clearly and
express themselves more eloquently.” ([Cohen, 1966], p. 151, underline
original)
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for example they may be Boolean-valued or countable—and the sense
in which the reals ‘might’ have been larger than a particular cardi-
nal is only with respect to some unintended interpretation. In many
cases the kinds of models considered in forcing are somehow differ-
ent from the uncountabilist’s universe, e.g. the usual Boolean-valued
models are not even two-valued and countable models miss out a
whole bunch of sets.4 The uncountabilist thus rejects our interpreta-
tion of Observations B and C as showing that there ‘could’ have been
more sets than there actually are if ZFC is true—this modal claim only
makes sense if our possible set-theoretic worlds include unintended
models.

Note, however, that this is just one of the available responses. A
different approach would be to say that it is the interpretation of Can-
tor’s Theorem that is at fault. An (unattractive) possibility is to say
that Cantor’s Theorem is false. This looks problematic; Cantor’s ar-
gument for the uncountability of the reals depends only upon being
able to talk about enumerations of real numbers and then given any
one such enumeration, use the standard diagonal reasoning to gener-
ate a real not on the list. Insofar as it shows that there are no bijections
between the natural numbers and the reals, Cantor’s reasoning seems
impeccable.

A different and more plausible option is to deny the Powerset Ax-
iom and hold that every set is countable and the continuum is a proper
class. Whilst the position is controversial, it is not without prece-
dent. Similar ideas have been considered by [Hallett, 1984]5 [Holmes
et al., 2012], [Meadows, 2015], [Friedman, 2016], [Pruss, 2019], and
[Scambler, 2021].6 However, Scott (in a forward to Bell’s textbook
on Boolean-valued models7) presents the earliest consideration of this
suggestion that we are aware of:

I see that there are any number of contradictory set theories,
all extending the Zermelo-Fraenkel axioms: but the mod-
els are all just models of the first-order axioms, and first-
order logic is weak. I still feel that it ought to be possible

4See [Koellner, 2013] and [Barton, 2020] for some discussion of this issue.
5In particular, he remarks the following after appreciatively quoting Cohen and

Scott:

Thus, the continuum evades all our attempts to characterize it by size
(Cohen), so maybe we should start with this transcendence as a datum
(Scott). ([Hallett, 1984], p. 208)

6[Friedman, 2016] (pp. 529–530) and [Scambler, 2021] (throughout) in particular,
strongly emphasise the modal point concerning forcing.

7See [Bell, 2011] for the third edition.
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to have strong axioms, which would generate these types
of models as submodels of the universe, but where the uni-
verse can be thought of as something absolute. Perhaps we
would be pushed in the end to say that all sets are count-
able (and that the continuum is not even a set) when at last
all cardinals are absolutely destroyed. But really pleasant
axioms have not been produced by me or anyone else, and
the suggestion remains speculation. A new idea (or point
of view) is needed, and in the meantime all we can do is to
study the great variety of models. ([Scott, 1977], p. xv)

Scott’s request for ‘pleasant axioms’ on the countabilist perspective
is pertinent. Many countabilist perspectives offered thus far are essen-
tially multiversist or potentialist in spirit, obtaining a modal form of
countabilism in which any set (at some world) could be countable in a
larger world. For example, [Scambler, 2021] shows how a modalised
version of set theory interprets ZFC−Powerset +“Every set is count-
able” under a modal translation, and [Meadows, 2015] directly im-
ports some of his framework from the multiversist [Steel, 2014]. In
this paper we want to consider what the universe might look like non-
modally and in which these potentialist and multiversist accounts ap-
pear as substructures within the universe.

Whilst it is most likely a matter of taste what counts as ‘pleasant’
(as Scott requests) there are several foundational jobs that set theory
has been seen to do, as recently made precise by Penelope Maddy (in
[Maddy, 2017] and [Maddy, 2019]). One important one is:

Generous Arena. Find representatives for our usual mathematical struc-
tures (e.g. N, R) in our theory of sets.

This is often what is meant when it is said that set theory is ‘foundational’—
all mathematical objects can be regarded as encoded within set theory
if one wishes. Closely linked is the idea of:

Shared Standard. Provide a standard of correctness for proof in math-
ematics.

The idea being that if we can code all mathematical objects as sets
(as in Generous Arena) then (if needed) we could view all proofs in
mathematical theories as proofs about the sets. Of course, this practice
would be anathema to the working mathematician, who should feel
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free to work with the more fluid language of the relevant field.8 How-
ever in the case of disagreement, mathematicians could in principle re-
duce everything to a proof in set theory. Indeed, we can study (within
set theory) proofs themselves, in particular proving relative consistency
via the study of models of set theory, providing us with:

Metamathematical Corral. Provide a theory in which metamathemat-
ical investigations of relative provability and consistency strengths can
be conducted.

Of course we do not need the sledgehammer of set theory to do this
work, usually some (weak) theory of arithmetic will do. However, the
natural theory in which this is study conducted is set theory. Here var-
ious different models can be easily studied and compared, as the enor-
mous literature of independence results using set-theoretic resources
testifies. This ability to study the consistency strengths of various theo-
ries and the fact that they are embedded within a common framework
that is well-understood plausibly provides:

Risk Assessment. Provide a degree of confidence in theories commen-
surate with their large cardinal strength.

Risk Assessment leads naturally to the idea that we should want to
consider theories that maximise consistency strength and (if possible)
do so in a well-motivated way. It is one thing to show that some theory
or other can be calibrated to have a certain large cardinal strength, and
another to increase our confidence in the theory by motivating the idea
that the relevant large cardinal axiom is consistent. For this reason we
add the following9:

Motivational Challenge. Motivate a theory with a substantial degree
of large cardinal strength on the basis of an account of the global nature
of the universe.

Before we continue we should make a remark about just how weak
this challenge is. We are not asking for full justification of some ax-
iomatic system or other, but rather merely that it responds to some nat-
ural intuitive ideas concerning the nature of the universe. We are re-
sponding to Scott’s request for ‘pleasant’ axioms, rather than engaging

8Indeed, this is how set theorists operate—no-one is churning out derivations in
first-order ZFC.

9It should be noted that [Maddy, 2019] also addresses this point, referring to the
rough intuitive picture behind the iterative conception. For us it will be important,
and so we separate it out as a separate challenge.
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in the Gödelian search for well-justified axioms. Nonetheless, whilst
it is weak, it is not merely a challenge that is satisfied by any kind of
axiom whatsoever with a merely ad hoc or post hoc explanation. We
want some global description of what the universe of sets is like. To see
this a little more clearly, it is useful to consider the ZFC-context. Many
motivations there relate to the following idea:

Maximality. The universe of sets should be as large as possible.

Of course, the notion of Maximality is very vague. A recent sur-
vey of just how many sharpenings there are of the notion is available
in [Incurvati, 2017]. For our purposes it is enough to note that one
popular motivation for the uncountabilist has been the use of Reflection
Principles, and these shall form our primary point of comparison in the
present paper. In fact, part of our conclusion will be that the axioms we
provide put the countabilist in a similar position to the uncountabilist
when the latter is viewed as motivating large cardinal axioms on the
basis of reflection principles. These formalise in various ways the idea
that the universe contains so many sets that there are initial segments
that resemble the universe, and have been used to motivate the exis-
tence of large cardinals directly. Depending on how the principles are
calibrated, this can be up to the level of large cardinals consistent with
V = L (see here [Koellner, 2009] for a thorough examination), or pos-
sibly even many Woodin or extendible cardinals (see here [Welch and
Horsten, 2016] and [Roberts, 2017]). They are global principles about
the nature of the set-theoretic universe.10 Contrast these then with the
‘axioms’ “the value of the continuum is exactly ℵ9001” or “there is an
inaccessible cardinal”. These axioms do not clearly capture what the
universe of sets is like as a whole (even if the latter is implied by many
reflection principles).

Given this response to the Motivational Challenge, let us pause
just for a minute to reflect on how superbly ZFC-based set theories
perform with respect to Maddy’s criteria with the Motivational Chal-
lenge added:

Regarding Generous Arena, it is of course slightly unclear what
is meant by ‘usual’ mathematical structures. However it is one of the

10Other candidates for principles about the nature of the set-theoretic universe
that might be taken to answer the Motivational Challenge include various inner
model axioms (including the idea of Ultimate-L, see [Woodin, 2017]) and the study
of maximality principles in the context of the Hyperuniverse Programme. Indeed,
this latter approach is designed to examine such competing ‘pictures’ of the way the
universe might be. A review of some of these options is available in [Friedman,
2016] (p. 519) which contends that no first-order axiom will ever receive consensus
support—rather we need to move to a context with higher-order resources.

8



salient features of ZFC-based set theory that the flexibility afforded
by the Powerset Axiom yields natural representatives for both the nat-
ural numbers and the continuum, and in fact almost all mathematics
could be conducted in the first few levels above Vω if desired. This
then easily gives us Shared Standard—a proof is correct just in case
there is a proof about the relevant entities from the axioms of ZFC
(or maybe some extension thereof). Metamathematical Corral barely
needs mentioning—ZFC just is the standard theory we usually use for
studying independence. Regarding Risk Assessment; whilst ZFC is
quite weak, it can be naturally extended with large cardinal axioms, al-
lowing us to pinpoint reasonably accurately the consistency strength
of new pieces of mathematics. (e.g. Whilst it has been subsequently
weakened11 the original proof of Fermat’s Last Theorem required the
addition of inaccessible cardinals.) As noted above, one can provide
answers to the Motivational Challenge in underwriting these large
cardinal axioms (and in particular we have focussed on the specific
example of reflection principles as a point of comparison).

The challenge facing the countabilist is thus great if we also want
to have ‘pleasant axioms’. Whilst Metamathematical Corral seems
unproblematic—we can always conduct this study by looking at
countable models of various theories—the other foundational roles are
not clearly satisfied. Generous Arena seems particularly problematic
since the countabilist does not have the Powerset Axiom to generate
their representatives. This in turn calls into question Shared Standard
since without the representatives it is unclear when we should regard
a proof about those representatives as ‘correct’. In turn Risk Assess-
ment is difficult to ascertain—without an answer to the Motivational
Challenge it is unclear why we should have (relative) confidence in
strong theories for the countabilist. In the remainder of this paper we
show one way for the countabilist to respond to these issues. Our core
strategy is to consider principles of ‘width absoluteness’—axioms that
imply that every set is countable via a strong saturation of V under
sets that ‘could’ exist. We will see (§§4–5) that although some of these
options are quite weak, and (§6) it is possible to go too far, there is
nonetheless (§7) a relatively strong axiom that is consistent relative to
large cardinals and can be motivated along these lines. Our contention
is that this puts the countabilist in a somewhat similar position to the
uncountabilist with respect to foundational roles.

11See here [McLarty, 2010].
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2 Removing Powerset

One issue that needs to be dealt with before we get into the main part
of our proposal is: What do we take the countabilist’s base theory to
be?

A natural answer: It is the theory ZFC with the Powerset Axiom re-
moved (possibly with “Every set is countable” added, but the axioms
we will consider all imply this). However, as is now well known (es-
pecially since [Zarach, 1996] and [Gitman et al., 2011]) various equiv-
alences one normally has in the presence of the Powerset Axiom dis-
appear once it is removed. In particular, simply deleting the Powerset
Axiom and keeping Replacement does not preserve Collection, and
various versions of the Axiom of Choice become non-equivalent.12 We
therefore need to set up what we mean by various theories lacking the
Powerset Axiom:

Definition 1. We distinguish between the following theories:

(1.) ZFC− is ZFC with the Powerset Axiom Removed and AC formu-
lated as the claim that every set can be well-ordered.

(2.) ZFC− is ZFC− with the Collection and Separation Schema sub-
stituted for the Replacement Scheme.

(3.) ZFC−Ref is ZFC− with the following schematic reflection principle
added (for any φ in the language of set theory):

∀x∃A(x ∈ A ∧ “A is transitive” ∧ φ↔ φA)

i.e. for any set x there is a transitive set A such that x ∈ A and
φ is absolute between A and the universe. We will refer to this
principle as the First-Order Reflection Principle (or just ‘Reflection’).

(4.) By NBG−, NBG−, and NBG−Ref we mean the corresponding ver-
sions of NBG, with two sorts of variables and any corresponding
schema replaced by single second-order (predicative) axioms.

It is known that the three theories ZFC−, ZFC−, and ZFC−Ref are
distinct in the sense that the classes of their models are pairwise non-
identical, and hence that the obvious inclusions are proper (easy argu-
ments show that there are inclusions, see [Gitman et al., 2011], §1). The

12For instance, the existence of a Choice function picking a member from every
element of a choice set does not imply that every set can be well-ordered. See here
[Zarach, 1982] who also shows several other results. The inequivalence of versions of
global choice also appear in the literature on second-order logic and choice principles
in that context, see here [Shapiro, 1991], §5.1.3.
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result that there are models of ZFC− that are not models of ZFC− was
shown by [Zarach, 1996] and further explored in [Gitman et al., 2011].
Recently [Friedman et al., F] showed that there are models of ZFC− in
which ZFC−Ref fails (and indeed in which all sets are countable). We
introduce the class theories NBG−, NBG−, and NBG−Ref because we
will want to use proper classes in talking about the reals (which may
form a proper class). The observation that for any (M,∈) |= ZFC−
(respectively ZFC−, ZFC−Ref ) we have (M,∈, Def(M)) |= NBG− (re-
spectively NBG−, NBG−Ref ) shows that the obvious inclusions be-
tween the classes of models of NBG−, NBG−, and NBG−Ref are also
proper. In light of these results, one might think of the study of these
Powerset-free theories as concerned with trying to include as many
natural principles as possible (without adding strength) in order to fa-
cilitate mathematical reasoning in the absence of the Powerset Axiom.
This naturally motivates ZFC−Ref and NBG−Ref as the natural choices
of base theory for the countabilist, particularly one who has mathemat-
ical applications in mind. Consider, for example, Gitman, Hamkins
and Johnstone who write (concerning the comparison of ZFC− and
ZFC−):

The main point of this paper, therefore, is to reveal what can
go wrong when one naively uses ZFC− in a set-theoretic
argument for which one should really be using ZFC−, and
to point out that if one indeed would use ZFC−, then all
standard arguments carry through as expected. In other
words, our point is that ZFC− is the wrong theory, and in
almost all applications, set theorists should be using ZFC−

instead. ([Gitman et al., 2011], p. 3)

As long as there are interesting applications using Reflection, this
point naturally extends to a motivation for ZFC−Ref (and not just
ZFC−) too. In the uncountabilist context, first-order reflection is im-
plied by the usual Lévy-Montague reflection principle (since, in par-
ticular, any Vα to which we reflect is transitive). However in the ZFC−

context, First-Order Reflection is equivalent to the following choice-
like principle (see [Friedman et al., F] for the result):

Definition 2. (ZFC−) The Dependent Choice Scheme (we will also use
the terms ‘DC-Scheme’ and ‘DCS’) is the scheme of assertions claiming
that for each formula φ(x, y, z) and parameter a, if for every x there is a
y such that φ(x, y, a) holds, then there is an ω-sequence 〈xn|n ∈ ω〉 such
that for all n, φ(xn, xn+1, a) holds. (i.e. If a definable relation has no
terminal nodes, we can make ω-many dependent choices on its basis.)
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Thus ZFC−Ref is equivalent (modulo ZFC−) to ZFC− with the DC-
scheme added (mutatis mutandis for NBG−Ref and NBG− with a sin-
gle axiom in place of the DC-Scheme). This relationship between DCS
and Reflection further supports choosing ZFC−Ref/NBG−Ref as our
base theory (if one is motivated by mathematical expedience). This
is especially so given that the current context that can be thought of
through the lens of second-order arithmetic. A folklore result13 shows
that second-order arithmetic and ZFC− + “Every set is countable” are
bi-interpretable and so one can consider the present study as investi-
gating models of second-order arithmetic as well as the countabilist
theories we will propose, and certainly DCS is a useful principle there.
With this in hand, let us consider some ways we might begin to bolster
these base theories for the countabilist.

3 The Brute Force Strategy

For the sake of brevity we will often abbreviate the axiom “Every
set is countable” by Count. The first point to be made is that there
are statements of set theory concerning second-order arithmetic (and
hence ZFC− + Count) that yield substantial large cardinal strength,
and indeed large cardinals in inner models of models satisfying ZFC−

+ Count.14

The core observation is that much recent work in set theory has
involved building inner models for large cardinals from principles of
second-order arithmetic. This is done via an ultrapower construction
(often using so-called mice) and since ZFC− and ZFC−Ref provide us
with the resources to construct ultrapowers, we are often able to build
the relevant models.15 Some care is required here, however. For ex-
ample, in ZFC “0] exists” has many equivalent formulations, which
don’t all work in ZFC−. To see this, note that one formulation is that
the uncountable cardinals are indiscernible in L, but in ZFC− we have
no guarantee that there are any uncountable cardinals (in fact we have
the negation given Count). We therefore take the following formula-
tion:

Definition 3. (ZFC−/NBG−) “0] exists” will be taken to mean that
there is a definable club of L-indiscernibles.

13See §5.1 of Regula Krapf’s PhD thesis [Krapf, 2017].
14We are very grateful to Sandra Müller and Chris Scambler for some discussion

of ideas in this section.
15See [Schimmerling, 2001] for a pleasant explanation of mice, and [Schindler,

2014], §10.2 (esp. Def. 10.37) how 0] can be used in this context.
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A tempting complaint concerning this definition is to point to use
of the term “definable” (a notion which is not first-order). There are
two ways this might play out depending on whether we are in the
NBG− or ZFC− context. In the former case one can just omit the word
“definable” and talk about the kinds of closed unbounded classes that
exist. Alternatively (in both the ZFC− and NBG− context) one can
appeal to the work of Silver who shows that if there is a definable club
of L-indiscernibles then there is a unique such club (the club of Silver
indiscernibles) which generates L (i.e. its Skolem hull in L is all of
L), and this club is ∆2-definable. Therefore we can replace the word
“definable” by “∆2-definable” in Definition 3 and obtain a first-order
definition. Moreover Silver’s result (see [Jech, 2002], Ch. 18) works in
the absence of the Powerset Axiom. By shifting Silver indiscernibles
we can easily obtain many elementary embeddings of L to L. We can
then find various strong theories under the countabilist perspective.
For example:

Fact 4. ZFC−+“0] exists” implies that there is a definable inner model (i.e. a
transitive model containing all the ordinals) for ZFC+“There exists a proper
class of inaccessible cardinals”.

Proof. Every Silver indiscernible is L-inaccessible, and so the existence
of 0] implies the existence of a proper class of inaccessible cardinals in
L. Moreover each Silver indiscernible α is such that Lα is elementary
in L, and so L |= ZFC.

A theme that will repeatedly emerge is: One can always build in-
ner models (e.g. L) within models of theories extending ZFC−, and in
the presence of suitable principles we obtain ZFC with large cardinals
there (even though V thinks that every set is countable). Moreover,
one can easily go beyond 0]. From

˜
Π1

1-Determinacy and the
˜
Π1

2-Perfect
Set Property one can obtain inner models of ZFC+“Every set of or-
dinals has a sharp” (and indeed that this implication can be reversed
from a model of ZFC+“Every set of ordinals has a sharp”).16 With Pro-
jective Determinacy one gets inner models with Woodin cardinals (in
particular n-many for every n ∈ N).17 In this context, whilst some in-
ner models have ZFC (and indeed much more) they are impoverished
with respect to the functions they can see (in particular they are blind
to all sorts of collapsing functions).

Thus we can see how the countabilist perspective is compatible
with principles asserting a significant degree of large cardinal strength,

16Regula Krapf’s dissertation [Krapf, 2017], Ch. 5 shows this equivalence.
17See [Koellner and Woodin, 2010] for a description of how to get models of large

cardinal axioms from determinacy hypotheses.
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responding to the challenge of providing a strong theory suggested
by the desideratum of Risk Assessment. However, given the Moti-
vational Challenge, we might worry about whether baldly asserting
the existence of various non-trivial regularity properties in second-
order arithmetic is a satisfactory response given that they do not eas-
ily conform to any intuition about the nature of the set-theoretic uni-
verse or relate to considerations of Maximality.18 In this respect, the
countabilist is not necessarily in a worse position than her uncount-
abilist counterpart since the motivational story for him is also unclear
beyond 0]. This is especially so given that some authors (especially
[Koellner, 2009] and [Friedman and Honzik, 2016]) hold that no reflec-
tion principle is likely to deliver this level of large cardinal strength.
There are some counterarguments here (notably [Welch and Horsten,
2016], [Welch, 2017], and [Roberts, 2017]) which attempt to provide
reflection-style arguments for large cardinals up to (and beyond) the
level of many Woodin cardinals, however their status as reflection
principles is somewhat open. It is thus fair to say that the situation is
also murky for the uncountabilist with respect to principles past 0].19

In the rest of the paper, we will show how to motivate the existence of
0] using Maximality on the countabilist perspective.

4 Forcing Saturated Set Theory

Our suggestion is to view the maximality of the universe via differ-
ent kinds of saturation under possible sets. This is a somewhat vague
motivation but admits of various formalisations, similar to how the
uncountabilist wishes to postulate the existence of ‘large’ ordinals and
can formalise this idea via large cardinals/reflection principles. We’ll
approach this gradually; the current section (§4) will provide a prin-
ciple consistent with V = L, §5 will go beyond V = L but not pro-
vide any large cardinal strength, §6 will consider a principle that is too
strong, before we isolate a principle in §7 that is consistent relative to
standard large cardinals but also implies the existence of 0].

The first principle we shall examine stems from consideration of
forcing axioms. A forcing axiom expresses the idea that the universe
has already been saturated under forcing for certain partial orders and

18For example, Martin (concerning Projective Determinacy) writes: “Is PD true? It
is certainly not self-evident.” ([Martin, 1977], p. 813). Examples of this kind can be
multiplied, for example [Martin, 1976], p. 90 [Moschovakis, 1980], p. 610. [Maddy,
1988] provides a good survey of the terrain here.

19Often these principles are justified by their ‘fruitfulness’ or via ‘extrinsic’ consid-
erations (e.g. [Maddy, 2011]). We return to this issue in §8.
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families of dense sets. For example we have the following axiom:

Definition 5. Let κ be an infinite cardinal. MA(κ) is the statement that
for any forcing poset P in which all antichains are countable (i.e. P has
the countable chain condition), and any family of dense sets D such
that |D| 6 κ, there is a filter G on P such that if D ∈ D is a dense subset
of P, then G ∩D 6= ∅.

Definition 6. Martin’s Axiom (or just MA) is the statement that for every
κ smaller than the cardinality of the continuum, MA(κ) holds.

In this way MA asserts that the universe has been saturated under
forcing for certain partial orders and families of dense sets. Stronger
forcing axioms such as the Proper Forcing Axiom (PFA) and Mar-
tin’s Maximum (MM) have been isolated, and some set theorists have
linked these kinds of axiom to maximality ideas. Magidor, for exam-
ple, writes:

“Forcing axioms like Martin’s Axiom (MA), the Proper
Forcing Axiom (PFA), Martin’s Maximum (MM) and other
variations were very successful in settling many indepen-
dent problems. The intuitive motivation for all of them is
that the universe of sets is as rich as possible, or at the slo-
gan level: A set [whose] existence is possible and there is
no clear obstruction to its existence [exists]...

...What do we mean by “possible”? I think that a good ap-
proximation is “can be forced to [exist]”...

I consider forcing axioms as an attempt to try and get a con-
sistent approximation to the above intuitive principle by
restricting the properties we talk about and the the forcing
extensions we use. ([Magidor, 2012], pp. 15–16)

Forcing axioms can thus be seen as an attempt to get a grip on the
notion of maximising the subsets available. However, as will be well
known to specialists, there are usually some limitations as to how far
one can go. For instance, consider the following facts:

Fact 7. (ZFC) Letting c denote the cardinality of the continuum, MA(c) is
inconsistent with ZFC.20

Fact 8. (ZFC) In ZFC there is a non-countable-chain-condition P such that
for a (6 ℵ1)-sized family of dense subsets D of P, there is no filter G on P
intersecting every member of D (i.e. MAP(ℵ1) is false).21

20See [Kunen, 2013], p. 175, Lemma III.3.13.
21See [Kunen, 2013], pp. 175–176, Lemma III.3.15.
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It seems then that there are some limitations on what generics one
can have. Given ZFC, we cannot just assert the existence of generic
sets in a careless manner. However, if we accept the possibility that
every set might be countable and drop the Powerset Axiom, more op-
tions are open to us. We can then consider a forcing axiom that allows
us to have a generic for any set-sized family of dense sets:

Definition 9. (ZFC−) The Forcing Saturation Axiom (or FSA). If P is a
forcing poset, and D is a set-sized family of dense sets, then there is
a filter G ⊆ P intersecting every member of D. The theory of Forcing
Saturated Set Theory or FSST comprises ZFC− + FSA.

FSST implies that every set is countable, as we show below. How-
ever, it is also weak, as is shown by the following fact:

Fact 10. (ZFC−) FSST is equivalent to the theory ZFC−+“Every set is
countable”.

Proof. (1.) FSST⇒ ZFC−+“Every set is countable”.
To see that FSST implies that every set is countable, let α be the

order-type of a well-ordering of an arbitrary set x (α is our putative
‘uncountable’ cardinal). Then, the poset Col(ω, α) is obtainable by tak-
ing definable powersets. (Note that in ZFC− the definable powerset of
any set still exists.) We can now define a family of dense sets in order
to get generic encoding a surjection from ω to α. At each β < α we can
define the following set:

Dβ = {p ∈ Col(ω, α)|β ∈ dom(p)}

Clearly each Dβ is dense since we can always extend above any
condition q to obtain an r with β ∈ dom(r). Collection and Separation
then yields the family D = 〈Dβ|β < α〉. Using the Forcing Saturation
Axiom, there is a generic G for this family coding a surjection from ω
to α.
(2.) ZFC−+“Every set is countable”⇒ FSST.

To obtain the Forcing Saturation Axiom from the axiom that every
set is countable, let P be a forcing poset and D be a family of dense
subsets of P. Since every set is countable, we can enumerate D in
order-type ω. So, without loss of generality, D = 〈Dn|n ∈ ω〉. Since
every set is countable, P can also be enumerated in order-type ω, let
‘f ’ denote the relevant enumerating function. We can then define via
recursion (and using the parameter f ) the following function π fromD
to P:
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π(D0) = “The f -least p ∈ D0”

π(Dn+1) = “The f -least p ∈ Dn+1 such that p 6P π(Dn)”

Effectively π successively picks elements of each member of D, en-
suring that we always go below our previous pick in the forcing order
(this is allowed because each D ∈ D is dense in P, and so such a p
always exists). By Replacement ran(π) exists, and the object obtained
generates a generic for D (namely the set of q such that p is below q for
some p ∈ ran(π)), and so the Forcing Saturation Axiom holds.

By Fact 10 we have the immediate:

Corollary 11. FSST is consistent relative to the theory ZFC−.

Proof. Take any model M of ZFC−. H(ω1) of the model satisfies
ZFC− + Count and hence FSST (and in the case where ω1 = Ord we
can simply say that M itself satisfies FSST).

This shows that FSST is not just weak in consistency strength, but
also has minimal consequences. It is reasonable to expect that maxi-
mality principles should destroy V = L. Here we have the immediate
easy corollary:

Corollary 12. FSST is consistent with V = L.

Proof. In any given model of ZFC−, (H(ω1))
L |= V = L+ FSST.

Thus whilst FSST does imply countabilism through some sort of
saturation idea, it fails to break V = L. We should not necessarily
view this fact as a deathblow to FSST, however. We might rather
view FSST as an initial stepping stone to stronger theories, much like
how ZFC is consistent with V = L but can be strengthened using large
cardinals to theories that break V = L. As we’ll see in the following
sections, there are strengthenings of FSST that do just this.

5 The Axiom of Set-Generic Absoluteness

In this section, we provide an exposition of the Axiom of Set-Generic
Absoluteness, an axiom that implies that every set is countable and that
V 6= L. Whilst it is still consistent relative to ZFC−, its consideration
will be useful for setting up the general ideas behind stronger axioms
later.
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The way that the FSA postulated the saturation of the universe un-
der forcing was somewhat brutal; we simply asserted the existence
of the relevant generics for partial orders and families of dense sets.
Somewhat similar considerations apply here as in the brute assertion
of determinacy in generating large cardinal strength—it is unclear why
the assertion of combinatorial statements about the existence of gener-
ics relates to more intuitive ideas concerning the nature of the uni-
verse. Whilst the FSA does perhaps mesh better with Maximality
than determinacy hypotheses, it would nonetheless be preferable if
the countabilist could assert something more natural about the uni-
verse of sets which implies that every set is countable (and, for that
matter, breaks V = L).

We can come to slightly more elegant axioms via the use of absolute-
ness principles. An absoluteness principle asserts that if some formula
is satisfied in an extension of the universe, then it is satisfied within the
universe (in some appropriate context). Absoluteness principles have
already been found for characterising some standard forcing axioms.
For example:

Definition 13. [Bagaria, 1997] Absolute-MA. We say that V |= ZFC
satisfies Absolute-MA iff whenever V [G] is a generic extension of V by
a partial order P with the countable chain condition in V , and φ(x) is a
Σ1(P(ω1)) formula (i.e. a Σ1-formula containing only parameters from
P(ω1)), if V [G] |= ∃xφ(x) then there is a y in V such that φ(y).

Further, we can characterise the Bounded Proper Forcing Axiom
(BPFA) as follows:

Definition 14. [Bagaria, 2000] Absolute-BPFA. We say that V |= ZFC
satisfies Absolute-BPFA iff whenever φ is a Σ1(P(ω1)) formula, if φ
holds a forcing extension V [G] obtained by proper forcing, then φ
holds in V .

These principles turn out to be equivalent to MA and BFPA respec-
tively. Bagaria also sees motivation for them as springing from the
idea that the universe has been saturated under the existence of possi-
ble kinds of sets:

In the case of MA and some weaker forms of PFA and MM,
some justification for their being taken as true axioms is
based on the fact that they are equivalent to principles of
generic absoluteness. That is, they assert, under certain
restrictions that are necessary to avoid inconsistency, that
everything that might exist, does exist. More precisely, if
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some set having certain properties could be forced to exist
over V , then a set having the same properties already exists
(in V ). ([Bagaria, 2008], pp. 319–320)

Bagaria’s point concerning ‘certain restrictions’ is pertinent: In the
ZFC-context, a careful calibration is required between the complexity
of sentences figuring into the principle and the kinds of parameters al-
lowed when formulating absoluteness principles. For example, if we
allow ω1 as a parameter and all forcings that collapse cardinals, we
would obtain a contradiction in ZFC, since ω1 would then be count-
able in V . However, since we are in the ZFC− context, we have no
such obstacles:

Definition 15. (ZFC−) We say that V , a model of ZFC−, satisfies the
Weak Axiom of Set-Generic Absoluteness (WASGA) iff whenever φ(~a) is
a Σ1-formula in the language of set theory in the parameters ~a ∈ V ,
if P ∈ V is a forcing partial order, G is V -generic in the sense that it
intersects every dense set in V , and φ(~a) holds in V [G] |= ZFC−, then
φ(~a) holds in V .

This axiom generalises the absoluteness of Σ1-formulas to include
unrestricted parameters and and arbitrary forcings. Unfortunately this
buys us no additional strength beyond FSST:

Fact 16. (ZFC−) The WASGA, FSA, and Count are equivalent (modulo
ZFC−).

Proof. WASGA ⇒ Count is obvious, since for any particular set x “x is
countable” is a Σ1-formula in the parameter x. Hence x is countable
in an outer model (since any set can be collapsed in a forcing exten-
sion), thus x is countable in an inner model of V , and (by the upwards-
absoluteness of countability) is countable in V . Count ⇒ WASGA fol-
lows from Lévy Absoluteness which tells us that if a Σ1-formula with
real parameters holds in an outer model of ZFC− then it holds in V .
So if V satisfies ZFC− + Count then WASGA will hold for Σ1-formulas
(since under Count every set is coded by a real).

The WASGA thus just gives us an equivalent formulation (over
ZFC−) of FSST. In this way, whilst it might be somewhat more nat-
ural, it does nothing to assuage worries concerning the lack of consis-
tency strength or other consequences (e.g. it fails to break V = L).

In order to obtain a principle with more consequences we will need
to go further. A natural target is the complexity of the formulas al-
lowed in the absoluteness claims. To this end, we can fomulate the
following axiom:
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Definition 17. (ZFC−) We say that V , a model of ZFC−, satisfies the
Axiom of Set-Generic Absoluteness (or ASGA) iff whenever φ(~a) is a sen-
tence in the language of set theory in the parameters ~a ∈ V , if P ∈ V is a
forcing partial order, G is V -generic in the sense that it intersects every
dense set in V , and φ(~a) holds in V [G] |= ZFC−, then φ(~a) holds in V .

The ASGA is an absoluteness principle stating that first-order sen-
tences of arbitrary complexity with arbitrary parameters holding in set
forcing extensions are true in V . We can very quickly show that:

Fact 18. Over the theory ZFC− the ASGA implies the FSA.

Proof. The cardinality of any set can be collapsed to ω in some exten-
sion V [G], and hence by the ASGA every set is countable in V , which
in turn is equivalent to the FSA.

However the ASGA also goes substantially further than the FSA, as
shown by the following:

Fact 19. ZFC− + ASGA implies that V 6= L.

Proof. Since we can force the existence of a non-constructible real in
some V [G], by the ASGA a non-constructible real exists in V , and hence
V 6= L.

Thus the ASGA goes substantially beyond the FSA in terms of con-
sequences. At this point, we might worry about its consistency. Nor-
mally generic absoluteness says that if there is a set in a forcing ex-
tension that satisfies an absolute property then there is such a set
in the ground model. Typically the underlying absolute property
is ∆0, hence many generic absoluteness axioms (e.g. Absolute-MA,
Absolute-BPFA) postulate Σ1-absoluteness. If one then wants to postu-
late Σ2-absoluteness, then one might think that we should ensure that
we have a situation in which we already have Σ1-absoluteness (else it
is not even clear that if a Σ2-property holds in the ground model then it
would continue to hold in the forcing extension). Typically one doesn’t
expect Σ2-absoluteness to be consistent between models that violate
Σ1-absoluteness for this reason. Indeed (in the ZFC-context) both
Absolute-MA and Absolute-BPFA become inconsistent if Σ2-formulas
are allowed instead of only Σ1-formulas (since, for instance, both CH
and ¬CH can be given a Σ2 formulation). The following fact shows
(somewhat surprisingly) that the ASGA is actually very weak in terms
of consistency strength:

Fact 20. ZFC− + ASGA is consistent relative to ZFC−.
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Proof. We begin with a modelM of ZFC, and explain how the strength
can be reduced later. Begin by forcing using an ℵ1-product of Cohen
forcings with finite support (call this forcing P), to form an extension
M [G].

We claim thatH(ω1)
M [G] satisfies ZFC−+ASGA. The fact that ZFC−

holds is immediate, since the H(ω1) of any model of ZFC satisfies
FSST. It just remains to argue that H(ω1)

M [G] satisfies the ASGA. To
see this, we begin by noting that any finite sequence of parameters ~a
from H(ω1)

M [G] appears at some stage of the iteration. In other words,
if we letGα be the first α-many Cohen reals added byG, then~a appears
in V [Gα].

Since ~a is hereditarily countable, it can be coded by some real r.
Moreover, r must belong to V [Gα] for some countable α. This is be-
cause P has the countable chain condition, which in turn implies that
any real added by G has a countable P-name, and hence, letting Pα
be the finite support α-length product of Cohen forcing, r has a Pα-
name. In other words, any real r added by G is already added for
some Gα, for countable α. Letting Gα be the Cohen reals added af-
ter Gα by P, we can then view H(ω1)

M [G] as H(ω1)
M [Gα][Gα ], where

Gα is H(ω1)
M [Gα]-generic for the ω1-many Cohen forcings after the

αth stage of the iteration given by P.
Now suppose that there is a countable forcing Q in

H(ω1)
M [G] = H(ω1)

M [Gα][Gα ], and generic GQ such that
H(ω1)

M [G][GQ] |= φ(~a) where ~a ∈ H(ω1)
M [G]. To show that the ASGA is

satisfied by H(ω1)
M [G], we just have to show that H(ω1)

M [G] |= φ(~a).
Since GQ is generic over H(ω1)

M [G] for a countable forcing (i.e. Q),
we can assume without loss of generality that GQ is generic for
Cohen forcing, since Cohen forcing is the only countable forcing up
to forcing-equivalence. Thus, since H(ω1)

M [G] = H(ω1)
M [Gα][Gα ],

we know that H(ω1)
M [G][GQ] = H(ω1)

M [Gα][Gα ][GQ], and hence
that φ(~a) becomes true after forcing with the finite support prod-
uct over H(ω1)

M [Gα] = H(ω1)
M [Gα], adding Gα and GQ, i.e.

adding (ω1 + 1)-many Cohen reals (which is just ω1-many Cohen
reals). It follows (using the homogeneity of Cohen forcing) that
H(ω1)

M [Gα][Gα ] = H(ω1)
M [G] |= φ(~a), as required.

To reduce the strength of our initial assumption to ZFC−, we can-
not simply use an ℵ1-product of Cohen forcings with finite support,
since we have no guarantee that ℵ1-exists. Supposing that it does not,
we can force with the finite support product of Ord-many Cohen forc-
ings (i.e. Ord now plays the role of ω1). This is a class forcing, but it is
ZFC− preserving and we can run the same argument as above.

Thus we see (surprisingly given the strength of the generic abso-
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luteness postulated) that the ASGA is consistent relative to ZFC−. The
reason for consistency (as shown by the previous proof) is extremely
special to the countabilist context: If every set is countable then all
set-forcings are equivalent to Cohen forcing.

Whilst the ASGA goes some way to providing a perspective that
seems to capture the idea of maximality under countabilism, it is still
weaker than we would like in terms of consistency strength. With-
out further argumentation, we have not yet adequately answered the
Motivational Challenge. In the next two sections (§6, §7) we consider
some possibilities for strengthening our theory.

6 The Extreme Inner Model Hypothesis

We would now like to try developing absoluteness principles that im-
ply that every set is countable, but have greater strength than either
the FSA or ASGA. Fact 20 was revealing in that it showed us how abso-
luteness for formulas of arbitrary complexity could be combined with
the countabilist perspective consistently. We can now note that the
ASGA only appealed to set forcing, and set forcing is only one model
building construction among many. We also have class forcing, ultra-
powers, and so on. Perhaps then we should insist that a higher degree
of absoluteness be present on the countabilist picture, not just with
respect to set forcings, but beyond.

A principle that does so in the Powerset-based context is the Inner
Model Hypothesis, proposed in [Friedman, 2006]. The original Inner
Model Hypothesis is stated as follows:

Definition 21. [Friedman, 2006] The Inner Model Hypothesis (or IMH)
states that if a parameter-free first-order sentence φ is true in an inner
model of an outer model of V , then φ is already true in an inner model
of V .

The idea is that any sentence which can be ‘dreamed’ to be true
(consistent with V ’s initial starting structure) is true in some inner
model context. The IMH is inherently higher-order in character, and
depends upon access to a suitable coding of the outer models of V .
This can be done either by formulating the IMH as about countable
transitive models or by using a class theory in which satisfaction in
outer models of V can be coded.22 (Analogously, the uses of set forcing
in the absoluteness characterisations of forcing axioms can be coded

22[Antos et al., 2021] shows that such a coding is possible within a variant of
Morse-Kelley class theory.

22



away using the relevant forcing relation, keeping in mind that the anal-
ogy is not perfect—set-forcing can be coded within ZFC and the forc-
ing language, the situation with arbitrary extensions is more subtle.)
Moreover, the IMH has substantial large cardinal strength; it implies
that there are arbitrarily large measurable cardinals in inner models,
and its consistency is provable from the existence of a Woodin cardi-
nal with an inaccessible above. It also has significant anti-large cardi-
nal features—it implies that there are no inaccessible cardinals in V .

A large part of developing inner model hypotheses has been the
introduction of parameters.23 In the ZFC-context, this is tricky since
a naive introduction of parameters without care allows ω1 to be
collapsed in an inner model—an impossibility given the upwards-
absoluteness of countability. If we accept the perspective offered by
countabilism though, we are not bound by any such restrictions. We
can therefore propose:

Definition 22. Extreme Inner Model Hypotheses. The Extreme Inner Model
Hypothesis for T or EIMHT states that if a first-order sentence φ(~a) in the
parameters ~a in V is true in a definable inner model I∗ |= T of an outer
model V ∗ |= T of V obtained by a definable pretame class forcing, then
φ(~a) is already true in a definable inner model I |= T of V . We shall
use EIMH− and EIMH−Ref to denote the EIMH for ZFC− and ZFC−Ref
respectively.

Several remarks concerning these principles are in order before we
proceed. First, there are several places where we might make differ-
ent choices. We might, for instance, move to a case where the ground
model and the relevant outer models should satisfy one of NBG− or
NBG−Ref (we still let the inner models satisfy only ZFC− or ZFC−Ref ).
Here ‘definable inner model’ can be replaced by ‘inner model’, but
this expressive ease is paid for by the fact that the ground model and
outer models are of the form (M,C) where C is an interpretation of
the second-order variables satisfying T. This adds additional compli-
cations to our proofs (we will indicate where and how our results ex-
tend in due course). Moreover, we might consider arbitrary extensions
of V rather than those obtainable by definable pretame class forcings.
Again, this level of open-endedness would result in more complicated
proofs and so we simply restrict to pretame class forcings and ZFC−

/ ZFC−Ref satisfaction for the time being.
Less trivially, there is a substantial question of how to formulate the

principles EIMH− and EIMH−Ref . We wish to emphasise: These princi-

23See, for example, the remarks on introducing parameters into the Strong Inner
Model Hypothesis in [Friedman et al., 2008].
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ples are essentially higher-order in character. We want to say that if
φ(~a) holds in a definable inner model of a pretame definable forcing
extension then it holds in a definable inner model of V . The hypothe-
sis thus essentially involves an infinite disjunction of statements of the
following form (where Pψ is a pretame class forcing defined by ψ and
Mχ is the inner model of the Pψ-generic extension defined by χ):

“Pψ is pretame and forces that Mχ satisfies φ(~a)”

Our first ‘problem’ is that we want to require Mχ to satisfy ZFC−

or ZFC−Ref , which cannot be expressed with a single sentence. Our
second ‘problem’ is that for the conclusion of the relevant EIMHT we
want to say (whereNξ is the inner model (of V ) defined by the formula
ξ):

“For some ξ,Nξ satisfies φ(~a)”

Again we can’t express thatNξ is a model of ZFC− or ZFC−Ref with
one sentence. And we are now quantifying over ξ existentially, so the
conclusion is an infinite disjunction. The natural formulation of the
EIMH− and EIMH−Ref is thus not first-order and is not even given by
a first-order scheme (i.e. infinite conjunction of first-order sentences).
Instead it is an infinitary Boolean combination of first-order sentences
of low infinitary rank.

The choice of using NBG− or NBG−Ref appears to look better (ig-
noring the earlier mentioned proof-based complications) as one can
replace “definable inner model” by “inner model”. But still one is
stuck with formulating “M is an inner model of ZFC− / ZFC−Ref”.
In the presence of the Powerset Axiom, i.e. in the context of ZFC,
to say that a definable transitive proper class is a model of ZFC is
easy because it’s enough for it to be a model of ZFCn (with Replace-
ment restricted to Σn-formulas for large enough n), since using the
von Neumann hierarchy Full Collection in V implies Full Collection in
transitive inner models of ZFCn. But in our Powerset-free theories we
don’t have a substitute for the von Neumann hierarchy in general. It
is thus unclear how to formulate these principles, even when employ-
ing NBG− / NBG−Ref . Only with MK−-based theories (i.e. where
the relevant predicative second-order axioms are replaced by impred-
icative ones) are we in good shape because we have truth predicates
available and can use them to easily express “M is an inner rmodel of
ZFC− / ZFC−Ref”. Note, however, the uncountabilist supporter of re-
flection principles for large cardinals in the ZFC-context is in a similar
position. An easy observation (often credited to Bernays) shows that
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over NBG the second-order reflection principle immediately implies
full Morse-Kelley class theory (since any (Vα,P(Vα)) satisfies impred-
icative comprehension).

Thus, whilst the higher-order character of these principles might
be viewed as a cost, in the present context it is not so important that
they be first-order (schematically) expressible. They are expressible by
infinitary sentences of low infinitary rank, and we will show relative
consistency and inconsistency results by implicitly using this formula-
tion and interpreting the principles over countable transitive models
(any results with no formal theory specified should be understood this
way, over a ‘strong enough’ base theory).

Let’s start with a couple of easy observations. We immediately
have the result that the EIMH− is a natural continuation of the Forc-
ing Saturation Axiom:

Fact 23. ZFC− + EIMH− implies Count (equivalently the FSA and the
WASGA).

Proof. Immediate since the EIMH since any set can be collapsed in an
extension and thus is countable in V .

However, we also get some further consequences out of the EIMH:

Fact 24. ZFC− + EIMH− implies that V 6= L.

Proof. As before, we can force the existence of a non-constructible real
in an outer model, and so we have non-constructible reals in V .

Moving on to less trivial matters: One very salient question is
whether or not we can prove that the various hypotheses are consis-
tent relative to the existence of large cardinals. As it turns out, at least
the EIMH−Ref is inconsistent:

Theorem 25. ZFC−Ref + EIMH−Ref is inconsistent.

Proof. We will show that there is no transitive model of ZFC−Ref +
EIMH−Ref . The proof will in fact show that ZFC−Ref + EIMH−Ref proves
there is no transitive model of a particular finite subtheory T of
ZFC−Ref + EIMH−Ref—as ZFC−Ref + EIMH−Ref proves that T has a transi-
tive model (by Reflection/DCS) we infer the inconsistency of ZFC−Ref
+ EIMH−Ref .

Suppose that V is a transitive model of ZFC−Ref + EIMH−Ref of ordi-
nal height α, we may assume that V is countable. Note that V satisfies
Count because any set x in V can be made countable in a set-forcing
extension of V , where ZFC−Ref must still hold, and therefore by the
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EIMH−Ref , x is countable in an inner model of V and therefore in V .
Now as in the proof of Theorem 3.8 of [Antos and Friedman, 2017],
we can produce an outer model of V satisfying ZFC−Ref which is of
the form Lα[r0] for some real r0. And as in the proof of Theorem 4.1
of [Antos and Friedman, 2017], we can enlarge further to a model of
ZFC−Ref of the form Lα[r] for some real r such that for every ordinal
β < α, Lβ[r] fails to satisfy Collection. Applying the EIMH−Ref , there is
such a real, which we denote by r′, in the original model V .

For each β < α let f(β) be the least n so that Σn-Collection fails in
Lβ[r′]. Now as in Proposition 3.5 of [Friedman, 2000], for each n we
can force over V to add a club Cn consisting of ordinals β < α such
that f(β) is at least n. And again as in the proof of Theorem 3.8 of
[Antos and Friedman, 2017], we can with further forcing add a real
sn which codes Cn. By the EIMH−Ref in V , there are such reals s′n in V ,
coding corresponding clubs C ′n. But taking some β belonging to the
intersection of all the various C ′n, we have that f(β) is at least n for
each n, a contradiction.

Remark 26. The above proof can be modified to a version of the EIMH
formulated as concerned with NBG−Ref models (i.e. where the outer
model (V [G], C[G]) of (V,C) also has to satisfy NBG−Ref , but the inner
models (which need not be definable) satisfy ZFC−Ref ). For the incon-
sistency of NBG−Ref with this version of the EIMH we need one more
fact. We start with a model (V,C) of this theory and first enlarge it
to a model (V ∗, C∗) where V ∗ = L[A] for some single class A and C∗

consists only of the (V ∗, A)-definable classes. It is a result due inde-
pendently to Friedman and Kossak-Schmerl that this can be done (see
here Theorem 15 of [Hamkins et al., 2013]). We can then apply Jensen
coding to force further to get A to be coded by a real x. Now one can
complete the proof as above for the ZFC−Ref context, by ensuring that
for some real r, Collection fails in Lβ[r] for each β < α = Ord(V ).

The fact that an EIMH-style principle (namely EIMH−Ref ) is incom-
patible with even very mild forms of Dependent Choice (equivalently
Reflection) in the class theory is troubling.

Firstly, where possible, we would like to be as open-minded as pos-
sible about the class theory to be adopted, and EIMH-principles put se-
vere constraints on the theories we can have. Secondly, we might think
that these conflicts with First-Order Reflection put us in direct conflict
with Maximality. Whilst we know that the level of width absolute-
ness we are asking for is incompatible with the existence of uncount-
able sets (and thus with all standard reflection principles), we might
want to incorporate as much ‘height’ absoluteness as possible given
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the current picture. Thirdly, the fact that the level of Choice/Reflection
required is so minimal raises doubts as to whether the EIMH− (or the
EIMH− for that matter) is consistent at all, and certainly there is no
clear route to a relative consistency proof.

One might try to make a kind of ‘bad company’ objection to the
maximality as (width) absoluteness idea, by arguing that it extends
naturally to inconsistency. We think this argument is not especially
convincing when used by the uncountabilist against the countabilist,
since almost all motivations for set-theoretic axioms extend to incon-
sistency when taken far enough. The same is true (within ZFC) for
forcing axioms (e.g. MA(c)), and reflection principles (which are in-
consistent at the level of third-order), or the direct postulation of large
cardinals (as indicated by the Kunen Inconsistency). The natural route
to take instead is to consider slight weakenings of EIMH-principles. As
we’ll see shortly we can obtain a principle that is consistent relative
to large cardinals but which can also be used to generate substantial
strength.

7 Ordinal Inner Model Hypotheses

We are now in a position where we would like to weaken the EIMH
but still go beyond the ASGA. A natural choice here is to restrict the
parameters allowed:

Definition 27. Ordinal Inner Model Hypotheses. The Ordinal Inner Model
Hypothesis for T or OIMHT states that if a first-order sentence φ(~a) with
ordinal parameters ~a in V is true in a definable inner model I∗ |= T
of an outer model V ∗ |= T of V obtained by a definable pretame class
forcing, then φ(~a) is already true in a definable inner model I |= T of
V . We shall use OIMH− and OIMH−Ref to denote the OIMH for ZFC−

and ZFC−Ref respectively.

We should note that exactly the same remarks concerning formali-
sations of versions of the EIMH apply to versions of the OIMH. Namely:
(1.) One can also formulate versions of the OIMH where we insist that
both the ground model and outer models satisfy NBG− or NBG−Ref ,
and (2.) The OIMH− and OIMH−Ref are not first-order expressible.

Ordinal Inner Model Hypotheses clearly imply that every set is
countable in the presence of the Axiom of Choice (since the cardinality
of any set can always be collapsed in an extension). However, they do
not clearly contradict the Dependent Choice Scheme since in Theorem
25 we depended on the use of unrestricted real parameters. In fact we
can prove:
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Theorem 28. ZFC−Ref + OIMH−Ref is consistent relative to the theory ZFC
+ PD.

Proof. The strategy of the proof is to work in a model of ZFC + PD and
use the structure of Turing degrees given by PD to ensure that we can
find models with the right behaviour.

For any set x of ordinals let M(x) denote the least transitive model
of ZFC− containing x as an element (such a model is of the form Lβ[x]
for some β and satisfies the DC-scheme (and hence ZFC−Ref ) in virtue
of Lβ[x]’s definable global well-order).

We now define a function that will be useful in finding models
with the same theory (for extracting the inner models required for the
OIMH−Ref later). For each countable ordinal α let f(α) be a real rα such
that α is countable in M(rα) and for all y in which rα is recursive24 we
have that M(y) has the same theory with parameter α as M(rα).

We use PD to check that f is well-defined: First note that PD implies
(by Martin’s Cone Lemma in [Martin, 1968]) that any projective set
of reals closed under Turing equivalence either contains or is disjoint
from a Turing cone. Also (in ZFC alone) the intersection of countably
many Turing cones contains a Turing cone. Now for each sentence φ
in the language of set theory with parameter α, let Xφ be the set of
reals x such that α is countable in M(x) and M(x) satisfies φ. The
Xφ are closed under Turing-equivalence since if x0 and x1 are Turing
equivalent then M(x0) = M(x1) (just by unfolding computations in
the relevant minimal model). Moreover each Xφ is projective (indeed
∆1

2).25

Next, for each φ choose a Turing cone inside either Xφ or X¬φ and
let y be in the intersection of these Turing cones. Note that α is count-
able in M(y) as one of these Turing cones only has reals with α count-
able. Furthermore, if y is recursive in z it follows that M(y) and M(z)
have the same theory with parameter α (again just by unfolding the
relevant computations). So we obtain f by picking a unique such rα
for each countable ordinal α (using AC, or if one wishes to do so defin-
ably, Projective Uniformisation).

Let N∗ be a countable elementary submodel of some large H(θ)
with θ regular containing f as an element, and let N be N∗ ∩ H(ω1)
(the sets in N∗ which are hereditarily countable in N∗). Equivalently,
N is the H(ω1) of the transitive collapse of N∗. As H(ω1) satisfies the

24i.e. rα is recursive when using y as an oracle.
25Each Xφ is ∆1

2 because x belongs to Xφ iff ∃T (T = M(x) ∧ “α is countable in T”
∧ “T satisfies φ”). This statement is Σ1 in a real coding α, so in terms of the projective
hierarchy it is Σ1

2 and its complement is also Σ1
2 and thus Xφ is ∆1

2.
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DCS (given that we are now in ZFC), so does its image under transitive
collapse, which is N .

We now use N to find our model of the OIMH−Ref . Let β denote the
ordinal height of N . Similarly to Theorem 25, we use Theorem 3.8 of
[Antos and Friedman, 2017] and Theorem 4.1 of [Antos and Friedman,
2017] to force to add a real y so that N [y] = Lβ[y] is the least model of
ZFC− (and indeed ZFC−Ref ) containing y, i.e. N [y] = M(y).

We claim that M(y) satisfies the OIMH−Ref . Suppose that φ with pa-
rameter α (for α < β) is satisfied in a inner modelM0 of an outer model
M of M(y). We will find a definable (with parameters) inner model of
M(y) satisfying φ. We first enlarge M (again using the methods of
Theorem 25) to a model of the form M(z) (for z a real) in which M is a
definable inner model. Since M0 is definable in M and M is definable
in M(z), we know that M0 is a definable inner model of M(z) (by the
transitivity of definable inner models).

Choose n such that M0 is a Σn-definable inner model of M(z), and
let ψ be the sentence: “There is a Σn-definable inner model satisfying
φ”. ψ is a sentence with parameter α true in M(z), i.e. ψ belongs to the
theory of M(z) with parameter α.

We now pick a z∗ in M(z) that is Turing-above both z and f(α).
(For concreteness, we could just let z∗ be the join of z and f(α).) Now,
we know that z∗ belongs to M(z) (by assumption) and that z ∈ M(z∗)
(since z is Turing-below z∗). We then have that M(z) = M(z∗) since in
general x0 ∈M(x1) implies that M(x0) ⊆M(x1).

We know that ψ holds in M(z∗) simply because M(z∗) = M(z) and
ψ holds in M(z). Recalling the definition of f(α), we note that f(α)
was chosen specifically so that for any x, M(f(α)) and M(x) have the
same theory with parameter α for any x that are Turing-above f(α).
Since z∗ is Turing-above f(α), we know that ψ holds in M(f(α)). We
also know that f(α) belongs to M(y) (since f(α) belongs to N ), and so
we can choose a real y∗ in M(y) that is Turing-above both y and f(α).
Then, as before, M(y∗) = M(y) (since y∗ ∈ M(y) and y ∈ M(y∗)). But
now, since y∗ is Turing-above f(α), M(y∗) has the same theory with
parameter α as M(f(α)), and so ψ holds in M(y∗) = M(y). But ψ
exactly says that φ holds in a Σn-definable inner model, and so φ holds
in a definable inner model of M(y) as desired.

Remark 29. The above proof can be modified to fit the version of the
OIMH−Ref that has ground model and outer models satisfying NBG−Ref .
In that context, the model we should take is (M(y), C) where C con-
sists of the M(y)-definable classes, and the outer model M should be
a model of NBG−Ref (and hence of the form (M,C)). By assuming that
φ holds in an inner model M0 of (M,C), we can assume that in fact
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C consists only of the classes definable over (M,A) for a single class
A (so that M0 is definable over (M,A)). Then we enlarge (M,A) to a
model of the form (M(z), C(z)), z a real, where C(z) consists only of
the M(z)-definable classes (via Jensen coding (M,A)) and over which
(M,A) is definable.

Theorem 28 represents a substantial improvement over the EIMH,
showing that the OIMH−Ref is consistent relative to large cardinals, and
moreover with the DC-Scheme.

However, to answer the Motivational Challenge, we would like to
derive the consistency of large cardinals from the OIMH−Ref . As it turns
out, ZFC−Ref with the OIMH−Ref added proves the existence of 0]. Before
we prove this we need a short lemma concerning the formulation of 0]

we will use in this context. In particular we will need to ensure that
we can treat Σ1-L-indiscernibles as full L-indiscernibles:

Lemma 30. (ZFC−Ref ) Suppose that C is a club of Σ1-indiscernibles for L
(i.e. for a Σ1-formula φ, φ(~x)L iff φ(~y)L for increasing tuples ~x, ~y from C of
the same length). Then C consists of Σω- indiscernibles for L, i.e. for any φ,
φ(~x)L iff φ(~y)L for increasing tuples ~x,~y from C of the same length.

Proof. First we show that if α belongs to C then Lα is Σn-elementary
in L for each n. Because C is a club and the class of α such that Lα is
Σn-elementary in L is also a (definable) club, there are unboundedly
many α in C such that Lα is Σn-elementary in L. In particular there
are α < β in C such that Lα is Σn-elementary in Lβ . But then by Σ1-
indiscernibility, Lα is Σn-elementary in Lβ for all α < β in C, since
“Lα is Σn-elementary in Lβ” is a ΣL

1 -statement about the pair 〈α, β〉. It
follows that for each α in C, Lα is Σn-elementary in L because L is the
limit of the Σn-elementary chain of Lα for α in C.

Now suppose that φ is arbitrary and ~x, ~y are tuples in C of the same
length. Choose α in C greater than ~x, ~y. Now φ(~x)L is equivalent to
φ(~x)Lα because Lα is Σn-elementary in L. Moreover φ(~x)Lα is equiva-
lent to φ(~y)Lα because 〈~x, α〉 and 〈~y, α〉 are increasing tuples from C of
the same length and “φ(~x)Lα” is a ΣL

1 -statement about 〈~x, α〉, and the
same goes for “φ(~y)Lα”. Finally, φ(~y)Lα is equivalent to φ(~y)L because
Lα is Σn-elementary in L. In conclusion, φ(~x)L iff φ(~y)L, showing that
C consists of Σω-indiscernibles for L.

We can now prove:

Theorem 31. Suppose that V satisfies ZFC−Ref +OIMH−Ref . Then V satisfies
“0] exists”.
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Proof. Suppose that V satisfies ZFC−Ref + OIMH−Ref . By preparatory
forcing (exactly as in Theorems 25 and 28) we can choose an outer
model of V satisfying ZFC−Ref of the form L[x] for a real x, in which
every set is countable and the OIMH−Ref holds. (Note that if V is a de-
finable inner model of W and V satisfies the OIMH−Ref then so does W ,
because definable inner models of V are also definable inner models of
W . Fortunately, when we force to turn V into L[x] for a real x, V will
be a definable inner model of L[x], and so the OIMH−Ref indeed holds
there.) We’ll show that in L[x] there is a real y coding a ∆1-definable
club of Σ1-indiscernibles for L (when we say that a real y codes a ∆1-
definable clubC we mean thatC is ∆1-definable with parameter y over
L[y]). Then it follows from the OIMH−Ref over V that there is such a real
in V , completing the proof.

We begin our journey in L[x], with the following:

Lemma 32. Work in L[x]. Suppose that φ is a parameter-free formula with
one free variable. Then for some ∆1-definable (with real parameter) club C,
either φ(α) holds in L for all α in C or φ(α) fails in L for all α in C.

Proof of Lemma 32. Without loss of generality suppose that the class X
of α such that φ(α) holds in L is definably-stationary in L[x] (i.e.X
hits every L[x]-definable club). (Note that either X or its complement
must be definably-stationary in L[x], as otherwise we would obtain
a contradiction from the existence of two disjoint clubs definable in
L[x].)

Then over L[x] we can force a club C through X such that (L[x], C)
satisfies ZFC−Ref : Conditions in P are closed subsets of X , ordered by
end-extension. The forcing is ω-distributive, i.e. if 〈Di|i < ω〉 is a defin-
able sequence of open dense classes, any condition p can be extended
to a condition q belonging to each Di. This is because by Reflection in
L[x] there is a definable club of ordinals C ′ such that for every α ∈ C ′,
〈Di ∩ Lα[x]|i ∈ ω〉 is dense in P ∩ Lα[x]. By the definable stationarity
of X we can choose such an α in X ; then extend p ω-many times to
conditions in Lα[x], hitting the various Di. The union pω of these con-
ditions together with α on top is a condition since α belongs to X and
because taking the union of end-extending closed sets yields a closed
set provided you add the relevant supremum (namely the supremum
of the union).

But as every set is countable (by the OIMH−Ref in L[x]) this shows
that P is (< Ord)-distributive. This distributivity yields pretameness
and therefore ZFC−Ref preservation (and indeed ZFC−Ref preservation
relative to the generic club added).
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We can now further force over (L[x], C) to add a real y so that C is
∆1-definable over L[y] with parameter y. This can be done with almost
disjoint coding. To do the coding we need a definable class X such
that each ordinal α is not only countable, but countable in L[X ∩ α].
But in the present setting, this is trivial as we can take the class X to
simply be the real x. Moreover, in a general setting, to code a class X
by a real with almost disjoint coding (when every set is countable) we
need a sequence of distinct reals 〈rα|α ∈ Ord〉 where each rα can be
defined just from the data given by X ∩ α. So if we have “decoded”
X ∩α we can find rα and then “decode” X ∩ (α+ 1), and then one can
inductively “decode” all of X . In the present setting we can assume
that C consists only of infinite ordinals and take X to be x ∪ C and
take rα to be the α-th real in the canonical well-order of L[x]. Then
for all (infinite) α, X ∩ α gives us x and therefore rα. To code X by a
generic real y, we replace each rα by the set of codes for its finite initial
segments (so that the various rα are pairwise almost disjoint) and force
the existence of a y with the property that α belongs toX iff y is almost
disjoint from rα. We now have an extension L[x, y] in which C is ∆1-
definable from x and y. If desired, x and y can be combined into a
single real z, with C ∆1-definable in the parameter z over L[z]. All that
needs to be checked (before we can pull back the inner model from
L[z] to L[x] using the OIMH−Ref in L[x]) is that the forcing to add y over
L[x] preserves ZFC−Ref . But this follows from the fact that the almost
disjoint coding has the Ord-chain condition, proving Lemma 32.

We can now use Lemma 32 to show the existence of the indis-
cernibles required for Theorem 31. Using Lemma 32, for each Σ1-
formula φ with one free variable choose a ∆1-definable (in some real
parameter) club C(φ) so that either φ(α) holds in L for all α in C(φ) or
φ(α) fails in L for all α in C(φ). Note that these choices can be made
definably so the intersection C1 of the various C(φ) is a definable club
of ordinals with φL(α) iff φL(β) for all α, β ∈ C1 and all Σ1-formulas φ
with one free variable. To describe these classes of indiscernibles the
following definition will be useful:

Definition 33. A class X of ordinals is Σm-n-indiscernible for L if for
any two increasing n-tuples ~α, ~β from X and any Σm-formula φ with
n-many free variables:

φL(~α)⇔ φL(~β)

Using this terminology, we can describe C1 as a club of Σ1-1-
indiscernibles for L.
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Again, using the methods of Theorem 25 and 28, we can force to
make C1 ∆1-definable in a real and by the OIMH−Ref we have a ∆1-
definable club of Σ1-1-indiscernibles for L in L[x] (we’ll also denote
this club by ‘C1’ for the sake of convenience).

Now we want to go to more free variables before we intersect the
clubs together to get the full L-indiscernibles required for 0]. For each
Σ1-formula φ with parameter α in two free variables use Lemma 32
choose a ∆1-definable (in a real parameter) club C1(α, φ) so that either
φ(α, β) holds in L for all β in C1(α, φ) or φ(α, β) fails in L for all β in
C1(α, φ). In the former case we say that α is φ-positive and in the latter
case φ-negative. Either the first case holds for stationary-many γ or the
second case holds for stationary-many γ (or both). By shooting a club
we can ensure that either the first case holds for a club or the second
case holds for a club (in either case, let the relevant club be C ′2). We
thin this club C ′2 further by intersecting with the diagonal intersection
of the various C1(α, φ) i.e. we take all β in C ′2 which belong to C1(α, φ)
for all α < β and all Σ1-formulas φ with parameter α. Call this club C2.
Now if α < β and α∗ < β∗ are in C2 and φ is a Σ1-formula with two
free variables we have:

φL(α, β)⇔ φL(α, β∗)

This holds because both β and β∗ belong to C1(α, φ) iff φL(α∗, β∗)
(which in turn holds because either both α and α∗ are φ-positive or
both α and α∗ are φ-negative). Thus,C2 is a class of Σ1-2-indiscernibles.
Again applying the OIMH−Ref we can assume that C2 is ∆1-definable (in
a real) in L[x].

We then repeat this to get ∆1-definable clubs of Σ1-3-indiscernibles
by choosing C2(α, φ) to be a ∆1-definable club such that either
φL(α, β, γ) holds for all β < γ in C2(α, φ) or φL(α, β, γ) fails for all
β < γ ∈ C2(α, φ) and proceed as in the previous step to get a club
C3 which is ∆1-definable in a real, consisting of Σ1-3-indiscernibles
for L. By repeating this procedure we get ∆1-definable clubs of Σ1-
4-indiscernibles, Σ1-5-indiscernibles and so on in L[x]. We continue
this for ω-many steps and produce a definable sequence 〈Cn|n < ω〉
of clubs which are ∆1-definable in a real so that Cn consists of Σ1-n-
indiscernibles for L. Then the intersection

⋂
n∈ω Cn is a definable club

of Σ1-indiscernibles for L, and by Lemma 30, this club is also fully Σω-
indiscernible for L, and thus we have 0] in L[x]. Using the OIMH−Ref
over V we pull 0] back into V , completing the proof.

To sum up, we are now in a position where:
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(1.) ZFC−Ref + OIMH−Ref is provably consistent from ZFC + PD (Theo-
rem 28), and

(2.) ZFC−Ref + OIMH−Ref proves “0] exists” (Theorem 31) and thus that
ZFC with many large cardinal axioms added holds in L.

The obvious question now becomes: How does this affect the
prospects for countabilist foundations regarding the roles identified
in §1? We will now turn to this issue.

8 Set theory as a foundation under countabil-
ism

Before we dive right in to the relevant constraints, let’s review how the
uncountabilist and countabilist view each other’s perspective. One
naive kind of criticism of the countabilist would be to say that they
have an ‘impoverished’ perspective because they do not consider un-
countable sets. But this criticism fails to take the countabilist perspec-
tive seriously. Both the uncountabilist and the countabilist look at one
another and think that the other misses out sets. The uncountabilist
thinks that the countabilist stops at H(ω1), or lives in some countable
transitive model of ZFC− + Count. The countabilist on the other hand
looks at the uncountabilist and thinks that they fail to consider all the
available collapses that should exist, and lives in some impoverished
inner model satisfying ZFC (possibly with large cardinals added).26

The idea that countabilism is in some sense ‘impoverished’ is thus fun-
damentally question-begging.

For this reason, the foundational desiderata from §1 are especially
salient in comparing the two perspectives. As noted in §1, ZFC-based
set theory is able to afford a flexible way of understanding mathemat-
ics that fulfils the roles of Generous Arena, Shared Standard, Meta-
mathematical Corral, and Risk Assessment, and do so whilst provid-
ing responses to the Motivational Challenge on the basis of Maximal-
ity. How does the countabilist fare? In this section, we argue that
the countabilist responds reasonably well to these constraints, though

26This observation can, in fact, be mobilised in favour of a Maddy-style (based
on the analysis in [Maddy, 1998]) argument that it is the uncountabilist who has
the restrictive position—note that the countabilist has ZFC plus large cardinals in
inner models, whereas the uncountabilist only has models of countabilist theories
in transitive models (with height at most ω1). There are, in fact, a whole gamut of
different restrictiveness conditions we might consider. We defer examination of this
philosophically complex issue to future work.
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in a manner somewhat different from the uncountabilist. However,
we’ll argue that Risk Assessment remains somewhat contentious, and
could form the basis of future research into countabilist accounts of set
theory.

Let us start with Generous Arena since it shows perhaps the stark-
est distinction between uncountabilist and countabilist perspectives.
It first bears mentioning that some work has already been done here.
Holmes, when considering a system he calls Pocket Set Theory (that
includes an axiom that every set is countable) writes:

It is well-known that coding tricks allow one to do classi-
cal mathematics without ever going above cardinality c: for
example, the class of all functions from the reals to the re-
als, is too large to be even a proper class here, but the class
of continuous functions is of cardinality c. An individual
continuous function f might seem to be a proper class, but
it can be coded as a hereditarily countable set by (for ex-
ample) letting the countable set of pairs of rationals (p, q)
such that p < f(q) code the function f . In fact, it is claimed
that most of classical mathematics can be carried out using
just natural numbers and sets of natural numbers (second-
order arithmetic) or in even weaker systems, so pocket set
theory (having the strength of third order arithmetic) can
be thought to be rather generous. ([Holmes, 2017], §9.1)27

So we can code a lot of mathematics relatively easily on the count-
abilist perspective. The reals are a proper class and talk of many un-
countable entities (like the continuum) should be understood as con-
cerning the classes (probably in an appropriate extension of NBG−Ref ).
There is a sense though on which the perspective considered is some-
what revisionary, entities that standardly have more objects than there
are real numbers (e.g. the function space on the reals) do not exist. In a

27Similar remarks are available in [Holmes et al., 2012]:

The collection of all functions from the reals to the reals is too large, but
notice that the collection of continuous functions from the reals to the
reals is of size c and can be represented in fairly natural ways, and in
general the constructions actually needed in mathematical physics (or
any mathematics short of set theory and shorn of excessive levels of ab-
straction) do not transcend the cardinality c. Points of Hilbert space are
countable sequences of real numbers (thus sets) and continuous func-
tions on Hilbert space are representable just as continuous functions on
the reals are representable, and so forth. ([Holmes et al., 2012], pp. 581–
582)
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similar way, the uncountabilist must draw a line—for her the function
space on the classes of ordinals does not exist. The countabilist simply
thinks that those two problems come down to the same thing. Two
points are in order:

First, for certain uncountable structures we can use elementary
equivalence to export results from small structures to large ones. For
example, when proving facts about the reals (conceived of as a field),
we can use the fact that the algebraic reals (of which there are only
countably many) form an elementary substructure of the class of all
reals.28 But this is a point about the theory of (R,+,×, 0, 1, <) and does
not depend on uncountable sets in any way. Thus, if we want to know
what holds in R we can also examine the smaller object, and subse-
quently export results back via the elementary equivalence. Of course
this does not deal with every situation in which we talk about the reals
(for example often we want to talk about the transcendental numbers)
but for a wide class of applications it does suffice.

The second point is simpler: Since we have provided a perspec-
tive on which we have inner models of ZFC (and much more) we can
provide some interpretation of all the objects that normally exist in the
universe under ZFC simply by interpreting them as concerned with
objects in some (impoverished) inner models of ZFC. Moreover, these
models provide a very natural place for the uncountabilist to work:
The structures look very much like the uncountabilist’s world in that
they contain all ordinals, are transitive, and we have ZFC there. They
are only deficient in failing to take into account every collapsing func-
tion that exists in the universe. This situation chimes well with Scott’s
remarks concerning the Cohen-Scott Paradox; we have “pleasant ax-
ioms” (namely the OIMH−Ref ) that generates many of the usual models
as “submodels of the universe” with the continuum “not even a set”
and where all (set) cardinals are “absolutely destroyed”.

Thus Generous Arena is only a problem if we assume that our talk
about uncountable structures with cardinality above the reals is trans-
parent (in that these objects really do have the properties they have un-
der ZFC) thereby begging the question against the countabilist. The
countabilist can perfectly well interpret much classical mathematics in
her class theory, and what goes beyond NBG−Ref + Count can be in-
terpreted in inner models satisfying ZFC. This then closely links in
with Shared Standard—we can have a shared standard for interpret-
ing proofs in set theory, it is just that the role of ZFC-based proofs is
somewhat different and is to be interpreted as proving theorems about
sets in some impoverished universe. Metamathematical Corral is also

28We thank Rodrigo Freiere for pointing this out to us.
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unaffected—we can study models of set theory (including ZFC mod-
els) exactly as before, either in the wider world of NBG−Ref or within
some other ambient model of ZFC.

Risk Assessment is somewhat more complicated. Whilst we have
answered the Motivational Challenge via the idea of the universe be-
ing saturated under ‘possible’ sets (in line with Maximality) it should
be noted that ZFC-based set theory has something more—a clear in-
tuitive description of an underlying structure given by the iterative
conception. This is partly (along with the long and unsuccessful at-
tempt to find a contradiction) what convinces many that ZFC and its
extensions is consistent.

There are a few points to note here, and things are subtle. The first
is that, strictly speaking, the countabilist can simply piggy-back off the
Risk Assessment provided by the iterative conception. This concep-
tion, she can contend, should indeed convince us that ZFC embodies
a consistent conception of set. Unfortunately, is just that Maximality
(for her) tells against the truth of ZFC. So, for the countabilist, the co-
herent picture provided by the iterative conception convinces her that
ZFC is consistent. Indeed, part of the strategy outlined earlier is to use
ZFC plus large cardinals to provide a consistency proof for her favoured
theory of sets (namely ZFC−Ref + OIMH−Ref , possibly with a class the-
ory added on top). This is not incoherent behaviour, but rather simply
using a theory that is believed to be false but consistent to prove that a
theory that is believed to be true is consistent.

This response, whilst coherent, is somewhat unsatisfying.29 One
might rightly complain that ZFC-based set theory still has a clear un-
derlying conception where the countabilist perspective does not. This,
one might think, speaks (ceteris paribus) in favour of ZFC. If one
is moved by this criticism, there are two main responses one could
muster here:

(1.) Come up with some non-iterative conception to underwrite count-
abilism and (extensions of) ZFC− / ZFC−Ref .

(2.) Modify or reinterpret the iterative conception to make it work on a
countabilist perspective.

(1.) we leave as an open question in the final section, we do not see
an easy strategy here. However (2.) is more promising, though several
details remain open.

One way of addressing (2.) is modally. The iterative conception
has been given a ‘height potentialist’ formulation in [Linnebo, 2013].

29We thank Leon Horsten for some helpful discussions here.
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Even if one thinks that there is one maximal universe of sets, one can
view [Linnebo, 2013] as giving a modal description of a set construc-
tion process, increasing our confidence in the claim that whatever is
described is consistent. The fact that Linnebo’s modalised theory inter-
prets ZFC under a modal translation of ZFC’s quantifiers (replacing
∀ and ∃with�∀ and ♦∃) increases our confidence in the consistency of
ZFC by giving us something of an underlying conception—we know
that there is a modal picture of how the universe is obtained. Recently
Chris Scambler (in [Scambler, 2021]) has shown that there is a kind of
modal theory that generalises this ‘upward’ modal picture of the itera-
tive conception by incorporating vertical modality (adding ranks) and
horizontal modality (adding forcing generics). He shows that the re-
sulting theory interprets ZFC− + Count under the same modal trans-
lation (and, in turn the theory is consistent relative to ZFC with the
existence of a Mahlo cardinal).30 This gives us confidence that there
is a coherent underlying conception to be had for ZFC− + Count—we
can describe a modal picture of the universe that interprets the right
theory under the natural modal translation.

A second alternative is to reinterpret the notion of what it means
to say all possible sets in articulating the iterative conception. Normally
what is required for the iterative conception is that when we grab “all
possible subsets” at a successor stage, “all possible” coincides with
“absolutely all”. Instead, the countabilist wants a picture on which we
grab at most countably-many at successor stages (assuming we want
to keep the stages set-sized). In order for all sets to be included in this
iterative process, we need to have the universe well-ordered in order
typeOn. In that case we could define (lettingR denote this well-order)
the countabilist hierarchy V C as follows:

Definition 34. The Countabilist Iterative Hierarchy is defined as follows:

V C
0 = ∅
V C
α+1 = Def(Tα) ∪ {x}, where x is the R-least set not in V C

α .

V C
λ =

⋃
β<λ V

C
β

V C =
⋃
α∈On V

C
α

This would provide us with a hierarchy that stratifies the count-
abilist’s universe in much the same way as the Vα hierarchy does for

30[Scambler, 2021] actually shows this for ZFC−, but an easy modification to his
proof (namely by changing his formulation of ZFC to include Collection and Sep-
aration rather than Replacement) yields ZFC−. We thank Dr. Scambler for some
discussion concerning these details.
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the uncountabilist. Unfortunately, this hierarchy is somewhat unsat-
isfying as is. First, we have no idea what R is like and indeed it is
an additional commitment (one that seems to come from nowhere) be-
yond the normal prerequisites for an iterative hierarchy. Whilst the
ZFC theorist needs the ordinals to generate the relevant Vα, this pre-
sentation of a countabilist hierarchy needs the ordinals and R. Second,
the existence of such an R in the countabilist context is equivalent to
CH. This, one might think, is an excessively specific assumption that
needs to be used to generate a reasonable hierarchy.31

More promising might be the following idea: We iteratively add in
collapses of the various sets to ω. The main problem here is to select
the right collapse, but if one can stomach a Boolean universe one could
build up a canonical universe V B consisting of Boolean-valued names
so that for every name for a set there is also a name for a collapse
of that set to ω. This leads to the idea that the universe looks like
V Col(ω,<Ord) where V is a inner model of ZFC (without names) and
then the hierarchy is V Col(ω,<Ord) =

⋃
α∈Ord V

Col(ω,<α)
α .32

One might object that this only produces models of ZFC− + Count
of a special form—those obtained from a model of ZFC by forcing
with Col(ω,< Ord)—but it does at least produce the germ of an idea
for developing non-arbitrary iterative hierarchies for the countabilist.
Nonetheless, it is unclear whether the countabilist’s appeal to a differ-
ent interpretation of what collecting together ‘all possible’ sets at suc-
cessor stages entails (and whether the possible responses suggested
here have substantial mileage) is satisfactory. Exactly how to resolve
these questions we leave open, but it is at least clear that there are op-
tions for modifying the iterative conception to suit the countabilist, and
it seems too quick to dismiss their position on these grounds.

9 Conclusions and Open Questions

We have argued that there are perspectives on Maximality in set the-
ory on which every set is countable and on which set theory can
perform many, if not all, of its usual foundational roles. Moreover,
this view motivates theories with a non-trivial degree of consistency

31There is a kind of perverse argument one might give here to the effect that
we have solved the continuum problem: The countabilist might contend that since
NBG−Ref is true and since the price of stratification is the existence of such anR, then
we should accept CH on extrinsic grounds. Of course, this argument is unlikely to
convince anyone of the truth of CH.

32This idea is somewhat reminiscent of [Steel, 2014]’s consistency proof of his mul-
tiverse theory. See [Maddy and Meadows, 2020] for a recent presentation.
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strength. In this way, it represents a completely different perspective
compared to standard ZFC-based set theory, but one that is nonethe-
less able to do many of the same jobs. There are, however, several
open questions for the proposal. An important observation is that a
key difference between the countabilist and uncountabilist—one the
uncountabilist might use to apply philosophical pressure—is that the
underlying conception for the countabilist is unclear. However, more
work needs to be done on behalf of the countabilist before this con-
clusion can carry the required philosophical weight—after all we have
spent a long time studying the iterative picture intertwined with ZFC-
based uncountabilist set theories in comparison to countabilist per-
spectives. We therefore ask:

Question. Are there non-iterative underlying conceptions that validate
the countabilist perspective?

Further, if an iterative strategy is in fact desired:

Question. What are the available options for stratifying the heredi-
tarily countable sets in order to provide an iterative picture for the
countabilist, and how might they be philosophically motivated?

The next question concerns the mathematics of how the principles
we have examined might be developed:

Question. Is it possible to find natural principles (e.g. by modifying
the relevant absoluteness principle in question) that increase the large
cardinal strength further (other than the brute force strategy)? Can this
be done so as to yield more inner models with stronger large cardinals?

We want to close on one final important (but more nebulous) chal-
lenge. We hope to have shown that there are perspectives on maxi-
mality on which every set is countable. Moreover, this view performs
well with respect to the usual jobs we expect from set theory and in
particular can be used to motivate a theory with reasonably high inter-
pretative strength. This raises deep questions for the claim that ZFC
and its extensions are our best-justified theories of sets, given that the
countabilist can provide a well-motivated foundational theory. This
raises the more general question:

Question. What do we really want set theory for? Is it merely a tool
designed to fulfil certain foundational goals? Or is it part and parcel
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of our conception of set that it provide a study of many uncountably
infinite cardinals?33
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