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Abstract

The study of set theory (a mathematical theory of infinite collections) has garnered
a great deal of philosophical interest since its development. There are several rea-
sons for this, not least because it has a deep foundational role in mathematics; any
mathematical statement (with the possible exception of a few controversial exam-
ples) can be rendered in set-theoretic terms. However, the fruitfulness of set theory
has been tempered by two difficult yet intriguing philosophical problems: (1.) the
susceptibility of naive formulations of sets to contradiction, and (2.) the inability of
widely accepted set-theoretic axiomatisations to settle many natural questions. Both
difficulties have lead scholars to question whether there is a single, maximal Universe
of sets in which all set-theoretic statements are determinately true or false (often de-
noted by ‘V ’). This thesis illuminates this discussion by showing just what is possible
on the ‘one Universe’ view. In particular, we show that there are deep relationships
between responses to (1.) and the possible tools that can be used in resolving (2.).
We argue that an interpretation of extensions of V is desirable for addressing (2.) in
a fruitful manner. We then provide critical appraisal of extant philosophical views
concerning (1.) and (2.), before motivating a strong mathematical system (known
as‘Morse-Kelley’ class theory or ‘MK’). Finally we use MK to provide a coding of
discourse involving extensions of V , and argue that it is philosophically virtuous. In
more detail, our strategy is as follows:

Chapter I (‘Introduction’) outlines some reasons to be interested in set theory
from both a philosophical and mathematical perspective. In particular, we describe
the current widely accepted conception of set (the ‘Iterative Conception’) on which
sets are formed successively in stages, and remark that set-theoretic questions can
be resolved on the basis of two dimensions: (i) how ‘high’ V is (i.e. how far we go
in forming stages), and (ii) how ‘wide’ V is (i.e. what sets are formed at successor
stages). We also provide a very coarse-grained characterisation of the set-theoretic
paradoxes and remark that extensions of universes in both height and width are rele-
vant for our understanding of (1.) and (2.). We then present the different motivations
for holding either a ‘one Universe’ or ‘many universes’ view of the subject matter of
set theory, and argue that there is a stalemate in the dialectic. Instead we advocate
filling out each view in its own terms, and adopt the ‘one Universe’ view for the
thesis.

Chapter II (‘Gödel’s Programme’) then explains the Universist project for formu-
lating and justifying new axioms concerning V . We argue that extensions of V are
relevant to both aspects of Gödel’s Programme for resolving independence. We also
identify a ‘Hilbertian Challenge’ to explain how we should interpret extensions of
V , given that we wish to use discourse that makes apparent reference to such non-
existent objects.

Chapter III (‘Problematic Principles’) then lends some mathematical precision
to the coarse-grained outline of Chapter I, examining mathematical discourse that
seems to require talk of extensions of V .

Chapter IV (‘Climbing above V ?’), examines some possible interpretations of
height extensions of V . We argue that several such accounts are philosophically
problematic. However, we point out that these difficulties highlight two constraints
on resolution of the Hilbertian Challenge: (i) a Foundational Constraint that we do
not appeal to entities not representable using sets from V , and (ii) an Ontological
Constraint to interpret extensions of V in such a way that they are clearly different
from ordinary sets.
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Chapter V (‘Broadening V ’s Horizons?’), considers interpretations of width ex-
tensions. Again, we argue that many of the extant methods for interpreting this kind
of extension face difficulties. Again, however, we point out that a constraint is high-
lighted; a Methodological Constraint to interpret extensions of V in a manner that
makes sense of our naive thinking concerning extensions, and links this thought to
truth in V . We also note that there is an apparent tension between the three con-
straints.

Chapter VI (‘A Theory of Classes’) changes tack, and provides a positive charac-
terisation of apparently problematic ‘proper classes’ through the use of plural quan-
tification. It is argued that such a characterisation of proper class discourse performs
well with respect to the three constraints, and motivates the use of a relatively strong
class theory (namely MK).

Chapter VII (‘V -logic and Resolution’) then puts MK to work in interpreting
extensions of V . We first expand our logical resources to a system called V -logic,
and show how discourse concerning extensions can be thereby represented. We then
show how to code the required amount of V -logic using MK. Finally, we argue that
such an interpretation performs well with respect to the three constraints.

Chapter VIII (‘Conclusions’) reviews the thesis and makes some points regarding
the exact dialectical situation. We argue that there are many different philosophical
lessons that one might take from the thesis, and are clear that we do not commit
ourselves to any one such conclusion. We finally provide some open questions and
indicate directions for future research, remarking that the thesis opens the way for
new and exciting philosophical and mathematical discussion.
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Chapter I

Introduction

I.1 The rise of set theory

The 20th century saw a huge amount of change within mathematics and its philos-

ophy, partly precipitated by the powerful combinatorial methods offered by the de-

velopment of set theory. On the one hand, the new set-theoretic toolkit facilitated

several mathematical discoveries, including Cantor’s realisations that the study of

sets gave rise to new and various cardinalities and that there is, for any natural num-

ber n and space of the form Rn, a bijection between the unit interval and all the

points of Rn.1 Further, using the vast array of mathematical objects postulated, it

is possible to reinterpret almost2 any claim concerning mathematical objects as one

about sets. While the foundational significance of such a reduction is contested3

set theory nonetheless remains philosophically interesting for a number of reasons.

First, set theory represents our best mathematical theory of infinity. Second, the

combinatorial methods offered provide the current standard for confirming theories

as non-vacuous; a natural way to answer consistency concerns in mathematics is

1This led Cantor to remark (in correspondence with Dedekind) “Je le vois, mais je ne le crois pas!”,
Translated: “I see it, but I don’t believe it!” ([Ewald, 1996a], p860). It is an interesting question what
the Cantor of the turn of the century would make of contemporary set-theoretic methods (in their full
transfinite resplendency).

2There are possible exceptions to this claim. For example, the study of category theory is a discipline
that seems, prima facie, to go beyond the methods of set theory. There is a vast literature surrounding this
issue, and it is not at all clear that we should be persuaded that this appearance is philosophically commit-
ting. For discussion and exposition of some of the technical matters, see [Mac Lane, 1971], [Muller, 2001],
and [Linnebo and Pettigrew, 2011].

3See, for example, [Quine, 1960] who advocates a total set-theoretic reduction, the seminal
[Benacerraf, 1965] arguing that such a reduction cannot tell us what the objects of mathematics are, and
more recently [Paseau, 2009] for a defence of reductionism.
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to show that a particular theory has a model in the sets. Third, by beginning from

set-theoretic principles, we are able to set the standard for rigour in mathematics,

and ensure that it is not compromised in moving from one area of mathematics to

another.4

Despite these clear theoretical virtues, set theory has, almost since its discovery,

posed several infamous philosophical and mathematical problems. Initial attempts

to axiomatise a theory of extensions (such as [Frege, 1893]) were flat out inconsistent,

and a vast number of natural set-theoretic questions have turned out to be irresolv-

able using the standard axioms.

The philosophical landscape that has emerged as a result of these problems is

largely fractured, with many different tenable attitudes to set theory and its role

within philosophy. In this thesis, we work within realist philosophies of mathemat-

ics (broadly construed), in the sense that we assume that mathematical objects are

mind-independent entities, and mathematical truth is determined as a relationship

between syntax, interpretation, and this ontology. As we shall see in this chapter, a

major question that has emerged within such philosophies is the following: “How

many universes of sets are there?”. The answer to this question, as shall become ap-

parent, often depends on intuitions concerning the practice of mathematics. We be-

gin, therefore, by briefly characterising some of the foundational issues to be brought

into sharper focus in the remainder of the thesis.

I.2 Proper classes

The first issue concerns the problems of paradox that have been a part of set theory

practically since its inception as a foundational framework. An appealing principle,

when one starts to think of mathematical collections is a principle of comprehension

for sets. If φ is any condition in the language of set theory L∈, we might think that

the following obtains:

[Naive Comprehension] ∃y∀x[x ∈ y ↔ φ(x)]

4For a detailed exposition of this position, see the excellent [Burgess, 2015] (esp. Ch 2).
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This states that for any particular condition φ, there is a set of those things sat-

isfying φ. The principle is initially attractive; sets are often thought of as collections

over and above their elements with a definite membership relation. Given some pre-

cise φ then, we might believe that Naive Comprehension should hold; since it seems

definite what objects fall under φ, we might expect to be able to collect them into a

set. As is well known, however, it is possible (in combination with other widely held

principles of set theory) to quickly derive contradictions.

We briefly survey the paradoxes to which Naive Comprehension gives rise. As

we shall see (in Chapter VI) the exact interpretation to be given to the ranges of

particular paradoxical conditions is philosophically significant. In order to clarify

the rest of the thesis, we first mention the background set theory we shall use (ZFC),

and then recast the paradoxes as theorems of ZFC.

I.2.1 ZFC

The axiomatic system we shall consider is Zermelo-Fraenkel Set Theory with Choice or

ZFC. It is the most widely5 used set theory within foundations.6 ZFC has classical

first-order logic with identity as the background theory, and the only non-logical

predicate is set membership, denoted by ‘∈’. We shall refer to this language as L∈.

ZFC comprises the following axioms:

Axiom 1. Axiom of Extensionality. ∀x∀y[∀z(z ∈ x↔ z ∈ y) → x = y].

Intuitive characterisation. Any two sets with the same members are identi-

cal.

Axiom 2. Axiom of Pairing. ∀x∀y∃p∀z[z ∈ p↔ (z = x ∨ z = y)].

Intuitive characterisation. For any two sets x and y there is a set containing

just x and y.

Axiom 3. Axiom of Union. ∀x∃y∀z∀w[(w ∈ z ∧ z ∈ x) → w ∈ y].

5Though there are alternative systems, see for example the kinds of set theory arising from the New
Foundations programme, given by [Quine, 1937] and developed by [Forster, 1995] and [Holmes, 1998].
There are also various constructive foundations, see [Feferman, 2009] and [Rathjen, 2012] for some exam-
ples.

6See [Fraenkel et al., 1973] for a discussion of the genesis of ZFC and comparison with other theories.
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Intuitive characterisation. For any set x, there is a set of all elements of

members of x.

Axiom 4. Axiom of Choice. If F is a set of pairwise-disjoint non-empty sets

then:

∃c ∀x ∈ F ∃y(c ∩ x = {y}).

Intuitive characterisation. For any non-empty set of pairwise-disjoint non-

empty sets, there is a set that picks one member from each.7

Axiom 5. Axiom of Infinity. ∃x[∃y y ∈ x ∧ (∀z z ∈ x→ z ∪ {z} ∈ x).

Intuitive characterisation. There is a non-empty set such that if it contains

a set z, it also contains z unioned with its singleton. The axiom thus

guarantees the existence of an infinite set.8

Axiom 6. Power Set Axiom. ∀x∃y∀z(z ∈ y ↔ z ⊆ x).

Intuitive characterisation. For any set x, there is a set of all subsets of x.

Axiom of Foundation. ∀x(x 6= ∅ → ∃y ∈ x y ∩ x = ∅).

Intuitive characterisation. Every set contains an element that is disjoint

from it. The axiom both rules out self-membered sets and also the exis-

tence of infinite descending membership chains.

Axiom 7. Axiom Scheme of Separation. If φ is a formula in L∈ with y not

free then:

∀x∃y∀z[z ∈ y ↔ (z ∈ x ∧ φ(z))]

Intuitive characterisation. Given a set x, one can ‘separate’ out the φs from

x into a new set y.

Remark 8. In first-order ZFC, this is actually a scheme, since there is one

axiom for every formula φ of the correct form.

7There are a large number of equivalents of the Axiom of Choice, both within set theory and from other
areas of mathematics. We choose this formulation because it most naturally meshes with motivation from
the Iterative Conception of Set (see below).

8This claim is made slightly more complex by the fact that within set theory there are different defini-
tions of the notion of infinite set. This is usually made precise by defining a set to be finite iff it is bijective
with (a von Neumann representative of) a natural number (and infinite otherwise) or, alternatively, being
Dedekind-infinite iff it is bijective with a proper subset of itself. The issue is somewhat subtle, as the two
notions can come apart in the absence of the Axiom of Choice. See [Jech, 2002], p34 for details.
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Separation is derivable from the following axiom (modulo the other axioms of

ZFC):

Axiom 9. Axiom Scheme of Replacement. Let φ(p, q) define a function, in

the sense that if φ(x, y) and φ(x, z) both hold then y = z. Then:

∀x∃y∀z[z ∈ y ↔ ∃p ∈ xφ(p, z)].

Intuitive characterisation. Again, the above axiom represents an axiom

scheme, and states that if φ defines a function, then the image of any

particular set under φ is also a set.

If one wishes to remove the schematic nature of the above axiom, one might

instead opt for a second-order statement of Replacement (and therefore Separation).

For any second-order entity9 representing a function, we have:

Axiom 10. Second-Order Replacement. ∀F∀x∃y∀z[z ∈ y ↔ ∃p ∈ xF (p, z)]

We shall indicate the amount of higher-order resources allowed with subscripts

(so ‘ZFC2’ denotes second-order ZFC). In all other cases, where a difference is not

obvious from context, ‘ZFC’ denotes first-order ZFC.

The status of justification concerning axioms of ZFC is a thorny philosophical

issue in itself. There is some controversy surrounding each of the axioms, with the

possible exception of Extensionality.10 Certainly the justification of the different Re-

placement Axioms has been questioned (see for example [Potter, 2004]) as has the

Power Set Axiom (see [Feferman et al., 2000]). Since we are concerned here with set-

tling questions in ZFC and its extensions, we shall largely leave the justification of

ZFC unexamined, except where it helps to elucidate particular concepts or other

justifications.

As it turns out, full Naive Comprehension is inconsistent with ZFC. In order

to see from where contemporary set theory has arisen, and set up some material

that will be essential for arguments later, we provide a brief reconstruction of the

9We use the term ‘entity’ because it is not yet clear how to interpret the second-order variables. We
shall see some analysis of possible interpretations in Chapter VI. However, it should be noted that there
are other interpretations not canvassed in this thesis (see, for example, [Linnebo, 2006] and [Hale, 2013]).

10See, for example, Boolos’ comment that if any axiom deserves to be called analytically true, then the
Axiom of Extensionality is probably a good candidate ([Boolos, 1971], p230).
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paradoxes as negative theorems of ZFC, each a counterexample to Naive Compre-

hension (rather than in their original presentation as actual antinomies).

I.2.2 Russell’s Paradox

Russell’s paradox cuts to the very heart of set theory, in particular because the rea-

soning turns upon a simple use of the membership relation.

Theorem 11. [Russell, 1902] There is no set of all non-self-membered

sets.

Proof. Suppose there is such a set (let it be denoted by ‘R’). Since R is

a set, we may consider whether or not R ∈ R. Suppose R ∈ R. Then

R is self-membered, and so R 6∈ R, contradicting the assumption that

R ∈ R, ⊥. We can conclude, therefore, that R 6∈ R. But then R is non-self-

membered, and hence R ∈ R, ⊥. �

I.2.3 Cantor’s Paradox

Cantor’s Paradox turns on the mathematically fruitful notion of cardinality, where

two sets have the same cardinal number iff there is a bijection between them.11

Theorem 12. [Cantor, 1899]12 There is no universal set (set of all sets).

Proof. Suppose that there is such a set, let it be denoted by ‘U ’. We can

then apply the Power Set Axiom to U to yield P(U). By Cantor’s Theo-

rem, P(U) contains strictly more members than U . But as U was meant

to contain all sets, every member of P(U) is a set and hence a member of

U , ⊥. Thus, there is no such set.13 �

11This method for measuring the size of (possibly infinite) sets, originating with Cantor, is by far the
most widely used in modern set theory. However, for an alternative way of measuring set size, see
[Benci et al., 2006].

12We call this theorem Cantor’s Paradox because it uses Cantor’s Theorem concerning the relative car-
dinalities of sets and their power sets. There is a question as to whether Cantor himself would have
approved of the proof given here due to worries about the range of application of the power set axiom.
For textual evidence, see his correspondence with Hilbert in [Cantor et al., 1899].

13Often the proof is significantly shortened by simply producing the Russell reasoning and arguing that
a Russell set is obtainable by applying Separation (a quick consequence of Replacement) to U with the
condition x 6∈ x. The presentation given in terms of Cantor’s Theorem is more instructive for understand-
ing the nature of the paradoxes; it shows how notions of cardinality interact with the Power Set Axiom
and the existence of a Universal Set.
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I.2.4 The Burali-Forti Paradox

The Burali-Forti Paradox (noticed by [Cantor, 1899] and by [Russell and Whitehead, 1910]

on the basis of a theorem in [Burali-Forti, 1897]), is also interesting because of the

mathematical fruitfulness of the concept in question. The notion of ordinal and order-

type are, informally understood, ways a collection can be ordered in a linear and

well-founded manner. These concepts, as we shall see, are central to contemporary

set theory. A difficulty when speaking of these notions is that there are a variety of

philosophical and mathematical distinctions at play. In order to keep the required

level of precision, we will first clarify our notation by making some remarks about

the foundational role of set theory.

We remarked in §1 that it was possible to represent most (if not all) mathemat-

ical objects with sets. There are, therefore, two ways in which we may talk about

mathematical entities:

(1) We may speak about the mathematical entities in themselves.

(2) We might instead talk about the set-theoretic representatives of the entities in ques-

tion.

It is an open philosophical question whether or not mathematical entities simply

are their set-theoretic representatives, and one we lack the space to address here.14

It will be important throughout this thesis to be very precise about what we have

in mind when addressing the topic of “ways a collection can be ordered in a well-

founded manner”.

We first set up some notation that will be useful for distinguishing philosophical

and mathematical concepts throughout the thesis:

Notation 13. Concerning ordinals and order-types, we will follow the

following conventions:

(i) By order-type we mean the mathematical entity corresponding to a

14See [Benacerraf, 1965] for an argument that set-theoretic representatives (or any other objects for that
matter) cannot simply be what we talk about in mathematics, and [Paseau, 2009] for a defence of a set-
theoretic reduction.
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well-ordering (whatever that may be). We will denote these by un-

derlined lower-case Greek letters, e.g. ‘α’, ‘β’, ‘γ’, and so on.

(ii) By ordinal we mean a von Neumann representative15 of an order-type

α, and will denote these by the lower-case Greek letters ‘α’, ‘β’, ‘γ’,

etc.

(iii) The class of all ordinals of a model M, whatever its final interpreta-

tion may be, will be denoted by ‘OnM’.

(iv) Any set of all the ordinals in a model M will be denoted by ‘Ord(M)’.

(v) The order-type exemplified by OnM will be denoted by ‘ΩM’.

Theorem 14. [Burali-Forti, 1897], [Cantor, 1899], and [Russell and Whitehead, 1910]

There is no set of all ordinals (i.e. Ord(V ) does not exist).

Proof. Clearly Ord(V ) is transitive; it contains all and only the transitive

pure sets well-ordered by ∈, and so for any ordinal α ∈ Ord(V ), Ord(V )

contains all γ < α (since, by definition, every γ < α is also a transitive set

well-ordered by ∈), and hence all γ ∈ α. However, Ord(V ) is also well-

ordered by ∈. To see this, take any ∅ 6= X ⊆ Ord(V ). Suppose X does

not have a unique least element. Then, either (i) X contains an infinite

descending membership chain, contradicting the Axiom of Foundation,

or (ii) X contains two or more least elements, let them be denoted by

‘δ’ and ‘ζ’. Since δ and ζ are both ordinals, they are transitive sets well-

ordered by ∈. Hence δ ∪ ζ ∪ {δ} ∪ {ζ} is a transitive set well-ordered by

∈. However, this immediately yields that either δ < ζ or ζ < δ (given

that δ 6= ζ). In either case, this contradicts the claim that both δ and ζ are

∈-least in X . Thus Ord(V ) is itself a transitive set well-ordered by ∈, and

hence Ord(V ) ∈ Ord(V ), contradicting the Axiom of Foundation, ⊥. �

15The von Neumann ordinal representatives are defined recursively as follows. The representation of
the order-type of zero is the empty set. Next, if α is the representation of α, α+ 1 = α

⋃
{α}. Finally for

limit λ, λ =
⋃

β<λ β. Equivalently, an ordinal is a transitive pure set well-ordered by ∈, where a set x is

transitive iff whenever y ∈ x and z ∈ y then z ∈ x (i.e. x contains all elements of its members).
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I.2.5 Naive Comprehension examined

Let us take stock. We have seen that Naive Comprehension is inconsistent with the

axioms of ZFC. However, something of a puzzle remains. For, given any particular

structure16 M |= ZFC and paradoxical condition φ, there are some sets in M such

that each of them satisfies φ, but there is no set of all the φ in M. Some have taken

this datum to be philosophically problematic. Boolos, for example, writes:

“Wait a minute! I thought that set theory was supposed to be a theory

about all, ‘absolutely’ all, the collections that there were and that ‘set’

was synonymous with ‘collection’.” ([Boolos, 1998], p35)

As Boolos points out, we would like set theory to be our theory of all collections

whatsoever, yet it appears that (in a particular M) there are collections (namely the

collection of all φ) that are not in M. One might think that this threatens ZFC set

theory as our best theory of infinite collections; given a certain domain satisfying

ZFC, there are infinite collections not in that domain.17

Thus far, we have only stated the standard axiomatic system (i.e. ZFC) that

proves the existence of enough sets (and more) to represent all mathematical ob-

jects. From a philosophical perspective, however, there is a further salient question:

can such an axiomatic system be justified on good philosophical grounds?

I.3 The Iterative Conception of Set

The standard justification given has often been the Iterative Conception of Set. Un-

der such a conception, sets are formed in a well-ordered sequence of stages. Shoen-

field expresses the conception as follows:

“Sets are formed in stages. For each stage S there are certain stages which

are before S. At each stage S, each collection consisting of sets formed at

stages before S is formed into a set. There are no sets other than the sets

which are formed at the stages.” ([Shoenfield, 1977], p323)

16A note on notation: Throughout this thesis, uppercase fraktur letters denote arbitrary models of ZFC
(whether set-sized or proper-class-sized).

17We shall examine these issues in more detail in Chapter VI. As we shall see, the interpretation to be
given to such discourse over a particular structure is philosophically significant.
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Thus, under such a conception, we begin with the empty set18, and iterate the

power set operation through the ordinals, collecting stages together at limits. More

formally, we define the Cumulative Hierarchy of Pure Sets (or ‘V ’) as follows:

Definition 15. The Cumulative Hierarchy of Pure Sets:

V0 = ∅

Vα+1 = P(Vα)

For a limit ordinal λ:

Vλ =
⋃
β<λ Vβ

V =
⋃
Vα for α ∈ On (where On denotes the class of all ordinals19).

One can visualise the Cumulative Hierarchy in the following manner:

V0

V1

V2

...

Vω

Vω+1

...

Vω+ω

Vω+ω+1

...

Vω×ω

V(ω×ω)+1

...

The conception is pleasing for a number of reasons. First, the picture provided

by the Iterative Conception is theoretically simple and elegant. For example Boolos

writes:

18We could also have begun with a set of urelemente if we wished to examine impure set theory. Here,
we simply remark that for most mathematical purposes the addition of urelemente seems an unnecessary
complication (there are usually plenty enough sets to represent some given set of urelemente), and so we
refrain from providing discussion. This said, such systems have independent metamathematical interest;
see, for example [McGee, 1997].

19Of course, we have not said yet how we should understand reference to the class of all ordinals (an
especially salient point given the set-theoretic paradoxes). For now we simply leave this unexamined and
assume that the term can be given some philosophically acceptable interpretation. The issue will, however,
be examined in detail in Chapter VI.
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“ZF alone (together with its extensions and subsystems) is not only a

consistent (apparently) but also an independently motivated theory of

sets: there is, so to speak, a “thought behind it” about the nature of sets

which might have been put forth even if, impossibly, naive set theory had

been consistent. The thought, moreover, can be described in a rough, but

informative way without first stating the theory the thought is behind.”

([Boolos, 1971], p219)

Now, we need not agree with Boolos that the Iterative Conception is such that

it might (in some appropriate sense of modality) have been thought of without the

discovery of the paradoxes. Such a claim, at the very least, seems controversial.

However, we can agree that the picture provided is conceptually simple, and helps

the set theorist understand the range of standard20 models with which she works.21

The philosophical significance of this conceptual simplicity is hotly contested22, but

nonetheless it is part of what makes the Iterative Conception philosophically engag-

ing.

Second, the Iterative Conception easily blocks the formation of problematic sets,

and provides an explanation of why Naive Comprehension is false. Key here is that

for each of the paradoxical conditions (given appropriate set-theoretic interpretation)

there are satisfiers of the condition unbounded in a particular23 iterative hierarchy.

To see this more clearly, we briefly explain the cases of the conditions considered

thus far.

The case of the universal set is clear; new sets appear unboundedly throughout

the Vα. Similarly, it is easy to see that every set on the Iterative Conception is non-

self-membered, and hence the non-self-membered sets also appear unboundedly.

The issue with the Burali-Forti Paradox is a little more subtle, as it is unclear what

constitutes an order-type in set theory. However, it is standard practice to represent

20It is a simple consequence of the Compactness Theorem for first-order theories that ZFC has non-
standard non-well-founded models. These are clearly not founded on the Iterative Conception (however,
see [Field, 2003], [Hamkins, 2012], and [Barton, Fa] for discussion of the extent to which we can say such
models are unintended).

21For more on precisely what is supplied by the Iterative Conception, especially contrasted to category
theory, the reader is directed to [Linnebo and Pettigrew, 2011].

22See, for example, [Boolos, 1971], [Potter, 2004], [Paseau, 2007], [Maddy, 1988a] and [Maddy, 1988b].
23We say “particular” here, because this is true on any iterative hierarchy of any height.
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an order-type by a corresponding set-theoretic representative (commonly a von Neu-

mann ordinal24). It is then easy to show again that such representatives do not form a

set, and hence (at least insofar as set-theoretic representations are concerned), a con-

tradiction will not arise in from considering the representations of these objects.25

The situation is markedly more complex if we admit order-types as urelemente into

our theory of sets, as we could then have a set of all order-types appearing in V1. As

our interest is in pure set theory, we put aside these worries, but note that it repre-

sents a deep an interesting question for analysing the interaction between ordering

properties and set theory.26

A final reason that some philosophers have been attracted to the Iterative Con-

ception is that is that many have felt that it is compatible with justifications for

the standard axioms of ZFC. Extensionality, we note, is justified on independent

grounds; it is something like a (possibly partial) definition of what it is to be a set.

Pairing follows from the fact that given any two sets x and y existing in some Vα,

the pair {x, y} is formed at latest at Vα+1. Union is justified by the fact that for any

set x first formed at Vα, all elements of x exist at stages previous to Vα, and hence

all members of elements exist at stages prior to Vα, and so the set of all members of

elements of x exists (at latest) at stage Vα. The Power Set Axiom is justified by ap-

pealing to the fact that at each additional stage we collect together all subsets of Vα.

Thus for some set x first formed at Vα, all its elements exist prior to Vα, hence all sets

of elements of x exist at Vα, and hence P(x) exists at Vα+1. The case of Foundation

is a little more complex. Clearly there cannot be circular membership chains; if x

is first formed at Vα then in order to contain itself it would have to be first formed

before Vα, an immediate contradiction. If instead there were an infinite descending

membership chain, we would have an infinite descending sequence of stages. Since

the stages are indexed by the ordinal number sequence, we would then obtain an in-

finite descending sequence of ordinals, contradicting the understanding of ordinals

as well-ordered.

24The Burali-Forti reasoning is also blocked when representing order-types with other kinds of sets,
such as Zermelo’s representation (modified appropriately to allow generalisation to infinite sets), or rep-
resenting ordinals by (restricted) equivalence classes of sets (in the case where we have no restriction to
least rank on the equivalence classes, then not even a single ordinal is a set in a given iterative hierarchy).

25A fuller exposition of these issues is given in [Barton, 2012].
26See [Menzel, 1986] and [Menzel, 2014] for discussion and attempts at providing a framework theory.
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The Axioms of Infinity, Choice, and Replacement are more vexed, however, but

nonetheless arguments have been offered for each.

Infinity is perhaps a good candidate for an axiom that receives little justification

from the Iterative Conception alone, but nonetheless is independently justified. We

can think of Infinity as asserting the existence of a set of all von Neumann natural

numbers (modulo extracting a minimal inductive27 set using Replacement). The fact

that we are able to work coherently with the set of natural numbers, sets of natu-

ral numbers, and functions on reals, is witnessed by the independent conceptions

offered by number theory and analysis. However, viewed from an iterative stand-

point, we do not seem to get outside the finite; iterating on finite levels will only

yield more finite levels until we take the union at Vω . There are thus two main justi-

fications to which one can appeal on the Iterative Conception. One is to argue that it

is part of the Iterative Conception that we iterate ‘as far as possible’, and the appar-

ent consistency of operating under the Axiom of Infinity indicates that it is possible

to iterate to infinite stages. On this justification, however, there is the deep problem

of explaining how we should understand the notion of ‘as far as possible’. A second

justification is to note that we seem to work with infinite sets in non-set-theoretic

mathematics anyway, and so the Axiom of Infinity functions as something like a

prior mathematical assumption upon which we layer set theory.28 Certainly, how-

ever, the Iterative Conception is at least compatible with having infinite stages, and

amenable to heuristic explanations of why it meshes well with the Axiom of Infinity.

Turning to Choice, several authors have thought thatAC follows from the notion

of arbitrary subset. We can put the argument informally as follows. Let x be first

formed at Vα. We know then that all elements of x exist prior to Vα. Thus, all mem-

bers of elements of x also exist before Vα. Since we form all sets at successor stages,

a set C containing exactly one member of every element of x is formed by Vα. Hence

C witnesses the truth of AC.

The argument is patently unconvincing to a disbeliever in AC; by saying that

the subsets formed at successor stages facilitate the existence of a choice set for x, we

27A set y is inductive iff y is non-empty and x ∈ y implies that x∪{x} ∈ y. The existence of an inductive
set is precisely what the Axiom of Infinity delivers.

28For additional discussion of the Axiom of Infinity see [Maddy, 1988a].
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implicitly assume a notion of arbitrary subset that includes some form of choice prin-

ciple. However, such a justification nonetheless provides explanation for a believer

in Choice as to why the principle holds in the Cumulative Hierarchy.29

The justification for Replacement is at least as bad as Choice. Some have argued

that it is part of the iterative conception that we iterate the stages maximally far (for

example, [Drake, 1974]). Given this, they argue, our theory of sets should satisfy

first-order reflection: the claim that for any first-order φ in L∈, if φ holds then for

every α there is a β > α such that Vβ |= φ. Such a principle is (modulo ZC− Infinity)

equivalent to the Axioms of Infinity and Replacement.30 The extent to which such

a principle follows from iterativity alone is hotly contested31 and exactly what such

justifications guarantee is a subtle question32.

Instead, some authors have considered adding additional content to our concept

of set. Boolos, for example, says the following:

“Perhaps one may conclude that there are at least two thoughts “behind”

set theory.” ([Boolos, 1989], p19)

The paper in question provides a justification of several axioms (including Choice

and Replacement) based on a modification of Naı̈ve Set Theory denoted by FN (for

Frege-von-Neumann). Central to Boolos’ arguments is a restricted form of Frege’s

inconsistent Basic Law V (called ‘New V’) which incorporates a notion of limitation

of size. It would take us too far afield to study abstraction principles such as New V

in detail; however, limitation of size will be essential for parts of the thesis.

The notion of limitation of size encapsulates the idea that some objects form a set

just in case they are not ‘too big’. This seems to contrast with the Iterative Conception

which embodies a ‘limitation of rank’ principle; some objects form a set just in case

they are not unbounded in the Vα. Though the two conceptions are often regarded

as competing, it is an interesting question the extent to which the two can be fused.33

29For a more in-depth review of these sorts of argument, see [Maddy, 1988a]. For a full presentation
of the second-order argument for AC based on the Iterative Conception, see [Potter, 2004], §14.8. For a
detailed exposition of some of the technical issues surrounding AC, see the excellent [Jech, 1973].

30See [Levy, 1960] and [Montague, 1961].
31See [Boolos, 1971], [Boolos, 1989] and [Paseau, 2009].
32For discussion see [Koellner, 2009], [Welch, 2014], and [Barton, Fb].
33See Chapter VI and [Hallett, 1984] for discussion.
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Of course what counts as ‘too big’ is up for debate. Limitation of size comes in

two main forms34:

Weak Limitation of Size Principle. If some objects can be put in a one-to-one

correspondence with a set, then there is a set of those objects.

Strong Limitation of Size Principle. Some objects form a set iff they are not

bijective with the universe.

The latter entails the former, but not vice versa (Weak Limitation of Size does

not guarantee that if some objects are not bijective with all sets then there is a set

containing all of them). We shall see additional discussion of limitation of size in

Chapter VI. For now, we note that under both we easily obtain Replacement. By

Choice, for every set x there is an ordinal α such that there is a bijection between

x and α. Further, if we have a set x and a function f on x, the range of f cannot

be bigger than x. Hence y = ran(f) is bijective with an ordinal of length at most α,

and hence y is both not bijective with the ordinals and bijective with a set (namely

some γ ≤ α). Unfortunately, it is far from clear whether either principle follows from

iterativity.

The literature here is extensive, and it is outside the scope of the current work

to analyse the justification of ZFC in detail, unless it helps elucidate justificatory

procedures.35 In particular, limitation of size will reappear in Chapter VI, and will

form an important part of our final conclusions. However the preceding discussion

helps to highlight the following facts: (1.) the Iterative Conception has been seen as

the dominant pre-theoretically appealing notion of set, which in turn (2.) is capable

of blocking the paradoxes, and (3.) is amenable to at least heuristic explanations of

why the main axioms of set theory should hold. For these reasons and the purposes

of this thesis, we shall be concerned with philosophy of set theory as concerned with

iterative set theory in this sense, with ZFC taken as the starting point.

Despite this controversy regarding the status of justification of axioms of ZFC, it

is true that ZFC represents an elegant foundational theory (in the sense that it can

34This presentation is available in [Boolos, 1989]. For additional versions and historical remarks, see
[Hallett, 1984].

35[Boolos, 1971], [Boolos, 1989], [Maddy, 1988a] and [Potter, 2004] are good first references on the mat-
ter.
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provide the necessary objects to formalise claims about mathematics). In this way,

it provides an arena for facilitating the interrelation of mathematical structures and

comparing proofs. The sheer scale of transfinite objects postulated is also philosoph-

ically fascinating, and an examination of the vast ontology posited by ZFC will help

to elucidate how we, as philosophers, conceive of infinity. The Iterative Conception,

though it may not provide full and clear explanation of why every axiom of ZFC

should be true, nonetheless indicates a natural conception of a standard model of

ZFC, and explains why the paradoxes are blocked in such structures. We thus will

consider primarily ZFC set theory and its extensions under the Iterative Conception.

I.4 Extending models

Once we have a picture of sets as given by ZFC and underpinned by the Iterative

Conception, we note that the truth value of any statement of set theory ultimately

boils down to answering the following two questions:

(1) How far do the stages extend upwards?

(2) What sets are formed at successor stages?

The first question we may characterise as issues of height; we are interested in

what ordinals exist to index the stages. The second we may refer to as questions

concerning width; we care about what subsets of a given Vα are members of Vα+1.

The interesting issue for present purposes is that it seems that we can extend many

models in both of the above two senses.

We present the case of height extension first. Given a particular set-sized transi-

tive model of ZFC, we note that we can easily extend it in height. To do this, note

that the ordinals of the relevant set model M |= ZFC have a least upper bound

Ord(M). Clearly, Ord(M) 6∈ M by the Burali-Forti reasoning. We can then have

Ord(M) appearing as an ordinal in an extended model N, and in which M then ap-

pears as a set. Here, N might not satisfy ZFC, to remedy this one can close under

ZFC to form another set-sized model N′ |= ZFC such that M ∈ N′.36

36The details here are somewhat subtle, as it is consistent with ZFC that there is a single transitive
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Important here is that (with some additional assumptions37) any classical set-

sized structure M |= ZFC can be lengthened38 to form another set-sized structure

N′ |= ZFC with M ∈ N′. In this way, a natural view of the Iterative Conception

holds that any particular universe can be extended in height.39

One can also often extend the width of a particular hierarchy. The method of

forcing shall be discussed in more detail in future chapters. We provide a brief char-

acterisation of the method here. If M is a model satisfying ZFC that is countable in

V , and P = 〈P,≤P〉 is an atomless40 partial order in41 M, then we can define a new

set G (a filter on P intersecting every subset of M that is dense42 in P). Any such

G cannot then be in M (since the complement of G would be the dense set that is

missed when G ∈ M).

A key fact concerning forcing is that it provides a way of adding subsets to certain

models of ZFC in such a way that ZFC is preserved whilst altering the truth value

of many set-theoretic statements. For example, if M is a model satisfying ZFC+CH ,

then there is a simple forcing (Cohen forcing) that changes the value of the contin-

uum to any value not contradicting König’s Theorem.43. This holds not just for CH ,

but also a wide variety of sentences. Hamkins puts the point as follows:

“A large part of set theory over the past half-century has been about con-

structing as many different models of set theory as possible, often to ex-

set-sized model of ZFC: the so called Shepherdson-Cohen minimal model (see [Shepherdson, 1951],
[Shepherdson, 1952], [Shepherdson, 1953], and [Cohen, 1963], for details of the construction). Nonethe-
less the hypothesis that there are unboundedly many transitive models of ZFC is relatively weak; indeed
it is consistent relative to the existence of a proper class of inaccessible cardinals (which in turn is consis-
tent with V = L). The point is conceptual rather than technical; there are relatively weak assumptions
that yield unboundedly many set models of ZFC, between which we may move with fluidity.

37See previous footnote.
38In doing so, we might add subsets to the relevant model as well, so such a lengthening need not be

only in height. For example, Shepherdson-Cohen model (let it be denoted by ‘L’) is of exactly this form;
there is no transitive model M |= ZFC such that it L = (VM

α ,∈↾ VM
α ). To see this, note that in a model

Lβ of V = L, first-order φ is true iff for some n, φ is Σn and there exists a satisfaction predicate for
Σn formulas which says that φ is true. These partial satisfaction predicates range over Lβ+1 (i.e. are
Lβ -definable) and thus this yields a truth definition of Lβ which is first-order definable over Lβ+1 (and
therefore belongs to Lβ+2). Since L is countable and satisfies V = L, this truth definition is coded as a
real, and so any addition of height to another model of ZFC will necessarily add reals.

39This thought finds currency in both the historical and contemporary philosophical literature, see
[Zermelo, 1930], and more recently [Hellman, 1989] and [Isaacson, 2011].

40A partial order is atomless iff any element of P has ≤P-incompatible extensions.
41We shall see later that for certain forcing constructions the case where P is a subset (but not a set of)

M is also pertinent.
42A subset X of M is dense in P if for all p ∈ P, there is a q ∈ X such that q ≤P p.
43König’s Theorem states that for κ ≥ 2 and any infinite cardinal λ, cf(κλ) > λ. It implies that the

continuum cannot have cofinality ω. See [Kunen, 2013] for details.
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hibit precise features or to have specific relationships with other models.

Would you like to live in a universe where CH holds, but ♦ fails? Or

where 2ℵn = ℵn+2 for every natural number n? Would you like to have

rigid Suslin trees? Would you like every Aronszajn tree to be special?

Do you want a weakly compact cardinal κ for which ♦κ(REG) fails? Set

theorists build models to order.” ([Hamkins, 2012], p417)

Many of the above kinds of model are obtained by forcing. The method provides

a fine-grained way of manipulating the subsets present in set-theoretic structures,

allowing us to produce a huge variety of models. Further the models produced by

forcing look standard as long as we start with an appropriate ground model; if G is

P-generic over M then M[G] is transitive and well-founded iff M is, and M[G] has

the same ordinal rank as M.

Throughout this thesis, we will discuss width and height extensions separately.

However, it is important to note that the two dimensions are intimately interrelated;

often an extension in height will necessitate an extension in width. To see this, we

first make the following definitions, important in set theory:

Definition 16. Let M = (M,∈) be a set-sized model. A set x is definable

over M iff there exists a formula φ ∈ L∈ and a1, ..., an ∈ M such that

x = {y ∈M |M |= φ(y, a1, ..., an)}.

Definition 17. def(M) = {x ⊆M |x is definable over M}

Definition 18. A set x is constructible iff it is a member of the following

hierarchy:

(i) L0 = ∅,

(ii) Lα+1 = def(Lα), for successor α+ 1,

(iii) Lλ =
⋃
β<λ Lβ for limit λ,

(iv) L =
⋃
α∈On Lα

L is thus the hierarchy formed by iterating definability through the ordinals (us-

ing, along the way, parameters from previous stages). [Gödel, 1940] showed that
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L satisfies ZFC and is the minimal inner model44 of ZFC. Now, by work of Shep-

herdson45 and Cohen46 we know that if there is a transitive set model of ZFC, then

there is a minimal transitive model of ZFC; a countable transitive model of the form

Lα |= ZFC (where α is the least β such that Lβ |= ZFC) and such that for any tran-

sitive model M |= ZFC, Lα ⊆ M. Any height extension of Lα to a taller transitive

model of ZFC necessarily adds subsets to Lα. For, adding two more L-levels to yield

Lα+2 generates a new x ⊆ P(ω).47 Thus V Lα

ω+1 ⊂ V
Lα+2

ω+1 . In this way, adding height

can force a universe to also extend in width, even low down in the model. Thus,

when considering model-theoretic extensions of universes, though we have M ∈ N

whenever N extends M in height, it is not necessarily the case that M is an initial seg-

ment of N (i.e. N can disagree with M on the identity of the Vα for α < Ord(M)).48

I.5 How many universes?

The upshot of the extensions in height and width show that ZFC alone dramatically

fails to pin down an intended model. For many models of ZFC, even if they are

transitive and well-founded, there are extensions of the models in both height and

width also satisfying ZFC. A natural point of departure is thus to study the subject

matter and objects we talk about when we do set theory. In other words, given

that first-order ZFC does not come close to determining the height or width of its

standard transitive models, we might be interested in the philosophical significance

of this lack of determination.

One answer to this problem is given by the following view concerning set theory:

Definite Universism. There is a maximal and unique universe of set-

theoretic discourse in which every sentence has a definite truth value (i.e.

is either true or false), denoted by ‘V ’.

Many scholars feel that Definite Universism facilitates the role of set theory as

44An inner model of ZFC is a structure satisfying ZFC and containing all ordinals. Of course a meta-
mathematical challenge here is how to understand reference to a ‘structure’ if it cannot be a set. We shall
see discussion of this issue later in the thesis.

45See [Shepherdson, 1951], [Shepherdson, 1952], and [Shepherdson, 1953].
46See [Cohen, 1963].
47For a sketch of the argument, see footnote 38.
48Many thanks to Sy Friedman for emphasising to me the importance of these subtleties.
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a foundation for mathematics. Earlier, we noted that set theory had a deep foun-

dational role in that it is possible to construe claims about mathematical objects in

set-theoretic terms, and further that set theory provides standards for coherency in

mathematics; the way to show a mathematical theory T to be non-vacuous is to find

a model for T in the sets. Definite Universism is easily able to account for this role,

it provides “one arena” to act as the “final court of appeal” for questions concerning

mathematical proof and existence.49

Furthermore, as was noted earlier, recent scholars have proposed understanding

the notion of mathematical rigour in set-theoretic terms.50 If this is a project with

which one wishes to engage, Definite Universism ensures that rigour is preserved

when moving from one branch of mathematics to another; since there is just one

maximal set-theoretic universe in which we are representing the claims of different

mathematical discourses, the widest possible context cannot shift when considering

different disciplines.51

In addition, such a view seems (at least prima facie) natural when presented with

the Iterative Conception of Set. If we iterate the power set operation through all the

ordinals, we generate a particular interpretation of set-theoretic discourse. On the

(plausible) assumption that there are facts of the matter concerning whether or not

particular ordinals exist and what subsets get formed at successor stages, prima facie

this yields an interpretation that is maximal, unique, and settles every sentence of

set theory.

It is precisely the definiteness in the notions of ordinal height and powerset where

we might disagree with this, however. In the previous section, it was noted that there

are often ways to extend a particular model in height and width. For height, we as-

sume that the ordinals have a supremum and form a set (along with the relevant

universe) in an extended model. For width, we have cogent methods (such as forc-

ing) for defining new subsets.

We might, therefore, opt for one of the following views:

49See [Maddy, 1997], p26.
50A good example being [Burgess, 2015].
51Of course, one might think that Definite Universism is not needed for a characterisation of Burgessian

rigour. Given a picture on which there is some indefiniteness one might still be able to come up with an
account. However, it is a pleasing theoretical feature of Universism that it is clearly sufficient for providing
such a characterisation.
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Indefinite Universism. There is just one maximal interpretation of set-

theoretic discourse, but it is indefinite in some way, say because the pow-

erset operation does not yield a definite characterisation52 or the ordinal

height of V is not definite53.

or

Multiversism. There is not one maximal universe of set-theoretic dis-

course, but rather many equally legitimate universes.54

Each of the above positions represents a cluster of views. Indefinite Univer-

sists, for example, can disagree on whether it is the ordinal numbers or the subsets

formed at successor stages that are indefinite, or at what point it is that definiteness

breaks down (say at the level of N or P(ω) or P(P(ω))). Multiversists, on the other

hand, disagree as to exactly what the structure of the various universes should be

like. We can hold that every universe should satisfy ZFC2 with the full semantics

([Zermelo, 1930], [Isaacson, 2011]), and hence the universes agree on width but not

on height. We could also say that universes are all of the same height, but can be

extended in width ([Steel, 2014]55). Alternatively, we might hold that any universe

can be extended in both width and height ([Arrigoni and Friedman, 2013]). Finally,

we might be so radical as to say that the universes need only satisfy first-order ZFC,

and hence might even contain non-standard natural numbers ([Hamkins, 2012]).

The challenge then for the Definite Universist is to explain what it is that con-

vinces them that relevant ontology and concepts are sufficiently sharp to yield such

a definite characterisation. Unfortunately, however, we reach a standoff here. For, as

we shall see, the arguments on each side are much too quick.

52See, for example, [Feferman et al., 2000].
53See, for example, [Linnebo, 2010].
54A subtle point here is that what one takes to be a ‘legitimate’ universe need not merely be a model

of ZFC. [Balaguer, 1998] and [Hamkins, 2012] have a view on which any such model will do, but
we might take certain models to be ontologically privileged. For example, under one interpretation,
[Arrigoni and Friedman, 2013] advocates a view on which well-founded models of ZFC satisfying cer-
tain maximality criteria are accorded a distinguished ontological status.

55[Steel, 2014] is somewhat different from the other proposals in that in addition Steel advocates a the-
oretical shift to a multiverse language.

29



I.5.1 Arguments for Universism

Again, a full analysis of the arguments for and against the above views would take

us too far afield. However, for the purpose of seeing the methodology of the thesis,

some brief comments on each are in order. Arguments for Definite Universism that

do not simply insist on determinacy in the concept of ordinal, powerset, or quantifi-

cation over all sets (notions that are clearly question begging against Multiversists

and Indefinite Universists), usually depend on categoricity arguments. Here, we use

either an informal or formal argument to try and establish that all models of set the-

ory satisfying certain constraints must be isomorphic, and hence there is a privileged

maximal structure.56

There have been several such attempts. [McGee, 1997] provides a proof using

urelemente to show that the pure sets of any two models must be isomorphic. How-

ever, the proof depends both upon unrestricted first-order quantification, and that

the urelemente form a set. Both are likely to be controversial assumptions, and as

such dialectically unconvincing. [Martin, 2001] provides an argument that depends

on a pairwise comparison of models. However, such a comparison again depends on

assuming that there is a unified arena in which we can compare the models, and also

that such a comparison process will eventually result in a maximal model (rather

than simply being a species of indefinite extendibility).

Koellner diagnoses the problems with such arguments as follows:

“But this [i.e. categoricity arguments] doesn’t get any traction with the

advocate of the multiverse since it presupposes absolute conceptions of

powerset and infinity and it presupposes that there is a single, univo-

cal conception of set. The advocate of the multiverse will argue that the

above argument is circular. “True if one presupposes that there is a uni-

vocal conception of set, one which has absolute notions of powerset and

infinity, then one can run the categoricity argument. But that just presup-

poses in the meta-language what one set out to establish. One gets out

56A complication here is that such arguments only establish that there is one universe up to isomorphism.
There might, for all we have said, be many universes all instantiating this maximal structure. Since we
plan on dismissing this argument anyway, we set this issue aside.
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what one puts in.”” ([Koellner, 2013], p11)

Such arguments, while possibly providing comfort to the Universist, thus do

nothing to convince her opponents; we have to assume determinacy in the metalan-

guage to get determinacy with respect to the interpretation of the object language.

It is important here to be precise concerning the dialectic. The above is not meant

to be definitive concerning the debate. Indeed, a full study of the arguments for and

against Definite Universism would require a substantive literature in itself, and the

debate is ongoing.57 Nor is the possibility of a convincing argument on behalf of

Universism thereby vitiated. For our purposes, we wish to note that extant direct

arguments for the position are likely to be dialectically unconvincing when posed

to Multiversists. Indeed this is precisely how the issue transpires in the literature.

Hamkins, for example, writes:

“The multiversist objects to Martin’s presumption that we are able to

compare the two set concepts in a coherent way. Which set concept

are we using when undertaking the comparison? Martin’s argument

employs a background concept of ‘property’, which amounts to a com-

mon set-theoretic context in which we may simultaneously refer to both

set concepts when performing the inductive comparison. Perhaps one

would want to use either of the set concepts as the background context

for the comparison, but it seems unwarranted to presume that either of

the set concepts is able to refer to the other internally, and the ability to

make external set (or property) concepts internal is the key to the suc-

cess of the induction. If we make explicit the role of the background set-

theoretic context, then the argument appears to reduce to the claim that

within any fixed set-theoretic background concept, any set concept that

has all the sets agrees with that background concept; and hence any two

of them agree with each other. But such a claim seems far from categoric-

ity, should one entertain the idea that there can be different incompatible

set-theoretic backgrounds.” ([Hamkins, 2012], p427)

57In addition to [Koellner, 2013], see [Meadows, 2013] for a discussion of the philosophical significance
of categoricity results. Perhaps the most comprehensive recent argument for Definite Universism is avail-
able in [Maddy, 2011].
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This brings Koellner’s point into sharper focus. It is precisely the suppositions

required to support the philosophical import of the categoricity theorems that ren-

ders them ineffective against the Definite Universist’s opponents. The situation is

characteristic of the current state of the debate; as things stand the Universist simply

begs the question.

I.5.2 Arguments for indefiniteness

Let us turn then to the arguments for Multiversism and Indefinite Universism. As

we shall see, such arguments face problems complementary to those suffered by the

Definite Universist.

One option, analogous to the Definite Universist’s insistence on determinacy in

the concepts of ordinal and powerset, is simply to insist that such concepts are not

so determinate. Feferman, for example, argues as follows:

“My own view—as is widely known—is that the Continuum Hypothesis

is what I have called an “inherently vague” statement, and that the con-

tinuum itself, or equivalently the power set of the natural numbers, is not

a definite mathematical object. Rather, it’s a conception we have of the

totality of “arbitrary” subsets of the set of natural numbers, a conception

that is clear enough for us to ascribe many evident properties to that sup-

posed object (such as the impredicative comprehension axiom scheme)

but which cannot be sharpened in any way to determine or fix that object

itself.” ([Feferman et al., 2000], p405)

Of course, such an argument is just as question begging as the Definite Univer-

sist’s insistence that the ordinal number sequence and power set operation is defi-

nite. If the Universist cannot insist that the relevant ontology and concepts are sharp

on the basis of (tutored) intuitions, than the Indefinite Universist cannot in good faith

insist that they are not sharp on intuitive grounds.

One might instead point to the diversity of models arising from model-theoretic

constructions, and then argue that holding one particular model privileged is ad hoc.

Hamkins, for example, writes:
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“This abundance of set-theoretic possibilities poses a serious difficulty

for the universe view, for if one holds that there is a single absolute back-

ground concept of set, then one must explain or explain away as imagi-

nary all of the alternative universes that set theorists seem to have con-

structed. This seems a difficult task, for we have a robust experience in

those worlds, and they appear fully set theoretic to us. The multiverse

view, in contrast, explains this experience by embracing them as real, fill-

ing out the vision hinted at in our mathematical experience, that there is

an abundance of set-theoretic worlds into which our mathematical tools

have allowed us to glimpse.” ([Hamkins, 2012], p418)

A vast amount of work in set theory since the discovery of the independence

results has been focussed on the study of diverse models and the properties that

hold between them in their own right. It seems then, that set theory investigates a

vast array of different set concepts rather than a single such.

Again though this is simply to beg the question against the Universist. First, she

has an easy interpretation of model theory; she can view it as concerned with sub-

structures of V . Indeed, on the Universist’s picture Hamkins’ ‘Multiverse Axioms’ (a

series of rules designed to provide intuitive content58 to his Multiverse picture) are

satisfied in the collection of all countable computably saturated models of ZFC.59

Thus, the Universist can perfectly easily interpret Multiversist-inspired mathemat-

ics as concerned with such substructures. Second, she feels that she already has

good reason to accept her view on the basis of previous considerations (such as the

Iterative Conception of Set). Showing that there are, for the Universist, unintended

interpretations of ZFC where ‘V ’ does not denote V does nothing to shake her from

her position. Definite Universists and their opponents both believe they have good

reasons to assert their view; they simply disagree on the intuitive force of the rele-

vant considerations and interpretation of the mathematical data.

Again, none of the arguments concerning the above issues are meant to be defini-

58There is an issue in that, for technical reasons to do with Hamkins’ view, it is hard to see how there
could be a formal system axiomatising his claims. This is discussed in more detail in [Hamkins, 2012]
(p436) and [Barton, Fa].

59See [Gitman and Hamkins, 2010] for details of computably saturated models, references, and the rel-
evant construction.
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tive, and the above discussion represents a very coarse grained and simplistic char-

acterisation of what is an ongoing debate of philosophical interest. For the moment,

however, it suffices to note that the debate has hit something of a stalemate; nei-

ther party finds the arguments dialectically persuasive, and we find ourselves in an

apparently intractable philosophical situation.

Partly for this reason60 we propose a different tack here. Instead of trying to ad-

judicate the dialectic between the Definite Universist and her opponents, we shall

rather concentrate on filling out some of the details of a particular strategy Definite

Universists might follow. We shall, therefore, take Definite Universism (which, now

the dialectic with the Indefinite Universist has been discussed, we refer to with the

term ‘Universism’) as an assumption of the thesis, and see what is highlighted by

working out the view in more detail. As such, the thesis forms part of a wider foun-

dational programme to study elucidations of each view on its own terms, rather than

trying to be dialectically convincing against opponents. It is hoped that in this man-

ner we will be able to see what foundational fruits are borne by each philosophical

position. This is not to say that our arguments cannot be used in informing the de-

bate between the Definite Universist and her opponents—in fact we shall mention

some possibilities in Chapter VIII (‘Conclusions’). However, such a project will not

lie in the focus of our attention here.

I.6 Structure of the Thesis

Given the independence phenomenon, there is a substantial challenge for the Uni-

versist: explain her faith in the existence of a single, maximal, interpretation in the

face of the vast zoo of different epistemological possibilities. There are three possible

options here:

(1) Accept that there are absolutely undecidable sentences (in the sense that there

could never be a well-justified axiom resolving independence), and explain why

this does not threaten the claim that there is a maximal, unique, definite universe

of set theory.

60The other main reason being the intrinsic interest of such a change in philosophical focus.
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(2) Justify new axioms that resolve61 previously independent questions, providing

confidence that every set-theoretic sentence has a definite truth value.62

(3) Neither accept absolutely undecidable propositions nor that we need to engage

in a project of justification for new axioms.63

This thesis focusses on an exposition of issues surrounding (2), in particular the

kinds of principles and techniques that can be examined in formulating and justify-

ing new axioms. It will be argued that the Universist can provide a philosophically

satisfying way of interpreting more than previously thought.

The thesis is structured as follows. After this initial characterisation of the debate,

Chapter II (‘Gödel’s Programme’) explains the Universist project for formulating and

justifying new axioms concerning V . We argue that extensions of V are relevant to

both aspects of Gödel’s Programme for resolving independence. We also identify

a ‘Hilbertian Challenge’ to explain how we should interpret extensions of V , given

that we wish to use discourse that makes apparent reference to such non-existent

objects.

Chapter III (‘Problematic Principles’) then lends some mathematical precision

to the coarse-grained outline of Chapter II, examining mathematical discourse that

seems to require talk of extensions of V . Whilst we acknowledge that a Universist is

not forced to interpret discourse concerning extensions of V , we point out that if she

can use such talk coherently, new mathematical avenues are open to her.

Chapter IV (‘Climbing above V ?’), examines some possible interpretations of

height extensions of V . We argue that several such accounts are philosophically

problematic. However, we point out that these difficulties highlight two constraints

on resolution of the Hilbertian Challenge: (i) a Foundational Constraint that we do

not appeal to entities not representable using sets from V , and (ii) an Ontological

61By Gödel’s Second Incompleteness Theorem, no consistent formal theory able to represent arithmetic
will ever prove every true sentence.

62Of course, advocating philosophical research into (2) does not preclude an analysis of the status of set
theory in the absence of a satisfactory resolution of independence. One may argue that one’s favourite
axiom is well-justified, whilst maintaining that even if it is not so justified, Universism remains true for
other reasons.

63This might seem like a rather odd suggestion—how could an independent sentence ever be resolved
without justification? However, recently [Williamson, F] has proposed a view on which there are no ab-
solutely undecideable sentences in virtue of the possibility of the existence of beings who find such state-
ments primitively compelling. Since our interest is in (2), we put aside this issue.
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Constraint to interpret extensions of V in such a way that they are clearly different

from ordinary sets.

Chapter V (‘Broadening V ’s Horizons?’), considers interpretations of width ex-

tensions. Again, we argue that many of the extant methods for interpreting this kind

of extension face difficulties. Again, however, we point out that a constraint is high-

lighted; a Methodological Constraint to interpret extensions of V in a manner that

makes sense of our naive thinking concerning extensions, and links this thought to

truth in V . We also note that there is an apparent tension between the three con-

straints.

Chapter VI (‘A Theory of Classes’) changes tack, and provides a positive charac-

terisation of apparently problematic ‘proper classes’ through the use of plural quan-

tification. It is argued that such a characterisation of proper class discourse performs

well with respect to the three constraints, and motivates the use of a relatively strong

class theory (namely MK).

Chapter VII (‘V -logic and Resolution’) then puts MK to work in interpreting

extensions of V . We first expand our logical resources to a system called V -logic,

and show how discourse concerning extensions can be thereby represented. We then

show how to code the required amount of V -logic using MK. Finally, we argue that

such an interpretation performs well with respect to the three constraints.

Chapter VIII (‘Conclusions’) reviews the thesis and makes some points regarding

the exact dialectical situation. We argue that there are many different philosophical

lessons that one might take from the thesis, and are clear that we do not commit

ourselves to any one such conclusion. We finally provide some open questions and

indicate directions for future research, remarking that the thesis opens the way for

new and exciting philosophical and mathematical discussion.
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Chapter II

Gödel’s Programme

We saw in the last chapter that there are difficult questions raised for Universism

stemming from discourse involving extensions of V . For current purposes, one par-

ticularly salient challenge is for the Universist to provide a defence of her position

that there is one Universe of sets in the face of a large diversity of natural set-theoretic

possibilities. It was then noted that one response to the problem (among many) is to

provide a means to settle sentences independent of ZFC in a well-justified manner.

II.1 Gödel’s Programme explained

In his seminal expository article on the Continuum Hypothesis, Gödel said the fol-

lowing concerning the lack of resolution of CH :

“For if the meanings of the primitive terms of set theory...are accepted

as sound, it follows that the set-theoretical concepts and theorems de-

scribe some well-determined reality, in which Cantor’s conjecture must

be either true or false. Hence its undecidability from the axioms being as-

sumed today can only mean that these axioms do not contain a complete

description of that reality. Such a belief is by no means chimerical, since

it is possible to point out ways in which the decision of a question, which

is undecidable from the usual axioms, might nevertheless be obtained.”

([Gödel, 1964], p260)
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Here, Gödel claims that if one holds Universism, and if our concepts and the-

orems relate appropriately to objects in V , then CH is either true or false, despite

its independence from the axioms of ZFC. We might then attempt to propose and

justify new axioms to settle CH . In particular, Gödel believed that there were cer-

tain concrete methodologies we could use in providing such justifications. I will

refer to this process of proposing and justifying new axioms for set theory as Gödel’s

Programme.

Central to the above quotation is the possibility of deciding questions through

providing a description of set-theoretic reality that allows us to prove previously in-

dependent sentences. Exactly how such a description might be given is a tricky

problem and one of the central philosophical challenges in articulating Gödel’s Pro-

gramme. More precision is thus required in order to provide a philosophically co-

gent position. We begin by remarking that Gödel’s Programme is executed in a two

step process:

(1) Propose a new set-theoretic axiom.

(2) Justify said axiom.

As we shall see in Chapter III, both are relevant for the current discussion. In exe-

cuting Gödel’s Programme, the philosophical interpretation of theorems and content

of axioms varies according to what resources we allow for talking about V . To give

a hint of what is to come, recall from the previous chapter that there were various

methods that could be employed for extending models of ZFC, either by lengthen-

ing the ordinals or by adding more subsets. Now, assuming Universism (and that

ZFC is true in V ) we may ask whether or not it is possible to talk about V using ex-

tensions of V (either to prove new results about sets in V or formulate new axioms).

The answer to the question for the Universist is, in a certain sense, going to be

obviously “NO!”. Simply put, for the Universist, V is meant to be all the sets there

are, and thus extensions of V do not exist.

However, the contention of this thesis is that there is another sense in which

the Universist can make use of some resources of this kind. Of course, the refer-

ence here will not be to actual extensions of V , naively understood. Rather, how we
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understand the reference of the term ‘extension of V ’ will receive an interpretation

amenable to the Universist’s philosophical position.

Immediately, the reader might recoil from such a suggestion. Talk of forcing ex-

tensions of V and lengthening the ordinals is normally regarded as an unforgivable

sin for the Universist. However, as we shall see in Chapter III, there is a large class

of statements with which the Universist might be interested, and which in turn she

might wish to be interpret.

Moreover, a simple example indicates that such a position is not as heretical as

it might seem. It is a fact (a quick corollary of the Compactness Theorem for first-

order theories) that if there is a model of ZFC, then there is a non-well-founded

model of ZFC. Now it is entirely possible that by studying such non-well-founded

structures we might come to learn about the sets in V under ∈. Indeed, in a rather

trivial sense, truths about a non-well-founded model M just are truths about sets

in V under ∈ for the Universist, it is simply that ∈ is not the same relation as EM

(i.e. M’s interpretation of the membership relation). However, a Universist does

not accept the existence of actually non-well-founded sets in V ! She may even reject

the existence of non-well-founded sets altogether (not just within V )! Can she then

make use of non-well-founded models of ZFC (and for that matter, other theories1

that directly postulate the existence of non-well-founded sets)? Of course she can,

but in doing so she should be mindful of what such models and theories are about,

and in particular note that the models are unintended.

So it is with extensions of V . What the Universist must attend to is that the dis-

course involving such constructions cannot, on her view, actually refer to sets outside

V . Rather she has to provide an appropriate codification of the relevant statements

that allow her to derive the desirable consequences of the discourse, but do not com-

mit her to ‘extra-V ’ sets.

Before we embark on the journey of unearthing the uses of such extra-V entities,

let us first be more precise about what is required for each of the two steps. As we

shall see, the details are somewhat more complex than one might anticipate, and it

is to these issues that I now turn.

1Good examples here are AFA or NFU (for both of which we can find models inside ZFC models,
see Ch. 7 of [Devlin, 1979] for AFA and [Jensen, 1968] for NFU).
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II.2 Formulating the axioms

If the Universist is to propose a particular axiom to try and capture some aspect of

V , then prima facie she can only use resources which are coherent. As we shall see in

Chapter III, the use of ‘ideal’ objects outside V in formulating axioms leads to trivi-

ality or apparent falsehood, even when we are trying to make a claim about objects

within V . For the moment, we provide a more general statement of the problem

and leave examination of concrete examples until then. However, a toy example is

helpful to understand how consideration of extensions might be useful for making

a claim about V . Let Φ and Ψ be conditions on universes. A Universist might try to

state something about V using the following principle:

(Principle-ΨV ) If there is an extension of V such that Φ, then Ψ holds of

V .

The problem with Principle-ΨV is that it will always come out as true, but fail

to capture the intended aspect of V (namely that Ψ holds of V ). For the antecedent

(on its natural reading) is trivially false, and so the conditional is true. But this pro-

vides us with no reason to think that Ψ is actually true of V which, presumably,

was the intended consequence of asserting the putative axiom in the first place. We

shall see a more fine-grained analysis of this phenomenon in Chapter III, however

for now we note an interesting comparison. Surprisingly, given that Universism is

often regarded as paradigmatically realist, it is instructive to consider Universism

as a species of nominalism. We can be nominalists about a various kinds of entity:

medium-sized dry goods, properties, or even mathematical objects. Our Universist

is a nominalist about sets outside V . For each variety of nominalism, we have a body

of discourse that we want to put to work in talking about the objects we do counte-

nance. Viewing Universism in this nominalistic spirit allows us to draw parallels

with other kinds of nominalism and see if there are any insights to be gained. The

following example from Stephen Yablo clarifies the situation:

“Imagine we have a strange, kabbalistic reading of Genesis. Go forth

and multiply, God commanded. The “multiply” means, we believe, that
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the animals should proliferate at a constant rate; each year’s population

was to be n times larger than the year before’s. The value of n revealed

itself when “forth” turned out to be a mistranscription of “fourth.” The

command was issued on day 5, and we believe on other grounds that the

number of animals at that time was three. According to us, then,

(NA) The number of animals on the nth day = 3× 4(n−5)

Unfortunately for this way of putting it, our reading of Genesis also tells

us that God never got around to creating numbers. So we can’t in consis-

tency regard our hypothesis as true.” ([Yablo, 2014], p80)

The predicament of the Kabbalistic Nominalist in Yablo’s colourful example is

roughly analogous to our Universist’s. The Kabbalistic Nominalist wants to make

a statement concerning the animals, but appears to appeal to the false assumption

(NA) in doing so. Our Universist might want to make a substantive claim about the

sets using Principle-ΨV , but fails to do say anything of significance in virtue of her

nominalism concerning sets outside V .

We shall see in Chapter III that there are axioms that make mention of such enti-

ties, and that the difficulties in making claims about the sets are often more complex

than the problem faced by the Kabbalistic Nominalist. For now, we merely note that

an interpretation of objects outside V would quite possibly allow us to make new

claims about the structure of V that we would otherwise not be able to appropri-

ately state. A Universist is not likely to be interested in any of the ‘ideal’ entities

‘outside’ V (such entities do not exist). However, a principle that has consequences

within V might be of interest, but only if it can be interpreted so that its truth or

falsity tells us more about the structure of V .

II.3 Justifying the axioms

There is a second way we might motivate the consideration of resources beyond V .

In order to understand why such resources might be useful, we need to examine the

notion of justification in set theory.
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What is justification? The question is philosophically problematic in a general

context, and as such we will leave the notion informal. However, it is possible to pro-

vide some clarifying remarks, and in particular attend to a distinction that will help

to make the details of Gödel’s Programme more precise. Justification is, at least, an

epistemic notion that links our understanding and beliefs with truth in a sufficiently

accurate manner2. As is widely accepted in contemporary philosophy, [Gettier, 1963]

showed that justification need not entail knowledge (even if, as in a Gettier case, a

particular justified statement is true). However, we nonetheless expect justification

to provide good reason to hold a proposition true (though said proposition may turn

out to be false).

Since the issues that surround justification are so thorny (even when restricted to

the case of mathematics), we shall analyse the more tractable question of what math-

ematical methods a Universist may employ in justifying a particular statement (as op-

posed to how statements receive justification or whether or not particular statements

are justified). Despite this, and in order to understand what is at stake for the Uni-

versist, a well-rehearsed distinction is important. The relevant contrast is between

different kinds of justification, namely intrinsic and extrinsic. The distinction plausi-

bly goes back as far as [Russell, 1907], but is most famously stated in [Gödel, 1947]

and [Gödel, 1964]. Characterising intrinsic justification, Gödel writes:

“First of all the axioms of set theory by no means form a system closed in

itself, but, quite on the contrary, the very concept of set on which they are

based suggests their extension by new axioms which assert the existence

of still further iterations of the operation “set of”...These axioms show

clearly, not only that the axiomatic system of set theory as used today is

incomplete, but also that it can be supplemented without arbitrariness by

new axioms which only unfold the content of the concept of set explained

above.” ([Gödel, 1964], pp260-261)3

2Of course, what is meant by ‘sufficiently accurate manner’ is going to depend on one’s theory of
justification.

3Here, I use [Gödel, 1964] rather than [Gödel, 1947] (p181) for a couple of reasons. First [Gödel, 1964]
represents Gödel’s more mature philosophical views (and indeed he was more satisfied with his com-
mand of English during this period; see [Moore, 1990]). Second, his wording leaves the kinds of justi-
fication he has in mind more open; in [Gödel, 1947] he is clearly more concerned with weak reflection
principles, referring to “axioms which are only the natural continuation of the series of those set up so

42



and

“also there may exist, besides the ordinary axioms,...other (hitherto un-

known) axioms of set theory which a more profound understanding of

the concepts underlying logic and mathematics would enable us to rec-

ognize as implied by those concepts” ([Gödel, 1964], p261)4

These quotations require some unpacking before we have a full characterisation.

Key to the above passages is the thought that intrinsic justifications are concerned

with unfolding and explaining particular concepts. We determine, via conceptual

analysis, what principles are implied by the mathematical conception with which

we are working. Such a characterisation, as it stands, is somewhat unclear; what

constitutes a satisfactory ‘unfolding’ of a concept is itself in need of explaining.5

Koellner makes the issues a little more precise:

“One can also gain a sharper understanding of the notion of intrinsic jus-

tification by pointing to some of its properties. First, an intrinsically jus-

tified statement need not be self-evident, in part because the justification

may be quite involved..., in part because it is possible that the underlying

conception is problematic (as, for example, was the case with the Fregean

conception of extension). On the other hand, the notion of intrinsic justi-

fication is intended to be more secure than mere “intrinsic plausibility”...

in that whereas the latter merely adds credence, the former is intended to

be definitive (modulo the tenability of the conception).” ([Koellner, 2009],

p207)

Koellner’s picture of intrinsic justification is thus one on which we proceed via

(possibly quite involved) conceptual analysis to provide definitive justification of

certain principles. A major problem here is that it is not clear that such an ‘unfolding

of a concept’ will be widely agreed upon. Indeed, the large numbers of construc-

tivists and believers in indefiniteness are good evidence that there is unlikely to be

far”, rather than those that “unfold the concept of set”.
4See p182 of [Gödel, 1947] for the relevant passage, essentially similar in content.
5For a heroic attempt, see [Hauser, 2006].
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any such accord. However, we can view the project of intrinsic justification as pro-

viding a conceptual analysis that renders particular statements more evident. It is

useful to sharpen this understanding somewhat by examining an example of a par-

ticular intrinsic justification. Turning again to Koellner, he remarks:

“Over the base theory RCA0 (Recursive Comprehension Axiom), the

Hilbert Basis Theorem6 is equivalent to the statement that ωω is well-

ordered...

...the Hilbert Basis Theorem is far from immediate. It is the sort of thing

that we set out to prove from things that are more evident. In contrast,

the statement that ωω is well-founded is something that becomes clear by

reflecting on the concepts involved. It is not the sort of thing that we set

out to prove from something more evident. This is what lies behind the

fact that the Hilbert Basis Theorem is called a theorem and not an axiom.”

[Koellner, 2011]

We can thus analyse the project of intrinsic justification as settling particular ques-

tions through proving them on the basis of more evident statements. An intrinsic

justification, on this conception, renders a principle more evident than we previ-

ously thought. In the context of the above example, we note that ωω is an ordinal, so

the fact that it is well-orderable is more evident on the basis of the kind of thing it is

compared to a non-trivial theorem concerning Noetherian rings.

It is unclear whether or not Gödel himself took intrinsic justifications to be “defini-

tive” (certainly many of the terms he used, such as “intrinsic necessity”, indicate that

this may well have been the case). There is also the separate question of whether or

not we should take intrinsic justification to be definitive or simply a matter of de-

gree or adding credence. I do not wish to become entangled in these tricky issues

here. Since our interest is in what resources a Universist can use in formulating

and justifying new axioms, it suffices to note that intrinsic justification of an axiom

would consist in examining the axiom relative to a particular mathematical concep-

6The Hilbert basis theorem states that any polynomial ring over a Noetherian ring (i.e. a ring such
that for any chain of ideals I0 ⊆ I1 ⊆ ... ⊆ Ik ⊆ Ik+1, .. there is a n and ideal In in the chain such that
In = In+1 = In+2...) is also Noetherian.
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tion, without considering any particular proof-theoretic consequences of the axiom.

The notion of intrinsic justification contrasts with that of extrinsic justification,

and it is with respect to this latter kind that we find the most relevance for extensions

of V . Rather than providing reasons to think that a principle results from conceptual

analysis of a particular mathematical conception, extrinsic justification concerns its

theoretical consequences. Explicating the notion, Gödel writes:

“Secondly, however, even disregarding the intrinsic necessity of some

new axiom, and even in case it had no intrinsic necessity at all, a proba-

ble decision about its truth is possible also in another way, namely in-

ductively by studying its “success”. Success here means, fruitfulness

in consequences, in particular in “verifiable” consequences, i.e., conse-

quences demonstrable without the new axiom, whose proofs with the

help of the new axiom however, are considerably simpler and easier to

discover, and make it possible to contract into one proof many different

proofs.” ([Gödel, 1964] p261)7

and

“A much higher degree of verification than that, however, is conceivable.

There might exist axioms so abundant in their verifiable consequences,

shedding so much light upon a whole field, and yielding such powerful

methods for solving given problems (and even solving them construc-

tively, as far as that is possible) that no matter whether or not they are in-

trinsically necessary, they would have to be accepted at least in the same

sense as any well-established physical theory.” ([Gödel, 1964], p261)8

Again, the philosophical and exegetical issues here are both difficult and subtle.

For our purposes, the key fact to note is that extrinsic justification is concerned with

the consequences of a putative axiom rather than whether or not the principle is

appropriately related to an underlying mathematical conception.

7Here p182 of [Gödel, 1947] does not differ substantially from [Gödel, 1964].
8Again here, [Gödel, 1947] (pp182-183) is not significantly different from the [Gödel, 1964] revision.
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There is a detailed literature9 on the topic, and a full examination would require a

separate thesis. For the purposes at hand, we wish to examine one particular aspect

of Gödel’s distinction. Essential to the notion of extrinsic justification is the notion of

a verifiable consequence. Now exactly in what sense the consequences of a hypothesis

are verifiable is, it would seem, somewhat unclear (as is the epistemic link between the

consequences of a principle and its truth).10,11 For our purposes, however, it suffices

to note that in order to find whether or not a principle φ has consequences that are

verifiable, we must first settle on (i) the kinds of methods we accept for deriving

consequences from φ, and (ii) a bank of truths concerning V that we take to have

been verified.

A (very) simple example here is useful to see the sense in which we might have

a principle supported by verifiable consequences (as in (ii)). We begin by noting the

following celebrated theorem:

Theorem 19. [Gödel, 1931] Gödel’s First Incompleteness Theorem. Let T

be any ω-consistent12 theory capable of representing Primitive Recursive

Arithmetic (henceforth ‘PRA’). Then there is a Π1-sentenceGT such that

T 6⊢ GT and T 6⊢ ¬GT.

In the particular case of Peano Arithmetic (henceforth ‘PA’), the immediate corol-

lary (as is well known) is that there is a Gödel sentence GPA in the language of PA

that is formally undecidable from PA alone. There is (of course) a close relationship

between the First Incompleteness Theorem and the Second Incompleteness Theo-

9See, for example, [Maddy, 1988a], [Maddy, 1988b], [Maddy, 1997], [Maddy, 2011], [Koellner, 2009],
[Koellner, 2010], among many others.

10Gödel is actually relatively clear on this point, stating that they must be “demonstrable without the
new axiom”. However, we might take there to be other kinds of “verifiable consequence”, say if the axiom
proves some intrinsically plausible statement that has not yet been demonstrated.

11Two additional complications here are that there are clearly false statements (e.g. 0 = 1) that have
a large number of verifiable consequences, and that there might be contradictory axioms with the same
(or a similar amount of) verifiable consequences. The former problem is dealt with by noting that such
principles normally also have falsifiable consequences. The latter is more subtle, but is not so problematic if
we do not hold that justification need be an all or nothing matter. We might have two axioms or theories,
both of which seem equally well extrinsically justified, but cannot both be true. We simply say that we
cannot yet form a judgement on which is correct. A good example here comes from the philosophy of
physics; both Relativity Theory and Quantum Mechanics are well extrinsically justified (in that they are
both exceptionally good at accounting for verifiable phenomena), but nonetheless are in apparent tension.
A natural methodology is to try then to resolve this tension, rather than declaring this to be a problem with
the project of justifying physical theories in terms of accounting for verifiable data.

12A theory T is ω-inconsistent iff T ⊢ ∃x¬φ(x), but also T ⊢ φ(n) for all n ∈ N. T is ω-consistent iff it
is not ω-inconsistent.
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rem. The details will be familiar to specialists, but for the sake of clarity we provide

a brief exposition. It is possible, via an adequate coding of one’s choosing, to repre-

sent syntax in a countable language by natural numbers. For a formula φ, we denote

the natural number representing φ (or ‘Gödel code of φ’) by ‘pφq’. We are similarly

able to code proofs as sequences of formulae, where each position in the sequence is

either an axiom or follows from the previous steps in the proof via a legitimate rule

of inference. We let PrfT(x, pφq) be a predicate that holds between the natural num-

bers x and pφq just in case x codes a proof of φ in T. We then define the consistency

statement for T as follows:

Definition 20. ConT =df ¬∃xPrfT(x, p0 = 1q)

The sentence states that it is not the case that there is a number coding the proof

of a contradiction in T. As PA contains PRA, it has a consistency sentence ConPA.

Assuming PA is consistent, can we prove ConPA in PA? As is well known, the

answer is negative:

Theorem 21. [Gödel, 1931] Gödel’s Second Incompleteness Theorem. Let T

be an ω-consistent theory capable of representing PRA. Then T 6⊢ ConT.

We have, as an immediate corollary, that PA 6⊢ ConPA. We might then ask, “Is

ConPA justified?”.

It is clear that, assuming that PA has good intrinsic justification from an un-

derlying mathematical conception, then so does ConPA. Presumably, any coherent

underlying conception that provides the resources to justify the claim that the ax-

ioms of PA are true, thereby justifies the claim that they are consistent. Our interest

here, however, is in extrinsic justification, and so we shall give a putative justification

of ConPA on the basis of its consequences. The argument is certainly not meant to be

watertight, but serves as a toy example to see the sense in which we might use ver-

ifiable consequences in justifying a principle. Less well known than the celebrated

First and Second Incompleteness Theorems is a theorem schema for finite proofs.

There are, in addition to full consistency statements for theories, partial statements

of finite consistency:
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Definition 22. Conn
PA

=df ¬∃x[PrfPA(x, p0 = 1q)∧ “x has fewer than

n-many symbols”]

This sentence states that there is no proof of a contradiction in PA in under n-

many symbols. By the standard Gödel reasoning13, for each n ∈ N, there is no proof

in under n-many symbols of Conn
PA

. However, there is a proof of Conn
PA

in PA;

one simply enumerates all the proofs containing n-many symbols and checks them

for consistency. We can then view each instance of particular Conn
PA

for n ∈ ω as a

particular verifiable consequence to be accounted for.

Now, though each Conn
PA

is provable in PA, the proofs are long, cumbersome,

and somewhat ad hoc (we have to enumerate the relevant formulae each time). How-

ever, the following is a theorem:

Theorem 23. Take any n ∈ N. Then PA + ConPA ⊢ Conn
PA

in a ‘small’

number of steps.

Proof. By ConPA there is no contradiction provable in PA, and hence no

contradiction provable in fewer than n-many symbols. �

The above theorem is not fully precise; the notion of ‘smallness’ is left informal.

The point is simply that PA + ConPA condenses the form of proof of the relevant

verifiable consequences (i.e. each Conn
PA

) into one simple and easy proof, thereby

conferring extrinsic justification on ConPA.14

To see how (ii) would fit into the above example, note that we had to prove (in

the previous theorem), that ConPA has the consequence of providing an easy proof

of each Conn
PA

. Any such proof depends on a background of resources. In this case,

they are benign; we simply use first-order logic over N. However, I could plausibly

have taken a (wholly unnecessary) detour through the transfinite in finding conse-

quences of ConPA. The question then might have been raised as to whether or not

the use of such resources was justified in determining the proof of everyConn
PA

from

ConPA.

Where do resources beyond V come into the picture? Well, it is entirely possible

(and indeed, as we shall see in Chapter III true) that we might use resources outside

13See [Buss, 1994] for book-keeping and details.
14For a fuller exposition of these speed-up proofs, see [Buss, 1994].
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V to derive consequences about V . In the above example, we had to know (i) that

each of the Conn
PA

were true before we could note that ConPA helps to settle these

consequences correctly in a unified and drastically simpler manner, and (ii) needed

a background theory to determine the consequences of ConPA. If, for example, we

did not accept the use of PRA, we would have problems formalising the relevant

metalogical notions required to talk about Con(PA). The case for axioms and V is

similar; we want to know what is true in V before we attempt to provide extrinsic

arguments concerning verifiable consequences, and how we can assess what conse-

quences a principle might have. It is entirely plausible that extensions of V might

have some part to play in determining these facts, and hence have an impact upon

the project of extrinsic justification for the Universist.

II.4 The Hilbertian Challenge

Let us take stock. I have argued thus far in this chapter that it is at least open that

reasoning using extensions of V might be informative for Gödel’s Programme, both

from the perspective of formulating new set-theoretic principles and (extrinsically)

justifying these proposed axioms. Looking forward to future chapters, we shall see

that set-theoretic resources that appear to refer to sets beyond V can be useful both

in formulating putative axioms for V and deriving consequences about V . From a

Universist perspective, these techniques must be understood as merely useful for

talking about V ; to admit the existence of such sets is to concede that her position

is false. What the Universist requires, if she wishes to use such resources, is an

explanation of why they are reliable, in that they will not produce false conclusions

despite their incoherence on a naive reading of their content.

A historical parallel is emerging. On the Universist picture, we have the potential

for executing Gödel’s Programme whilst utilising talk about extensions of V . Such

extensions would have to be ‘ideal’; we do not literally talk about such objects, but

we would like to have an assurance that such discourse will not lead us astray con-

cerning truth within V . The similarities between this position and Hilbert’s Formal-

ism on the basis of his Finitism are striking. Under one interpretation of Hilbert,
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there was a period of time (usually understood as after [Hilbert, 1922]) when he

held that all legitimate mathematical objects in ontological good standing were fi-

nite. However, Hilbert nonetheless wanted to use transfinite resources in proving

theorems about the finite objects, much as the Universist wishes to use extra-V re-

sources in proving theorems (or formulating axioms) about intra-V objects. Hilbert

thus tried to prove (via finitary means) that such resources would not lead to a con-

tradiction.15 Of course, by Gödel’s Second Incompleteness Theorem, such a project

is doomed from the outset.16 This does not preclude, however, a Hilbertian from

providing philosophical reasons to accept that such resources will not lead us astray.

This suggests the following challenge to be answered by the Universist:

Hilbertian Challenge.17 Provide philosophical reasons to legitimise the

use of extra-V resources for formulating axioms and analysing intra-V

consequences.

Prima facie, it is hard to see how a Universist could provide such reasons. How-

ever, we can begin to form an answer by (oddly enough) viewing Universism as a

species of nominalism, specifically nominalism about the existence of extra-V sets.

Just as Hilbert was a nominalist about transfinite entities, so the Universist is a nom-

inalist about extra-V entities. Recall our Kabbalistic Nominalist from earlier. Yablo

points out the following:

“How much should this [the false assumption about numbers] bother us?

... it’s enough for us if The number of animals on the nth day is 3 × 4(n−5) is

true about the animals, or more generally the physical world.” ([Yablo, 2014],

p81)

Suppose then that the kabbalistic reading is true; animals proliferate at a constant

rate, and numbers do not exist. The key point for Yablo is that despite the appar-

15This receives resounding expression in the catechism of the Hilbertian position that “No one shall be
able to drive us from the paradise Cantor created for us.” ([Hilbert, 1925], p376).

16Though salient here is a heroic defence of Hilbert’s aims in the work of Michael Detlefsen (see
[Detlefsen, 1986], [Detlefsen, 1990], and [Detlefsen, 2001]).

17There is a substantial and interesting question as to how Hilbertian this challenge really is. We cer-
tainly do not claim that it accords with all of Hilbert’s writing. Indeed, one might take Hilbert as requiring
conservativity rather than merely a lack of contradictions. All we wish to identify here is that there are cer-
tain parallels with Hilbertian Finitism and Universism. Thanks to Giorgio Venturi for emphasising this
point.
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ent reference to (non-existent) mathematical objects, we can construe our statements

about the animals. Now the Universist is in a similar position; she countenances

the existence of sets but not extra-V sets. One way of responding to the Hilbertian

Challenge then is to provide a detailed analysis of how we can interpret discourse

involving extensions of V in such a way that we talk about objects countenanced by

the Universist. By doing so, we would be able to determine what objects and struc-

tures we actually study when using talk involving extensions of V , thus allowing

us to determine the exact content of axiom formulations and relevant mathematical

consequences.

An answer to this question would provide a new dimension to Gödel’s Pro-

gramme, opening up the consideration of new axioms and techniques for estab-

lishing consequences in V . In much the same way, had (per impossibile) Hilbert’s

Programme been successful, it would have allowed the Finitist to consider resources

mentioning infinite structures for determining truth about finite objects.

We recall one final example to illustrate how such a solution might operate. We

noted earlier that although the Universist will not assent to the existence of non-

well-founded sets in V , she may assent to the legitimacy of talk involving non-well-

founded sets as concerned with pathological set-theoretic structures. Use of non-

well-founded set theory is thus acceptable for deriving consequences in V , as long

as it is kept clear which structures are being talked about in consideration of non-

well-founded models of ZFC or models of non-well-founded set theories (such as

AFA and NFU). We would like to do the same for extensions of V by providing an

answer to the question of why such talk is acceptable, and what entities it concerns.

As things stand, however, when we use an extension of V in proving facts about V , it

is unclear what we are talking about and whether or not the discourse is philosoph-

ically acceptable.18 Our project here will be to show that we can reliably use talk of

extensions, even when we allow ‘V ’ to denote V .

18There are existing interpretations in the literature. We examine these in Chapters IV and V.

51



Chapter II: Conclusions

Let us take stock. Gödel’s Programme for justifying new axioms depends on a two

step process: (1.) Formulate and suggest new axioms, and (2.) Provide a justification

of these axioms. The use of resources outside V could be plausibly relevant to both.

First, we may require talk of extra-V entities to even formulate an axiom. Second,

even when a formulation of a particular axiom is given, we may wish to use extra-V

resources, both for finding implications of the axiom and ascertaining the data that

count as having been verified. In both cases we would like an explanation of what

this discourse can be taken to be about. As we shall see, it is possible to talk about

extensions of V for a far broader class of techniques than usually thought.
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Chapter III

Problematic principles

We saw in Chapters I and II that (i) there is good reason to analyse how Gödel’s Pro-

gramme might be filled out on a Universist picture, and (ii) in doing so we might

want to use resources beyond V . The time has come to lend some mathematical pre-

cision to these issues. In this chapter we explain specific examples of mathematical

axioms and tools that appear to make reference to objects outside V , and what the

implications are for a Universist unwilling to accept interpretation of such talk.

The structure of the chapter is as follows. After these introductory remarks, we

examine principles of both width and height. We first (§1) make more precise exactly

what resources we will consider when going beyond V . In particular we provide ex-

planation of the notions of direct height extensions, definable long well-orders, set forcings,

class forcings, and sharps. §2 analyses how some interesting set-theoretic axioms are

formulated using resources beyond V . §3 then argues that there are methods in the

set theorist’s toolkit that the Universist may want to use in proving facts about V , but

the reliability of which seems to require resources beyond the Universist’s ontology.

Especially of note here are the perspectives provided by outer models, understand-

ing relatively ‘small’ sets with generic embeddings, and the use of long well-orders

in fine structure theory. It is concluded that there are several directions in which we

may want to pursue Gödel’s Programme using extra-V resources, each of which is

without clear interpretation for the Universist.
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III.1 Extending V

We first provide more mathematical detail to the phenomenon sketched in Chapter I

concerning extensions of V . As was noted there, we have two main ways of extend-

ing models of set theory: either by adding subsets (or, as we shall see, subclasses)

to the model or lengthening the ordinals (or both). I will refer to the former dimen-

sion as ‘extension in width’ and the latter as ‘extension in height’. In this section,

our main aim is to provide a brief exposition of some of the relevant techniques in

order to give the reader a feel for the constructions and be precise about the sense in

which they go beyond V . First, however, a remark concerning the methodology of

this chapter is in order.

Throughout the chapter, we will be talking about extending models, and in par-

ticular extensions of V . Since we are, at this stage, mainly concerned with exposition

and how extensions could be useful, we shall speak naively about extensions and

assume that they are always available, pausing occasionally to outline a difficulty

when V is involved. The reader who suffers from any metamathematical queasi-

ness is invited to return to terra firma and interpret everything said in their favourite

countable transitive model, where, on the assumption that V is uncountable and

satisfies ZFC, extensions are readily available.1

III.1.1 Direct extensions

As it is perhaps (to begin with) the less technical of the two dimensions, we shall start

with lengthenings of the ordinals of a model, and discuss width extensions later.2

This first method has already been discussed in the Introduction. We might just

talk about the ordinals of some model M having a least upper bound in some larger

universe M′. Hellman, for example, formulates this claim as follows:

“Every [ZFC] structure...has a proper extension, both in the sense of in-

clusion and in the sense that it, or some copy, occurs as a “member” of

1See Chapter V for further discussion of this issue.
2We should keep in mind that, as noted in Chapter I with the case of the Shepherdson-Cohen minimal

model, sometimes extending a universe in height forces it to extend in width too. While we consider the
two dimensions in isolation here, this does not mean that they do not sometimes change in tandem.
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its proper extensions (i.e. in the domain of the relevant membership rela-

tion).” ([Hellman, 1989],p59)

On this picture, when given a model M |= ZFC, we simply assume that M forms

a set in some larger model M′. The ordinals of M also form a set in M′, and have an

associated von Neumann representative Ord(M) ∈ M′. It need not be the case that

M is an initial segment of M′,3 nor that M′ |= ZFC (in fact the first few levels ex-

tending M will not). However, if desired one can simply close under the operations

of ZFC to yield some particular N |= ZFC such that M ∈ N.

Of course, for the Universist, V is just one structure4 satisfying ZFC among many

(albeit a highly privileged one). We might then try and apply the above method to

V , assuming that it forms a completely legitimate set in some extension V ′. The or-

dinals of V are lengthened, andOnV has an associated von Neumann representation

Ord(V ).

Clearly though, the idea of V being a member of a proper length extension V ′ is

anathema to the Universist’s position, at least insofar as said extension contains only

sets.5 For the Universist, V is meant to be all sets there are, and so Universism does

not permit the existence of any such V ′ containing more sets.6

III.1.2 Definable long well-orders

A second way that we might consider ‘lengthenings’ of the ordinals of a model M,

without explicitly adding sets, is through defining well-orders longer than ΩM from

within M. The following is an example:

α ≺Ω+1 β iff either:

(i) α ≥ 1 ∧ β ≥ 1 ∧ α < β, or

3It should be noted that [Hellman, 1989] does have in mind extensions where the ground model is an
initial segment of the extension.

4Of course, there is a difficult question of how to formalise this, given that V is not a set and the model
theory of sets is often coded in set theory itself (we will see some palliative suggestions later). For the
moment we will talk naively about proper-class-sized structures and models satisfying various theories
and sentences, and leave an answer to the tricky problem of formalisation for Chapters V–VII.

5In Chapter IV, we shall see that dropping the requirement that these extensions are sets provides an
internally consistent though philosophically unsatisfactory response to this difficulty.

6Indeed, such a problem arises for any proper-class-sized model and not just V . We will see further
discussion of these issues in Chapters IV and VI.
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(ii) α ≥ 1 ∧ β = 0.

Such an ordering (expressible in L∈) effectively puts ∅ past the end of all the

ordinals of M, defining a well-order of length ΩM + 1. The example can be pushed

further:

α ≺Ω.2 β iff either:

(i) α is a successor and β is a limit, or

(ii) α and β are both limits and α < β, or

(iii) α and β are both successors and α < β.

Such a definition (expressible in L∈) prima facie defines an ordering of length

ΩM.2. We can provide definitions of still longer well-orderings. The following de-

fines an ordering on ordered pairs of ordinals that is (prima facie) ΩM times as long

as ΩM:

〈α, β〉 ≺Ω.Ω 〈γ, δ〉 iff

(i) α < γ, or

(ii) α = γ and β < δ.7

Intuitively speaking, such an ordering defines an ΩM-length sequence of ordered

pairs for every ordinal in M. Clearly it is possible (by moving to ordered triples,

quadruples, etc.) to iterate the definition to ordinally multiplying ΩM by itself any

finite number of times. Again, if we let M = V a puzzle emerges; we appear to be

defining orders longer than ΩV , but there is no set-theoretic ordinal corresponding

to these order-types.

The issue here is, from a philosophical standpoint, importantly asymmetric from

the case of simply assuming that there exist extensions in which V features as an

element. There, we noted that if V was taken to be all sets, it was impossible to

expand to a larger V ′ containing more sets. On the assumption that V is all the

sets, it is incoherent to add more sets to V . Here, however, there is no incoherence in

7The orderings ≺Ω+1, ≺Ω.2, and ≺Ω.Ω are taken from [Shapiro and Wright, 2006].
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saying that there are formulae defining well-orders longer than ΩV . It is simply that

these well-orders cannot have ordinal representatives in V (on pain of the Burali-

Forti contradiction). This then raises a conceptual problem: if we are able (prima

facie) to coherently compare these long well-orders, then why are there no ordinal-

like representatives among the pure sets? If these order-types have mathematical

use, what secures their reliability in the face of a lack such a representation?8

We will analyse these issues in greater detail later in this chapter, and indeed

throughout the thesis. For the moment, we turn our attention to width extensions.

As we shall see later, both height and width extensions are useful for formulating

axioms and proving theorems about V .

III.1.3 Set forcing

We have seen that there are ways of talking about V that appear to involve extending

the ordinals. We shall now provide an exposition of techniques for extending the

width of models.

The first construction for expanding width is set forcing. Here, we begin with

a partial order with domain P , ordering ≤P, and maximal element ✶P, denoted by

‘P = 〈P,≤P,✶P〉’, and have P ∈ M for some ZFC model9 M. The relevant p ∈ P are

known as conditions and effectively operate by providing partial information about

membership of the new object to be defined. We then, via a careful choice of names

(known as ‘P-names’)10 and evaluation procedure11 add G to M and close under the

operations definable in M. The end result is a model M[G] that (i) satisfies ZFC, (ii)

8As noted earlier, we might get such a representation through the use of impure set theory and use of
the devices in [Menzel, 1986] and [Menzel, 2014]. For the purposes of this thesis, we confine our attention
to pure sets.

9A couple of points of clarification are in order here. First, we do not always force over models of full
ZFC, and forcing over models of weaker theories is well studied. Second, often extra constraints are put
on M in order to deal with any awkward metamathematics; for example, many set theorists assume that
the models they work with are countable to ensure the existence of generics. A clear presentation of some
of these issues is available in [Kunen, 2013]. For the moment, we simply note that we are, in this thesis,
taking ZFC for granted as a base theory, and that the metamathematics of forcing will be considered in
detail in Chapter V.

10A P-name is a relation τ such that ∀〈σ, p〉 ∈ τ [“σ is a P-name” ∧p ∈ P]. In other words, τ is
a collection of ordered pairs, where the first element of each pair is a P-name and the second is some
condition in P (the definition is not vacuous in virtue of the empty set trivially being a P-name).

11We evaluate P-names by letting the value of τ under G (written ‘val(τ,G)’ or ‘τG’) be
{val(σ,G)|∃p ∈ G(〈σ, p〉 ∈ τ)}. The valuation operates stepwise by analysing the valuation of all the
names in τ and then either adding them to τG (if there is a p ∈ G and 〈σ, p〉 ∈ τ ) or discarding them (if
there is no such p ∈ G).
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has exactly the same ordinal height as M, and (iii) is strictly larger than M (in the

sense that M ⊂ M[G])12. We provide a couple of examples to illustrate the practice

which, as we shall see later in the thesis, are relevant for analysing interpretations of

forcing:

Example 24. Cohen forcing. Let κ be a cardinal in a model M |= ZFC+CH

such that cf(κ) > ω. Let P = Fn(κ× ω, 2) be the poset of all finite partial

functions from κ × ω to 2, ordered under extensions of functions (i.e.

p ≤P q just in case p extends q as a finite partial function). Then in the

generic extension 2ℵ0 = κ.13

We can think of the above forcing as adding κ-many reals (conceived of as func-

tions from ω into 2) to M. Because the relevant partial order also satisfies the count-

able chain condition (i.e. all antichains are at most countable), the forcing preserves

cardinalities and cofinalities, and the value of the continuum is moved to κ.

Whilst the above forcing largely preserves the cardinal structure of M (in that

all the cardinals and cofinalities remain the same), it is important to note just how

many of the cardinality properties we can change using forcing. The above tech-

nique moves the continuum to κ, leaving the rest of the ground model relatively

untouched. We can, however, seriously modify the structure of the ground model,

even to the point of destroying cardinals:

Example 25. The Lévy Collapse. Let κ be a regular cardinal and λ be an

inaccessible cardinal greater than κ. We define The Lévy Collapse (de-

noted by ‘Col(κ,< λ)’) as follows. The relevant partial order 〈P, <P,✶〉

consists of functions (each denoted by ‘p’) on subsets of λ × κ such that

(i) |dom(p)| < κ, and (ii) p(α, ζ) < α for each 〈α, σ〉 ∈ dom(p). In the ex-

tension every α such that κ ≤ α < λ has cardinality κ, and every cardinal

≤ κ and ≥ λ remains a cardinal.14

12It should be noted that in order for the forcing to be non-trivial, P has to be non-atomic (i.e. every
p ∈ P has incompatible extensions in P).

13For details, see [Kunen, 2013].
14One can also consider collapses where we use an arbitrary regular cardinal λ > κ (rather than the

more strict condition that λ be inaccessible). We will also denote these forcings by ‘Col(κ,< λ)’, with
context determining meaning when clear.
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The forcing shows how we can manipulate the cardinal structure of a model of set

theory in a very fine-grained manner, choosing which cardinals we want to collapse

and to where, whilst leaving the rest of the structure of the ground model intact.15

Forcing is an especially interesting philosophical construction for a number of

reasons. First, it is historically significant in that it has been used to settle many

open questions concerning (the most famous examples being the independence of

CH and AC). Second, it is of central importance in virtue of its ubiquity across

modern set-theoretic mathematics; much of set theory concerns constructing one

model from another using forcing arguments. However, especially philosophically

interesting is that it keeps models standard16. Assuming that the ground model M

is transitive, well-founded, and satisfies ZFC, the forcing extension M[G] (i) has the

same ordinals as M, (ii) satisfies ZFC, (iii) is transitive, and (iv) is well-founded.

Later in the chapter we shall see some further concrete examples of forcing in action.

For now though, it suffices to note that the fact that forcing keeps the models standard

is significant; generic extensions of a standard model of ZFC are also ZFC-satisfying

cumulative hierarchies.

The issue concerning forcing and V is, of course, that if we wish to perform a

non-trivial forcing where ‘V ’ denotes the Universist’s V as the ground model, the

relevant generic G must lie outside V . But V was meant to be all the sets there are,

and so such a G does not exist. Hence, without an appropriate intra-V codification

establishing the reliability of such a method, using talk of set forcing extensions of V

is forbidden.

III.1.4 Class forcing

Class forcing is very similar to set forcing, except we drop the requirement that the

set be a member of M and instead permit proper-class-sized partial orders. The de-

velopment of class forcing goes through largely the same as set forcing, with a few

15There are some limitations in this respect. For example, it is not known how to arrange

(ℵω+1)M = (ℵ2)M[G], and often whether a construction can be performed depends upon properties
of the ground model. Thanks to Sy Friedman for pointing this out to me.

16A model M is normally called standard iff it has the real ∈-relation. See [Kunen, 2013], §IV.2 for
verification of the basic properties of forcing.
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additional intricacies and features.17

When performing a class forcing, we generally force over models of the form

L(A) =
⋃
{L(A ∩ Vα)|α ∈ On}. Any model (M,A) of ZF (where we include Re-

placement for formulas mentioning A) can be changed to a model of this form by

expanding it to a model (M,A∗) where A∗ = {〈0, x〉|x ∈ A} ∪ {〈1, VMα 〉|α ∈ OnM}.

We then, as before, have a partial order with a maximal element 〈P,≤P,✶P〉, and

add a generic to our ground model M. The difference here being, of course, that G

is now a class rather than a set.

Class forcing has some interesting properties not enjoyed by standard set forcing.

A good example is that if we allow class forcing over L, then there are reals that we

can add using class forcing that cannot be added by set forcings.18 Further, using

class forcing we can produce models that violate ZFC. For example, the partially

ordered class Col(ω,On) (i.e. functions p from finite subsets of ω into On ordered

by reverse inclusion) is (without further constraints) perfectly legitimate, and, since

M[G] can see an ω-length cofinal sequence in OnM[G], Replacement fails (as long as

we can mention G as a predicate in the Replacement Scheme). This is unlike the

case of set forcing where M[G] is guaranteed to satisfy ZFC if M does. If ZFC

preservation is desired19 some care20 is required in defining the relevant P ⊆ M to

be used in forcing.

The situation with V and class forcing is a little more complex. Whilst the ma-

jority of class forcings also add sets, there are (non-ZFC-preserving) class forcings

that add only a class. For example, if we restrict Col(ω,On) to those p ∈ Col(ω,On)

whose domains are initial segments of ω and force with the resulting poset, we ob-

tain a model M[G] that satisfies ZFC as long as G is not allowed as a class predicate,

as the first-order domains of M and M[G] are identical.21 However, if we admit G as

17Details of the presentation given here are available in [Friedman, 2000], Chapter 2.
18See [Friedman, 2010], p559 for details.
19We shall argue later that for the purposes of talking about forcings over V , there is no reason why

ZFC preservation is especially desirable.
20The relevant conditions are pretameness and tameness of the partial order, corresponding respectively

to preservation of Replacement and Power Set. See [Friedman, 2000] for details.
21To see this, note that for any P-name σ for this poset and for each condition p in the inter-

section of the transitive closure of σ with P, ran(p) ⊆ rank(σ). We then define the dense set
D = {p ∈ P|rank(σ) ∈ ran(p)}. D is then both dense and definable over M. Letting
σp = {τp|∃q ∈ P[τ, q ∈ σ ∧ p ≤P q]} We then have σp = σG ∈ M whenever G is P-generic over
M and p ∈ D∩G, because p either extends or is incompatible with any condition in the transitive closure
of σ. Hence, whenever G is P-generic over M, they contain exactly the same first-order objects.
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a predicate into the language, Replacement fails. This is because G codes a cofinal

sequence from ω to OnM[G] and there is no set in M[G] corresponding to OnM[G].22

The problems for interpreting class forcing over V are thus twofold. First, there is

the standard problem (as in set forcing) of interpreting talk of class forcings that add

sets. Secondly, however, the addition of G also adds a class, and there can be (non-

ZFC-preserving) class forcings can add classes whilst leaving the sets untouched.

Assuming then that the Universist is already happy to try interpreting class forcings,

there are thus two dimensions to be accounted for: (1.) interpret the sets added, and

(2.) interpret how classes get added. (1.) we assume will go through exactly as in the

set forcing case, however (2.) presents a new and interesting challenge, especially

when there are no sets added to underpin a change in classes. The Universist has

a couple of ways she could deal with this: she could either (a) reject talk of such

class forcings as illegitimate, and provide a philosophical explanation of why they

are different from other instances of class forcing, or (b) provide an explanation of

how to interpret forcing talk that adds classes but leaves the sets untouched.

III.1.5 Sharps and mice

The final variety of width extension we shall explicitly consider involves the taking

of sharps. The notion of a sharp is important within the highly technical field of

inner model theory and the consideration of objects known as mice. As we shall see in

the rest of the chapter, issues in inner model theory are relevant not just for both the

formulation of new axioms and the proving of theorems about V , but also provide

an interesting case where height and width extensions interact.

The situation is perhaps most easily seen through starting with a consideration of

L. We first need to set up some familiar definitions from the model theory of sets. A

mathematical notion that will appear throughout this thesis is that of an elementary

embedding:

Definition 26. Let N and M be (set-theoretic) structures. Then an elemen-

tary embedding is a mapping j : N −→ M such that:

22For details, see [Holy et al., F].
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(i) j is one-to-one.

(ii) j preserves first-order truth: i.e. N |= φ(x0, ..., xn) iff M |= φ(j(x0), ..., j(xn)).

We furthermore say that an embedding is non-trivial iff it is not the iden-

tity map.

Definition 27. The least ordinal moved by j (if there is one) is called the

critical point of j and is denoted by ‘crit(j)’.23

We can now begin to explain the theory of sharps, and how this might relate to

extensions of V . To illustrate the rough structure of the construction, we begin by

considering the case of L. Suppose that there is a cardinal κ and an ultrafilter U on

PL(κ) with the following properties:

(i) Ult(Lκ, U) is well-founded and its collapse produces an embedding j0 : L −→ L.24

(ii) crit(j0) = κ.

(iii) j0(κ) = κ1.

Suppose further that it is then possible to take the ultrapower of Lκ1
by an ultra-

filter U1, producing an embedding j1 with the same features except crit(j1) = κ1 and

j1(κ1) = κ2. Assume also that we can continue this process, taking the direct limit

of the ultrapowers, continuing through the ordinals whilst keeping the ultrapower

well-founded. The process will produce (by the elementarity of the relevant jα) a

class of indiscernibles for L and code an elementary embedding j : L −→ L. More

formally, we define the following object:

Definition 28. 25 A mouse is a structure26 JUα = (Jα, U) such that:

23In all the elementary embeddings we shall consider, the non-triviality of j implies the existence of a
critical point.

24The ultrapower construction is a technique whereby, using an ultrafilter on P(κ), we can define an
equivalence relation on κM, producing equivalence classes for every f ∈ κM. This gives us an embed-
ding i0 : M −→ Ult(M/U), where ‘Ult(M/U)’ denotes the ultrapower of M by U . Assuming that the
ultrapower relation EU (also defined using U ) is well-founded, extensional, and set-like, we can then
use the Mostowski Collapse Lemma to obtain another embedding i1 : Ult(M/U) −→ N to produce a
transitive set-theoretic structure N. The relevant j are then the composition of these two embeddings. For
details of the ultrapower construction, (including the Łoś Theorem) see [Jech, 2002].

25See [Jensen, 1995] and [Schimmerling, 2001] for excellent aerial surveys of sharps and mice, and
[Jech, 2002], Ch 35 for the details (but beware of typographical errors).

26The J hierarchy is an alternative presentation of L (in the sense that J [A] is always the same structure
asL[A]) in terms of rudimentary functions, but has some additional pleasing fine structural features (such
as the closure of the Jα under the formation of ordered pairs).
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(i) U is a normal, iterable27, κ-complete ultrafilter on some κ < α.

(ii) All iterated ultrapowers of JUα by U are well-founded.

(iii) For κ and finite p ⊆ α, JUα = Hull
JU
α
n (κ∪ p). i.e. JUα is the Σn Skolem

hull (for some n ∈ ω) of κ unioned with a finite p ⊆ α.28

Mice are used in the highly technical context of fine structure theory: the study and

construction of models resembling L yet containing non-constructible sets. We shall

see several issues concerning mice and extensions of V . First, however, we define an

ordering on mice. Let JUα be a mouse at κ, λ be a regular cardinal greater than κ+,

andCλ be the club filter on λ (i.e. Cλ contains all and only the closed and unbounded

subsets of λ). We then know that the λth iterate of JUα is such that:29

UltλU (J
U
α ) = JCλ

β , for some β.

We can now provide the following definition:

Definition 29. Let JUα = Hull
JU
α
n (γ∪p) and JU

′

α′ = Hull
JU′

α′

m (γ′∪p′) be mice

and λ be any sufficiently large regular cardinal. Let i0,λ : JUα −→ JCλ

β and

i′0,λ : JU
′

α′ −→ JCλ

β′ be the respective iterated ultrapowers witnessing their

mice-hood. Then JUα = Hull
JU
α
n (γ ∪ p) <M JU

′

α′ = Hull
JU′

α′

m (γ′ ∪ p′) iff:

(i) β < β′, or

(ii) β = β′ and γ < γ′, or

(iii) β = β′, γ = γ′, and q < q′ in the descending lexicographic ordering.

This ordering well-orders the class of all mice. We can now define 0♯ as follows:30

Definition 30. 0♯ is the minimal mouse (if it exists).

27An ultrafilter U is iterable iff whenever there is a < κ-length sequence of members of U in a model
M, then the set of those members is also in M. This condition facilitates the iteration of the ultrapower
construction. For details, see [Jech, 2002], p354.

28A Skolem hull of a set X is the closure of a set of Skolem functions witnessing the true formulas of
some L on a structure M. A Σn Skolem hull is simply a Skolem hull where we only worry about Σn

formulas.
29See, [Jech, 2002], pp661-662.
300♯ admits of many alternative definitions. See [Jech, 2002] and [Kanamori, 2009] for discussions of

several available options.
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Interestingly, if we assume that other L-like models also have ultrafilters on car-

dinals producing well-founded ultrapowers, we can also have sharps for these mod-

els. For example, given a non-constructible real x, we can have an embedding

jx : L[x] −→ L[x], with corresponding indiscernibles and a sharp for L[x] (denoted

by ‘x♯’). In fact, there is a sharp hierarchy, and we can proceed through the ordinals

defining further sharps.

The study of the fine structure of L and its extensions is both abstract and diffi-

cult. We shall, therefore, avoid delving into the technical details too far in order to

keep philosophical upshots clear. For now, we need only note that mice represent

natural objects of set-theoretic study. Importantly though, mice cannot be within

their models; the relevant indiscernibles provide a truth definition of the structure in

question (and hence cannot be in the structure by Tarski’s Theorem on the undefin-

ability of truth).

However, more important still is that there is no known forcing-like technique

for constructing 0♯ from within L (and similarly for other mice over their relevant

inner models). Thus L[0♯] is a non-forcing extension of L; 0♯ cannot be reached with

known forcing constructions.

Further, once we have all mice, it is possible to continue. Mice are essential in

the definition of the core model (often denoted by ‘K’). First we need to expand

the definition of L relative to a predicate A. We introduce a predicate A(x) into the

language of ZFC, such that A(x) holds iff x ∈ A. We then can have the notion of

being definable over M relative to A:

Definition 31. defA(M) = {X ⊆M |X is definable over (M,∈, A ∩M)}

We then can define the following relativised constructible universe:

Definition 32.

(i) L0[A] = ∅,

(ii) Lα+1[A] = defA(Lα), for successor α+ 1,

(iii) Lλ[A] =
⋃
β<λ Lβ for limit λ,

(iv) L[A] =
⋃
α∈On Lα
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Effectively, we allow ourselves the expressive resources provided by a predicate

for an additional (possibly set-sized) class for defining sets in the usual way in L.

Combining this idea with the notion of a mouse, we are led to the notion of the Core

Model:

Definition 33. The Core Model is the following structure:

K = L[{JUα |“JUα is a mouse” }]

Essentially K is an L-like model containing all mice (and indeed K |= ZFC).

However, under the assumption of the existence of an L-like inner model containing

a measurable cardinal κ (denoted by ‘L[U ]’, whereU witnesses κ’sL[U ]-κ-completeness),

there is a non-trivial elementary embedding j : K −→ K with attendant indis-

cernibles. Further, we can continue, having an embedding j : L[U ] −→ L[U ], with

more indiscernibles and ultrapower maps, producing new L-like inner models.

The details become exceptionally complex very quickly. Currently, the produc-

tion of inner model theory has stalled at the level of many Woodin cardinals, or (with

additional assumptions on the kind of iteration available) at supercompact cardi-

nals.31 Despite this, work continues, and the set-theoretic picture and philosophical

upshots of the foregoing discussion remain; the consideration of mice and sharps is

a very general enterprise, holding for a wide variety of models, and the models in

question are not obtainable by known forcing constructions. Further, we can pro-

vide a more general definition for sharps in a wider context (a visual representation

is provided in Figure III.1):

31For discussion see [Sargsyan, 2013] and [Steel, 2014].
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Figure III.1: A visual representation of the initial ultrapowers corresponding to a
sharp (N,U)

N = (N,U)

·U
κ•

(N1, U1)

•
·U1

κ1
π0,1

π0,1

π1,2

π1,2

• • •

Definition 34. A structure N = (N,U) is called a sharp with critical point

κ, a sharp, or just a ♯, iff32:

(i) N is a model of ZFC− (i.e. ZFC with the power set axiom removed)

in which κ is the largest cardinal and is strongly inaccessible.

(ii) (N,U) is amenable (i.e. x ∩ U ∈ N for any x ∈ N ).

(iii) U is a normal measure on κ in (N,U).

(iv) N is iterable in the sense that all successive ultrapowers starting

with (N,U) are well-founded, providing a sequence of structures

(Ni, Ui) and corresponding Σ1-elementary iteration maps πi,j : Ni −→ Nj

where (N,U) = (N0, U0).

The above definition provides the resources to talk about extensions of arbitrary

models with the relevant ultrafilter needed to construct embeddings. Such sharps

cannot be within their respective models; as with mice33 the indiscernibles they gen-

erate provide a truth definition for the relevant structure.34 The question then is the

following: could the Universist codify talk of a sharp for V ? This is especially diffi-

cult, as such an object could not be defined by standard forcing techniques (assuming

32This way of defining sharps is due to [Friedman, S] and [Friedman and Honzik, 2016].
33Mice are just a particular kind of sharp.
34See [Friedman and Honzik, 2016] for details.
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of course that the Universist has an interpretation of both set and class forcing). This

fact, as we shall see in Chapter V, will turn out to be significant. For now, however,

we shall explore how we might put these techniques and objects to work in the study

of V .

III.2 Formulating axioms that go beyond V

We first examine axioms, relevant for the analysis of Gödel’s programme, that can

be formulated using extensions of V . Of especial interest will be how consideration

of extensions lets us formulate certain kinds of reflection principle, postulate the

existence of inner models, and define new kinds of embedding.

III.2.1 Inner model density

Extensions of V are useful for postulating the existence of many inner models. The

Inner Model Hypothesis does exactly this, using extensions of a model M in order to

make claims about the inner models of M (see Figure III.2 for a visual representation

of an application of the IMH):

Definition 35. [Friedman, 2006] Let φ be a parameter-free first order sen-

tence. M satisfies the Inner Model Hypothesis (henceforth ‘IMH’) iff when-

ever φ holds in an inner model IM
∗

of an outer model M∗ of M, there is

an inner model IM of M that also satisfies φ.

The IMH thus states that M has a high density of inner models, in the sense

that any sentence φ true in an inner model of an outer model of M is already true

in an inner model of M. In this way, M has been maximised with respect to internal

consistency.

There are a number of reasons to find the IMH interesting, not least because it

maximises the satisfaction of consistent sentences within structures internal to M.

The IMH is thus (if true) foundationally significant: it gives us an inner model

for any sentence model-theoretically compatible with the initial structure of V , and

thus serves to ensure the existence of well-founded, proper-class-sized structures in
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Figure III.2: A visual representation of an application of the IMH

M∗ M∗IM
∗

IM
∗

φ φ

M MIM IM

which we can do mathematics. However, it is also interesting in that it has various

anti-large cardinal properties, indeed certain versions of the IMH prove that there

are no inaccessibles in M.35 The principle (and each of its variants) is thus worth

scrutiny; the IMH provides the possibility of motivating an axiom that substantially

reduces the ‘cap’ on the height of the ordinals.36

Whence the problem then for the Universist? If the Universist wishes to use the

IMH as a new axiom about V ,37 she has to examine issues concerning extensions

of V . If they ascribe no meaning to claims concerning extensions, then the IMH is

utterly trivial. Under this analysis, everything true in an inner model of an outer

model of V is also true in an inner model of V , as either (i) the outer model is proper,

35See [Friedman, 2006], p597 for details.
36Talk of a ‘cap’ on the ordinals is somewhat difficult, as usually the term is taken to talk about proper-

ties of cardinals that cannot exist. Thus, the term ‘cap’ denotes a relationship between height and width,
rather than only height. For example, one can have countable models with a highly impoverished con-
ception of the power set operation that believe they contain supercompact cardinals. For this reason,
even assuming a definite power set operation (and hence fixing of this aspect of the cardinal properties
of V ), what one takes to be the cap will depend on other properties of V . If V = L, the cap appears as
early as 0♯. Assuming AC, there cannot be a Reinhardt cardinal (i.e. there is no non-trivial elementary
j : V −→ V ). The point here is that the IMH pulls this cap all the way down to one of the smallest kinds
of large cardinal.

37Here, and throughout, we will use the term ‘IMH’ both to refer to the property that a model can
satisfy, and also V ’s satisfaction of said property. We let context determine meaning.
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does not exist, and hence nothing is true in an inner model of that proper outer

model of V , or (ii) the outer model is V itself, and obviously anything true in an

inner model of V is true in an inner model of V .

However, even supposing that the Universist allows some interpretation of exten-

sion talk, the content that the IMH has is going to vary according to the resources

one allows. If for example, one permits the interpretation of set forcing and no more,

the IMH only goes slightly stronger than ZFC. It does, however, imply V 6= L:

Theorem 36. If the IMH is true restricted to set forcings, then V 6= L.

Proof. Assume V = L and that the IMH is true restricted to set forcings.

Then there there is an inner model of an outer model in which V = L

is false (the addition of a single Cohen real x over L to L[x] will suffice,

with the relevant inner model simply being the forcing extension L[x]).

By the IMH there is an inner model of L in which V 6= L. But L is the

smallest inner model, and so V = L and V 6= L, ⊥. �

However, though it is sufficient to get us a certain density of inner models (enough

to break V = L) we get more if we restrict to class forcings. This is brought out in

the following:

Theorem 37. There is a model satisfying the IMH for set forcing that

does not satisfy the IMH for class forcing.

Proof. Let M be a model of V = L containing a reflecting cardinal38 κ.

Next, perform the Lévy Collapse to move κ to ω1. The extension L[G] sat-

isfies the IMH for set forcing. However, by [Jensen, 1972] one can define

class-generic reals that are not set-generic. Let H be a generic yielding

such a real in an extension L[H]. We then note that L[G] does not have

an inner model with a real that is not set-generic over L, and so the IMH

for class forcing fails. �

38In the present context, κ is a reflecting cardinal iff (i) κ is regular, and (ii) whenever φ is a sentence with
parameters from Vκ, if φ holds in some Vα (in V ), then φ holds in some Vβ with β < κ. The definition is
equivalent to saying that κ is regular and Vκ is Σ2 elementary in V . In terms of consistency strength, it
is stronger than inaccessible but weaker than Mahlo. Many thanks to Sy Friedman for communicating to
me this proof technique.
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Thus, we see how the IMH varies in its content and implications dependent on

what we allow as extensions. Supposing that we do wish to assert that the IMH is

true of V . Then we need to give meaning (in whatever appropriate codification) to

the claim that V has various kinds of extension. The intra-V consequences provable

from the IMH will then vary depending on the kinds of width extensions we can

interpret.

We have seen that it is possible to formulate a principle with substantial anti-large

cardinal features using extensions. A natural question then is: Does the considera-

tion of extensions feed into formulation of standard large cardinal axioms? Two of

the most used ways of formulating large cardinal axioms are (i) the consideration of

reflection properties over V , and (ii) postulating the existence of elementary embed-

dings. As we shall see, extensions are relevant for both these ways of formulating

new axioms.

III.2.2 Direct reflection

We start with reflection properties. When put very informally, a reflection principle is

of the following general form:

Any property held by V is held by some initial segment of V .

Of course, what one takes to be a property of V is going to be difficult to cash

out, especially on a Universist picture. Furthermore, care is needed as reflection

with unrestricted third-order parameters is inconsistent!39 However, key for our

discussion will be the possible use of extensions in formulating axioms that postulate

the witnessing of reflection by initial segments. Most discussion of reflection centres

on properties held by V using a parameter over V . For a (higher-order) parameter A

over V a reflection principle states:

(V,∈, A) |= φ→ ∃α(Vα,∈, A ∩ Vα) |= φVα

In informal terms, if V satisfies φ relative to some parameter A over V , there is a

Vα that also satisfies φ when A, quantifiers in φ, and parameters in φ are restricted

39For the result, see the suggestive remarks in [Reinhardt, 1974] and more precise exposition in
[Tait, 2005].
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to Vα. There is a detailed literature on the small large cardinals that one can derive

from such principles40, and also problems of justification and consistency41 but we

focus here on the possible use of extensions in formulating reflection.

The use of extensions is particularly relevant in providing characterisations of

axioms that postulate the witnessing of reflection principles by individual Vα. Fried-

man and Ternullo, for example, have formulated the following version of reflection:

Definition 38. [Friedman and Ternullo, S] M satisfies the extended reflec-

tion axiom42 (henceforth ‘ERA’) iff M has a lengthening M′ |= ZFC (i.e. a

model satisfying ZFC containing M as an element) such that for all first-

order formulas φ and subclasses A ⊆ M belonging to M′, if φ(A) holds

in M′ then φ(A∩VM
α ) holds in VM

β for some pair of ordinals α < β in M.

So, for a universe M to satisfy the ERA, it must have a ZFC-satisfying lengthen-

ing M′ such that if M′ satisfies φ relative to the parameterA, then M already contains

a pair of ordinals α and β, with α < β, such that Vβ can see a level (namely Vα) that

reflects φ. Effectively, M can already see pairs of ordinals witnessing various reflec-

tion axioms. The challenge for the Universist is that if she wishes to assert that the

ERA holds of V , we have to be able to refer to extensions of V . We have to state that

there is a lengthening V ′ of V , such that V already has witnesses for any reflection

occurring in V ′ in its own Vα. Of course this is hard to interpret for the Universist,

since there are no height extensions of V . Thus, without further interpretation, the

ERA will always come out as trivially false.

III.2.3 ♯-generation

We have discussed how we might use extensions to directly formulate notions of

reflection. It is interesting to note that it is possible to encapsulate the large cardinal

consequences of reflection properties through the use of sharps. Earlier we said that

40See, for example, [Levy, 1960] and [Bernays, 1961].
41For discussion, see [Koellner, 2009] and [Barton, Fb].
42Friedman and Ternullo in fact use the term ‘ordinal maximality of M’ instead of ‘M satisfying the ex-

tended reflection axiom’ largely because [Friedman and Ternullo, S] is concerned with maximality criteria
on universes. As we are interested in axiom formulation for a Universist, we opt for the term ‘extended
reflection axiom’.

71



a sharp is a structure M = (M,U) with various iterability and amenability prop-

erties. Recall that part and parcel of a sharp (N,U) is the existence of a sequence of

structures (Ni, Ui) and corresponding Σ1-elementary iteration maps πi,j : Ni −→ Nj .

We can then provide the following definition:

Definition 39. [Friedman, S] A model M = (M,∈) is sharp-generated (or

just ♯-generated) iff there is a sharp (N,U) and an iterationN0 −→ N1 −→ N2...

such that M =
⋃
α∈OnM V Nα

κα
.

In other words, a model is sharp-generated iff it arises through collecting together

the V Ni
κi

(i.e. each level indexed by the critical point of the ith iteration map, according

to the model indexed by i) resulting from the iteration of a sharp through the ordinal

height of M.

A model’s being sharp-generated engenders some pleasant features. In partic-

ular, it implies that any satisfaction obtainable in an extension of M (possibly with

parameters) is already reflected to an initial segment of M.43 In this way, we are able

to coalesce many reflection principles into a single property of a model. A natural

axiom then would be:

Axiom 40. Axiom♯. V is sharp-generated.

which would allow us to assert in one fell swoop that V satisfies many reflection

axioms (rather than having to assert them in a piecemeal fashion). However, such an

axiom is also clearly problematic; claiming that V is sharp-generated depends upon

the existence of a sharp for V , which cannot be in V by design. Thus, the claim that

V is sharp-generated comes out as trivially false; there simply is no such sharp.

III.2.4 Generic embeddings

We have seen that we can use extensions to formulate large cardinal principles based

on ideas concerning reflection. We now wish to see if we can formulate new set-

theoretic axioms via the use of embeddings in combination with talk of extensions.

In the case of reflection principles, we formulate new and stronger large cardinal

principles by postulating higher-orders of reflection and incorporating steadily more

43See [Friedman, S] and [Friedman and Honzik, 2016] for discussion.
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parameters. A different way of asserting the existence of large cardinals (often quite

strong), is through the use of elementary embeddings. Recall from III.1.5 that we

could characterise 0♯ through a non-trivial j : L −→ L. Such an embedding pushes

us (unlike standard reflection principles44) outside V = L; the embedding cannot

be within L by design. We can generalise further, to consider embeddings from

arbitrary models j : N −→ M, producing a further hierarchy of large cardinals. For

example, measurable cardinals are a natural object of study:

Definition 41. A cardinal κ is measurable iff κ is the critical point of a

non-trivial elementary embedding j : V −→ M.

These cardinals push us well outside V = L, and imply the existence of all small45

large cardinals consistent with L. When defining a large cardinal through an embed-

ding j : N −→ M, the strength of the embedding depends mainly on two parame-

ters:

(i) The size of N and M.

(ii) Where j sends the ordinals.

We have already seen the minimal case for an embedding between proper class

models; namely the existence of a non-trivial j : L −→ L. If we assume that

dom(j) = V , we strengthen to the level of a measurable cardinal, and break V = L.

We know that the existence of a non-trivial j : V −→ V is inconsistent (modulo

ZF) with AC.46 Despite this we can study intermediate cardinals by modifying the

properties of j and M. For example, we can use the following pair of definitions to

strengthen the notion of measurable along the dimensions of (i) and (ii):

Definition 42. A cardinal κ is λ-supercompact iff it is the critical point of a

44See [Koellner, 2009] for a discussion of why standard reflection is not able (yet) to push us outside
V = L. There is another class of axioms (also often referred to by the term ‘reflection principles’) that
combine reflection with embeddings, see [Reinhardt, 1974], [Welch, 2014], and [Barton, Fb] for discussion.

45A note on terminology is needed here. When distinguishing between cardinals, there are two espe-
cially pertinent points in the hierarchy of large cardinal strength; (i) when a cardinal breaks V = L, and
(ii) when a cardinal breaks AC. Cardinals consistent with V = L I shall call small large cardinals, those
that are known to be inconsistent with V = L but not known to be inconsistent with AC I shall call mid-
dling large cardinals, and those known to be inconsistent with AC but not known to be inconsistent with
ZF I shall call very large cardinals.

46See [Kunen, 1971] for the result. We shall see further discussion of this phenomenon in Chapter VI.
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non-trivial elementary embeddings j : V −→ M, such that j(κ) > λ and

λM ⊆ M (i.e. M is closed under λ-sequences).

Definition 43. A cardinal κ is supercompact iff it is λ-supercompact for all

λ ∈ On.

The definition of supercompact uses the dimensions of (i) and (ii) to increase the

strength of the embedding. We postulate a higher degree of similarity between V

and M (in terms of closure under λ-sequences for the relevant λ), and stipulate that

j sends κ above λ.

Standard discussions of middling large cardinals proceed from this template.

However, we can generalise the construction to generic embeddings. Given a forcing

construction adding a generic G over a model N, a generic embedding is of the form

j : N −→ M ⊆ N[G]. In other words, we begin to study embeddings from structures

to inner models of their forcing extensions.

Recently, there has been an increased focus on such embeddings. Indeed, the

study of generic embeddings has become widespread, as Foreman (in a handbook

article on generic embeddings) illustrates:47

“The main aim of the chapter is to illustrate that there is a coherent the-

ory here, that there are unifying fundamental ideas that occur frequently

in many different contexts. These include master condition ideals, nat-

ural and induced ideals, disjointing, self-genericity, the role of diagonal

unions for representing Boolean sums, good elementary substructures—

the list is long.” ([Foreman, 2010], p890)

Generic embeddings are thus useful for studying certain natural mathematical

properties. Furthermore, the involvement of extensions in the consideration of em-

beddings provides an additional dimension in which we may vary the nature of the

construction. Not only does the embedding depend upon the size of the domain

and range of the embedding and where the ordinals are sent, but also on a third

parameter:

47See also, [Foreman, 1986] for several key results, and [Foreman, 1998] for a more informal overview.
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(iii) The nature of the forcing required to define j.48

The fact that we have an extra dimension in which we can vary the structure of

these kinds of embeddings makes them an intriguing subject matter. However, even

more interesting is that the critical points of these axioms can be rather small. For

example, we have:

Theorem 44. If I is an ω2-saturated ideal on ω1 and U is generic for the

poset of I-positive sets, then in V [U ] the ultrapower Ult(V, U) is well-

founded and we get a map j : V −→ M ⊆ V [U ] with crit(j) = ω1 and

j(ω1) = ω2.

Such an embedding from V to another (necessarily fatter) model M has ω1 as its

critical point, far below the size of a measurable cardinal.49 Despite the smallness of

the critical points, however, these embeddings have a significant amount of large car-

dinal strength.50 Thus, these embeddings provide significant combinatorial power

whilst facilitating proof concerning small uncountable sets. Foreman, for example,

writes:

“The advantage of allowing the embeddings to be generic is that the crit-

ical points of the embeddings can be quite small, even as small as ω1.

For this reason they have many consequences for accessible cardinals,

settling many classical questions of set theory.” ([Foreman, 2010], p887)

So, generic embeddings provide a new way of combining large cardinal strength

with a seemingly very direct way of talking about the small uncountable sets. Of

course the same problem arises as with standard forcing constructions; the generic

used to engender the embedding cannot be in V , and j itself is coded as a class of

ordered pairs in V [G]. Thus any theorem proceeding from the supposition of the

existence of a generic G facilitating an embedding in an extension (as above) is true,

48For further exposition of this line of thinking, see [Foreman, 1998] and [Foreman, 2010].
49We know, for instance, that |ω1| ≤ |P(ω)|, making it accessible. To get an idea of the scale of the

difference, if κ is measurable then it has to be an inaccessible limit of inaccessible cardinals.
50For example, the existence of both a saturated ideal on ω1 (and associated generic embedding) and a

measurable cardinal implies the existence of an inner model with a Woodin cardinal, whereas the consis-
tency strength of a measurable cardinal is far below that of a single Woodin. See [Steel, 1996] for details.
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but tells us nothing about the structure of V ; the conditional is made true vacuously

by the non-existence of such a G.

III.2.5 Remarkable behaviour in extensions

It is not just through postulating the existence of embeddings directly between V and

models within forcing extensions that allow us to formulate new axioms with signif-

icant large cardinal strength. Through analysing properties of ordinals in extensions,

we can come to characterisations of new varieties of cardinal.

An example of Schindler is especially pertinent here:

Definition 45. [Schindler, 2000] A cardinal κ is remarkable iff in theCol(ω,<κ)

forcing extension V [G], for every regular λ > κ there is a cardinal λ0 < κ,

λ0 regular in V , and j : HV
λ0

−→ HV
λ such that crit(j) = γ and j(γ) = κ.

We are able to characterise the notion of a cardinal being remarkable if, when we

collapse all cardinals less than κ to ω through forcing, in this Col(ω,<κ) extension

V [G], for every regular λ > κ in V [G] there is a V -regular cardinal λ0 < κ such that

the heriditarily λ0-sized sets elementarily embed into the hereditarily λ-sized sets.

Thus, by studying how sets are embeddable in the extension, we are able to ascribe

large cardinal properties to ordinals in V . The consistency strength of a remark-

able cardinal, for instance, does not break V = L but is substantially stronger than

a weakly compact cardinal51. The problem here is that we are predicating a large

cardinal property of κ, an object in V , but using resources from extensions to define

what it is to have said large cardinal property.

III.3 Using tools that go beyond V

Thus far, we have examined some axioms that are formulated through the use of

extensions of V . However, recall from the previous chapter that it was not just for

formulation of axioms that we wished to provide interpretation of extensions of V ,

51Weakly compact cardinals are so named in virtue of being characterisable through compactness prop-
erties on infinitary languages. They admit of a diverse number of equivalent characterisations. For details,
see [Kanamori, 2009].
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but also for ascertaining verifiable consequences. We now review several ways in which

we can use extensions of V to prove facts about V .

III.3.1 Perspective of extensions

The first point uses well-known facts about the model theory of sets. We know that

any Π1-sentence of set theory φ is downward absolute, in that if it holds in some model

M and N ⊆ M then φ also holds in N. We then know that if we are able to interpret

talk of extensions V , and prove Π1-facts in said extensions, then such facts will also

be true in V . Thus, talk of extensions can facilitate proof of intra-V facts.

Indeed, it turns out that certain extensions are useful for proving theorems about

ground models. A good example here is the following:52

Theorem 46. [Baumgartner and Hajnal, 1973] ω1 −→ (α)2n for all finite n

and countable α (i.e. For all finite n and countable α, every partition of

the two-element subsets of ω1 into a finite number of pieces has a homo-

geneous53 set of order-type α).

The proof proceeds by finding a homogeneous set in a forcing extension where

MA holds. This establishes that a certain tree from the ground model is non-well-

founded in the extension. We then know, by the absoluteness of well-foundedness,

that the tree is also non-well-founded in the ground model, establishing the theorem.

If we permit the use of forcing constructions over V , we are thereby able to establish

the results of [Baumgartner and Hajnal, 1973] as true about the real ω1. It is thus

desirable, in line with the Hilbertian Challenge, that we have an account of why

moving to an extension of V where MA holds is acceptable for proving a theorem

about V .

III.3.2 Large cardinals: redux

In the previous section, we discussed how the use of extensions aided in the formu-

lation of axioms of significant consistency strength. However, it is not just in the

52I am grateful to Andrés Caicedo for pointing out this example.
53Here, a homogeneous set is a subset X of ω1 such that every 2-element subset of X is in the same

member of the partition.
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formulation of the axioms that extensions are useful. They are also helpful for de-

termining consequences of an axiom V given an alternative formulation that avoids

mention of extensions.

An interesting feature of both remarkable cardinals and generic embeddings is

that both admit of an equivalent formulation internal to V . We begin with the case of

remarkable cardinals. The following is a theorem:

Theorem 47. [Schindler, 2001] A cardinal κ is remarkable iff for every reg-

ular λ > κ, there are countable transitive models M and N with embed-

dings:

(i) π : M −→ Hλ with π(κ0) = κ,

(ii) σ : M → N such that

(a) crit(σ) = κ0,

(b) Ord(M) is a regular cardinal in N, and M = HN

Ord(M)

(c) σ(κ0) > Ord(M).

Thus, the notion of remarkable cardinal admits of a formulation using only ob-

jects within V . Instead of talking about properties in the Col(ω,<κ) forcing ex-

tension, we instead talk about embeddings between countable transitive models

M and N in V , and, for regular cardinals λ > κ, embeddings between M, N, and

the hereditarily-<λ-sized sets. The characterisation in terms of behaviour in a forc-

ing extension is perhaps more natural, but this nonetheless shows that remarkable

cardinals can be understood within V , rather than having to move to the Col(κ, ω)

extension.

Is the same true for generic embeddings? Often, we can use metamathematical

results in order to find equivalent first-order statements within V . Foreman dis-

cusses the technique:

“The language of ideals, together with the mechanics of forcing provide

the same kind of vehicle for stating generalized large cardinal axioms

in the language of set theory. Assuming the existence of a proper class

78



of Woodin cardinals, Burke’s Proposition54...shows that every countably

complete ideal is pre-precipitous. More directly: the existence of an ele-

mentary embedding j : V −→ M ⊆ V [G] where G ⊆ P is generic and

j”λ ∈ M is easily seen to be equivalent to the existence of a P-term for

an ultrafilter U̇ ⊆ P(P(λ))V is normal for regressive functions in V and

fine and is such that there is no descending ω-sequence of U -equivalence

classes of functions from V . The idea of an induced ideal allows us to re-

state this combinatorially as a normal, fine, precipitous ideal I on P(λ)

such that the quotient algebra P(P(λ))/I inherits some of the properties

of the original partial ordering P. Finally, moving along the “F” axis [the

nature of forcing required to define j] in the direction of greater strength,

the saturation properties of ideals play exactly the same role for gener-

alized large cardinals as ultrafilters do for conventional large cardinals.”

([Foreman, 2010], p1128)

The details here are exceptionally technical and research is ongoing. However,

the philosophical upshot is the following. For many large cardinals, the existence of

an embedding j : M −→ N is equivalent to the existence of some first-order com-

binatorial sets. For instance, the existence of a measurable cardinal is equivalent to

there being an uncountable cardinal κ with a κ-complete, non-principal ultrafilter

on P(κ). Foreman’s point is that the same holds (under the assumption of the exis-

tence of the requisite Woodin cardinals) for generic embeddings. The properties of

the embedding can be traced through the mechanisms of forcing55 to properties of

the ideal (namely the level of saturation it exhibits). Thus, the existence of a generic

embedding usually corresponds to the existence of an ideal in V with a particular

saturation property.

So, we see that both remarkable cardinals and generic embeddings admit of a

formulation that refers to objects solely in V . We might then ask if these examples

are so problematic; one might think that the Universist can just regard the use of

54Burke’s Proposition states that if I is a countably complete ideal on a set Z, and δ > |Z| is a Woodin
cardinal, then I is pre-precipitous. For details, see [Foreman, 2010], p1113.

55Some of these mechanisms will be discussed in more detail in Chapter V. In particular, the role of
‘P-terms’ will be made clear.
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extensions as a heuristic for talking about the relevant intra-V formulations. Aside

from the fact that it is often the most natural formulation that uses extensions of V

(and therefore it might be regarded as desirable to find a more faithful interpretation

of these formulations), we note that if we have already accepted the existence of ob-

jects given by the intra-V formulations, then there are cases when the easiest proof

proceeds using extra-V resources. For this reason, we would like an explanation of

why the proof methods that proceed via extra-V resources are guaranteed to result

only in truth.

The issues surrounding remarkable cardinals and generic embeddings are thus

twofold in character. First, we would like an explanation of why using extra-V re-

sources for formulation will result in truth concerning V . However, we would also

like reassurance that, when using an intra-V formulation, any steps of proof that

proceed through extensions will not lead us astray.

III.3.3 Long well-orders and fine structure

We noted in §1 that there were several definitions that appeared to define well-orders

‘longer’ than ΩV . We then noted that we wanted to talk about objects known as mice,

and collect them together into the core model K. For the sake of clarity, we repeat

the definition of a mouse:

Definition 28. A mouse is a structure JUα such that:

(i) U is a normal, iterable, κ-complete ultrafilter on some κ < α.

(ii) All iterated ultrapowers of JUα by U are well-founded.

(iii) For κ and finite p ⊆ α, JUα = Hull
JU
α
n (κ∪ p). i.e. JUα is the Σn Skolem

hull (for some n ∈ ω) of κ unioned with a finite p ⊆ α.

As can be seen from how we define K, there are situations in which we want to

talk about all mice. Often, the class of all mice is considered under its natural order-

ing (defined earlier). Again, for the sake of clarity, we recall its definition. Letting

JUα be a mouse at κ, λ be a regular cardinal greater than κ+, and Cλ be the club filter
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on λ, and UltλU (J
U
α ) = JCλ

β , for some β, the canonical well-ordering on the class of

all mice was defined as follows:

Definition 29. Let JUα = Hull
JU
α
n (γ∪p) and JU

′

α′ = Hull
JU′

α′

m (γ′∪p′) be mice

and λ be any sufficiently large regular cardinal. Let i0,λ : JUα −→ JCλ

β and

i′0,λ : JU
′

α′ −→ JCλ

β′ be the respective iterated ultrapowers witnessing their

mice-hood. Then JUα = Hull
JU
α
n (γ ∪ p) <M JU

′

α′ = Hull
JU′

α′

m (γ′ ∪ p′) iff:

(i) β < β′, or

(ii) β = β′ and γ < γ′, or

(iii) β = β′, γ = γ′, and q < q′ in the descending lexicographic ordering.

As noted earlier, the details are highly technical, and we do not wish to obfuscate

philosophical purposes by delving too deep. Important for our current purposes,

is the fact that the ordering under which we speak about all mice is a Σ2-definable

ordering that appears to be of length Ω.3.

The use of such an ordering has gained some interest in the philosophical liter-

ature.56 The problem here is exactly the same as with a definable well-order longer

than ΩV ; we wish to talk about all mice under such an ordering, but it is unclear

what guarantees the reliability of such talk. Shapiro and Wright (in enumerating

responses to the problem of long well-orders) express the problem as follows:

“Allow the unrestricted quantifications and the definitions of the trouble-

some predicates, but deny that they are associated with ordinals (order-

types). Cost: transfinite inductions and recursions of the relevant ‘lengths’

then come into question (at least on the assumption that transfinite recur-

sions and inductions require an associated order-type) which are part of

expert practice and seemingly quite intelligible.” ([Shapiro and Wright, 2006],

p293)

Exactly what is required for a practice to be ‘intelligble’ in this context is a some-

what difficult question. For example, if we know that talking about long well-orders

56See, for example, [Shapiro and Wright, 2006]. The discussion there is a little odd; Shapiro and Wright
appear at points to be conflating issues with a proper class j yielding a mouse (which is undoubtedly a
tricky issue in itself), with the length of the ordering under which we talk about the mice.
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will always yield truth, but think that the discourse is not to be associated with any

actual long well-orders, does this make the practice ‘intelligible’? Or is something

more required? These issues aside, Shapiro and Wright’s point is well put: we wish

to know what it is that licenses such talk as reliable. As it stands, we have a seemingly

cogent practice, without adequate explanation of its reliability.

Chapter III: Conclusions.

In Chapter I, we saw that there was a debate between the Universist and her oppo-

nents that could be made precise by examining the question of whether there was

just one maximal definite interpretation of set-theoretic discourse. In particular we

noted that there were two main dimensions to be analysed in settling set-theoretic

questions; namely height and width.

Then, in Chapter II, we argued that there are reasons to analyse the extent to

which extensions of V can be interpreted within the Universist framework. In par-

ticular, the possibility of using extensions to derive consequences about V (to be used

in extrinsic justifications) and formulating new axioms was discussed.

In this chapter, we have seen concrete examples from several areas of set theory

of just this phenomenon. Axioms can be formulated using expressive resources that

purport to refer to different extensions of V , and vary in their content dependent

upon what talk can be given interpretation. Further, extensions are important for the

consideration of deriving consequences about V . In particular, we can use extensions

to prove facts using absoluteness, analyse the consequences of axioms with both

intra-V and extra-V formulations, and use long well-orders in fine structure theory.

Examining the extent to which an interpretation meeting the Hilbertian Challenge

can be given to talk involving extensions of V is thus deserving of scrutiny. As

we shall see, it is possible to provide such an interpretation in a philosophically

motivated fashion. However, we must first analyse some extant attempts to meet the

Hilbertian Challenge. We shall see that many of these strategies are unsatisfactory,

and their failure highlights some additional features we would like an interpretation

of extensions of V to satisfy.
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Chapter IV

Climbing above V ?

Thus far, we have seen that if the Universist wishes to use certain resources in exe-

cuting Gödel’s Programme, she needs to explain why discourse that appears to go

‘beyond’ V in height will not lead her astray in proving facts about V .

Recall that there are two main techniques that require interpretation:

(1.) Direct extensions: Be able to interpret talk concerning models in which V appears

as a set.

(2.) Long well-orders: Provide reasons to think that discourse involving definable

well-orders longer than Ω is acceptable for proving facts about V .

In this chapter, we consider some possibilities for answering the Hilbertian Chal-

lenge with respect to these methods. Whilst each view faces seemingly insurmount-

able philosophical difficulties, we argue that the areas in which they struggle high-

light two constraints on satisfying the Hilbertian Challenge. Our strategy is as fol-

lows:

§1 explains and discusses the challenges facing a view (Simple Nominalism) on

which we baldly deny that we cannot have the symbol ‘V ’ denoting V when con-

sidering a height extension. We argue that though the view can interpret the rel-

evant mathematics as non-vacuous it cannot secure us satisfaction of the Hilbertian

Challenge. §2 then examines the prospects for the polar opposite of Simple Nomi-

nalism, on which we accord full ontological reference to height extensions of V . It
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is noted that while such a position avoids the problems of Simple Nominalism, it

goes against the spirit of Universism as providing a unified foundational arena for

mathematical discourse. §3 then analyses a slight modification of the strategy of §2,

to accord height extensions of V the status of possibilia. Again, however, it is noted

that the view faces deep philosophical challenges, and many of the problems of §2

recur. Finally, §4 ties the previous sections together, and notes that several of the

problems correspond to the violation of either of two constraints, one ontological

and one foundational.

IV.1 Simple Nominalism

The Universist certainly does not want to countenance the existence of sets outside

V . A natural position then is to hold nominalism towards the objects purportedly

referred to by height extensions. Direct extensions and long well-orders on this view

have no ontological reference. Shapiro and Wright express the view concisely con-

cerning long well-orders:

“Allow the unrestricted quantifications and the definitions of the trouble-

some predicates, but deny that they are associated with ordinals (order-

types).” ([Shapiro and Wright, 2006], p293)

We might thus suggest that we can have discourse concerning long well-orders

(or in the case of direct extensions, taller universes), but simply demur from allowing

the existence of the relevant extra-V objects. Such a response seems to fly in the face

of the Hilbertian Challenge, however. The content of the Hilbertian Challenge is

precisely to provide an ontology that gives us confidence in the use of such resources

for discovering new facts about V . Here, we have merely declared by fiat that we

refuse to supply such an interpretation or ontology.

One response to this issue would be to restrict the use of such resources to partic-

ular transitive models M ∈ V , such that Ord(M) ∈ On. We can then perfectly well

have height extensions of M that provide an ontology for such discourse. It is just

that when a troublesome extension is used, we restrict quantification and interpret

locally over M rather than globally over V .
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Such an interpretation is fine for reassuring us that discourse involving exten-

sions is non-vacuous. For instance, we can compare the order types ≺Ω+1 and ≺Ω.2

through saying that for any transitive model M such that Ord(M) = α ∈ On, ≺Ω+1

defines an ordering of length α+1 over M and ≺Ω.2 defines an ordering of length α.2

over M. Similarly, for the ERA, we can talk about a model M with Ord(M) ∈ On,

and how M relates to its extensions (in terms of there being some M′ such that all

reflection in M′ is already realised within levels of M). In this way, the mathematics

involved in the formulation of the axioms is shown to be non-vacuous.

The central problem here is that this tactic simply will not do for some of the

uses to which we wish to put these extensions. It is all well and good to have the

result that the mathematics in question is non-vacuous; however, we want to have

an assurance that the relevant kind of talk is rigorous when the domain of discourse

is the widest possible (namely when ‘V ’ denotes V ). In the case of long well-orders,

Shapiro and Wright put the problem as follows:

“transfinite inductions and recursions of the relevant ‘lengths’ then come

into question (at least on the assumption that transfinite recursions and

inductions require an associated order-type) which are part of expert

practice and seemingly quite intelligible.” ([Shapiro and Wright, 2006],

p293)

For the case of long well-orders we can elaborate on Shapiro and Wright’s point

along the following lines. Recall that in III.1.5 we wanted to talk about the class of

all mice when defining the following model:

K = L[{JUα |“JUα is a mouse”}]

A natural way to speak about the class predicate used in the definition of K is

through talking about the class of all mice. If we want to talk about all mice though

(rather than just a restricted class of mice over some set-sized model M) under their

natural ordering, then the fact that the definition of the mouse ordering refers to a

bona fide ordinal over set-sized M is no guarantee of its reliability where the context

of discourse is V .
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The situation is brought into even sharper relief with the ERA. For, we are inter-

ested in seeing whether we could formulate the ERA as true of V . If we interpret

theERA locally, though we are thereby guaranteed the non-vacuity of the discourse,

we nonetheless have no assurance that the consequences of the ERA hold of V . We

would simply be talking about particular M that can see levels witnessing any re-

flection in an extension of M. But the existence of such an M is no guarantee that V

itself satisfies the ERA.

IV.2 A different kind of object?

We saw in the last section that there was a challenge with interpreting height ex-

tensions locally, in that we would like our interpretation of the discourse to have

its intended consequences for V proper. One way of achieving this is to find an in-

terpretation that actually gives ontological referents to extensions of V , where ‘V ’

really does denote V . We can begin by noting that (in the case of long well-orders)

the Burali-Forti contradiction is only problematic if the new order-types have repre-

sentatives in V . Dummett, for example, says the following:

“What the paradoxes revealed was not the existence of concepts with in-

consistent extensions, but of what may be called indefinitely extensible

concepts. The concept of an ordinal number is a prototypical example.

The Burali-Forti paradox ensures that no definite totality comprises ev-

erything intuitively recognisable as an ordinal number, where a definite

totality is one quantification over which always yields a statement deter-

minately true or false.” ([Dummett, 1991], p316)

Now Dummett has in mind here a distinction between definite and indefinite

concepts, and in particular the notion of an indefinitely extensible concept. One

might, then, take Dummett’s point to simply be a flat rejection of Universism; he

does not hold that all statements about ‘the ordinals’ are determinately true or false

in virtue of the indefinite extensibility of the concept of an ordinal number. However,

we could also take it that there are, instead, ordinal-like objects that do not define
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ordinals as understood as sets in V , but rather a new kind of object (call them ‘super-

ordinals’). Shapiro and Wright, picking up on some of these Dummettian ideas,

express the point as follows:

“Allow the quantification and the predicates, allow the associated order-

types, but deny that they are ordinals as originally understood—rather,

they are ‘higher-order’ ordinals, ‘proper’ ordinals, ‘super-ordinals’, or

whatever.” ([Shapiro and Wright, 2006], p293)

This ontology would then sanction the use of a long well-order over V . For any

such use there would be a legitimate mathematical object corresponding to the long

well-order, namely a super-ordinal of the required length. Aside from the fact that

it is unclear how to deal with the extensions of V to be supported by the ERA (we

would have to have extensions of V by non-set-like objects that nonetheless obey

extensionality and are well-founded), Shapiro and Wright have little truck with the

suggestion, describing it as:

“Hypocrisy. Recall that Ω was supposed to encompass the ordinals in a

maximally general sense of ordinal, common to all types of well-orderings.

Also, the option is unstable. If we are now saying that Ω does not encom-

pass a maximally general sense of ordinal, and that we need to distin-

guish (how many?) successive orders of ordinals, then just consider all of

these, and the dialectical situation repeats itself” ([Shapiro and Wright, 2006],

p293)

There are two separate problems at play here. The first difficulty is that the exact

structure of the problem replays in the case of the super-ordinals. By simply replicat-

ing the Burali-Forti reasoning, there can be no super-ordinal representing the super-

order-type of all super-ordinals. Presumably, then this will necessitate some super-

duper-ordinal objects, and then super-duper-trooper-ordinals, and so on. Clearly

there is no end to this process. We can then ask if there is an ‘ordering type’ to all

these higher-order-types, and we have exactly the same situation as with our orig-

inal ordinals (unless we deny the ability to quantify over all higher order-types).
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This raises two subproblems. First, it highlights that there is little conceptual gain in

shifting to super-ordinals. Even if the move is made, we still get similar problems for

the (non-set) mathematical objects that appear outside V . Second, and more impor-

tantly, the repetition of the exact structure of reasoning and very ordinal-like properties

of the super-ordinals might lead us to question the extent to which we are talking

about a genuinely new object. When discussing super-ordinals, it looks a lot like we

were simply talking about the ordinals over a particular set-sized, transitive M with

Ord(M) = κ, and have merely established that the definable orderings over M have

new ordinals above κ. The super-order-types, just like the garden-variety ordinals,

are properties corresponding to well-orders. In other words, if it looks like an ordi-

nal, walks like an ordinal, and quacks like an ordinal, then the object we are talking

about is probably an ordinal, no matter if we use the term ‘super-ordinal’ to refer to

it.

The second problem, and one that cuts right to the heart of the Universist’s mo-

tivation for her perspective, is that this method of interpreting long well-orderings

utterly vitiates the role of V as the unified arena for analysing foundations. While

the explicit contradiction of asserting that there are sets outside V is avoided, the

price is high under this solution. If she wishes to maintain V as the arbiter of mathe-

matical truth and rigour, it is thus desirable for the Universist to find a solution that

does not admit the existence of any mathematical entities that cannot be represented

using sets from V .

IV.3 Modal notions

In the previous section, we saw that there was a problem with admitting the exis-

tence of objects that could not be represented within V . We might, therefore, deny

that such objects actually exist, and instead hold that they could exist. One might

interpret the work of Reinhardt in [Reinhardt, 1974] and [Reinhardt, 1980] in this

manner. The two papers are notoriously difficult in both technical content and philo-

sophical interpretation, and so we will not provide a full exposition. We can, how-

ever, say a few words about the basic idea, and why it immediately appears deeply
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problematic.

Reinhardt is explicitly concerned with formulating large cardinal axioms, but

wishes to do so through considering height extensions of V . In particular, his interest

is in considering elementary embeddings between V and its possible extensions. We

will not delve into the details of the embeddings; the ideas are notoriously complex,

the underlying conceptions are problematic1, and we already have many varieties of

extension to consider. The key fact is that the ‘sets’ Reinhardt considers in extensions

are not actual but rather possible. The thought is that while V is a certain size, it could

have been taller, with longer ordinals. We can then interpret height extensions of V

as concerned with these ‘possible’ sets above V .

There are several immediate objections one can raise for such a modal proposal

from a Universist perspective. Firstly, most (if not all) Universists hold that mathe-

matical objects exist out of necessity if at all. Thus, the idea that there ‘could’ have

been more sets than there actually are seems anathema to a normal core tenet held

by the Universist.

This said, we might not want to burden the Universist with too many additional

philosophical principles. For the moment then, let us assume that she does leave

room for non-actual mathematical possibilia. Just as in the previous section, we can

point to the role that the Universist sees for V . In I.5, we noted that the Univer-

sist saw a substantial benefit of her position as the ability to have a single unified

domain in which we interpret mathematical discourse. The modal interpretation

precisely gives this up. For now, it is not just sets in V that determine what holds

mathematically. Rather, mathematical truth is settled by sets in V combined with

possible sets. Moreover, it is not simply the modal properties of sets in V that is being

analysed. In an essential way, the objects of study are literally outside V (in some ap-

propriate possible world) and are also objects of mathematical study. In particular,

the properties of these possible sets have direct bearing upon what goes on in V . The

point is simply this, whilst we avoid talk of extant objects that are unrepresentable

in V , the use of modal notions buys us little; we still have mathematical discourse

with interpretation that goes beyond V in an essential way.

1See [Koellner, 2009] for discussion.
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The above arguments are not meant to be conclusive against the modal view. In-

deed, the mathematics produced by Reinhardt is fascinating, and the search for a

satisfactory underlying conception continues. However, the problems presented for

the advocate of modal notions are especially tricky when viewed from the perspec-

tive of the Universist. Indeed, it is hard to see how the difficulties of the modal view

could be overcome by the Universist without her providing a suitable coding that

would remove the need for modal notions anyway. An explanation that avoids use

of objects not representable within V is thus preferable for the Universist.

IV.4 The Ontological and Foundational Constraints

It seems then that each of the above suggestions for interpreting height extensions

of V falls flat (or at least faces deep problems). However, we can learn from these

difficulties. Recall the Hilbertian Challenge:

The Hilbertian Challenge. Provide philosophical reasons to legitimise

the use of extra-V resources for formulating axioms and analysing intra-

V consequences.

The above failures highlight that not just any way of responding to the Hilber-

tian Challenge will do. Rather there are additional philosophical constraints on what

is to count as a philosophically satisfactory solution to the problem presented. In this

section, we diagnose some of the above failures and formulate two additional con-

straints on resolution of the Hilbertian Challenge.

The first constraint makes precise and explicit a feature and motivation of the

Universist’s position that was outlined in I.5 and used repeatedly in the above argu-

ments. We noted that a substantial motivation for her view was that she was able

to provide a single unified arena that set the standards for mathematical rigour and

correctness. Thus, in responding to the Hilbertian Challenge, the Universist should

aim to adhere to the following constraint:

The Foundational Constraint. In responding to the Hilbertian Chal-

lenge, do so in a way that does not necessitate the use of resources that
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cannot be represented by sets within V .

Such a constraint puts significant requirements on our interpretation of exten-

sions of V . A failure of both super-ordinals and the modal approach was that the

Foundational Constraint was violated, thereby undermining the Universist’s moti-

vation for her position. A coding that only talks about sets in V would thus mesh

better with her philosophy.

However, an additional problem was noticed in the discussion of super-ordinals.

There the question was raised of why talk of super-ordinals did not just represent

covert talk about ordinals definable over some particular set-sized M. Super-ordinals

looked very similar to ordinals (in that they were well-ordering properties) thus rais-

ing the question of whether there was a meaningful distinction being made. This

raises the following:

The Ontological Constraint. Any interpretation of extra-V resources

should make clear the ontological difference between the interpretation of

extensions and normal sets within V . In other words, any interpretation

must make clear in what sense the interpretation does not literally refer

to extra-V sets.

Satisfaction of the ontological constraint avoids the problems outlined above. In

particular, if we can make clear the ontological difference between our interpretation

of extensions and sets within V , we will avoid the worry that talk of extensions of V

is merely covert talk about sets. Hence, we will avoid the problem that our discourse

involving extensions fails to have the content we would like concerning V .

Chapter IV: Conclusions

We conclude by noting a few salient features of the above discussion. Simple Nom-

inalism was given a rather hard time in §1, however it is important to note that it

was on the right track in many respects. Especially important to note is the fact that

some sort of nominalism concerning extra-V resources deals with the Foundational

Constraint immediately and directly. For, if we hold that extension talk does not

91



refer to anything outside V , then there is no worry that the referents might be unrep-

resentable in the sets. We can then retain V as our unified arena for mathematics.

Unfortunately, the problem with Simple Nominalism was that our interpretation

of the term ‘V ’ did not bear enough resemblance to V . What we require then is the

interpretation of ‘V ’ to bear as much resemblance to V as possible, whilst keeping

in line with the above constraints. We shall see in Chapters VI and VII just how this

can be done. For now, we turn to questions of width.
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Chapter V

Broadening V ’s horizons?

After setting up the Hilbertian Challenge for the Universist in Chapters I-III, we

saw in the last chapter that extant attempts to interpret height extensions of V were

philosophically unsatisfactory. We then noted that there were two constraints (one

foundational and one ontological) on a resolution of the Hilbertian Challenge. On

the ontological side, we wish to interpret extensions in such a way that a concep-

tual difference between bona fide sets and the interpretation of extensions is made

clear. To conform to the Foundational Constraint, we need to be able to represent

our proposed interpretation using sets within V . In this chapter we shall analyse

some possible interpretations of width extensions. Again, we shall find each sugges-

tion unsatisfactory. However, we shall also see that another constraint is highlighted

by their shortcomings, one concerning methodology. Our strategy is as follows:

§1 considers the use of Boolean-valued models. They are found wanting in that

there are significant difficulties in accounting for class forcing, and also certain as-

pects of the interpretation do not conform to how we reason about extensions. §2

provides an exposition of a modification of this approach (the Boolean ultrapower)

that in many ways makes the interpretation of extensions more natural. Again it is

noted that problems of interpreting class forcing remain, but there is an added prob-

lem concerning forcing arguments involving relatively small uncountable sets. §3

explains how we might use the forcing relation to interpret forcing over V . It is noted

that while it provides an interpretation for a wider class of forcing arguments, the
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interpretation is somewhat unnatural, there is a class of forcing arguments that it

cannot interpret, and the treatment of sharps is left untouched. §4 discusses the use

of countable transitive models to interpret extensions of V . It is argued that while

such a strategy gets frustratingly close to a satisfactory interpretation of extensions

of V , certain axioms do not yet have satisfactory interpretation. Finally, §5 discusses

the shortcomings of these approaches, and identifies a methodological constraint on

responses to the Hilbertian Challenge. It is argued that there is an apparent tension

in satisfying the three constraints simultaneously.

V.1 Boolean-valued models

We begin with a discussion of Boolean-valued models.1 Such an interpretation per-

tains only to forcing extensions. Starting with a forcing poset P, we can find a separ-

ative2 partial order Q, equivalent to P for forcing, and a (unique up to isomorphism)

Boolean completion of Q (denoted by ‘B(Q)’).3,4 We then consider the class of B(P)-

names (denoted by ‘V B(P)’), and assign values from B(P) to atomic relations between

them. More formally, we define:

Definition 48. Let B be a Boolean algebra. A Boolean-valued model (A,FB)

consists of a Boolean universe A and assignment of Boolean-values FB

from B to the relations = and ∈ obeying the following constraints (for

any x, y, z, w, v):

(1) Jx = xK = ✶B(P)

(2) Jx = yK = Jy = xK

(3) Jx = yK · Jy = zK ≤ Jx = zK

(4) Jx ∈ yK · Jv = xK · Jw = yK ≤ Jv ∈ wK

1The Boolean-valued approach was developed by Scott and Solovay, with additional contributions by
Vopěnka (among others). See [Smullyan and Fitting, 1996], p273 for historical details and references.

2A partial order P = (P,<P) is seperative iff for all p, q ∈ P , if p 6≤P q then there exists an r ≤P p that
is incompatible with q.

3For details of Boolean algebras (from which our presentation is derived) see [Jech, 2002], Chapter 7.
A discussion of Boolean completions is available in ibid. Chapter 14.

4We will (mildly) abuse notation and use B(P) to refer to the relevant Boolean completion even when
P is not separative (i.e. the Boolean completion obtained from a separative partial order Q, such that Q is
equivalent to P for forcing).
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We then, for a1, ..., an ∈ A, define Jφ(a1, ..., an)K as follows:

(i) The value of atomic formulas is given by (1)–(4).

(ii) J¬ψ(a1, ..., an)K = −Jψ(a1, ..., an)K

(iii) Jψ(a1, ..., an) ∧ χ(a1, ..., an)K = Jψ(a1, ..., an)K · Jχ(a1, ..., an)K

(iv) Jψ(a1, ..., an) ∨ χ(a1, ..., an)K = Jψ(a1, ..., an)K + Jχ(a1, ..., an)K

(v) Jψ(a1, ..., an) → χ(a1, ..., an)K = J(¬ψ ∨ χ)(a1, ..., an)K

(vi) Jψ(a1, ..., an) ↔ χ(a1, ..., an)K = J((ψ → χ) ∧ (χ→ ψ))(a1, ..., an)K

(vii) J∃xψ(x, a1, ..., an)K =

∑

a∈A

Jψ(a, a1, ..., an)K

(viii) J∀xψ(x, a1, ..., an)K =

∏

a∈A

Jψ(a, a1, ..., an)K

We are now in a position to define a Boolean-valued model over V :

Definition 49. Let P be a forcing poset and B(P) be its Boolean-completion.

Then the Boolean-valued model V B(P) is defined via the following transfi-

nite recursion:

(1) V
B(P)
0 = ∅,

(2) V
B(P)
α+1 = The set of all functions f with dom(f) ⊆ V

B(P)
α and values

in B(P).

(3) V
B(P)
λ =

⋃
β<λ V

B(P)
β , for limit λ,

(4) V B(P) =
⋃
α∈On V

B(P)
α

Letting ρ(x) be the least α such that x ∈ V
B(P)
α+1 , we inductively define

Boolean values on pairs (ρ(x), ρ(y)) as follows:

(a) Jx ∈ yK =
∑
t∈dom(y)(Jx = tK · y(t))

(b) Jx ⊆ yK =
∏
t∈dom(x)(−x(t) + Jt ∈ yK)
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(c) Jx = yK = Jx ⊆ yK · Jy ⊆ xK

It is then routine to show that V B(P) is a Boolean-valued model of ZFC: it satisfies

clauses (i)–(viii) and every axiom (and hence every theorem) of ZFC has Boolean-

value ✶B(P) in V B(P).5 Moreover, for the purposes of consistency proofs, we know

that if we can assign φ a Boolean-value greater than 0B(P), then ¬φ is not a conse-

quence of ZFC (as if ¬φ is a consequence of ZFC, then φ receives Boolean value

0B(P)). In fact, an assignment of a Boolean value greater than 0B(P) to φ exactly mim-

ics the satisfaction of φ in some V [G], for V -generic G.

Thus, by discussing the Boolean-valued model V B(P), we are able to capture the

intra-V content of talking about set forcing extensions of V . For example, suppose

that we wish to show that the satisfaction of φ in a set forcing extension byG ⊆ P ∈ V

has consequence ψ within V . We can then take the Boolean completion B(P), and

show that we can assign φ Boolean-value greater than 0B(P) in V B(P). By tracing the

Boolean-values back to V , we then know that V satisfies ψ.

There are several problems with the use of Boolean-valued models, however.

Aside from the fact that it leaves extension by sharps untouched, it has two particular

limitations when it comes to forcing. The first is that it is unclear how to interpret

class forcing on the present approach. For, in class forcing, the relevant partial order

P is proper-class-sized, and hence unbounded in the Vα. When defining the Boolean

completion B(P) we then encounter a difficulty. The usual method for defining a

Boolean completion is to find a separative partial order equivalent to P for forcing

(known as the separative quotient), and embed it into a Boolean algebra6. Effectively,

we turn a copy of P ‘upside down’, and add it ‘above’ P.7

In the present context, however, it is unclear how to do this. As we have already

‘reached the top’ of V , there is nowhere for the new sets to go above P. This is

not to say that it is impossible to provide a Boolean completion for class forcings;

indeed some interesting results have emerged from explorations in this direction8,

5See [Jech, 2002], Chapter 14.
6More formally, for any set-sized partial order P, there is a Boolean algebra B(P) and an embedding

e : P −→ B(P)+ (where B(P)+ is the set of non-zero elements of B(P)) such that for p, q ∈ P: (i) if p ≤P q,
then e(p) ≤B(P) e(q), (ii) p and q are compatible iff e(p) ∧ e(q), and (iii) {e(p)|p ∈ P} is dense in B(P).

7For the full details, see [Jech, 2002], Chapter 14.
8See, for example, [Holy et al., F].
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and work continues. However, there are difficult mathematical challenges, and the

exact landscape is still to be discovered.

A second problem, however, is that this way of coding extensions of V makes our

interpretation seriously deform our normal set-theoretic thinking. When reasoning

with extensions, set theorists often proceed via thinking combinatorially and classi-

cally, i.e. they reason in a two-valued manner about the ways in which sets can be

combined, how they can be mapped to one another, and so on. Often their thinking

does not have the character of reasoning about Boolean-valued ‘probabilistic’ sets.9

This issue is brought out exceptionally clearly when we consider generic embed-

dings. These provide us with quintessentially combinatorial kinds of reasoning; we

want to see what ordinals are moved by j (and where) and what the structure of the

remaining sets looks like given the existence of j. An interpretation on which we can

account for the phenomenology of this thinking is thus preferable to one on which

we cannot.

V.2 Boolean ultrapowers and quotient structures

There are, however, ways of modifying the Boolean-valued models to proper-class-

sized two-valued structures. This is done by means of a Boolean ultrapower and quo-

tient structures. We take it as read that B is the completion of some partial order P,

and henceforth drop the notation B(P).

Our target will be the following theorem:

Theorem 50. [Hamkins and Seabold, 2012] (The Naturalist Account of Forc-

ing). If V is the universe of set theory and B is a notion of forcing, then

there is in V a definable class model of the theory expressing what it

means to be a forcing extension of V . Specifically, in the forcing language

with ∈, constant symbols x̌ for every x ∈ V , a predicate symbol V̌ to rep-

resent V as a ground model, and a constant symbol G̊, the theory asserts:

(1) The full elementary diagram of V , relativised to the predicate V̌ ,

9One can informally think of a Boolean-valued model V B as assigning ‘probabilities’ from B to mem-
bership and equality.
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using the constant symbols for elements of V .

(2) The assertion that V̌ is a transitive proper class in the (new) uni-

verse.

(3) The assertion that G̊ is a V̌ -generic ultrafilter on B̌.

(4) The assertion that the new universe is V̌ [G], and ZFC holds there.

Immediately, we need to identify a salient point before we proceed to explain the

Naturalist Account of Forcing in more detail. Since V cannot have access to its own

elementary diagram, really the above is a theorem scheme. In fact, when we examine

the exact semantic content of the Naturalist Account of Forcing, it says the following:

Theorem 51. [Hamkins and Seabold, 2012] For any notion of forcing B, a

complete Boolean algebra, the set-theoretic universe V has an elementary

extension to a structure (
...
V ,

...
E), a definable class in V , for which there is

in V a
...
V -generic filter G for

...
B (the image of B).

V -
...
V ⊆

...
V [G]

In particular, the entire extension
...
V [G] and embedding is a definable class

in V .

Important in the proof of this theorem is the relationship between two different

structures given an ultrafilter U on B, namely the Boolean ultrapower V̌U and the quo-

tient structure V B/U . We tackle these in reverse order.

First, we define a class predicate V̌ :

Definition 52. V̌ =df {〈x̌,✶B〉|x ∈ V }

We then take an ultrafilter U on B and use it to define two dyadic predicates on

the B-names:

Definition 53. τ ≡U σ iff Jτ = σK ∈ U

Definition 54. τEUσ iff Jτ ∈ σK ∈ U

and also define a monadic predicate for the ground model:
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Definition 55. τEU V̌U iff Jτ ∈ V̌ K ∈ U

Next, for every B-name τ , we define the restricted equivalence class of τ under U :

Definition 56. [τ ]U =df {σ|σ is of minimal rank10 and τ =U σ}

We are then able to define the quotient structure of V B as follows:

Definition 57. V B/U =df {[τ ]U |τ ∈ V B}

One can then verify that V B/U |= ZFC and also that if φ has Boolean-value

greater than 0B in V B, then V B/U |= φ. Importantly, there is no need for the ultrafilter

to be V -generic11, and hence U can perfectly well be in V . Especially interesting is

the relationship that this quotient structure has to a particular ultrapower map on V .

We define:

Definition 58. The Boolean ultrapower of V by U is the following class:

V̌U =df {[τ ]U |Jτ ∈ V̌ K ∈ U}.

and comes with an associated embedding (known as the Boolean ultra-

power embedding):

jU : x 7→ [x̌]U

Theorem 51 is proved by letting
...
V = (V̌U , EU ). All of V̌U , V B/U , and jU are

definable in V from the parameter U . The key fact for the purposes of interpreting

forcing, however, is that V B/U is precisely the forcing extension of V̌U by the filter

[G̊]U ,12 which is jU (B)-generic over V̌U .

Here, we map V to a subclass of itself (much as we do with a measurable cardinal

embedding). Since V̌U is not the whole of V when U is in V (and hence not V -

generic), we have plenty of sets available to be our generic for V̌U . The fact that

we can interpret a forcing construction as the quotient V B/U shows that we have

a great deal of traction between the two structures through a forcing construction.

10This condition is necessary to keep the equivalence classes as sets rather than proper classes and is
analogous to the use of Scott’s trick in the standard ultrapower construction.

11See, [Hamkins and Seabold, 2012] for details. The presentation of the Boolean ultrapower, quotient
structures, and Naturalist Account of Forcing is also derived from the same paper.

12G̊ =df {〈p̌, p〉|p ∈ B}. It is a B-name that always tracks the generic filter, whichever one we choose.

99



Our interpretation of forcing might then be as follows. We note that V̌U , whilst not

isomorphic to V , nonetheless looks a lot like V ; it is a proper-class-sized elementary

extension of V . Instead of using the Boolean-valued model V B (with its attendant

difficulties regarding classicality and combinatorial properties), we could examine

the structures V̌U and V B/U which both behave in a combinatorial and two-valued

manner.

There are, however, several problems with this approach. We should first note

that the use of Boolean ultrapowers and quotient structures does nothing to assuage

the worries of class forcing or discussion of sharps. No extra light is shed on proper-

class-sized Boolean completions by these structures, and non-forcing extensions re-

main out of reach. We have, however, moved to an interpretation on which the

reasoning is both classical and combinatorial.

However, this can often come at the price of well-foundedness. Observe that if

the Boolean ultrapower map is to be well-founded, it must elementarily embed V

into an inner model thereof, and hence must have a critical point κ that is measur-

able. More precisely:

Theorem 59. [Hamkins and Seabold, 2012] If U is an ultrafilter in V on

the complete Boolean algebra B, then the following are equivalent:

(1) V̌U is well-founded.

(2) V̌U is an ω-model (i.e. has the standard natural numbers).

(3) U meets all countable maximal antichains of B in V .

(4) U is countably complete over V (i.e. if 〈an|n < ω〉 ∈ V is an ω-

sequence of an ∈ U , then ∧nan ∈ U ).

(5) U is weakly countably complete over V (i.e. if 〈an|n < ω〉 ∈ V is an

ω-sequence of an ∈ U , then ∧nan 6= ∅).

By (4), for the Boolean ultrapower to remain well-founded, we need significant

large cardinal properties attaching to the completeness of the ultrafilter U .13 Recall

13The existence of a countably complete non-principal ultrafilter is equivalent to the existence of a mea-
surable cardinal.
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that many of the generic embeddings we wished to talk about had very small critical

points. We are now in a position to prove the (very quick):

Theorem 60. Let U be an ultrafilter on a complete Boolean algebra B ∈ V ,

and assume that V̌U is well-founded with jU such that crit(jU ) = κ.

Then V̌U cannot be used to interpret forcing constructions that change

the structure of sets below Vκ.

Proof. Since κ is the critical point of jU , we know that jU preserves Vκ (if

it did not, this would imply a different critical point below κ). �

The key philosophical consequence of the theorem is that if we are to interpret a

forcing construction that involves the structure of sets below a measurable cardinal,

then the ultrapower cannot be well-founded. This goes especially for generic em-

beddings. If we wish to move ω1 using a generic embedding, then any Boolean ul-

trapower V̌U interpreting this construction will have differences in relatively ‘small’

levels’ (e.g. V V̌U

ω1+2 and V
V B/U
ω1+2 will have different sets as ωV̌U

1 is countable in V B/U ).

By the previous theorem, there cannot be any difference in these levels without V̌U

becoming non-well-founded. Thus, when interpreting a generic embedding

i : V −→ M ⊆ V [G] as an embedding i′ : V̌U −→ M ⊆ V B/U , well-foundedness

often fails.

Nonetheless, we can still trace results derived from the study of these embed-

dings back through i′ and jU to V . However, our thinking in the embedded model

will be severely limited. Since the non-well-foundedness of the models implies a

high degree of non-absoluteness (the satisfaction predicate itself is not even abso-

lute14), we cannot simply use many of our normal assumptions regarding the rela-

tionship of sets in V to those in V̌U and V B/U .

Moreover, we might question, as we did with plain Boolean-valued models, the

extent to which this sort of interpretative strategy respects the phenomenological

character of the reasoning of the set theorist. To all intents and purposes, when she

works with a generic embedding, she seems to be reasoning about well-founded struc-

14For details, see [Hamkins and Yang, 2013]. To give an example of just how extreme the phenomenon
is, one can have two models that have the same objects as natural numbers, but disagree about whether a
particular (non-standard) n is odd or even.
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tures in a combinatorial and two-valued manner. The use of Boolean ultrapowers

and quotient structures gets the latter aspects of the reasoning correct, but in doing

so often destroys well-foundedness.15

It seems then, that though the use of Boolean ultrapowers and quotient structures

provides a way of modifying Boolean-valued structures into a two-valued frame-

work, the price is high, presenting difficulties of both a technical and philosophical

character.

V.3 The forcing relation

Instead of pursuing a model-theoretic strategy, we might try to capture width exten-

sions syntactically by defining a relation that captures the consequences of extensions

without actually committing to the existence of any models. For forcing, this can be

done by defining the following relation:

Definition 61. Let P = 〈P,≤P〉 be a forcing poset. For p ∈ P , φ in the

forcing language16 of P, and names τ , θ, σ in V P, we define the relation

p ∗
P recursively as follows:17

For atomic φ, we define (via double recursion):

(i) p ∗
P τ = θ iff ∀σ ∈ dom(τ)∪dom(θ)∀q ≤P p[q 

∗
P σ ∈ τ ↔ q ∗

P σ ∈ θ].

(ii) p ∗
P π ∈ τ iff {q ≤P p|∃〈σ, r〉 ∈ τ [q ≤P r ∧ q ∗

P π = σ]} is dense

below p.

∗
P is then defined for composite formulas as follows:

(iii) p ∗
P φ ∧ ψ iff p ∗

P φ and p ∗
P ψ.

(iv) p ∗
P ¬φ iff ¬∃q ≤P p[q 

∗
P φ].

(v) p ∗
P φ→ ψ iff ¬∃q ≤P p[q 

∗
P φ ∧ q ∗

P ¬ψ].

15Interestingly, this opens a new area of enquiry; examine the cases where forcing and large cardinals
combine to keep the ultrapower well-founded. We might, for example, consider a generic embedding
with a critical point above a measurable cardinal. See [Hamkins and Seabold, 2012] for discussion.

16The forcing language of P is the collection of all formulas that can be formed by the usual logical
operators from the language L∈ combined with a constant symbol for every name in V P (the P-names).

17We could also have defined ∗

P
in terms of the Boolean-valued models approach, where p ∗

P
φ iff p

is below the Boolean-value of φ in the Boolean completion of P.

102



(vi) p ∗
P φ ∨ ψ iff {q|[q ∗

P φ] ∨ [q ∗
P ψ]} is dense below p.

(vii) p ∗
P φ↔ ψ iff p ∗

P φ→ ψ and p ∗
P ψ → φ.

(viii) p ∗
P ∀xφ(x) iff p ∗

P φ(τ) for all τ ∈ V P.

(ix) p ∗
P ∃xφ(x) iff {q ≤P p|∃τ ∈ V P[q ∗

P φ(τ)]} is dense below p.

One can then verify:

(1) If φ1, ..., φn ⊢ ψ and p ∗
P φi for each i, then p ∗

P ψ.

(2) p ∗
P φ for every axiom of ZFC.

(3) If φ(x1, ..., xn) is a formula known to be absolute for transitive mod-

els, then for every p and all sets a1, ..an; p ∗
P φ(ǎ1, ..., ǎn) iff ✶P ∗

P φ(ǎ1, ..., ǎn)

iff φ(a1, ..., an) is true in V .

Essentially, ∗
P lets us talk about what would be satisfied in the extension V [G]

by analysing what sentences conditions p ∈ P force. In particular, if we can show

that there is a p ∈ P such that p ∗
P φ, we can behave and talk as if such a forcing

extension exists. By (3), any theorem proved ‘in V [G]’ will be verified by the check

names and hence by specific sets in V . Similarly, if we wish to formulate an axiom

about V using a forcing extension, we can do so by finding a p that forces the required

sentence about objects in the ideal extension.

Again, the use of the forcing relation is absolutely fine for relative consistency

proofs. We know that if we can find a p ∈ P such that p ∗
P φ, then we cannot

prove ¬φ (assuming the consistency of ZFC). Indeed, the technique avoids many of

the problems suffered by the use of quotient structures and the Boolean ultrapower.

Since the check names all determinately end up referring to their respective sets,

there is no danger of the ideal extension appearing non-well-founded from the per-

spective of V (as was the case with V̌U and V B/U ). Moreover, the reasoning when

using the forcing relation is classical—there is no mention of probabilistic sets any-

where.18

18Of course, one can formulate ∗

P
in the Boolean-valued approach as well. From a mathematical per-

spective, the two approaches are equivalent; one can easily go back and forth. Conceptually, however,
they are very different, and the extent to which each corresponds to the thinking of set theorists is thus a
philosophically interesting matter.
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We will, however, identify several problems with this approach to interpreting

width-extension talk. First, even if the use of the forcing relation worked perfectly

for those mathematical constructions it was designed to interpret, there are problems

of scope. For example, the use of ∗
P will not help in trying to interpret the use of

non-forcing width extensions such as sharps. More seriously, however, even within

forcing there are limitations to the use of the forcing relation.

The difficulty lies in the fact that the forcing relation need not be definable when

the forcing poset in question is proper-class-sized. For example, consider the following

forcing:

Definition 62. Let M be a model for ZFC. Then the Friedman poset (de-

noted by ‘FM’) is a partial order of conditions p = 〈dp, ep, fp〉 such that:

(i) dp is a finite subset of ω.

(ii) ep is a binary acyclic relation relation on dp.

(iii) fp is an injective function with dom(fp) ∈ {∅, dp} and ran(fp) ⊆ M.

(iv) If dom(fp) = dp and i, j ∈ dp, then iepj iff fp(i) ∈ fp(j).

(v) The ordering on FM is given by:

p ≤FM q ↔ dq ⊆ dp ∧ ep ∩ (dq × dq) = eq ∧ fq ⊆ fp.

This defines a proper-class-sized partial order as the individual fp include every

function from some finite subset of ω to a (sub)set of M, and hence there are proper-

class-many such ordered triples (relative to M). The partial order adds a bijection

FF between ω and M , and a relation EF ∈ M[G] such that 〈ω,EF〉 and 〈M,∈〉 are

isomorphic. If the forcing relation for F were definable, M would then have access

to its own truth definition (contradicting Tarski’s Theorem).19 Thus we have:

Theorem 63. [Holy et al., F] (attributed to Friedman) ∗
F is not uniformly

definable for F.

19For the details of the proof, and further discussion of the Truth and Definability lemmas in context of
class forcing, see [Holy et al., F].
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Hence, there are forcings for which there is no definition of the forcing relation

in the ground model. This is true, despite the fact that FM itself is definable over M.

If we wish to use FV in proving facts about V then, we cannot do so through con-

sideration of a forcing relation in V . Since tameness implies pretameness20, which

in turn implies that the forcing relation is definable, we know that any extension us-

ing F must violate ZFC.21 One may feel that this provides a response: we should

not consider such forcing arguments as legitimate for proving facts about V because

the resulting ‘model’ we are trying to talk about is pathological—it is non-ZFC-

preserving.

Interestingly, the Universist should have little truck with such a claim. It is true

that the resulting extensions are pathological in violating ZFC. However, we should

note that (from the Universist’s perspective) the whole enterprise with which we are

engaged (namely considering extensions of V ) is pathological. We are trying to code

in V the effects of objects that do not, strictly speaking, exist. Thus, there seems to

be no objection to considering models where, say, there is a bijection between ω and

V (as is the case when forcing using FV ). If consideration of such pathologies has

interesting consequences within V then, given that we are already flirting with prima

facie incoherent concepts, there seems little reason to prohibit their examination.

Moreover, the use of ∗
P still does not accord with the phenomenological char-

acter of the set theorist’s reasoning. They wish to reason about sets which can be

combinatorially manipulated, embeddings which move ordinals, and so forth. Here,

however, the reasoning is fully syntactic; we analyse which formulas particular p ∈ P

force, and so are not explicitly working with sets in the above manner. In this way,

though we retain the well-foundedness and denotation of terms in V (through the

20A partially ordered class P is pretame iff whenever 〈Di|i ∈ a〉 is a 〈M, A〉-definable (where 〈M, A〉-
definability is definability over the ground model augmented with the predicate A, as in Ch I) sequence
of dense classes, a ∈ M , and p ∈ P, then there is q ≤P p and 〈di|i ∈ a〉 ∈ M such that di ⊆ Di and
di is predense below q for each i (where di is predense below q iff r ≤P q implies that r is compatible
with an element of di). To define tameness we first need the definition of a predense below p partition: a pair
〈D0, D1〉 such that (i) D0 ∪D1 is predense below p and (ii) if p0 ∈ D0 and p1 ∈ D1 then p0 and p1 are
incompatible. Two sequences of predense below p partitions 〈〈Di

0, D
i
1〉|i ∈ a〉 and 〈〈Ei

0, E
i
1〉|i ∈ a〉 are

equivalent below p iff for each i ∈ a, {q|q meets Di
0 ↔ q meets Ei

0} is dense below p. Then P is tame iff (i)
P is pretame and (ii) for each a ∈ M and p ∈ P there is a q ≤P p and α in the ordinals of M such that

whenever ~D = 〈〈Di
0, D

i
1〉|i ∈ a〉 ∈ M is a sequence of predense below q partitions, {r| ~D is equivalent

below r to some ~E = 〈〈Ei
0, E

i
1〉|i ∈ a〉 ∈ VM

α } is dense below q. Pretameness implies the preservation
of Replacement in a class forcing, and tameness additionally requires that the forcing preserve the Power
Set Axiom. For details, see [Friedman, 2000].

21See [Holy et al., F].
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relationship the check names bear to their objects), we lose the character of the rea-

soning that the Boolean ultrapower and quotient structure represented well.

V.4 Countable transitive models

A model-theoretic approach is thus desirable. The countable transitive model strat-

egy comes in several forms. Initially, the method was designed to deal with the

apparently problematic metamathematics of forcing from within ZFC. If we do not

wish to strengthen ZFC substantially, there are two main ways of executing the

strategy:22

Suppose that we wish to prove that some statement φ is independent from ZFC.

We then suppose that φ (or ¬φ) has a proof in ZFC (from now on we only consider

the case where we wish to show that ¬φ is unprovable). If ¬φ were provable, we

would have ZFC + φ ⊢ 0 = 1. Since proofs are finite, we then know that this proof

would only use a finite set of axioms of ZFC (let it be denoted by ‘Γ’). We then know

(by the forcing method) that given such a Γ, there is a larger finite set of axioms of

ZFC (let it be denoted by ‘Λ’) such that ZFC proves the conditional:

“If there is countable transitive model for Λ, then there is a countable

transitive model for Γ + φ.”

However, now we can use the Reflection Theorem, Löwenheim-Skolem Theorem,

and Mostowski Collapse Lemma to then obtain a countable transitive model N for Λ,

and hence have a countable transitive model for Γ+φ, contradicting our supposition

that Γ + φ ⊢ 0 = 1.23

Alternatively, we could expand L∈ to L∈,C,F by two constant symbols C and F .

We then add axioms to ZFC as follows:24

Definition 64. ZFC∗ is a system in L∈,C,F with the following axioms:

1. ZFC

22See [Kunen, 2013], IV.5.1 for details.
23Observe here that the choice of 0 = 1 was not essential, the same argument applies to any arithmetical

sentence (i.e. If ZFC+χ ⊢ ψ, where χ is independent from ZFC and ψ is an arithmetical sentence, then
ZFC ⊢ ψ).

24For this specific approach, see [Shoenfield, 1967] as well as [Kunen, 2013].
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2. C is a transitive set.

3. F is a bijection from ω onto C.

4. φC for every axiom φ of ZFC (note that, by Gödel’s Second Incom-

pleteness Theorem, this is an axiom scheme).

We know (by the Reflection Theorem, Löwenheim-Skolem Theorem, and Mostowski

Collapse Lemma) that ZFC∗ is a conservative extension of ZFC. We can then treat

C as our countable transitive model, and conduct our construction there.

Of course, for any countable transitive model M, it is entirely possible to take a

width or height extension (on the assumption that V is uncountable and satisfies Re-

placement). Since even the smallest uncountable set will contain subsets of objects

not in M, there is no issue with M having a width extension—we move from one

particular countable transitive model to another by adding subsets. For height ex-

tensions, since any countable transitive model M is such that Ord(M) < ω1, a height

extension to another countable transitive model is always available (in fact, there are

uncountably many such height extensions).

Such methods are fine as far as they go. For the purpose of allowing us to anal-

yse forcing arguments establishing relative consistency proofs from within ZFC the

technique performs adequately; any inconsistency of φ with ZFC could be traced to

a countable model, and the relevant forcing argument shows that there is no such

inconsistency (on the assumption that ZFC itself is consistent). We want more than

mere consistency results, however. For, while V presumably satisfies ZFC for the

Universist, there is no guarantee that a given countable transitive model of (a frag-

ment of) ZFC represents V with respect to first-order truth in general. While we

can, for any appropriate given set of assumptions Γ, assume that there is a count-

able transitive model satisfying Γ, V might satisfy sentences independent from or

in conflict with Γ. In order then to mimic the behaviour of V as closely as possible,

we would like a countable transitive model M that resembles V sufficiently well to

allow us to represent the consequences of extensions of V in M (and hence in V via

the resemblance).

One step in the right direction is to assume the existence of a countable transitive
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model of ZFC. The assumption implies the consistency of ZFC, ZFC+Con(ZFC),

ZFC + Con(Con(ZFC)), and so on, for any finite iteration of the consistency sen-

tence for the previous theory. On the assumption that V satisfies ZFC, if φ is a

first-order consequence shown to hold in a countable transitive model M on the ba-

sis of M’s ZFC satisfaction by taking an extension, then V must also satisfy φ. All

that was required was that M |= ZFC. Since V also satisfies ZFC, we know that φ

holds there.

However, what we would really like is a countable transitive model M that sat-

isfies exactly the same parameter-free first-order sentences as V . Cohen constructs an

informal argument for the existence of such an M that can be adapted to fit this end:

“The Löwenheim-Skolem theorem allows us to pass to countable sub-

models of a given model. Now, the “universe” does not form a set and so

we cannot, in ZF, prove the existence of a countable sub-model. How-

ever, informally we can repeat the proof of the theorem. We recall that

the proof merely consisted of choosing successively sets which satisfied

certain properties, if such a set existed. In ZF we can do this process

finitely often. There is no reason to believe that in the real world this

process cannot be done countably many times and thus yield a countable

standard model for ZF.” ([Cohen, 1966], p79)

While Cohen is primarily interested in the existence of a countable transitive

model for ZF, we can import his argument to the case of V as follows. For a fi-

nite subset Γ of sentences in L∈ satisfied by V we move to a countable transitive

model of Γ by using the Reflection Theorem to find a Vα |= Γ. We then use AC to

find a set of functions FVα such that for every existential statement ∃xφ(x) true in Vα,

there is an fφ ∈ F that picks a single witness a such that φ(a) holds. We then form a

countable M |= Γ. Since the relation (i.e. ∈) on Vα is extensional, well-founded, and

set-like, so is the relation on M, and we then use the Mostowski Collapse Lemma to

collapse to obtain a countable transitive model M′ |= Γ. Turning now to V , we sim-

ply note that V is one model of ZFC among many. Thus, we can posit the existence

of a set of Skolem functions FV for V (by ‘choosing25’ a witness for the countably

25As Cohen notes, this is not possible in ZF(C) by Gödel’s Second Incompleteness Theorem.
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many existential statements satisfied by V with a countable sequence of choices).

Then, by Skolemising and Collapsing, we obtain a countable transitive model V that

satisfies exactly the same parameter-free first-order sentences as V .

The main issue here is that, by Tarski’s Theorem on the undefinability of truth,

that while V can see FV , it does not know that FV provides its own set of Skolem-

functions. A way around this, very similar to the second countable transitive model

approach, was noticed by [Feferman, 1969]:

Definition 65. Let L∈,V be the language L∈ augmented with a single

constant symbol V. ZFC
V is then a theory in L∈,V with the following

axioms:

(i) ZFC

(ii) V is countable and transitive.

(iii) For every φ in L∈, φ ↔ φV (by Tarski’s Theorem, this is an axiom

scheme).

Again, we know by the Reflection, Löwenheim-Skolem, and Mostowski Collapse

Theorems that ZFCV is a conservative extension of ZFC. However, V then satisfies

exactly the same parameter-free first-order sentences of ZFC as V . Before we pro-

ceed, we make the following:

Remark 66. One can accomplish the same effect with a different trick. If

we introduce a truth predicate for V into L∈, add the Tarski T -axioms,

and then permit the use of the T -predicate in the Axiom of Replacement,

we can perform the usual Reflection, Skolemisation, and Collapse con-

struction, yielding a countable transitive elementary substructure of V .26

We can then interpret any extension as concerned with V. For example, if we

wish to formulate an axiom that uses an extension (say a generic embedding), we

simply formulate it as concerned with V (where extensions are uncontroversially

available) and then know that any first-order consequence of the axiom true in V is

also true of V . Of course, it is a separate question whether or not the objects relevant

26Thanks to Sam Roberts for pointing out to me this method.

109



for construction of the extension exist in V (such as, for example, a saturated ideal

I required to facilitate a generic embedding). Nonetheless, if such an object I does

exist in V , we will have a corresponding object I ′ ∈ V, and then there will be the

required embedding i′ : V −→ M ⊆ V[G].

Moreover, such a strategy is not limited to only forcing constructions. Given V,

we can ask whether not it is plausible that V is sharp generated. If there are good

arguments for this claim, then there can perfectly well be such a sharp for V in V .

Further, any parameter-free first-order consequences of the sharp generation of V in

V will be mirrored in the relevant structural features of V .

There are also a number of pleasing philosophical features of the countable tran-

sitive model strategy. First, unlike many of the previous methods considered, it al-

lows a very natural interpretation of extensions. Many of our naive ways of thinking

about extensions turn out to be represented; V is always transitive, well-founded,

and the reasoning is combinatorial and classical. The only exception to this is that

the reasoning concerns countable sets in V, rather than uncountable sets in V . How-

ever, we can still move freely between V and V , and it is also questionable how

much of the set theorist’s reasoning depends on the literal uncountability of the ob-

jects with which they are reasoning. We might think that all that her phenomenology

requires is that the objects are uncountable relative to the structure with which she

works (namely V).

In the present context, however, there is a limitation of the countable transitive

model strategy. As it stands, V is only accurate for first-order statements about V .

Because of the inherent incompleteness in second-order properties over V , V does

not perfectly mirror V ’s second-order properties.

This is mildly problematic for the countable transitive model strategy. For some

of the axioms that we wish to analyse are slightly greater than first-order over V . The

IMH , for example, makes a claim about the density of inner models of V . However,

the existence of an inner model is a second-order property; it involves the quantifi-

cation over a proper class. Thus, there is no guarantee that if V satisfies the IMH ,

then V also has the corresponding inner models (and vice versa).

This is especially interesting given that a large part of set theory comprises the
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structural relationship between models. Simply because an axiom is not first-order is

not a reason (without significant further argument) to establish that it is not of inde-

pendent interest. What we would therefore like is not only a response to the Hilber-

tian Challenge that satisfies the Ontological and Foundational Constraints, but one

that provides a way of interpreting greater than first-order properties of V expressed

through the use of extensions.

V.5 The Methodological Constraint

The countable transitive model strategy did not quite deliver everything we wanted

for interpreting extensions of V , but it certainly came frustratingly close. Of par-

ticular interest was that it accounted very naturally for extensions of V ; our naive

thinking concerning extensions was easily captured. We were then able to export

many results about V back up to V . The only reason for rejecting the strategy as not

fully satisfactory is an issue of scope: there is no guarantee that V mirrors greater

than first-order properties of V .

This relative success of the countable transitive model strategy contrasts with

some of the failures of the other interpretations. The use of Boolean-valued models

did not capture the combinatorial and two-valued nature of the set theorist’s rea-

soning. Quotient structures and Boolean ultrapowers were often non-well-founded

where the reasoning appeared to involve well-founded structures. The use of the

forcing relation was overly syntactic, and failed to account for the combinatorial na-

ture of thinking. This suggests the following constraint on responses to the Hilber-

tian Challenge:

The Methodological Constraint. In responding to the Hilbertian Chal-

lenge, do so in a way that accounts for our naive thinking about exten-

sions and links them to structural features of V .

The satisfaction of such a constraint would ensure not just that we respond to the

Hilbertian Challenge, but that the solution proposed meshes well with the way set

theorists go about their daily practice. However, we should pause to reflect on the

constraints set up in the previous Chapter:
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The Foundational Constraint. In responding to the Hilbertian Chal-

lenge, do so in a way that does not necessitate the use of resources that

cannot be represented by sets within V .

The Ontological Constraint. Any interpretation of extra-V resources

should make clear the ontological difference between the interpretation of

extensions and normal sets within V . In other words, any interpretation

must make clear in what sense the interpretation does not literally refer

to extra-V sets.

We are immediately faced with an apparent tension between these three con-

straints. On the one hand, the Foundational Constraint demands that we keep all dis-

course strictly regimented within V . On the other hand, the Ontological Constraint

requires that our interpretation of extra-V resources makes it clear how ‘extensions’

(suitably interpreted) are different from sets. On a third hand27, the Methodologi-

cal Constraint obliges us to take account of our naive reasoning of extensions. How

can we possibly provide an interpretation of extensions that (i) makes it clear how

our interpretation of extensions differs from garden-variety sets, (ii) in doing so uses

only sets from V , whilst (iii) capturing our naive talk and relating it to the structure

of V ? This seems like an insurmountable task. In the next two chapters we show that

it is possible to climb the mountain of conflict and provide such an interpretation.

Chapter V: Conclusions.

In this chapter, we saw that there are various different ways we might interpret

width extensions of V . All have problems of scope; Boolean-valued models and

Boolean ultrapowers have difficulties with class forcing, the forcing relation can-

not interpret non-ZFC-preserving class forcings, and both these methods cannot ac-

count for non-forcing extensions of V . Even the countable transitive model strategy

(which performed far better), could not necessarily mirror greater than first-order

properties of V . Moreover, each view had problems accounting for the naive yet

27Normally, we do not speak as if we have more than two hands. Since we are currently engaged in the
philosophy of set theory, we set aside this ontological excess.
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fruitful way the set theorist often reasons with extensions (the only exception here

being the countable transitive model strategy). These difficulties highlight an ad-

ditional methodological constraint on any resolution of the Hilbertian Challenge.

However, there is a problem: the three constraints outlined in the thesis appear to

be in tension with one another. The reader may feel that in imposing them we are

trying to have our cake and eat it. The project of the final two chapters will be to

show that we can.
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Chapter VI

A Theory of Classes

Thus concludes the negative part of the thesis. We find ourselves in something of a

pickle; we want to respond to Hilbert’s Challenge, but are unsure of how to do so

whilst satisfying the three constraints (and dissolving the apparent tension therein).

We shall now embark upon the first of two steps in resolving Hilbert’s Challenge;

motivating a strong class theory that provides the foundational resources to support

the technical results of Chapter VII.

The chapter is structured as follows. After these brief introductory remarks, §1

revisits the issue of proper classes for the Universist and examines a distinction be-

tween ‘first’ and ‘second’ philosophy. §2 then explains one way of interpreting class

talk, namely by viewing discourse involving proper classes as shorthand for the sat-

isfaction of a first-order definable formula. In §3 and §4, we argue that there are

reasons to accept the legitimacy of non-first-order definable class talk for a Univer-

sist. §3 does so using a philosophy first methodology, and §4 provides second philo-

sophical arguments. §5 considers two possible ways of interpreting non-first-order

definable class talk: either (a) proper classes are ontologically robust objects distinct

from sets, or (b) proper class talk should be understood via the use of plural refer-

ence and quantification. We argue that (b) performs far better with respect to the

three constraints. §6 then provides a justification of MK on the basis of the plural

interpretation of proper class discourse. We conclude that MK is reasonably well-

motivated on her picture.
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VI.1 Proper classes, first philosophy, and second phi-

losophy

Let us remind ourselves of some earlier mathematical and philosophical features of

Universism. In Chapter I, we noted that there are conditions that do not define sets.

For many conditions φ(x), though there is a fact of the matter for any set x whether

or not φ(x) holds, there is no set of all φ. Good examples here were “x is an ordinal”,

“x is a set”, and (equivalently) “x is non-self-membered”. It was also noted that the

Iterative Conception of Set provides an explanation of why proper classes do not

form sets: their elements are not all available for collection in some Vα.

For this reason, a natural position for the Universist to hold is that class talk

should be completely expunged from set-theoretic discourse. We will argue against

this view, and in fact justify the use of Morse-Kelley class theory in formalising our

class-theoretic reasoning.

First, however, we explain the kinds of reasons we shall accept for justifying par-

ticular mathematical theories of classes. We have in mind a famous distinction be-

tween first and second philosophy. The distinction, especially with respect to set the-

ory, has its roots in [Quine, 1969a], and has been subsequently refined and developed

in the work of Maddy1.

The term ‘first philosophy’ in the sense we shall use here, emerged in the work

of Descartes.2. Under one interpretation, Descartes’ main focus was to provide a

justification for his physics on the basis of more secure principles. The following is a

typical passage at the very start of the First Meditation:

“Some years ago I was struck by the large number of falsehoods that

that I had accepted as true in my childhood, and by the highly doubt-

ful nature of the whole edifice that I had subsequently based on them.

I realized that it was necessary, once in the course of my life, to demol-

ish everything completely and start again right from the foundations if

I wanted to establish anything at all in the sciences that was stable and

1See [Maddy, 1997], [Maddy, 2007], and [Maddy, 2011].
2Especially [Descartes, 1637] and [Descartes, 1641].
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likely to last.” ([Descartes, 1641], p17)

Descartes then doubts his beliefs (via progressively stronger assumptions, cul-

minating in the supposition that an all-powerful deceiving demon exists) in order

to build his philosophy (and hence his physics) on a fully secure foundation. Now

we might doubt whether or not Descartes is successful in his aims, or whether the

methodology of reasoning in the face of such extreme scepticism is well-advised.3

However, we can characterise the ‘philosophy first’ approach as one on which we,

from a given bank of accepted truths, reason about what should hold without fur-

ther scientific enquiry. Such a methodology has had scorn heaped upon it by some

scholars in the philosophy of mathematics. For example, Quine claims:

“The old tendency4 was due to the drive to base science on something

firmer and prior in the subject’s experience; but we dropped that project.”

([Quine, 1969a], p87)

Maddy extends this feeling to the pejorative:

“Philosophy undertaken in such complete isolation from science and com-

mon sense is often called ‘First Philosophy”’ ([Maddy, 2011], p41)

Certainly, first philosophy understood in Descartes’ radical fashion is a difficult

methodology to follow. However, we might wonder if legitimate justifications can

be provided in a first philosophical spirit. More precisely, can we provide reasons

to justify the use of particular mathematical resources in virtue of what we think

those resources concern (rather than analysing the mathematical fruits borne by the

relevant theories)?

A first philosophical methodology is thus one which examines what holds with-

out especially mathematical ends. When considering a subject matter, we examine

what we think should hold given the nature of the subject matter in question. If

we find, on philosophical grounds, a certain part of mathematics to be conceptually

3See [Broughton, 2002] for analysis.
4The ‘old tendency’ of which Quine speaks is to associate observation sentences with a sensory subject

matter. In the context of [Quine, 1969a], the principle forms an integral part of epistemology ‘conducted
from the armchair’; justifying epistemological claims based on reasoning from the nature of experience,
rather than through scientific observation.
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bankrupt, then we reject that part of mathematics. Good examples of first philo-

sophical mathematics include Constructivist rejection of certain parts of set-theoretic

mathematics based on the view that mathematical objects are mental constructions,

or intrinsic arguments for small large cardinals on the basis of reflection principles.

Second philosophy, on the other hand, concerns the ends of mathematics:

“We’ve seen that sets were posited in the first place in the service of ex-

plicit mathematical goals...In broad overview, these goals range from rel-

atively local problem-solving, to providing foundations, to more open-

ended pursuit of promising mathematical avenues...Given what set the-

ory is intended to do, relying on considerations of these sorts is a per-

fectly rational way to proceed: embrace effective means toward desired

mathematical ends.” ([Maddy, 2011], p52)

Thus second philosophy is concerned with what is required for us to use our

mathematical theories rather than the nature of the subject matter as we understand

it (considered independently from specific mathematical theorems). While the First

Philosopher does not concern himself with the possible mathematical applications

of the particular theory we take to be up for justification, the Second Philosopher

takes such ends as the main source of justification.

At times, Maddy’s Second Philosopher seems to have some sympathy for our First

Philosopher’s methodology:

“To round out this quick portrait, consider the contrast with philosophy

understood as starting either before science begins or after all scientific

evidence is in, that is, philosophy as an entirely independent enterprise.

Notice that if such a philosophical undertaking intends to correct science,

or even to justify it in some way, then it isn’t effectively separated from

our inquirer’s sphere of interest: working without any litmus test for

‘science’ or ‘non-science’, she will view it as a potential part of her own

project, out to revise or buttress her methods” ([Maddy, 2011], p40)

Important here is the fact that the distinctions between science and philosophy,

and first and second philosophy need not be sharp. A second philosopher might
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show interest in first philosophical methods, insofar as such an enterprise informs

scientific and mathematical practice. While there are arguments that are neither

clearly first nor second philosophical, Maddy holds that it is more fruitful to work

under the more second philosophical end of the spectrum.

Maddy does argue, however, that metaphysical enquiry is largely irrelevant for

mathematical development. Considering the particular case of impredicative defini-

tion5 she writes:

“It’s often suggested that the answer lies in metaphysics, in the nature

of the abstract subject matter of mathematics...[a view] might hold that

mathematical entities exist only insofar as they are defined, and thus

that impredicative definitions—which define an object in terms of a col-

lection to which that very object belongs—should not be allowed...The

Second Philosopher notes that the controversy was eventually resolved

in favor of allowing impredicative definitions and that ontological de-

bates over the existence and nature of sets remain unresolved to this day.

This strongly suggests that metaphysical agreement did not underlie this

methodological outcome.” ([Maddy, 2007], pp347-348)

and more generally:

“After uncovering corresponding methodological argumentation in a range

of cases, the Second Philosopher concludes that though metaphysical the-

ories on the nature of mathematical truth and existence undeniably do

turn up in such debates, they are not in fact decisive, they are in fact

distractions from the underlying purely mathematical considerations at

work.” ([Maddy, 2007] p349)

Thus, Maddy regards metaphysical engagement on non-mathematical grounds

as a largely redundant enterprise. According to Maddy, mathematicians will study

the mathematics they want, without taking notice of metaphysical scruples or the

5A definition is impredicative iff it quantifies over that which is being defined. A natural example is that
x is the tallest person in the room iff x is a person in the room and for all y, if y is a person in the room
and x 6= y then x is taller than y. The definition is impredicative in that x itself falls under the quantifier
“for all y”. For exactly the same reason, the definition: x is a least upper bound of Y iff for all z, if z is an
upper bound of Y and z 6= x then x < z, is also impredicative.
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kinds of objects they talk about. While we might dispute6 Maddy’s claims here, our

interest is in providing justifications of our own. Now we have a characterisation

of the more first philosophical and more second philosophical methods, we need

not detain ourselves any further with these tricky exegetical issues. For, taking the

current state of set theory for granted, what we shall argue is that there are both first

philosophical and second philosophical reasons to accept non-definable class talk

and MK as a class theory.

VI.2 Definable classes

If we are motivated by considering set theory as a discipline, and what philosophical

views might underlie it, there is a substantial amount of talk concerning classes to be

accounted for. For example, as noted earlier, one can define a measurable cardinal

as the critical point of a non-trivial elementary embedding j : V −→ M. Here both

V and M are proper classes, and a natural way of coding j is as a proper class of

ordered pairs. Similarly much of set-theoretic practice (as noted in the discussion

of fine structure theory) involves comparing proper-class-sized models. If we wish

to completely expunge discourse involving proper classes from our discourse, how

might we do so?

We take it as read that we should want to provide an interpretation of talk involv-

ing proper classes, even if it is just to show that it can be completely paraphrased us-

ing first-order talk about sets. To reject certain areas of set theory as totally meaning-

less is simply not to engage with the debate at hand. We are interested in how a Uni-

versist interprets the set theorist’s talk, unrestrictedly and without cherry-picking

those aspects of the discourse that best suit the philosophical position under consid-

eration.7

Instead of countenancing class talk as legitimate in its own right, we might try

6A full consideration of the issues is well outside of the scope of the present work. However, it bears
mentioning that the extent to which one’s opinions on mathematical ontology are symbiotically entangled
with one’s views on mathematical fruitfulness (and indeed, area of mathematical expertise) is a question
deserving of further scrutiny.

7One might feel that this conflicts with our desire to provide first philosophical justifications. For the
sake of clarity we re-emphasise the following point: We are not providing a first philosophical justification
for set theory as it stands, but rather take the current state of set theory for granted, and then justify MK

from this point of view.
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to paraphrase the class talk through the use of the relevant φ that define the classes.

Hamkins, for example, says the following:

“One traditional approach to classes in set theory, working purely in

ZFC, is to understand all talk of classes as a substitute for the first-order

definitions that might define them...” ([Hamkins, 2012], p1873)

To take some simple examples, we can paraphrase “x ∈ R”, “x ∈ V ”, and

“x ∈ On”, as “x is non-self-membered”, “x is a set”, and “x is an ordinal” re-

spectively. Similarly, if we wish to state that V = R, we can do by stating that

“∀x(x = x↔ x 6∈ x)”.

Interestingly, we can provide first-order definitions for more complicated kinds

of class. For example, let j : V −→ M be an embedding witnessing the measurability

of an uncountable cardinal κ. We can (using a parameter U for a κ-complete non-

principal ultrafilter on κ) define a first-order formula φ(x, y, z) such that j(x) = y iff

φ(x, y, U) holds in V . Then, one can show:

(1) φ(x, y, U) relates every x to at most one y (i.e. φ(x, y, U) is function-

like).

(2) φ(x, y, U) relates no two x to the same y (i.e. φ(x, y, U) is one-to-one).

(3) φ(x, y, U) relates every set in V to a set in M (i.e. φ(x, y, U) is total

on V ).

(4) There is at least one x and y such that φ(x, y, U) and x 6= y (i.e.

φ(x, y, U) is non-trivial).

(5) For any x0, ..., xn and y0, ..., yn if φ(xn, yn, U) holds for both sequences

then for any parameter-free first-order formulaψ(z0, ...zn), ψ(x0, ..., xn) ↔ ψ(y0, ..., yn)

(i.e. φ(x, y, U) preserves first-order truth).8

(6) There is an ordinal x (namely κ) such that φ(x, y, U) and y is an

ordinal greater than x (i.e. φ(x, y, U) identifies the critical point of

j).

8As this holds for any first-order formula ψ, this will be a schema of theorems.
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All this can be shown in a first-order fashion9. We can thus use the relation

φ(x, y, U) to do the work of the prima facie second-order entity j, whilst only talk-

ing about sets. The above formula effectively moves through the hierarchy of sets

relating the sets in V and M, identifying a critical point along the way, without ever

talking about actual proper classes.

It might be attractive then to regard all class talk as simply covert first-order de-

finable talk about sets. We will now argue that such a view is misguided. Our strat-

egy will be two-pronged. We begin by providing first philosophical reasons to reject

the claim that the Universist should hold that only first-order definable class talk is

legitimate, and then move to a second philosophical methodology.

VI.3 Conceptual Interlude: First philosophical reasons

to countenance the use of non-definable classes

We should begin by noting some difficulties with providing any first philosophical

justification of the use of non-definable classes. Since we wish to argue for a more

powerful system, it will be tough to argue that there is conceptual incoherence lurk-

ing in the position that we should not countenance any non-first-order definable

class talk. After all, the view that only first-order definable class talk is legitimate

is easily mimicked within the position that there are non-definable classes simply

by employing a restricted class quantifier. We can, however, point to several rea-

sons why a ban on non-definable classes meshes poorly with the Universist’s wider

philosophical commitments.

We should note first that such a prohibition on non-definable classes creates a

large disparity between the behaviour of class talk over a particular Vα compared

to over V . Given an infinite Vα, the Universist thinks that there are non-first-order

definable classes relative to Vα. This is witnessed by the existence of non-first-order

definable sets in Vα+1. Now for V , we do not have stages above V to witness the co-

herence of non-first-order definable class talk. However, we should note that, given

that V is far richer in the number of sets it contains than any Vα, the idea that the

9See [Suzuki, 1999] and a very clear exposition in [Hamkins, 2012] for the full technical details.
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class-theoretic structure of V is so impoverished fits poorly with the Universist’s

philosophical view about V and the relationships it bears to the Vα. The immediate

response is that the legitimacy of non-first-order definable class talk is incoherent

over V , and hence we should expect disparity here. We see little reason to accept the

claim that such talk is incoherent. Theories involving non-definable classes are rel-

atively weak, and are highly likely to be consistent.10 The claim that non-first-order

definable class talk is illegitimate thus needs bolstering.11

Further, the restriction to first-order definable classes seems ad hoc when com-

pared to other Universist presuppositions. Simply put, her very insistence that there

is a maximal universe in which we can understand set-theoretic discourse and on

which every sentence of set theory receives a definite truth value, shows that the

Universist already countenances the claim that there is more to set theory than can

be expressed using mere first-order formalism. In particular, the very statement of

her own view requires greater than first-order definable classes (e.g. the claim that V

satisfies either φ or ¬φ for any φ ∈ L∈ is not formalisable using a first-order definable

class).

This plays out with respect to various mathematical claims the Universist should

wish to make, but which a restriction to only first-order definable classes prohibits.

For example, the following sentence:

“The ordinals are well-ordered by ∈.”

is clearly true for the Universist: among any ordinals whatsoever there is one that

is ∈-least. However, in order to state such a claim, we have to be able to formulate

the notion that a class is well-ordered. This is a second-order statement that is not

definable by any first-order formula. An insistence on only the use of first-order

definable class talk would thus leave the Universist in a rather strange situation;

there would be statements that seem prima facie true, but nonetheless she is forced to

pass over in silence.

From the perspective of the First Philosopher, it is thus preferable to be able to

10For example,MK itself (to be discussed later in the chapter) postulates the existence of a large number
of non-first-order definable classes and is consistent relative to the existence of an inaccessible cardinal.

11One response would be to argue that there is not a satisfactory interpretation of the class variables.
We shall see in §5 that we can provide such an interpretation.

122



interpret non-first-order definable class talk. A puzzle remains, however, in that we

have not provided an explanation of what such talk amounts to. Before we analyse

specific characterisations to which the Universist may subscribe, we provide some

additional second philosophical reasons to accept the use of non-first-order definable

classes.

VI.4 Mathematical Intermission: Second philosophical

reasons to have non-definable classes

In this section, we argue that the use of non-definable classes provides a better and

more natural interpretation of mathematical discourse from a second philosophical

perspective. That is, we will argue that there are set-theoretic results that are better

interpreted if we countenance non-definable class talk.

Reflection principles are just one such area. A reflection principle is of the follow-

ing general form:

∃α(φ→ φVα)

In other words, if φ is true then φ is satisfied by some initial segment Vα (with

quantifiers and parameters restricted to Vα). A salient fact is that often Universists

consider reflection properties that are given by second-order parameters over V , and

use the principles to study small large cardinals. For example, the second-order

reflection principle states that, for any second-order parameter A over V :

(V,∈, A) |= φ→ (Vα,∈, A ∩ Vα) |= φVα

Such a principle is most naturally understood whenA is able to refer to non-first-

order definable parameters over V , and produces many orders of large cardinals

consistent with V = L. Without the use of such non-definable classes, we lose inter-

pretation of the relevantA, and hence lose the consequences we would like within V

(such as, in the case of second-order reflection, inaccessibles and Mahlo cardinals).

Two problems are attendant here. First, second-order reflection as it is normally

understood guarantees the truth of full impredicative comprehension in the class
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theory. To see this12, note that if any instance of impredicative compehension fails in

the class theory of V , then (by the second-order reflection principle) there must be a

Vα for which impredicative comprehension fails. However, this is impossible: since

the restricted second-order variables are interpreted as restricted to subsets of Vα (i.e.

as ranging over Vα+1), the truth of impredicative comprehension in the second-order

theory of Vα is guaranteed by the strength of the Power Set Axiom. Moreover, any

modification of the principle to allow for reflection of definable classes would have

to explain why (say) the full inaccessibility of the ordinals was reflected, rather than

mere definable inaccessibility (a far weaker notion).

Further, the study of large cardinal embeddings is given a far more natural in-

terpretation if we have the use of non-definable classes. As noted earlier, we can

characterise a measurable cardinal as the critical point of a non-trivial elementary

embedding j from V to some transitive inner model M. Also, as we noted earlier,

we could characterise this embedding using an ultrafilter parameter U and a first-

order formula φ(x, y, U). A natural question is whether or not this method makes

good sense of all theorems concerning embeddings.

There are reasons to think that the definable formula interpretation does not. We

mention two such theorems, one negative and one positive. We deal with the nega-

tive first:

Theorem 67. [Kunen, 1971] There is no non-trivial elementary embed-

ding j : V −→ V .

Kunen’s Theorem is relatively involved. It was conjectured by Reinhardt that

there could be such an embedding, and took roughly a year to solve.13 Moreover, the

theorem built on other results in infinitary combinatorics (such as [Erdős and Hajnal, 1966]).

Recent presentations use a result of Solovay that any stationary set S on a regular

cardinal κ can be partitioned into κ-many stationary sets, and although they sub-

stantially simplify the proof14 the result remains non-trivial. Contrast this with the

12I am grateful to Sam Roberts for this observation.
13The timings are somewhat hard to determine in virtue of the fact that [Solovay et al., 1978] was

‘about’ to be published from at the latest 1970 (Kunen himself mentions Reinhardt and cites the paper
in [Kunen, 1971]). The philosophically relevant point still stands; the possibility of a j : V −→ V was
conjectured, relatively well-known, and took some time to refute.

14See [Schindler, 2014] for exposition.
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result for first-order definable elementary embeddings:

Theorem 68. [Suzuki, 1999] There is no non-trivial elementary embed-

ding j : V −→ V definable from parameters.

Proof. This result is far simpler than any proof of Kunen’s Theorem. Con-

sider a j with κ = crit(j). Let φ(x, y) define j (we suppress any parame-

ters). We know that since φ is first-order, then we can define a first-order

formula ψ(x) that holds iff x is the least ordinal moved by j. Since ψ(κ),

by the elementarity of j we have that ψ(j(κ)) in the target model. But

since dom(j) = V and ran(j) = V , we have that V |= ψ(κ), V |= j(κ) > κ,

and V |= ψ(j(κ)). Hence κ both is and is not the least ordinal moved by

j, ⊥. �15

The proof does not require any deep analysis of the nature of sets to prove. All

we do is follow through the consequences of j being first-order definable and make

some elementary observations about the nature of j in terms of its domain and range.

Thus there seems to be some discord between the claim that all embeddings are first-

order definable and the complexity involved in Kunen’s Theorem. On the subject of

Kunen’s Theorem and the definability of j, Hamkins says the following:

“Our view is that this way of understanding the Kunen inconsistency

does not convey the full power of the theorem. Part of our reason for this

view is that if one is concerned only with such definable embeddings

j in the Kunen inconsistency, then in fact there is a far easier proof of

the result, simpler than any of the traditional proofs of it and making

no appeal to any infinite combinatorics or indeed even to the axiom of

choice.” ([Hamkins et al., 2012], p1873)

There are several points to note here. First, it is simply a fact that many set

theorists are interested in the possibility of non-definable elementary embeddings,

lending the meaningfulness of such talk second philosophical weight. Second, the

view that all elementary embeddings are first-order definable substantially trivialises

15For full thoroughness (including checking that the notion of elementary embedding can be formalised
in a first-order theory), see [Suzuki, 1999].
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Kunen’s Theorem, in that it makes his result relatively easy when it appears to con-

cern deep facts about the combinatorial nature of the sets. Third, definability is un-

affected by whether or not the Axiom of Choice holds. Kunen’s Theorem (and sub-

sequent modifications) depends essentially on use ofAC. Currently, it is regarded as

an open question whether or not there could be a non-trivial elementary embedding

j : V −→ V if AC turns out to be false in V (or indeed in any proper-class-sized

model of ZF where AC fails). Regarding all embeddings as first-order definable

would immediately answer this question: since there can be no definable embed-

ding with or without AC, there is no embedding in the particular case where AC is

false.16

It is not just with respect to negative theorems concerning the non-existence of

elementary embeddings that we see this problem, however. Prima facie, set theo-

rists talk about the existence of embeddings that cannot be first-order definable. The

following is a good example:

Theorem 69. [Vickers and Welch, 2001] Suppose I ⊆ On witnesses that

the ordinals are Ramsey17. Then, definably over (V,∈, I), there is a transi-

tive model M = (M,∈), and an elementary embedding j : (M,∈) −→ (V,∈)

with a critical point.

Here, I is a proper class of good indiscernibles forOn. If we introduce a predicate

‘I(x)’ into the language to talk about those indiscernibles (so I(x) holds iff x ∈ I), we

can define (using I(x)) a non-trivial elementary embedding from M to V . However,

we should also be mindful of the following result:

16I am grateful to Sam Roberts for emphasising the importance of triviality and the settling of open
questions to me, and also for pointing out Kunen’s Theorem as a place where these issues arise.

17The details of Ramsey properties are somewhat technical and inessential for seeing the philosophical
issues, and so we relegate them to a footnote:

To define Ramseyness, we first need the notion of a good set of indiscernibles. Let I ⊆ A = Lκ[A,∈, ~B, ...]
be a first-order structure. Then I is a good set of indiscernibles for A if for any γ ∈ I :

(i) A ↾=df Lγ [A ↾ γ,∈, ~B ↾ γ, ...] ≺ A,

(ii) I\γ is a set of indiscernibles for 〈A, 〈ζ〉ζ<γ〉

We then say that κ is Ramsey iff any first-order structure with κ ⊆ |A| has a good set of indiscernibles
of length κ. To define Ramseyness for the particular case of the proper class On (the previous defini-
tions only apply to set-sized structures). We say that On is Ramsey iff there is a class I ⊆ On, un-
bounded, of good indiscernibles for (V,∈). More details and uses of these definitions are available in
[Vickers and Welch, 2001].
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Theorem 70. [Suzuki, 1999] Let j : M −→ V be a definable elementary

embedding such that M is transitive and On ⊂ M. Then j has no critical

point.

By this theorem, the Vickers-Welch embedding cannot be first-order definable

over V . However, it seems that we are able to talk about such an embedding in

a perfectly rigorous manner. It is not just j that cannot be definable in the above

theorem. I cannot be definable as one can define a satisfaction relation for (V,∈)

over (V,∈, I).18

Insisting that all embeddings be first-order definable in fact vitiates the possibility

of an entire area of study. In the Introduction to the paper containing the above

result, Vickers and Welch say the following:

“It is quite natural to study the properties of elementary embeddings

j : V −→ M for M some inner model, since many such embeddings,

if they exist, have first order formulations within ZFC. The question of

reversing the arrow and looking at a non-trivial j : M −→ V in general

does not readily admit of such formulations. So we study in this paper

what might be considered the ZFC consequences of the second order

statement that there are proper classes j, M such that...”

([Vickers and Welch, 2001], p1090)

Thus, insisting that all classes be first-order definable prohibits an area of study

that may produce fruitful mathematics with consequences for V . Placing a ban on

the use of non-definable classes is thus not amenable to the “pursuit of promising

mathematical avenues”, and hence the Second Philosopher should be open to the

use of non-first-order definable classes.

VI.5 Characterisations of classes

Let us take stock. We have seen that there are both first and second philosophical

reasons to accept the use of non-first-order definable class talk for a Universist. How-

18See [Vickers and Welch, 2001] for details.

127



ever, a puzzle is now raised; how should we characterise this talk? One advantage

of considering definable classes is that such an interpretation performs exception-

ally well with respect to both the Foundational and Ontological constraints. Since

talk of classes is paraphrased as satisfaction of formulas in V , we interpret our talk

as only about sets. Further, the use of definable formulas represents a thoroughgo-

ing class nominalism, and so it is clear how sets are different from our interpretation

of classes. However, we now want to interpret a kind of discourse that cannot be

interpreted through the use of first-order formulas. How then should we interpret

non-first-order definable class talk? One option is to note that, naively understood,

proper classes behave a lot like sets; they are extensional entities on which the mem-

bership relation is well-founded. However, on pain of contradiction, such objects

cannot be sets.

Notice here that in interpreting this talk we are providing a response to a new

Hilbertian Challenge. The wider context of this thesis is to answer the Hilbertian

Challenge concerning extensions of V . For the moment, we have mathematical dis-

course that appears to not be solely about sets in V , but rather concerns problematic

‘proper classes’ that we would like to use in formulating axioms and proving theo-

rems about V . We thus have a similar form of philosophical challenge as with exten-

sions, with a corresponding Hilbertian Challenge. We should also, therefore, hold

any possible response to the same standards with respect to our three constraints.

I will survey two possible options. Both, I argue, can provide an interpretation

of the required discourse. However, as we shall see, under the three constraints one

comes out as preferred.

VI.5.1 Ontologically ‘heavyweight’

One option is to hold that proper classes are objects in ontological good standing.

In other words, proper classes are objects over which we may freely quantify. Given

that we do not want proper classes to appear anywhere within V , we have to provide

a story of exactly how these objects behave and are to be characterised. What we

require is an underlying conception that can underwrite our claims about classes.

This is especially so given that any conception of classes as heavyweight ontologi-
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cal objects is going to come up against an immediate objection: Why are these objects

not sets? We appear to be talking about extensional, well-founded collections that

are objects distinct from their elements. What then distinguishes the classes from the

sets? Pressing a similar worry, Maddy remarks:

“The problem is that when proper classes are combinatorially determined

just as sets are, it becomes very difficult to say why this layer of proper

classes atop V is not just another stage of sets we forgot to include. It

looks like just another rank; saying it is not seems arbitrary. The only

difference we can point to is that the proper classes are banned from set

membership, but so is the κth rank banned from membership in sets of

rank less than κ.” ([Maddy, 1983], p122)

One response to this problem has been recently proposed by [Horsten and Welch, F].

There they develop a view on which classes are to be understood mereologically:

“We propose to adopt a mereological interpretation of proper classes. We

could say that the mathematical universe is a mereological whole and

classes, proper as well as improper, are parts of the mathematical uni-

verse.” ([Horsten and Welch, F], p18)

Classes are then different from sets in that sets are formed combinatorially, whereas

classes are parts of V formed via mereological fusion. According to Horsten and Welch,

we are not threatened with problems of proper classes being just like sets (and hence

a regress of higher-order class structures) in virtue of this underlying conception:

“The threat of a hierarchy of super- and hyper-wholes is not looming

here. The fusion of the parts of a whole does not create a super-whole, but

just the whole itself. So there is no mereological analogue of the creative

force of the power set axiom.” ([Horsten and Welch, F], p18)

According to Horsten and Welch, the fact that we are conceiving of classes as

mereologically formed blocks any such problem. Consider an example where we try

and create a problem by talking about the class pair {V,On}. Since classes are deter-

mined by the above conception, we understand this talk mereologically and consider

129



the fusion of V and On. But such a fusion will just yield V back once more, and so

we fail to increase the type of the objects.

Horsten and Welch’s proposal represents a new and interesting development in

the philosophy of set theory, not least because it appears to underpin what was

largely a defunct analysis of proper classes as objects with a possibly coherent un-

derlying conception. Moreover, Horsten and Welch use this conception to try and

motivate some interesting mathematics.19 However, for several reasons the concep-

tion is unsatisfactory for current purposes.

The first problem concerns the extent to which we can interpret non-definable

class talk. The amount of discourse interpretable is dependent upon the mecha-

nisms we countenance for forming mereological wholes. One can have more or less

restrictive notions of what parts of V exist, corresponding to a greater and smaller

amount of non-definable class talk that can be interpreted. However, for all Horsten

and Welch have said, their view is consistent with there being no non-first-order de-

finable wholes granted by their theory. While such a conception would be a rather

austere view of the nature of mereology, it is nonetheless indicative of a question that

needs answering: Exactly what is guaranteed by the conception?20

Let us suppose though that there is a good account of what classes exist and the

mereological axioms governing them. Horsten and Welch’s conception is still prob-

lematic in the context of the current discussion. The difficulty lies in its performance

with respect to our three constraints, specifically the Foundational Constraint.

Certainly the mereological conception of classes performs well with respect to

the Methodological Constraint. Our naive thinking concerning classes is easily rep-

resented; though the mechanism underwriting our claims (namely mereological fu-

sion) is different from our naive understanding of class-theoretic operations, the con-

ception does not do too much violence to our modes of thinking concerning classes.

For example, if I wish to take a union of two classes A and B, this should be un-

19See [Welch, 2014] for presentation and [Barton, Fb] for an evaluation.
20In fact there are significant challenges to formulating mereological axioms in combination with set

theory. A difficult problem is presented in [Uzquiano, 2006], where it is shown that several plausible
principles concerning mereology and set theory are in tension with one another. There are points of
Uzquiano’s strategy with which Horsten and Welch will disagree (e.g. some of the arguments require that
every object can be a member). However, the problems developed are indicative of the general difficulties
in formulating a combined theory of mereology and sets.
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derstood as mereological fusion, which will result in a whole that is constituted by

exactly the same sets as would be members of A ∪B.

The Ontological Constraint is possibly slightly more vexed. Classes remain ex-

tensional, well-founded objects, and thus look a lot like sets. One may think that

Maddy’s challenge for making a non-arbitrary distinction has not been answered in

a satisfactory manner. However, regarding the Ontological Constraint as violated

is simply not to take the conception seriously at all. Horsten and Welch provide an

explanation of why (on their view) classes do not form sets and there is no prob-

lem of higher-order classes; classes are formed through mereology rather than the

combinatorial strength of the Power Set Axiom. Thus, the Ontological Constraint is

satisfied on Horsten and Welch’s own terms.

Despite this relatively good performance, the Foundational Constraint is vio-

lated. For now our mathematical discourse is not interpretable solely by sets, but

rather by sets and mereological fusions of sets. In this way, Horsten and Welch go

substantially beyond sets in terms of the ontology they countenance; none of these

mereological fusions are interpretable using sets solely from V . For present pur-

poses then, and the Universist who is motivated by the Foundational Constraint, a

different solution is preferable.

Sufficient for resolution of this problem is some species of class nominalism. If

we wish to conform to this constraint, we must do so through talking about the sets

rather than postulating the existence of additional non-set-theoretic ontology. In this

regard, the definable formula interpretation was on the right track; talk of classes was

interpreted entirely by talking about sets. We require an interpretation that combines

this streamlined view of ontology with the expressive resources granted by non-first-

order definable classes.

VI.5.2 Plural resources

Such an interpretation is forthcoming in the literature. One way of interpreting class

talk (originally proposed by [Boolos, 1984] and with subsequent development by

[Boolos, 1985], [Uzquiano, 2003], and [Burgess, 2004]) is through the use of plural

reference. Consider the following sentence:
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The rocks rained down.

Such a sentence refers to the rocks in the plural, and ascribes to them a non-

distributive plural predicate. The rocks are engaging in raining together, no one rock

is raining on its own. One might think that such an ascription depends upon a set-

theoretic interpretation of the language. Aside from the fact that it is unclear that

the set of rocks has any part to play in the raining down (the idea that a set of rocks

could rain down has the whiff of a category mistake), further evidence that plural

reference is part of common language is available by analysing the following famous

example from Boolos:

“It is haywire to think that when you have some Cheerios you are eating

a set—what you’re doing is: eating THE CHEERIOS.” ([Boolos, 1984],

p448)

Plural reference thus seems to be part of everyday discourse.21 Interestingly, it is

possible to encode a significant amount of greater than first-order content through

the use of plural reference. For example, the following sentence:

There are some gunslingers each of whom has shot the right foot of at

least one of the others.

looks perfectly legitimate, but is similar in syntactic form to:

There are some numbers such that if a number n is one of them, then n

has a predecessor that is also one of them.

Such a sentence implies the existence of an infinite descending sequence of natu-

ral numbers, and so can only be true in a non-standard model of arithmetic. By the

usual metatheoretic results for first-order theories (such as the Löwenheim-Skolem

and Compactness Theorems), one cannot characterise the standard model of arith-

metic up to isomorphism using only first-order resources.

21Considerations of space prevent a full discussion of the issues surrounding plural reference. Addi-
tional discussion is available in [Barton, 2012] and in the published literature in [Boolos, 1984] and re-
cently [Oliver and Smiley, 2013] for (convincing) arguments that plural locutions are part of our ordinary
mathematical language.
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Indeed, it turns out that, using plural resources, one can provide an interpretation

of monadic second-order logic,22 and if ordering and superplural quantification is

permitted this can be extended to full second-order logic.23 For our purposes though,

we shall be primarily interested in a plural interpretation of class talk.

Just such an interpretation was indicated in [Boolos, 1984], discussed in [Uzquiano, 2003],

and precisely stated in [Burgess, 2004] but for the sake of clarity we provide our own

version here. It will serve first to introduce some formal machinery for making pre-

cise plural reference:

Definition 71. The language L≺ is a two-sorted first-order language

comprising the following:

(i) The usual resources of first-order logic: variables x, y, z,... that range

over objects, quantifiers ∀ and ∃, and an equality relation =.

(ii) Plural variables xx, yy, zz that refer to some things.

(iii) Plural quantifiers ∀xx, ∃yy, read as ‘for any things xx’, and ‘there

are some things yy’.

(iv) A two-place relation x ≺ xx, that holds between singular and plural

variables to denote that x is one of the xx.

(v) One’s favourite propositional connectives.

We shall not lay down the rules of plural logic just yet, as this discussion will be

instructive in the next section. For now, we provide exposition of how classes may be

interpreted plurally, and argue that the interpretation is amenable to the Universist’s

current position.

Given the use of the mechanisms of plural reference, we wish to interpret class

talk. We will, from this point on, assume that plural reference and quantification is

well understood in the sense that our plural variables have determinate interpreta-

tion. We can then consider the language L≺,∈ = L∈ ∪ L≺ in order to talk about the

sets through the mechanisms of plural reference. Let us start with a simple example.

The following statement is obviously true for the Universist:

22See [Boolos, 1984] for details.
23See [Hewitt, 2012].
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There are some things rr such that x is one of them iff x 6∈ x.

Such a locution serves to pick out all and only the non-self-membered sets. We

do not thereby commit ourselves to the existence of a class: we are merely talking

about the non-self-membered sets, of which there are many. Given the above, it is

natural to start comparing what we can say about the sets:

The non-self-membered things are the same things as the sets.

Such a statement provides a plurally rendered, nominalistically acceptable, inter-

pretation of the claim that the Universal class and Russell Class are the one and the

same. Again, it is obviously true for a Universist.

We now need to start putting some mathematical meat on the bones of our inter-

pretation. We shall start by stating that the ordinals are well ordered by ∈. We first

introduce the following defined symbol:

Definition 72. The xx are some of (or among) the yy (written xx ≺≺ yy) iff

(If x is one of the xx then x is one of the yy).

We can then characterise the ordinals being well-ordered by ∈ as follows:

There are some things αα such that x is one of the αα iff x is an ordinal.

Moreover, for any xx that are some of24 the αα, there is a β that is one of

the xx such that there is no γ 6= β that is also one of the xx with γ ∈ β,

and for any δ, χ ≺ xx either (i) δ ∈ χ, (ii) χ ∈ δ, or (iii) χ = δ.

Moving up in complexity, we can use plurals to talk about elementary embed-

dings:

There are some ordered pairs jj such that:

(1) If 〈x, y〉 is one of the jj and 〈x, z〉 is also one of the jj, then y = z (i.e.

the jj code a function-like embedding).

(2) If 〈x, y〉 is one of the jj, and 〈z, y〉 is one of the jj, then x = z (i.e. the

jj code a one-to-one embedding).

24Here we assume that for any things yy there is at least one thing that is one of the yy. We will see
some discussion of the possibility of an ‘empty plurality’ later in the Chapter.
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(3) If 〈x0, y0〉,..,〈xn, yn〉 are each among the jj, then for first-order φ,

φ(x0, .., xn) iff φ(y0, ..., yn) (i.e. the jj code an elementary embed-

ding).

(4) There is an 〈x, y〉 that is one of the jj such that x 6= y (i.e. the jj code

a non-trivial embedding).

(5) There is a least ordinal κ such that 〈κ, y〉 is one of the jj, and κ 6= y

(i.e. the jj identify a critical point of the coded embedding).

The jj (should there be such objects) provide a coding in purely plural terms

of the existence of a non-trivial elementary embedding j : V −→ M. With this

interpretation in place, and with suitable abbreviations being made, we can take

Kunen’s Theorem to establish the following:

There are no things jj coding a non-trivial elementary embedding from

the sets to the sets (i.e. there are no things jj coding a non-trivial elemen-

tary j : V −→ V ).

The Vickers-Welch embedding is a little more difficult to interpret. Recall the

statement of the theorem:

[Vickers and Welch, 2001] Suppose I ⊆ On witnesses that the ordinals

are Ramsey. Then, definably over (V,∈, I), there is a transitive model

M = (M,∈), and an elementary embedding j : (M,∈) −→ (V,∈) with a

critical point.

We can begin with the following characterisation:

Suppose that there are some things ii that are (collectively) good indis-

cernibles for the ordinals. Then there are some things jj coding a non-

trivial elementary embedding from some things mm that (collectively)

satisfy ZFC to the sets.

One aspect of the above characterisation that is left out is the definability of j

using I . We will discuss in the next Chapter exactly how to code ordered pairs on
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classes and hence structures. For the time being it suffices to note that if we are in-

terested in some things ii that are collectively good indiscernibles for On, then there

is no barrier to introducing a predicate ‘I(x)’ into the language L∈, such that I(x)

holds iff x ≺ ii. We can then use this expanded language to define the embedding

over V .

There thus seems to be no barrier to talking about non-definable classes through

the use of plural reference. However, we would like to know whether the Universist

should countenance talk of non-definable classes on this interpretation.

Insofar as the Universist has already countenanced the use of plurals in inter-

preting class talk, the answer has to be “yes”. Consider the case where we restrict

attention to some Vκ for uncountable κ. Uncontroversially for the Universist, there

are some things that are some of the sets in Vκ, do not form a set in Vκ, and are not

all and only the satisfiers in Vκ of some first-order formula. This is made especially

perspicuous by the existence of non-definable sets in Vκ+1. Now, in the context of

V there are no further stages to make this quite so clear. However, V is patently the

richer structure. Therefore, if there are some things xx that are some of the sets in Vκ,

do not form a set in Vκ, and are not all and only the satisfiers of some first-order for-

mula φ (relative to Vκ), then there should be some things yy that are some of the sets,

do not form a set, and are not all and only the satisfiers of some first-order formula.

Further, the interpretation performs very well with respect to the constraints out-

lined in previous sections. The Ontological Constraint is clearly satisfied; class talk

should be understood via plural reference to sets, and so our interpretation of class

talk is very different from our interpretation of set talk. The latter refers to objects

whereas the former does not refer to objects, rather it refers to sets (in the plural)

within V . This further shows why the threat of higher-order classes does not bite on

this understanding of class talk. Classes cannot be members because some things xx

are not an object that can be a member of anything.

The Methodological Constraint is also nicely satisfied. Our naive thinking about

classes carries over well to the plural case. Turning again to the basic example of

Union, it is highly plausible that if there are some things xx and some other things

yy, then there are some things zz such that an object is one of them iff it is either
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one of the xx or one of the yy. As we shall see in the next section, this carries over

directly to formal theories of classes, and we are able to interpret MK plurally.

However, the most important point (given the discussion of Horsten and Welch’s

proposal) is that the plural interpretation also satisfies the Foundational Constraint.

By adopting a class nominalism with reference understood plurally, we make our

discussion of classes about sets, rather than any objects over and above V . It is still the

case that the sets provide the standard for correctness and coherence in one founda-

tional mathematical arena. Where Horsten and Welch’s proposal accounts for class

talk by having it interpreted as about a new kind of object, we interpret classes as a

providing a new way of talking about the sets.

VI.6 Justifying MK

We now provide a justification for MK class theory. First, however, we make a

remark about methodology, specifically what we will be taking for granted. The

above section provides good reason for the Universist to accept that plural reference

to sets is well-understood in the sense that we know what it means for any object x to

be one of some things xx, and whether or not there are some things yy. In particular,

we will refrain from providing a detailed semantics for plural reference. This has

some precedent in the literature:

“Throughout philosophical logic, much mischief is caused by a double

usage of the word ‘semantics’. It is used on the one hand for models, like

those provided by Tarski for singular or first-order logic, or by Kripke

for modal logic; and it is used on the other hand for a theory of meaning.

Confusion between these two usages is manifested in the literature in two

different, complementary, ways. On the one hand, if a model theory has

not yet been developed for a given logical notion, it may be alleged that

the notion is ‘meaningless’ because it lacks a ‘semantics’. On the other

hand, once a model theory has been developed for a given logical notion,

it may be alleged that problematic ‘ontological commitments’ are implicit

in the use of the notion...Both types of objections could be raised against
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plural logic. On the one hand, I have not yet presented a model theory for

plural logic...On the other hand, when I do present a model theory and an

argument that it is satisfactory...then since the model theory will involve

an apparatus of sets, it might be claimed that this shows an ‘ontological

commitment’ to sets is implicit in the use of the plural.” ([Burgess, 2004],

pp216-217)

As Burgess identifies, opponents of the use of plural logic put its adherents in a

tricky spot. Either, (i) the plural logician refrains from giving an explicit set-theoretic

semantics for the logic of plurals and is criticised for not telling us what the ranges

of the plural variables are, or (ii) she provides a (set-theoretic) semantics for a logic

of plurals and hence is criticised for using ‘set theory in sheep’s clothing’ or similar.

This latter objection is especially damaging in the present context if taken seriously;

given that our domains are often proper-class-sized, we do not have the option of

using a set-theoretic semantics there. A third option, not mentioned by Burgess in

the above quotation, is (iii) use an expanded language in providing the semantics

for plurals. This is usually done either via the use of a plural satisfaction predicate

([Boolos, 1984]) or a move to third-order resources ([Linnebo and Rayo, 2012]). This,

however, results in the immediate difficulty that the extra resources are plausibly less

intelligible than the simple relationship of an object being among some things. There

are possible responses to be given here (possibly using superplural reference25), but

even if an answer can be provided, the semantic question can be pushed up another

level. Better, instead, to refrain from providing an explicit semantics, and instead

axiomatise the rules of logic that govern the use of the language. Indeed, Burgess

harbours a similar thought:

“Against the first objection I maintain that even if no one ever did present

a satisfactory model theory for plural logic, the plural was in systemic

use in natural languages long before model theory for anything had been

born or thought of, and such long-standing systemic usages are meaning-

ful if anything is. Against the second objection I maintain...that the tran-

25In addition to [Linnebo and Rayo, 2012], see [Linnebo and Nicolas, 2008].
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sition from plural language to set-theoretic language in the work of Can-

tor and his followers involved an intellectual struggle more difficult than

would have been called for if the task had been merely one of making ex-

plicit something already implicit in ordinary language.” ([Burgess, 2004],

p217)

We sympathise with these points. It is a curious fact that some philosophers de-

sire a formal set-theoretic semantics for almost every use of language. A set-theoretic

semantics is needed when we wish to make precise the use of terms which are not

clear. For example, a precise formal semantics to deal with cases of vagueness is

often useful to explore the logical space of assertions that can be made regarding

vague statements. We contend that it is perfectly clear to (non-contrarian) speakers

of English familiar with plural quantification and set theory what the sentences “x

is one of some things xx” or “there are some things xx such that φ” mean, or indeed

for that matter what “there are some sets such that they do not form a set and are not

all and only the satisfiers of some first-order formula” means.26

What we can do, however, is to lay down the logical rules that govern our use of

plural quantification. We take them to be the following:

Definition 73. Plural First-Order Logic or PFO is a theory in L≺ with the

following axioms:27

(i) All axioms of first-order logic.

(ii) ∀xx∃y(y ≺ xx) (i.e. for any things something is one of them).

(iii) Plural Indiscernibility Scheme:

∀xx∀yy[∀z(z ≺ xx↔ z ≺ yy) → (φ(xx) ↔ φ(yy))]

(i.e. if some things xx are the same things as some things yy then

whatever holds of the xx also holds of the yy, and vice versa).

(iv) Plural Comprehension Scheme: ∃xφ(x) → ∃xx∀y[y ≺ xx ↔ φ(y)]

(i.e. If there is a φ then there are some things that are all and only

the satisfiers of φ)
26If we were pressed to, we would opt for a formally adequate but wholly uninformative Tarski-style

semantics with a truth predicate and the relevant T -axioms.
27For details, see the excellent introduction to plural logic available in [Linnebo, 2014].
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We shall use this conception of plural logic to motivate the axioms of MK. As an

axiomatisation of our use of plurals, PFO is reasonably uncontroversial. The only

substantive question is what we allow for φ in the Plural Comprehension Scheme,

this issue is given consideration below. For the moment, we move on to justifying

each axiom of MK in turn. We first need to specify the content of MK:

Definition 74. L∈,η consists of the following:

(i) All apparatus of L∈.

(ii) A class membership predicate η.

(iii) Variables and quantifiers for classes (denoted by uppercase Roman

letters, X , Y , Z, X1, X2, and ∀X1, ∀X2 and so on).

In addition to the well-formed formulas of L∈, we have:

(iv) If X and Y are class variables, then the formula X = Y is well-

formed.

(v) If x is a set variable and Y is a class variable, then the formula xηY

is well-formed.

(vi) The usual formulas constructed from atomic sentences using con-

nectives and quantifiers are well-formed.

We now wish to provide an analysis of the class variables and membership using

plurals. However, we must first make the following:

Remark 75. A problem with using plural reference to provide an inter-

pretation of the class variables and η is that, on common understandings

of plurals, some things must always include at least one thing (and in

some accounts at least two things), even though we wish to have an

empty class. This is easily remedied, [Burgess and Rosen, 1997] show

that different readings of the plural quantifiers (to admit zero or more,

one or more, or two or more things) are interdefinable. Thus, for the mo-

ment, we let ≺′ denote the relation that corresponds to the zero or more

reading of plurals.
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Remark 76. The reader may, at points, feel like the exposition could

flow more quickly in this section. Indeed, many expositions (such as

[Uzquiano, 2003]) are quick to move from plurals to classes. It is impor-

tant in the current foundational context, however, to take things slowly

and see exactly how the formalisation of ordinary plural language results

in a mature class theory.

We can now provide the following analysis of the variables. The set variables

denote sets, and ∈ denotes set membership. A class variable Y denotes some things

yy, and xηY iff x ≺′ yy.28

Remark 77. The use of a distinction between η and ∈ is formally re-

dundant. We could work in a language that blurs these distinctions, ad-

mitting sentences stating that one class is a member of another as well-

formed and using a Sethood predicate ‘Set(X)’, such that Set(X) holds

iff ∃Y (XηY ) (this was, in fact, how Gödel formulated his version of

NBG
29 class theory). If one is motivated by parsimony in language, this

would be the sensible route. On the other hand, we should be mindful

that our interpretation of classes through plural reference means that, con-

ceptually speaking, it makes more sense to speak of a separate member-

ship relation η between sets and classes, and talk of classes (understood

as some things xx) forming sets.30

Despite this, some formal fluidity is desirable, especially when we get on the the

trickier class-theoretic results in Chapter VII. What we would like is to keep the

two-sorted nature of L∈,η so as to retain our conceptual distinction, but not have to

constantly keep track of whether we are using ∈ or η. We thus provide the following:

Definition 78. The language of MK (denoted by ‘L∈∗ ’) comprises the following:

(i) The variables, connectives, and quantifiers of L∈,η .

28This is essentially Boolos’ translation given in [Boolos, 1984] and [Boolos, 1985], with subsequent de-
velopment in [Uzquiano, 2003].

29NBG is a theory, substantially weaker than MK, in which Class Comprehension is restricted to
predicative formulas only (i.e. all class quantification in φ must be bounded).

30See [Bernays, 1958], Part I, Chapter 7 for discussion.
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(ii) A dyadic membership relation denoted by ∈∗.

The well-formed formulas are constructed as follows:

(iii) The equality statements of L∈,η are well-formed.

(iv) If x is a set variable and Y is a class variable, then x ∈∗ Y is well-formed.

(v) If x is a set variable and y is a set variable then x ∈∗ y is well-formed.

(vi) The usual formulas constructed from atomic sentences using connectives and

quantifiers are well-formed.

L∈∗ keeps the two-sorted conceptual distinction between sets and classes, but al-

lows us to reason with a single membership relation, streamlining proof somewhat.31

We can now define MK proper:

Definition 79. MK consists of the following axioms:

(A) Set Axioms:

(i) Set Extensionality

(ii) Pairing

(iii) Infinity

(iv) Union

(v) Power Set

(B) Class Axioms:

(i) Class Extensionality: ∀X∀Y ∀z[(z ∈∗ X ↔ z ∈∗ Y ) → X = Y ]

(i.e. Classes with the same members are identical).

(ii) Foundation: Every non-empty class has an ∈∗-minimal element.

(iii) Scheme of Impredicative Class Comprehension:

∀X1, ..., ∀Xn∃Y (Y = {x|φ(x,X1, ..., Xn)}),

where φ is a formula of L∈∗ that may contain both set and class

parameters, and which unrestricted quantification over classes

and sets is allowed.

31If we did not make such a move, any time we wanted to talk about a class that formed a set which
was in turn a member of a class, we would have to switch relation.
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(iv) Class Replacement: If F is a (possibly proper-class-sized) func-

tion, and x is a set, then ran(F ↾ x) is a set (i.e. {F (y)|y ∈∗ x} is

a set).

(v) Global Choice: There is a class function F such that for every

non-empty x ∃y ∈∗ xF (x) = y. Equivalently, there is a class

that well-orders V .32

One immediate question is the following: Why bother? Why do we feel the need

to move from the two-sorted first-order PFO to the class theory MK, especially

when the former is ontologically honest where the latter appears to misleadingly

singularise class talk? There are two reasons for this. The first is nicely summed up

by Uzquiano:

“This [the plural interpretation of proper class discourse] is of course not

an invitation to relinquish the vocabulary of classes. For as it will soon

become plain, plural paraphrases quickly become unwieldy and difficult

to parse. The proposal is rather that we continue to use the vocabulary of

classes in the context of set theory, but warn that its grammatical form is

not ontologically transparent.” ([Uzquiano, 2003], p73)

Simply put, the language of L∈∗ is more easy to understand and work with in a

mathematical context. If we kept things plural, when considering a given statement,

we would have to be constantly book-keeping what we said to avoid error (such as

when dealing with the ‘empty plurality’ or keeping track of the use of ≺ and ∈). This

is especially apparent when we start increasing the complexity of the statements in

question and communicating via a mix of formal and natural language. For example,

even for a comparatively simple (true) statement such as:

If X 6= V , then there is a Y such that X ⊂ Y .

the plural rendering becomes awkward to parse:

32Note that since Global Choice and Class Replacement imply their set-sized incarnations, we do not
need to include Choice and Replacement in our Set Axioms.
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For any things xx if there is something y such that y is one of the sets

but not one of the xx, then there are some things zz such that the xx are

among the zz but the zz are not among the xx.

and this is for a very simple claim about classes and V . As we increase complexity

through the study of proper-class-sized models and embeddings, the strict plural

rendering is likely to become highly intractable.

The second reason for the move is more pragmatic still. Simply put, MK has

received more mathematical attention, and so we have more theorems we can use

compared to PFO. Given then that we have a translation between L∈∗ and L∈,≺,

the move is justified, even if only for reasons of expediency and proof.

Since ZFC is presupposed by this thesis, we already have all the MK axioms

concerning only sets (i.e. part (A) of the definition of MK), as well as Choice and

Foundation for sets. We now proceed to motivate each of the class-theoretic axioms

in turn.

Class Extensionality is justified by the observation that for any things xx and any

things yy, the xx are the same things as the yy just in case every z that is one of the

xx is one of the yy (and vice versa). More formally, we note that if we have two

classes X and Y such that z ∈∗ X iff z ∈∗ Y , then there are some things xx and some

things yy such that z ≺ xx iff z ≺ yy. Class Extensionality then follows from Plural

Indiscernibility.

Foundation. For any Y , either (i) the yy denoted by ‘Y ’ form a set y, or (ii) the yy

denoted by ‘Y ’ do not form a set. In case (i) ∈∗ reduces to ∈ and ∈∗-Foundation is im-

mediate from ∈-Foundation. For (ii) every y ∈∗ Y is a set, and hence ∈∗-Foundation

follows from ∈-Foundation.

Scheme of Impredicative Class Comprehension. The next axioms are more difficult to

justify. Our methodology will be much like the one we adopted in considering char-

acterisations of proper classes; we will consider both first and second philosophical

considerations.

We begin with first philosophy. Since our understanding of the class variables

and ∈∗ is given by plural quantification and reference, the truth of Impredicative

Class Comprehension reduces to the question of whether or not we can have im-
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predicative definitions in the Plural Comprehension Scheme. Some have regarded

this question as obvious. Uzquiano, for example, writes:

“To the extent to which one accepts unrestricted plural quantification

over sets as unproblematic, one will be moved by what David Lewis

refers to as the evident triviality of plural comprehension, and thus one

will accept all instances of plural comprehension as true. After all, one

may explain, in order for an instance of comprehension to be false, there

must be a formula φ such that it is neither the case that no sets satisfy

it nor is it the case that some sets satisfy it. But this could never be the

case.” ([Uzquiano, 2003], pp76-77)

Thus, insofar as one accepts the determinacy in the range of the plural variables,

Impredicative Class Comprehension seems inevitable. For as Uzquiano points out, if

impredicative definitions were prohibited from featuring in the Plural Comprehen-

sion Scheme, we would be able to state (in our plural theory) a formula that is neither

satisfied by no sets nor satisfied by some sets; an apparent contradiction. Further-

more, worries of contradiction are unlikely to threaten; MK is consistent relative to

the existence of an inaccessible cardinal. There are, however, those who do not agree

that the range of plural variables need be determinate.33 Such a position would un-

dermine the above argument; a formula could be satisfied on some (Henkin-style)

assignments but not others. Though we take the ranges of plural variables to be de-

terminate, it is nonetheless desirable to bolster this intuitive plausibility with second

philosophical considerations.

From a second philosophical perspective, we note that the definition of a ZFC

truth predicate for V has to come from the Scheme of Impredicative Comprehension.

To observe this, note that restriction of Class Comprehension to predicative formulas

results in NBG. Since NBG is a conservative extension of ZFC it cannot prove the

existence of a ZFC truth predicate for V (by Tarski’s Theorem). Thus, Impredicative

Class Comprehension receives second philosophical support; it opens the door to

new and plausibly fruitful mathematics.34

33For a dissenting voice see [Florio and Linnebo, 2015].
34For discussion, see [Gitman et al., U]. For a concrete example of how a truth predicate can be used in
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Class Replacement and Global Choice. We deal with Class Replacement and Global

Choice in tandem since they are intimately linked. We first remark that Global

Choice has substantial independent merit. From a second philosophical perspective,

many constructions in class theory require Global Choice (good examples being class

ultrapowers).35

From a first philosophical stance, we note that Global Choice is a very robust

principle in that if it holds in a model, it is very hard to destroy. Two examples

are of interest here. First, Global Choice is consistent with all known large cardinals

consistent withAC (so, as far as we know, we cannot destroy it by moving to a model

with a new kind of cardinal). Second, Global Choice is preserved by set forcing36.

Given then that Global Choice is hard to destroy once we have it, we might think

that it is more likely to be true; insofar as the model theory of sets indicates how sets

behave, Global Choice seems well-entrenched.

From a first and second philosophical point of view, however, it is important to

note that Global Choice and Class Replacement are intimately linked to limitation of

size. We noted in the Introduction that it was at least very unclear if and how Re-

placement can be justified on the basis of the Iterative Conception of Set. First-order

reflection was considered, but is far from uncontroversial in this respect. Instead,

many theorists (such as Cantor, Russell, Jourdain, Mirimanoff, and more recently

Burgess)37 have appealed to some principle of a limitation of size; in addition to sets

being formed iteratively, sets also exist when given by an operation on a set that

does not increase its size. Recall from Chapter I that there were two main ways of

expressing this idea:

Weak Limitation of Size Principle. If some objects can be put in a one-to-one

correspondence with a set, then there is a set of those objects.

Strong Limitation of Size Principle. Some objects form a set iff they are not

deriving the existence of sets, see [Welch, 2014].
35Again, see [Gitman et al., U] for details. In fact, far stronger choice principles are required. Interest-

ingly, the justification of many such strong choice principles would make the coding of the next section
both easier and more powerful (see [Antos and Friedman, S] for details). However, since MK is the much
more widely accepted theory and is already regarded as a strong class theory by many philosophers, we
find it dialectically effective to show that we can accomplish the necessary coding for extensions in MK.

36See [Hamkins, 2015] for details.
37See [Hallett, 1984] for an excellent exposition of the history and analysis, as well as a more compre-

hensive list. Burgess’ appeals to limitation of size appear in [Burgess, 2004].
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bijective with the universe.38

The former is only sufficient to guarantee Replacement for sets. However, if the

latter is taken as our interpretation of the limitation of size idea, and if we are happy

with there being more than one thought underlying set theory we can prove the

following:

Theorem 80. The Strong Limitation of Size Principle is equivalent to the

conjunction of Global Choice and Class Replacement (modulo the other

axioms of MK).39

Proof. Assume the Strong Limitation of Size Principle. To show Class

Replacement, take any set x, function F , and consider ran(F ↾ x). Since

ran(F ↾ x) can be mapped into x, it is not proper, and hence there is a set

y = ran(F ↾ x). For Global Choice, note than On is a proper class. By

the Strong Limitation of Size Principle, On can be mapped onto V , and

hence there is a global well-order of V .

In the other direction, assume Class Replacement and Global Choice. We

show each conditional of the Strong Limitation of Size Principle in turn.

Take any class X and assume that it can be mapped onto V . Then, we

know that X does not form a set (otherwise V would be a set by Class

Replacement). Conversely, assume that X does not form a set. Map X

into an initial segment S of the ordinals (using Global Choice). We know

(by Class Replacement) that S cannot form a set, and hence S = On. By

Global Choice (and composing the relevant functions) X is thus map-

pable onto V . �

There are a number of points to be made about this fact. We might simply take

the equivalence between these two (reasonably natural) principles to confer extrin-

sic40 evidence upon each, much as the wide range of natural principles equivalent

38The formal class-theoretic is a little impenetrable but reads as follows:
∀C(¬∃x∀y(y ∈∗ C ↔ y ∈∗ x) ↔
∃F (∀x(∃W (x ∈∗ W ) → ∃s(s ∈∗ C ∧ 〈s, x〉 ∈∗ F )) ∧ ∀x∀y∀s((〈s, x〉 ∈∗ F ∧ 〈s, y〉 ∈∗ F → x = y))).

39I am very grateful to Victoria Gitman and Sam Roberts for discussion of the technical issues surround-
ing Limitation of Size and Global Choice.

40We move to using the terms ‘intrinsic’ and ‘extrinsic’ rather than ‘first philosophical’ and ‘second
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to AC or the equivalence between ZC−Infinity with first-order reflection and ZFC

are each taken to confer extrinsic evidence on their respective axioms. The Strong

Limitation of Size Principle, Global Choice, and Class Replacement are all natural

enough principles, so any equivalences between them only serves to bolster their

case.

For the purposes of intrinsic justification, it is important to note that the equiva-

lence shows that insofar as the Strong Limitation of Size Principle is justified, then

Global Choice and Class Replacement are also essential (and vice versa). Further,

heuristic justification can be given to link limitation of size and iterativity. Clearly, if

some objects form a set, then they are not bijective with V . For the other direction, we

note that there are two ways that a class X could fail to be bijective with V . Either (i)

it could be bounded in some Vα (in which caseX immediately forms a set), or (ii) we

might lack the relevant bijection. However, in case (ii) we note that since the ordinals

are a proper class, the claim that every proper class is bijective with V is equivalent

to the claim that every proper class is bijective with the ordinals. If Strong Limita-

tion of Size fails, we would thus have the rather strange situation where X ∩ Vα is

well-orderable for every Vα, but X as a whole is not well-orderable. In other words,

given that each initial segment of V can be well-ordered, we might think that if some

things are not bijective with V then they are unlikely to be unbounded in the Vα (and

vice versa).

These arguments are not meant to be conclusive, in particular the previous heuris-

tic consideration concerning unboundedness and limitation of size assumes the prin-

ciple. Certainly, there are worries here. First, the Strong Limitation of Size Principle

is far from obvious, and one might instead opt for the Weak Limitation of Size Prin-

ciple in justifying Set Replacement. Second, one might not accept that it is possible

to adjoin a notion of limitation of size to our iterative conception (though then one

must explain how Replacement is justified). Despite these worries, we should be

mindful from the Introduction that the justification of ZFC itself admitted of sim-

philosophical’, because this is one case where it is unclear whether the equivalence is more naturally
amenable to a first or second philosophical outlook. Does the equivalence confer justification because it
is fruitful mathematics, or rather because it shows a deep fact about our notion of set, amenable to first
philosophical analysis? We take no stand on the issue here, but note that the exact relationships between
first philosophy, second philosophy, intrinsic justification, and extrinsic justifications are far from obvious.
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ilar problems. The important point is that if one accepts the Strong Limitation of

Size Principle, then one must accept Class Replacement and Global Choice too. The

justification for MK, it seems, is not that much weaker (if at all) than ZFC itself.

Chapter VI: Conclusions

We conclude by making some points about exactly what we have achieved, espe-

cially in the context of the current dialectic. In this chapter we began by revisiting

the problem of proper classes for the Universist, and noted that there was a conve-

nient way of paraphrasing class talk in terms of definable formulas. We then identi-

fied first and second philosophical reasons to accept the use of non-definable classes

in set theory. Next, we considered two characterisations of proper classes, one as

‘heavyweight’ ontological objects formed through mereology, and another as under-

stood through plural quantification, and argued that the latter performed far better

with respect to the three constraints. We then provided a justification of MK class

theory, based on the plural interpretation of proper class discourse.

A few further comments are in order, however. We do not take the above ar-

guments to be in any sense definitive. Rather, we have simply shown that there are

reasons (both philosophical and mathematical) to accept the legitimacy of discourse

involving non-definable classes, and that such an interpretation suggests MK class

theory as a natural choice of first-order theory to codify such talk in a familiar math-

ematical language. We do not claim that we have provided conclusive reasons to

accept MK, and indeed philosophical research in this area is ongoing. However,

there is no apparent obstacle to using MK, we have reasons to want to use it, and

have a characterisation that suggests it can be interpreted in a philosophically satis-

factory manner. As we shall see in the Conclusion, this is important for assessing the

philosophical upshot of the coding discussed in this thesis. For now, however, we

move on to putting our theory of classes to work.

149



Chapter VII

V -Logic and Resolution

In previous chapters we have seen that for the purposes of executing Gödel’s Pro-

gramme, there is the possibility of using extensions of V in formulating new axioms

and proving consequences about V . We then examined extant attempts to interpret

height and width extensions of V and found them wanting in certain respects. In

the preceding chapter, we saw the first part of our positive proposal; a motivation

(on both first and second philosophical grounds) of the use of MK based on a plural

conception of proper class discourse.

The time has come to put this theory of classes to work. In this chapter, we show

how, using MK combined with a strengthening of logical resources (V -logic), we

can provide a coding of extensions of V that captures the desired properties in V

whilst satisfying various constraints.

Before we provide our coding, we refresh the reader’s memory concerning the

three challenges we set up for coding of extensions of V . It will be helpful to keep

these in mind, as we shall argue towards the end of the chapter that they are satisfied

under the coding proposed.

The Hilbertian Challenge. Provide philosophical reasons to legitimise

the use of extra-V resources for formulating axioms and analysing intra-

V consequences.

The Foundational Constraint. In responding to the Hilbertian Chal-
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lenge, do so in a way that does not necessitate the use of resources that

cannot be represented by sets within V .

The Ontological Constraint. Any interpretation of extra-V resources

should make clear the ontological difference between the interpretation of

extensions and normal sets within V . In other words, any interpretation

must make clear in what sense the interpretation does not literally refer

to extra-V sets.

The Methodological Constraint. In responding to the Hilbertian Chal-

lenge, do so in a way that accounts for our naive thinking about exten-

sions and links them to structural features of V .

We shall show, in the remainder of this chapter, that it is possible to provide a

codification answering these challenges using MK class theory (plurally rendered)

over V . The structure of the chapter is as follows: After these introductory remarks,

§1 provides an exposition of the mechanisms of V -logic. §2 then presents some ex-

amples of how we can use V -logic to code extensions. §3 then shows how, if we

were allowed to ‘go past’ V , we would be able to code a sufficient amount of V -logic

to interpret extensions of V in Hyp(V )—the least admissible set containing V as an

element. §4 provides a coding of Hyp(V ) with a single class in MK, showing that

extensions of V can be coded using class talk. Finally, §5 evaluates the coding from

a philosophical perspective. In particular, we argue that the coding performs well

with respect to the Hilbertian Challenge under the three constraints.

VII.1 Explaining V -logic

We begin by outlining the logical resources we shall use. The techniques of [Barwise, 1975]

will be instrumental, as will the applications noticed by [Antos et al., 2015], [Friedman, S],

and [Friedman and Ternullo, S].
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VII.1.1 M-logic

We shall start with the general case. [Barwise, 1975] provides the following logi-

cal resources for capturing the properties of a structure. We start with a structure

M = (M,R) in the language L∈ and expand to a language L M
∈ as follows:

Definition 81. The language L M
∈ is L∈ together with:

(i) A predicate M̄ to denote M.

(ii) A constant x̄ for every x ∈M .

We then define a satisfaction relation for structures of L M
∈ as follows:

Definition 82. A M-structure for L M
∈ is a structure N = (N,EN) satisfy-

ing:

(i) The interpretation of M̄ is M.

(ii) The interpretation of x̄ in N is x for every x ∈M .

(iii) M is a substructure of (N,EN ↾ L∈).

Definition 83. We write |=M φ iff φ is true in all M-structures, and (letting

T be a set of sentences) we write T |=M φ if φ is true in all M-structures

satisfying T.

Remark 84. Officially, we treat M̄ as a predicate symbol, as it is not an

object of M. However, it will be convenient for our purposes (as well as

in line with relevant parts of the existing literature) if we render this talk

in terms of membership (so x̄ ∈ M̄ holds iff M̄(x̄)).

We then consider M-logic, which has the following axioms:

Definition 85. M-logic is a system in L M
∈ , with consequence relation ⊢M

that consists of the following axioms:

(i) x̄ ∈ M̄ for every x ∈M .

(ii) Every atomic or negated atomic sentence of L∈ ∪ {m̄|m ∈ M} true

in M is an axiom of M-logic.
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(iii) The usual axioms of first-order logic.

The rules of inference of M-logic are given as follows. For a set of sen-

tences T ⊆ LM
∈ :

(a) Modus ponens: From T ⊢M φ and T ⊢M φ→ ψ infer T ⊢M ψ.

(b) The M-set rule: From T ⊢M φ(b̄) for all b ∈ a infer T ⊢M ∀x ∈ āφ(x).

(c) The M-rule: From T ⊢M φ(b̄) for all b ∈M , infer T ⊢M ∀x ∈ M̄φ(x).

We furthermore say that a set of sentences T is consistent in M-logic iff

T ⊢M φ ∧ ¬φ is false for all formulas of L M
∈ .

M-logic allows us to focus on models where M appears as standard. We effec-

tively introduce constants and axioms to rigidify the structure of M, which we can

then talk about syntactically using M-logic. We then have the following:

Theorem 86. [Barwise, 1975] The M-Soundness Theorem. Let T be a set of

sentences in L M
∈ . Then if φ is a sentence of L M

∈ :

T ⊢M φ implies that T |=M φ.

Consistency of theories in M-logic is linked to the existence of models by the

following theorem:

Theorem 87. [Barwise, 1975] The M-Completeness Theorem. Let M be

countable and T be a set of sentences of L M
∈ . Then if φ is a sentence

of L M
∈ :

T |=M φ implies that T ⊢M φ

Thus, if M is countable, then if a theory T is consistent in M-logic, there is a model

of T. Of interest for us will be cases where M is uncountable. Here, the M-logic

completeness theorem radically fails:

Theorem 88. [Barwise, 1975]1 Let M be an uncountable structure. Then

M-logic is not even Σ1-complete.

1For details, see discussion in Ch VII of [Barwise, 1975].
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The theorem shows that, in terms of metalogical properties, M-logic is far closer

to second-order logic than first-order logic when M is uncountable. In this way, the

consistency of a theory in M-logic is no guarantee of there being a model with those

properties.

As we shall see, M-logic becomes exceptionally useful for interpreting extensions

of V when we let M = V .

VII.1.2 V -logic

Certain applications of M-logic may be familiar to the reader, the example of ω-logic

is precisely one such.2 We now explain V -logic.3 Quite simply, V -logic is the special

case of M-logic where M = V . So, exactly as before, we have:

Definition 89. L V
∈ is the language consisting of:

(i) A predicate V̄ to denote V .

(ii) A constant x̄ for every x ∈ V .

Again, as before, we can then define V -logic:

Definition 90. V -logic is a system in L V
∈ , with consequence relation ⊢V

that consists of the following axioms:

(i) x̄ ∈ V̄ for every x ∈ V .

(ii) Every atomic or negated atomic sentence of L∈ ∪ {x̄|x ∈ V } true in

V is an axiom of V -logic.

(iii) The usual axioms of first-order logic in L V
∈ .

For a set of sentences T ⊆ L V
∈ , V -logic contains the following rules of

inference:

(a) Modus ponens: From T ⊢V φ and T ⊢V φ→ ψ infer T ⊢V ψ.

2ω-logic adds a predicate N̄ for N and constants n̄ for every standard natural number to the lan-
guage of PA, and then permits inference by the ω-rule: that from φ(n̄) for every n ∈ N, one may infer
∀xN̄(x) → φ(x). Essentially, ω-logic is M-logic for the case of N. See [Barwise, 1975] and [Shapiro, 1991]
for an examination of the metalogical properties of ω-logic.

3I am very grateful to Sy Friedman for explaining to me the mechanisms of V -logic, and its role
in interpreting forcing extensions. See, for more discussion, [Antos et al., 2015], [Friedman, S], and
[Friedman and Ternullo, S].
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(b) The Set-rule: From T ⊢V φ(b̄) for all b ∈ a infer T ⊢V ∀x ∈ āφ(x).

(c) The V -rule: From T ⊢V φ(b̄) for all b ∈ V , infer T ⊢V ∀x ∈ V̄ φ(x).

We furthermore say that a set of sentences T is consistent in V -logic iff

T ⊢V φ ∧ ¬φ is false for all formulas of L V
∈ .

Proof codes in V -logic are thus (possibly infinite) well-founded trees with root

the conclusion of the proof. Whenever there is an application of the V -rule, we get

proper-class-many branches extending from a single node. More formally, we define

the notion of a proof code in V -logic (an example of which is visually represented in

Figure VII.1) as follows:

Definition 91. A proof of χ in V -logic is a (possibly infinite) well-founded

tree, with root the conclusion of the proof (i.e. χ) and where previous

nodes are either axioms of V -logic or follow from one of its inference

rules.4

Definition 92. We furthermore say that a set of sentences T is consistent

in V -logic iff T ⊢V φ ∧ ¬φ is false for all formulas of L V
∈ .

With the mechanisms of V -logic set up, we now describe how its use is relevant

for interpreting extensions of universes.

4The eagle-eyed reader may notice that there will be choices to be made about how to code these trees.
We shall see discussion of this later.

Figure VII.1: Visual representation of a proof of χ in V -logic

For every y ∈ a...ψ(ȳ2)ψ(ȳ1)ψ(ȳ0)

∀y ∈ ā ψ(y)∀y ∈ ā ψ(y) → (∀xφ(x) → χ)Ω-many times for every x ∈ V...φ(x̄2)φ(x̄1)φ(x̄0)

∀xφ(x) → χ∀xφ(x)

χ

An application of the V -rule

An application of the Set-rule over a
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VII.2 Interpreting extensions in V -logic

We have provided explanation of a logic that rigidifies the structure of V ; adding

constants and axioms to fix V ’s properties within the syntax of V -logic. How might

this allow us to interpret extensions of V ? The key fact (developed in [Antos et al., 2015],

[Friedman, S], and [Friedman and Ternullo, S]) is that consistency in V -logic of theo-

ries in L V
∈ corresponds to those intra-V consequences holding. We now provide

some exposition of how this proceeds:

VII.2.1 Height extensions

We first deal with direct extensions. We wish to develop a theory in V -logic that

allows us to talk about a height extension of V . We do this by first adding a constant

W̄ to our language L V
∈ . We then add the following axiom:

W̄ is a universe of ZFC with V̄ as an initial segment such that Φ.

In particular, in the context of formulating the Extended Reflection Axiom, we

have the following axioms in the language of V -logic:

(i) W̄ -Height Axiom. W̄ is a universe of ZFC that has V̄ as an initial segment.

(ii) The W̄ -ERA. For all first-order formulas φ and subclasses A ⊆ V̄ , if φ(A) holds

in W̄ then φ(A ∩ V V̄α ) holds in V V̄β for some pair of ordinals ᾱ and β̄ in V̄ .

We can then capture the content of the ERA with the following claim:

Extended Reflection Axiom∗ The theory of V -logic with the W̄ -Height Ax-

iom and W̄ -ERA added is consistent under ⊢V .

If such a theory is consistent in V -logic, then we can speak as if there is such

an extension of V . This is because, in speaking of W̄ syntactically, we prove syntactic

facts about V̄ and particular x̄. However, since the syntax of V -logic keeps V fixed (in

the sense that the interpretation of V̄ is V and every x̄ is x) any syntactic consequence

derived from the existence of W̄ is mirrored in the actual structure of sets in V . Thus,

for the purposes of speaking about V , we can speak as if there actually is such a W̄ .
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VII.2.2 Width extensions

This also works for width extensions. Again we introduce a constant W̄ . This time,

however, the relevant axioms are of the form:

(i) W̄ -Width Axiom. W̄ is a universe satisfying ZFC (or possibly simplyKP )5 with

the same ordinals as V̄ and containing V̄ as a proper subclass.

(ii) W̄ -Φ-Width Axiom. W̄ is such that Φ.

We can then have the following axiom to capture the intra-V consequences of an

extension such that Φ:

Φ∗-Axiom. The theory in V -logic with the W̄ -Width Axiom and W̄ -Φ-

Width Axiom is consistent under ⊢V .

This captures the intra-V consequences of any such axiom. Just as with height

extensions, any syntactic consequence concerning either some x̄ or V̄ derived from

the axioms mentioning W̄ will hold of the respective actual structures.

To see this more clearly, let us examine V -logic in action with respect to some of

the examples we outlined in Chapter III.

In the case of a set forcing we could have the following:

W̄ -G-Width Axiom. W̄ is such that it contains some V̄ -P̄-generic G.

If the resulting V -logic theory is consistent, then any syntactic consequence of

the existence of W̄ concerning V̄ will then be true in V . In particular, formulations

of both generic embeddings and remarkable cardinals are thereby dealt with: the be-

haviour of the relevant objects in the extension can be formulated via consideration

of appropriate W̄ . The situation with class forcing is similar, but with a small twist.

For, in the case of class forcing using some class poset PC , the existence of a V -PC

generic GC is not a first-order property of W̄ . Despite this, in V -logic we have the

ability to add predicates (as we did with V̄ and W̄ ). Thus, we can add additional

predicates P̄C and ḠC for PC and GC into the usual syntax of V -logic, and state the

following axiom:

5KP is a significant weakening of ZFC. We shall provide an exposition of KP later in the chapter
and see some of the theory’s interesting features with respect to V -logic. For now, we merely note that
KP satisfaction is a minimal requirement on W̄ .
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W̄ -GC-Width Axiom. W̄ is such that ḠC ⊆ W̄ and ḠC is P̄C-generic over

V .

and then examine whether the resulting theory is consistent in V -logic. Any intra-V

consequence of such a (consistent) theory would, for exactly the same reasons as in

the case of set forcing, naturally transfer to truths concerning V .

Note here that a problem regarding interpreting class forcing is immediately re-

solved. Earlier (III.1.4) we remarked that there are class forcings that add only classes

to the model without adding sets, and that this represented an additional challenge

in interpreting extensions. Moreover, given that we have argued earlier (Chapter

VI) that we should interpret quantifiction over classes via plural quantification, one

might think that there is the difficulty that the addition of a plural parameter (such

as GC) would necessitate the addition of sets (since one cannot add some sets with-

out adding a set). Reflection on the method of interpretation dissolves this problem.

Since all reference to ḠC and W̄ is being interpreted as purely ideal and syntactic in

V -logic, we can perfectly well consider W̄ with additions of classes but no extra sets.

Since every ‘extension’ is being interpreted in a purely syntactic manner, no ‘exten-

sion’ of V literally adds sets (or any other object for that matter), and so we can use

any theory whatsoever that is consistent in V -logic without worrying about specific

puzzles about ontology within the extension.

This liberation of methods via syntactic means also use allows us to formulate

axioms that capture non-forcing extensions. For example:

W̄ -♯-Width Axiom. W̄ is such that it contains a sharp that generates V̄ .

This then allows us to express the claim that V is sharp generated:

Axiom-(♯)∗. The theory in V -logic with the W̄ -Width Axiom and W̄ -♯-

Width Axiom is consistent under ⊢V .

For exactly the same reasons as before, this allows us to interpret the claim that

V is sharp-generated, with all the consequences of sharp-generation that we would

like.
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So far, we have only showed that the interpretation of extensions of V using V -

logic performs at least as well as the countable transitive model strategy and use of

V. Recall, however, that the problem with that strategy was that it could not account

for axioms that were greater than first-order over V . We now show that V -logic can

be put to this task.

VII.2.3 Inner model density: redux

We noted earlier (in Chapter V) that all the above could be done with a conserva-

tive extension of ZFC, by conducting the construction over a countable transitive

model V that satisfied exactly the same first-order sentences as V . It was noted

there, however, that the production of such a model provided no guarantee that the

model would respect greater than first-order features of V , in particular the density

of inner models provided by the IMH . The key fact here is that now we have the

notion of interpreting extensions via consistency in V -logic, we are able to simulate

statements about the existence of models.

Again, we add a constant W̄ to our language and formulate axioms concerning

width extensions represented syntactically by the relevant W̄ . We can then express

the intended content of the IMH as follows:

IMH∗. Suppose that φ is a first-order sentence. Let T be a V -logic theory

containing the W̄ -Width Axiom and also the W̄ -φ-Width Axiom (i.e. W̄

satisfies φ). Then if T is consistent under ⊢V , there is an inner model of

V satisfying φ.

Thus, by interpreting the existence of outer models through the consistency of

theories, we can now make claims concerning consequences (about V ) of the exis-

tence of outer models. In particular, we can say that if φ is satisfiable in an extension

of V (syntactically formulated as W̄ ) then it is satisfied in an inner model of V . So,

the IMH∗ holds iff, (if the mathematical structure of V does not preclude the V -logic

consistency of an outer model satisfying φ, then V has an inner model satisfying

φ). In this way, we make claims concerning greater than first-order properties of V

needed to express the IMH in its maximal sense.
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Thus, if we allow the use of V -logic, we are able to syntactically code the effects

of extensions of V on V . However, it is one thing to have provided a system for inter-

preting extensions, and quite another to argue that it is acceptable on the Universist’s

philosophical picture. This will be our focus for the rest of the chapter.

VII.3 V -logic and admissibility

Thus far, we have provided exposition of a logical system that can simulate talk of

arbitrary extensions of V syntactically. An immediate question is whether or not it is

possible to get a handle on this system through consideration of V . Our methodol-

ogy will be slightly unusual. We will drop, for a moment, the Universist perspective

and assume that height extensions of V are available.6 We will show that if φ is a con-

sequence of a V -logic theory T, then a proof of φ appears in a mild lengthening of

V known as Hyp(V ) (i.e. the least admissible set containing V ). We then argue that

in fact Hyp(V ) can be coded within the class theory set up in the previous chapter,

allowing us to code extensions using sets from V .7

We first set up the system of Kripke-Platek set theory KP .

Definition 93. Kripke-Platek Set Theory (or simply ‘KP ’) comprises the

following axioms:

(i) Extensionality

(ii) Union

(iii) Pairing

(iv) Foundation

(v) ∆0-Separation: If φ is a ∆0 formula in which b does not occur free,

then:

∀a∃b∀x[x ∈ b↔ (x ∈ a ∧ φ(x))]

Intuitive characterisation: If φ is a ∆0 formula then, given a set a, we can

separate those members of a which satisfy φ into a new set b.

6In this, we begin by following the methodology of [Antos et al., 2015], [Friedman, S], and
[Friedman and Ternullo, S].

7I am especially grateful to Sy Friedman for his help with the technical exposition here.
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(vi) ∆0-Collection: If φ is a ∆0 formula in which b does not occur free:

∀a[∀x ∈ a∃yφ(x, y) → ∃b∀x ∈ a∃y ∈ bφ(x, y)]

Intuitive characterisation: If φ is a ∆0 formula then, given a set a, if for

every x in a there is some y that is φ-related to x, then there is some b

such that everything in a has a φ-related object in b.

We make a further pair of definitions:

Definition 94. A set N is admissible over M iff N is a model of KP con-

taining M as an element.

Definition 95. Hyp(M) is the smallest transitive x such that x is admissi-

ble over M.

Our interest will be in Hyp(V ); the least admissible set containing V as an ele-

ment. We wish to show that if there is a proof of φ in V -logic, then there is a proof

code of φ in Hyp(V ). First, however, we must be precise about how we interpret the

extended syntax of V -logic within this height extension:

Definition 96. The language and proofs of V -logic are interepreted as

follows:

(i) Every set x is named by 〈x, 3〉 (so, for example, if x = ω, then

ω̄ = 〈ω, 3〉 (to avoid the double use of names for natural numbers

and the Gödel coding of the connectives).

(ii) ∈V and V name ∈ and V̄ respectively (remembering that we are cur-

rently allowing ourselves height extensions so that these are sets).

(iii) The relevant W̄ (and possibly P̄C , ḠC , or any other required pred-

icates) can be represented by any object not otherwise required for

the syntax of V -logic, so we may use {V }, {{V }}, {{{V }}}, ... and so

on (for any Zermelo-style construction of singletons derived from

V ).8

8For most axioms we only need one (and at most three) extra predicates, but we make room for the
use of several different outer models in case others wish to talk about relationships between incompatible
extensions using the same axiom.
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(iv) After a suitable Gödel coding for the connectives and quantifiers

has been chosen, we represent well-formed formulas of V -logic with

sequences of symbol codes.

(v) Proofs are represented by the appropriate trees comprising codes of

the relevant sentences as nodes.

We can now state and prove the following:

Theorem 97. [Barwise, 1975] Suppose that there is a proof of φ in V -logic.

Then there is a proof code of φ in Hyp(V ).

Proof. We first need to identify the following:

Lemma 98. [Barwise, 1975] For any M, Hyp(M) is of the form Lα(M) for

some ordinal α.

As noted earlier, since we will be going ‘above’ V (and then showing

how to code this acceptably later), we will refer to ideal ordinals ‘past’

V using variants of the Greek letters (such as ‘ϑ’). Since we are currently

working from a perspective on which we assume that height extensions

are available, we are now interested in a structure Hyp(V ) = Lϑ(V ).

We proceed by induction on the complexity of our proof P . Suppose that

there is a proof P of φ in V -logic. Then either:

(a) P is one line.

(b) P is more than one line.

We deal with (a) first. Suppose that P is one line. Then either (i) φ is

of the form x̄ ∈ V̄ , (ii) φ is an atomic or negated atomic sentence of

L∈ ∪ {x̄|x ∈ V }, (iii) φ is an axiom of first-order logic in L V
∈ , or (iv)

φ is an additional axiom containing some extra predicate (such as W̄ , P̄C ,

or ḠC).

For (i), suppose φ is of the form x̄ ∈ V̄ for x ∈ V . Then, the result is

immediate: the required sentence is in Hyp(V ) by Pairing, and hence so

is the tree coding its proof (i.e. {{φ}, ∅}). In the case of (ii), φ appears
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in V , and so it is immediate that φ is in Hyp(V ), with the relevant proof

tree. For (iii), we note that that all constructions of first-order axioms

from simpler formulas ψ and χ (that are assumed, for induction, to be

in Hyp(V )) can be chained together through Pairing. For (iv), since we

represent the various extra predicates by objects that are not pieces of

syntax in other parts of V -logic but are in Hyp(V ), any axiom of the form

“W̄ is such that Φ” is simply a finite sequence of sets already present

in Hyp(V ) (and similarly when P̄C or ḠC are present). Again, repeated

application of Pairing ensures that φ is in Hyp(V ), as well as the relevant

proof tree.

(b) Suppose then that P is more than one line. Assume for induction that

all prior steps to the final inference to φ have proofs in Hyp(V ). Then

either (i) φ is an axiom, or (ii) φ follows from ψ, (ψ → φ) via modus

ponens, or (iii) φ is of the form ∀x ∈ āψ(x) and follows from ψ(b̄) for all

b ∈ a by the Set-rule, or (iv) φ is of the form ∀x ∈ V̄ ψ(x) and follows from

ψ(x̄) for all x ∈ V by the V -rule.

For each of the steps we need to construct, from the given proof trees, a

new proof tree coding a proof of φ. We already know that the relevant

pieces of syntax exist (by part (a)) and so the challenge is simply in the

construction of the trees in Hyp(V ).

(i) has already been dealt with in part (a). (ii) Suppose for induction that

ψ and (ψ → φ) have proofs coded in Hyp(V ) by Tψ = 〈Tψ, <ψ〉 and

T(ψ→φ) = 〈T(ψ→φ), <(ψ→φ)〉. Since we know that Hyp(V ) satisfies finite

iterations of Pairing, we only need to construct Tφ and <φ. We can easily

construct Tφ = Tψ ∪ T(ψ→φ) ∪ {φ}. Next, we define <φ as follows:

x <φ y iff:

(i) x <ψ y, or

(ii) x <(ψ→φ) y, or

(iii) y = φ.
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Since we have <ψ and <(ψ→φ) already (Hyp(V ) is transitive), we just

need to construct {〈x, φ〉|x ∈ Tψ∨x ∈ T(ψ→φ)}. We have that φ ∈ Hyp(V ),

and also for any object y ∈ Hyp(V ), 〈y, φ〉 ∈ Hyp(V ). We then (working

with Hyp(V )) define the following formula:

χ(x, y) =df x ∈ Tψ ∪ T(ψ→φ) ∧ y = 〈x, φ〉

χ(x, y) is clearly a ∆0 formula defining a function that maps any particu-

lar x ∈ Tψ ∪ T(ψ→φ) to 〈x, φ〉. We also have the following lemma:

Lemma 99. [Barwise, 1975] Σ1-Replacement. Hyp(V ) satisfies Replace-

ment for Σ1 formulas.

We thus have {〈x, φ〉|x ∈ Tψ∧x ∈ T(ψ→φ)} ∈ Hyp(V ) as desired. 〈Tφ, <φ〉

clearly codes a proof of φ from ψ and (ψ → φ), the proof steps are inher-

ited from the previous trees, and each proof step prior to φ is <φ-related

to φ.

We deal with (iii) and (iv) in tandem. As the strategy is the same for

both, we give only the proof of (iv). Suppose then that φ is of the form

∀x ∈ V̄ ψ(x) and follows from ψ(b̄) for all b ∈ V by the V -rule. Assume for

induction that everyψ(b̄) has a proof code Tψ(b̄) = 〈Tψ(b̄), <ψ(b̄)〉 ∈ Hyp(V ).

Since Hyp(V ) = Lϑ(V ) and contains a well-ordering of V (by Global

Choice in V ) Hyp(V ) has a Σ1-definable well-order R. Using this well-

order, we define the following function:

χ(x, y) =df x ∈ V ∧ “y is the R-least code of a proof tree of φ(x̄)”

By Σ1-Replacement, we then have a set {Tψ(b̄)|b ∈ V } ∈ Hyp(V ). By

transitivity ofHyp(V ), a further application of Σ1-Replacement, and Par-

ing with {φ}, we obtain Tφ (and the union of the <ψ(b̄)). The argument

for the existence of <φ is then exactly the same as in (ii). Since we have

Tφ, we can map each x ∈ Tφ such that x 6= φ to 〈x, φ〉 to obtain (by

Σ1-Replacement) the set of all 〈x, φ〉. Again, by Transitivity, Union, and

Pairing, <φ∈ Hyp(V ). This concludes the proof.

�
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The above result, translated from the work of [Barwise, 1975] to the context of

V , shows that if height extensions of V are available, we can code extensions of V .

However, for the Universist, we do not yet have a satisfactory coding. If we wish to

make use of the above result, we have to show how the ‘ideal’ Hyp(V ) can be coded

using only sets from within V .

VII.4 Coding Hyp(V ) using MK

We now are in a position where:

(1) Extensions of V can be coded syntactically using V -logic.

(2) If φ is provable in V -logic, then φ has a proof code in Hyp(V ).

Of course, we are not yet able to say that we have coded extensions of V using

sets from V ; the current coding depends upon going ‘past’ all the ordinals to a level

Lϑ(V ) = Hyp(V ). What we want to show now is that we can code Hyp(V ) in the

theory of MK. We shall in fact do a little more. We code a model (V )+, built up from

V , that satisfies ∆n-Separation for every n and in which Hyp(V ) appears as a single

ideal set (and hence is coded by a some things hh).

We first provide a sketch of how this can be done. The bulk of the work occurs in

[Antos and Friedman, S] and [Antos, 2015]. There, however, additional axioms were

required for certain applications9 of the coding, and since we have only justified MK

thus far we proceed in plain MK.10

We first need to code the notion of an ordered pair of classes. Initially, this seems

problematic; normal pairing functions on sets are type-raising in the sense that they

have the things they pair as members. This is not available on the current interpre-

tation; we adopt a class nominalism with class theory interpreted plurally, and so

cannot speak of classes being members. Despite this, we can use the abundance of

sets within V (in particular the closure of V under pairing) to code pairs:

9Namely hyperclass forcing.
10Antos and Friedman use a version of Class Bounding, equivalent (modulo MK) to AC∞; a particular

kind of choice principle for classes. It is an interesting question (though one I lack the space to address
here) whether or not a Universist should accept that such a principle holds of V , not least because the
principle is necessary for a good deal of mathematical work (see, for example, [Gitman et al., U]). The
coding goes through far more easily with the principle, but since we do not need it for the purpose of
representing extensions of V , we show the coding works without it.
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Definition 100. Let X and Y be classes. We define those things that

represent the ordered pair of X and Y , or ‘REP (〈X,Y 〉)’ as follows:

REP (〈X,Y 〉) = {〈z, i〉|(z ∈∗ X ∧ i = 1) ∨ (z ∈∗ Y ∧ i = 2)}

Effectively, we talk about coding an ordered pair of classes by tagging all the

members of X with 1 and all the members of Y with 2, and referring to the resulting

class. A possible problem here is that we will have certain classes that we cannot

distinguish from pairs of classes. For example, under the above coding the class:

Z = {〈z, i〉|(z ∈∗ X ∧ i = 1) ∨ (z ∈∗ Y ∧ i = 2)}

will refer to the same things as the class representing 〈X,Y 〉, which is undesir-

able. The problem is simply avoided, we just let each class be represented as follows:

REP (Z) = {〈z, 0〉|z ∈∗ Z}

The raising of type of each the members of Z avoids the previous problem: by

tagging the members of a class with 0, we uniformly increase the type of members

of Z. This provides the means to distinguish between our original classes and their

pairs. Effectively, this tagging procedure produces a ‘copy’ of V (and its classes) for

each tag, allowing us to code relationships between them.

Remark 101. The above coding gives us a natural way of coding proper-

class-sized structures. Letting, for the moment, EV denote those ordered

pairs that comprise the ∈-relation, we can now represent (V,EV ) as fol-

lows:

REP ((V,EV )) = {〈z, i〉|(z ∈∗ V ∧ i = 1) ∨ (z ∈∗ EV ∧ i = 2)}

This is in turn, distinct from:

REP ({〈z, i〉|(z ∈∗ V ∧ i = 1) ∨ (z ∈∗ EV ∧ i = 2)}) =

{〈x, 0〉|x ∈∗ {〈z, i〉|(z ∈∗ V ∧ i = 1) ∨ (z ∈∗ EV ∧ i = 2)}}

We now have a method for coding pairs of classes (moreover, short reflection on

the above coding shows that it is easy to generalise this to ordered α-tuples by letting

α tag α-many copies of V ). We are now able to make use of the following definition

(with visual representation11 of some examples provided in Figures VII.2 and VII.3):

11I am grateful to Carolin Antos and Sy Friedman for their kind permission to include these diagrams.
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Figure VII.2: An example of a tree corresponding to a coding pair showing member-
ship.

Tx

�
�

�

❅
❅
❅

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

ax

ay

az

Ty

codes

x

∈

y

∈

z

Figure VII.3: More complicated coding pair tree structures.
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Definition 102. [Antos, 2015], [Antos and Friedman, S] A pair 〈M0, R〉 is

a coding pair iff M0 is a class with distinguished element12 a, and R is a

class binary relation on M0 such that:

(i) ∀z ∈∗ M0∃!n such that z has R-distance n from a (i.e. for any ele-

ment z of M0, z is a single finite R-distance away from a), and

(ii) let 〈M0, R〉 ↾ x denote the R-transitive closure below x. Then if

x, y, z ∈∗ M0 with y 6= z, yRx, and zRx, then 〈M0, R〉 ↾ y is not

isomorphic to 〈M0, R〉 ↾ z (and respectively for z), and

(iii) if y, z ∈∗ M0 have the same R-distance from a, and y 6= z, then for

all v, vRy → ¬vRz, and

(iv) R is well-founded.

These coding pairs shall be essential in coding the structure of ideal sets that

would have to be ‘above’ V were they to exist. One can think of the coding pair as a

12Such an element exists by Global Choice.

167



tree T which has as its nodes the elements ofM0, a top node of a, andR the extension

relation of T. For each tree there are only countably many levels, but each level can

have proper-class-many nodes.

Next, we code the ideal objects of (V )+ using coding pairs. For any particular

ideal set x in (V )+, we will code the transitive closure of {x}. A fact of the above

coding is that any tree will have many isomorphic subtrees, and hence will not be

isomorphic to TC({x}).13 We therefore need to form quotient pairs that provide a

coding of ideal sets in (V )+ (we provide a visual representation14 of an example in

Figure VII.4).

Definition 103. [Antos, 2015], [Antos and Friedman, S] Quotient Pairs.

Let 〈M0, R〉 be a coding pair and a be a set in M0. We then define the

equivalence class of a (denoted by ‘[a]’) of all top nodes of the associated

coding tree isomorphic to the subtree Ta:

[a] = {b ∈∗ M0|“〈M0, R〉 ↾ b is isomorphic to 〈M0, R〉 ↾ a”}

Since we have Global Choice, we let ã be a fixed representative of [a]. We

then define the quotient pair 〈M̃0, R̃〉 as follows:

M̃0 = {ã| “ã is the representative of the class [a] for all a ∈∗ M0}

ãR̃b̃ iff “There is an a0 ∈∗ [a] and a b0 ∈∗ [b] such that a0Rb0.”

Remark 104. The quotient pairs work by taking fixed representatives of

the equivalence class of top nodes of isomorphic subtrees. We then de-

fine the relation on these representatives by searching through the equiv-

alence classes to find a relevant subtree in which two members of the

equivalence class are R-related.

We now have a quotient structure for the coding pairs. Next, we begin to verify

some of the properties of these coding pairs for the purposes of showing that they

code ideal sets:

13See [Antos, 2015] and [Antos and Friedman, S] for details and further explanation. We would like
subtrees to correspond to elements in the transitive closure. However, isomorphic subtrees would code
the same element of (V )+, and so as it stands our coding pairs are not extensional.

14Again, thanks are due to Carolin Antos and Sy Friedman for their kind permission to include the
diagrams.
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Figure VII.4: The quotient process for a coding pair of 3.
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Lemma 105. [Antos, 2015], [Antos and Friedman, S] Let 〈M0, R〉 be a cod-

ing pair. Then the quotient pair 〈M̃0, R̃〉 is extensional and well-founded.

Proof.

Well-foundedness. By Class Comprehension R̃ refers to some things in V

(we have provided its definition above). Take any things x̃x̃ that are some

of M̃0. We claim that x̃x̃ have a R̃-minimal element ã. In particular, the x̃x̃

that are some of M̃0 can be traced back to some things xx that are some

of M0, and ã is then the representative of [a] for the R-minimal object

a ≺ xx. Suppose ã is not R̃-minimal. Then there is some ã′ such that

ã′R̃ã. Therefore, there is an a′0 ∈∗ [a′0] such that a′0Ra, contradicting the

claim that a was R-minimal, ⊥.

Extensionality. Assume for contradiction that ỹ ∈∗ M̃0 and z̃ ∈∗ M̃0,

with ỹ 6= z̃ and {x̃|x̃R̃ỹ} = {x̃|x̃R̃z̃}. By the definition of R̃, this means

that within the equivalence classes [y] and [z], we have for every x0, y0,

z0 ∈∗ M0 such that x0Ry0, with y0 ∈∗ [y] and z0 ∈∗ [z] there is an x1 with

x1Rz0 such that x0, x1 ∈∗ [x]. By property (ii) of the definition of the cod-

ing pair 〈M0, R〉, we then know that [y] = [z] as there are no isomorphic

subtrees connected to the same R-predecessor (by (ii) in the definition of

coding pairs). Thus ỹ = z̃, ⊥. �

Let us take stock. We have quotient structures of coding pairs that behave exten-

sionally and in a well-founded manner, and are coded by individual classes. We are
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now ready to establish the main theorem, showing that these quotient coding pairs

obey certain operations, and thus we have a code for Hyp(V ). We first, however,

explain how we will state what we wish to say. We will be interested in the quotient

coding pairs coding (V )+ and satisfying a certain theory together. However, we have

a challenge here, as (V )+ is not even represented by a second-order class, but rather

appears to be a collection of 〈M̃0, R̃〉. This is not going to be countenanced by the

Universist on the current way of understanding classes; understood through plural

reference, classes cannot be members. We therefore need to modify how we express

the satisfaction of different axioms by the quotient pairs.

We begin with the following:

Remark 106. We will talk about ‘a structure’ (V )+ under a ‘relation’ ∈̂

that we will show satisfies certain first-order axioms. We will therefore

use locutions like “x∈̂y”, “x∈̂(V )+”, and more generally “φ(x)” for some

first-order φ. Really, however, since the objects of (V )+ are ideal, this

should all be paraphrased in terms of quotient coding pairs. Though

we deny that we are using singular reference to refer to objects, there is no

obstruction to using a first-order language to represent the theory of quo-

tient coding pairs (just as there is no contradiction in using a two-sorted

first-order language to talk plurally). We therefore make the following

definitions:

Definition 107. Suppose there are some things xx coding a quotient pair

〈M̃0, R̃〉, which in turn codes some x∈̂(V )+. Since it will often be useful

to talk about the xx coding 〈M̃0, R̃〉 under their presentation as a tree

coding x, we say that:

Tx is a quotient pair tree for x iff there are some things xx representing

〈M̃0, R̃〉 coding x, and Tx is the tree structure that the xx collectively ex-

emplify.

Definition 108. Say there are some things xx coding a quotient pair tree

Tx. Then Ty (coded by some things yy) is a direct subtree of Tx iff Ty a

proper subtree of Tx and the top node ay of Ty is in the level immediately
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below the top node ax of Tx.

Definition 109. Let xx and yy code quotient pair trees Tx and Ty respec-

tively. Then the xx bear the ET relation to the yy iff Ty is isomorphic to a

direct subtree of Tx. We shall also write TyETTx to represent this relation

between some things xx and some other things yy, and will then speak

of y∈̂x∈̂(V )+.

Definition 110. Let xx and yy code quotient pair trees Tx and Ty respec-

tively. Then we say that xx and yy are quotient pair equivalent (or Tx =T Ty

iff Tx and Ty) are isomorphic.

Definition 111. (V )+ is the structure comprised of quotient coding pairs

over V under a relation ∈̂. If x is an object in this language, then it corre-

sponds to a coding pair 〈M̃x, R̃x〉, that in turn codes a tree Tx. Member-

ship ∈̂ and equality =̂ in (V )+ correspond to ET and =T respectively.

Theorem 112. [Antos, 2015], [Antos and Friedman, S], [Barton, 2016]15

(V )+ satisfies Infinity, Extensionality, Foundation, Pairing, Union,

∆n-Separation for every n, and Σn-Collection for every n. Rendered in a

manner acceptable to the Universist, this states:

(1.) Infinity+: There are some things ωω representing a tree Tω for ω.

(2.) Transitivity+: For any things xx representing a quotient coding pair

tree Tx, and for any things yy representing a quotient coding pair

tree TyETTx, then if az is a node directly below ay in Ty , then there

are some things zz coding a direct subtree Tz of Ty .

(3.) Pairing+: For any things xx coding a tree Tx and any things yy cod-

ing a tree Ty , there are some things zz coding a tree Tz such that

TxETTz and TyETTz .

(4.) Union+: Suppose that there are some things xx coding a quotient

pair tree Tx. Then for any things yy coding a quotient pair tree Ty

15The bulk of the work here is philosophical, in that I show how the coding works in the setting of V
with plural reference added. However, some modifications were required. In particular, the absence of
Class Bounding was problematic for proving Σn-Collection+, and so we have provided a separate proof.
Both this result and modifications to the original proofs were developed in correspondence with Antos
and Friedman.

171



such that TyETTx, and any things zz coding trees TzETTx, there

are some things ∪∪ coding a quotient pair tree T∪x such that each

TzETT∪x.

(5.) ∆n-Separation+: Suppose that there are some things xx coding a

quotient pair tree Tx, in turn coding some x∈̂(V )+. Let φ(y) be a

∆n formula in the language of (V )+. Then there are some things zz

coding a tree Tz such that for any things yy coding a tree Ty (with

y∈̂(V )+) such that TyETTx, if φ(y) holds in the theory of (V )+ then

TyETTz .

(6.) Σn-Collection+. Suppose that there are some things xx coding a quo-

tient pair tree Tx, in turn coding some x∈̂(V )+. Let φ(p, q) be a Σn

formula in the language of (V )+. Suppose further that for every Ty

coding some y∈̂(V )+ such that TyETTx, there is a z∈̂(V )+ (repre-

sented by some things zz coding a tree Tz), such that φ(y, z). Then

there are some things aa coding a tree Ta and a∈̂(V )+ such that for

any things bb coding a tree TbETTx and b∈̂x∈̂(V )+, there are some

things cc coding a tree Tc and c∈̂(V )+ such that TcETTa, c∈̂a, and

φ(b, c).

Proof. Most of the work has already been accomplished in [Antos, 2015]

and [Antos and Friedman, S]. There, they use an axiomatisation MK∗

that also includes the following Class Bounding Axiom:

∀x∃Aφ(x,A) → ∃B∀x∃yφ(x, (B)y)

where (B)y is defined as follows:

(B)y = {z|〈y, z〉 ∈∗ B}.

They also show that, when working over a countable transitive model

M = (M,∈, C) such that M |= MK, the model (M+,∈), where M+ is

defined as follows:

M+ = {x| “There is a coding pair 〈Mx, Rx〉 for x in C”}
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satisfies SetMK
∗; a version of ZFC−Power Set with a Set Bounding Ax-

iom and some constraints on the cardinal structure of M+. We show that

the proofs we require are (a) amenable to the current context, (b) real-

isable using the mechanisms of plural reference, and (c) can be accom-

plished avoiding the use of Bounding. For the purposes of the proof, it

will be much easier to speak of the tree structures Tx, Ty , and Tz , rather

than constantly paraphrasing in terms of those things representing the

quotient coding structures.

The proofs in [Antos, 2015] and [Antos and Friedman, S] rely on the fol-

lowing two lemmas:

[Antos, 2015], [Antos and Friedman, S] First Coding Lemma. Let M = (M, C)

be a transitive β-model of MK
∗. Let 〈N1, R1〉 and 〈N2, R2〉 be coding

pairs. Then if there is an isomorphism between 〈N1, R1〉 and 〈N2, R2〉

then there is such an isomorphism in C.

[Antos, 2015], [Antos and Friedman, S] Second Coding Lemma. For all x ∈M+

there is a one-to-one function f ∈ M+ such that f : x −→ Mx, where

〈Mx, Rx〉 is a coding pair for x.

Immediately we need to make the following:

Remark 113. [Antos, 2015] and [Antos and Friedman, S] are concerned

with higher-order forcing (i.e. using forcing posets that have some proper

classes of a model as conditions) over models of MK
∗. In order to deal

with the obvious metamathematical difficulties, they explicitly define the

construction over models satisfying MK
∗ that are countable, transitive,

and are β-models (i.e. the models are correct about which relations are

well-founded). Their strategy is to code a model (M)+ of SetMK
∗ in the

original model of MK
∗, and perform a definable class forcing over (M)+.

This then corresponds to a hyperclass forcing over M. The work of the

current thesis shows that the coding outlined is not dependent upon the

countability of the models, nor the extra assumption of Class Bounding.

Instead, we can take the coding over V using the interpretation of MK
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through plural reference, and show how to code the theory of (V )+ using

these resources. For the above lemmas then, a few remarks are in order.

(I) The assumption that the model over which we code is a β-model is

trivial in the present setting; we are working over the Universist’s V . For

the Universist, V sets the standard for what a β-model is, and so is trivially

a β-model.

(II) The First Coding Lemma is a non-trivial result when we are con-

cerned with a countable transitive model M |= MK
∗. Since M has an

impoverished view of what classes there are we need to establish that

MK
∗ satisfaction alone ensures that there is a class of the relevant kind in

C. For the purposes at hand, however, the result is again trivial; the rele-

vant class theory over V sets the standard for when two trees representing

classes are isomorphic, and so we cannot have isomorphic trees Tx and

Ty for which there is not a class coding an isomorphism. If there are no

things coding an isomorphism between Tx and Ty then they are simply

not isomorphic.

(III) The Second Coding Lemma will be required for showing certain

propeties of (V )+. We deal with it in due course.

We now proceed to prove (1.)–(5.), transposing the proofs from [Antos, 2015]

and [Antos and Friedman, S] to the Universist’s framework (and making

changes where necessary).

(1.) Infinity+ is trivial, 〈ω ∪ {ω},∈∗〉 is a coding pair for ω, hence there is

a quotient coding tree Tω for ω.

(2.) Transitivity+ follows from Class Comprehension. If Ty is a subtree

of Tx then there is a quotient coding pair for Ty (the above definitions

ensure that we have a formula defining Ty). As the quotient coding pairs

behave in a transitive manner, there are no infinite descending sequences

of direct subtrees (i.e. the equivalent of Foundation for quotient coding

pairs and ET holds) and if Tx and Ty have isomorphic direct subtrees

then Tx is isomorphic to Ty (i.e. Extensionality for quotient coding pairs

174



holds).

(3.) Pairing+. Let Tx and Ty be coding trees with top nodes ax and ay .

Then T{x,y} has top node {ax, ay} with immediate R̃{ax,ay}-predecessors

ax and ay , and the inclusive R̃{ax,ay}-downclasses of ax and ay are Tx and

Ty respectively. Effectively, we join the trees Tx and Ty to the top node

{ax, ay}.

(4.) Union+. Suppose that Tx is a tree with top node ax, with immediate

subtrees (i.e. ‘members’) Ty , Tz ,... with their respective top nodes ay ,

az ,..., with subtrees Ty0 , Ty1 ,.. of Ty , and respectively for Tz . Our tree

T∪x will have some top node a∪x. We cannot simply join the trees as in

(3.) as some subtrees may be isomorphic. Instead, we take equivalence

classes of top nodes from the second level below ax, and join the trees to

a∪x using Class Comprehension (and the First Coding Lemma to ensure

knowledge of the isomorphism).

(5.) ∆n-Separation+ is slightly more problematic in that it is not clear

how to code a first-order formula within (V )+. This is dealt with by the

following:

Lemma 114. [Antos, 2015], [Antos and Friedman, S] Let φ be a ∆n-formula

in the language of (V )+. Then there is a formula in the language of

plurals (and the trees they code) such that the theory of (V )+ contains

φ(x1, ..., xn) iff ψ(Tx1
, ...,Txn

).

Proof. By induction on the complexity of φ. Suppose φ is of the form

y∈̂x, and let Ty and Tx be the associated trees. As y∈̂x, there is a tree

Ty′ with top node ay′ in the level below the top node of Tx, such that Ty

is isomorphic to Ty′ . By the First Coding Lemma (trivial in the current

setting), ψ is then “there are some things yy coding a tree Ty such that Ty

is isomorphic to some things y′y′ coding a direct subtree Ty′ of Tx”.

Suppose then that φ is of the form y=̂x. Then ψ is simply “The things that

code Ty are isomorphic to the things that code Tx”, which is again dealt

with by the First Coding Lemma.
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For the inductive steps where φ is of the form ¬χ0 or16 χ1 ∧ χ2, the result

is immediate, we just either negate or conjoin the class-theoretic correlate

of the χn provided by the induction step.

Suppose then that φ is of the form ∀xχ, where χ is translatable in our

class theory by χ′. Then ψ is “For any things xx coding some tree Tx,

χ′(xx)”. �

We now can proceed with the proof of ∆n-Separation+. Let a, x1, .., xn

be first-order names in the theory of (V )+ and φ(x, x1, ..., xn, a) be any

∆n-formula in the language of (V )+. We need to show that:

b = {x∈̂a|φ(x, x1, .., xn, a)}∈̂(V )+

and hence that there are some things bb representing a coding pair for b

with a corresponding tree Tb.

Let Tx1
,...,Txn

, Ta be the codes for each of x1, ..., xn and a. Further let ψ

be the class-theoretic correlate of φ. If b is empty the result is immediate

as there is a coding pair for the empty set. Assume then that b is non-

empty and (V )+ thinks that b contains some c0 with coding pair tree Tc0 .

Let Ta(c) be a variable over trees (rendered as restricted plural quantifica-

tion over the relevant coding pairs), such that each Ta(c) corresponds to

a direct subtree of Ta (i.e. a(c) is a member of a in (V )+). By Class Com-

prehension, there are some things zz such that if ψ(Ta(c),Tx1
, ...,Txn

,Ta)

holds then {z|〈c, z〉 ≺ zz} is the direct subtree Ta(c) of Ta, and if

ψ(Ta(c),Tx1
, ...,Txn

,Ta) does not hold then {z|〈c, z〉 ≺ zz} = Tc0 .

We then let Tb be a tree with top node b0 that has as all its direct subtrees

the various {z|〈c, z〉 ≺ zz}. The tree Tb then codes the existence of the

necessary b = {x∈̂a|φ(x, x1, ..., xn, a)}∈̂(V )+.

(6.) Σn-Collection+. In order to prove Σn-Collection+, it is far easier to

work from the perspective of (V )+. We first mention some of (V )+’s

basic properties. For ascertaining some of these properties, we return (as

promised) to the:

16The choice of ∧ here was somewhat arbitrary, any suitable connective will do.
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Lemma 115. [Antos and Friedman, S] Second Coding Lemma. For every

x∈̂(V )+ there is a one-to-one f ∈̂(V )+ such that f : x −→ Mx, where

〈Mx, Rx〉 is a coding pair for x. i.e. For any x∈̂(V )+, (V )+ has a function

fx that codes a one-to-one function onto the domain of a coding pair for

x.

Proof. Let Tx be a coding tree for x and each y ∈ x have a coding tree Ty

with top node ay . We start by showing that {〈y, ay〉|y ∈ x}∈̂(V )+. We

have each T〈y,ay〉 in (V )+ by Pairing. We then get a coding pair for f as

follows.

Mf =
⋃
z∈xM〈z,az〉 ∪ {af}, where af ∈ V and af 6∈ M〈z,az〉 for every

z ∈ x.

Rf = {〈v, w〉| for some y ∈ x either 〈v, w〉 ∈ R〈y,ay〉 or (v = a〈y,ay〉 and

w = af ) }.

Tf is ordered by Rz below every az and a〈y,ay〉 below af otherwise. Es-

sentially, we have mapped trees to their top notes in constructing Tf . �

We can now prove:

Lemma 116. (V )+ believes it has a largest cardinal, namelyOrd(V ). More

precisely, any x∈̂(V )+ can be mapped one-to-one onto an initial segment

of the ordinals.

Proof. Since (V )+ believes that there is a bijection from any x to Mx, it

suffices to show that (V )+ can see an injection f : Mx −→ On, to obtain

an injection from any x∈̂(V )+ toOnV . The case for set-sized coding pairs

is trivial. In the case of class-sized Mx, we know by Class Replacement

and Global Choice that every class is bijective with an initial segment of

the ordinals, and hence there is a class Fx coding a bijection from Mx to

OnV . To then obtain that Fx has a representative in (V )+, we just need to

show that any class C has a coding pair and associated element of (V )+.

To this end, assume C is a class and y ∈ C. Then y ∈ V and y is coded by

a tree with top node ay . Then we consider a tree Tx with top node ax:

Mx =
⋃
y∈XMy ∪ {ax}
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and

Rx = {〈v, w〉| for some y ∈ C either 〈v, w〉 ∈ Ry or v = ay and w = ax}.17

�

With these properties in place, we proceed with this proof of Σn-Collection+.

Assume for contradiction that Σn-Collection fails in (V )+. Then we have

a Σn-definable function φ(x, y) fromOrd(V ) unbounded inLκ(V ) = (V )+.

Since Ord(V )∈̂(V )+ is the largest cardinal of (V )+, we can extend φ(x, y)

to a Σn-definable bijection between Ord(V ) and Lκ(V ).We then have a

Σn-definable well-order <R on the subsets of Ord(V ) in Lκ(V ). For i∈̂I

indexing <R on subsets x0, x1, ..., xi, ... of Ord(V ) we then diagonalise to

produce the following X ⊆ Ord(V ):

X = {α ∈∗ On|¬α∈̂xα}

This X is Σn-definable over Ord(V ) by the properties of <R and the fact

that Ord(V )∈̂(V )+, but cannot be in (V )+. Since Ord(V )∈̂(V )+, this vio-

lates ∆n-Separation, ⊥. �

We now need to finally put the pieces together to provide a coding of Hyp(V ):

Theorem 117. There is an x∈̂(V )+ such that x=̂Hyp(V ). In other words,

there are some things hh coding a quotient coding pair for Hyp(V ) and

associated tree THyp(V ).

Proof. Now we have more resources at our disposal, we work in (V )+.

Since (V )+ is of the form Lκ(V ) and satisfies ∆n-Separation and Σn-

Collection, there is some level Lϑ(V ) satisfying ∆0-Separation and Σ1-

Collection, with ϑ the least such.

By the results of [Barwise, 1975], Lϑ(V )=̂Hyp(V ). Moving back to the

coding, this implies the existence of some things hh coding a tree THyp(V )

for Hyp(V ). �

The above machinery then provides the resources to code Hyp(V ) (and hence

17V is a special case here but we can deal with this by representing every set by its singleton and use ∅
for the top node av to obtain a coding pair for V .
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consistency in V -logic) by referring to some sets within V . Before we sum up the

current section, we make a final:

Remark 118. We mentioned earlier that we would show how long defin-

able well-orders over V could be coded within MK. We could code such

well-orders in height extensions as we did earlier in V -logic. Equally

though, we could note the following:

Theorem 119. Let φ be a formula defining a V -definable well-order longer

than ΩV . Then there is a coding pair representing φ.

Proof. We proceed by working from the perspective of Hyp(V )∈̂(V )+.

We will show that the set of V -definable well-orders is in Hyp(V ). We

do this by first noting that V can tell which are the V -definable well-

orders, and thus so canHyp(V ). Then the function that assigns to each V -

definable wellorder its ordertype is Σ1-definable in Hyp(V ) by a formula

φ(x, y). Thus, the set of all V -definable well-orders is in Hyp(V ) (by Σ1-

Collection and the fact that V ∈̂Hyp(V )) and thus has a coding pair in

MK over V . �

The point here is the following: While we could code long well-orders syntacti-

cally using V -logic and a sentence about some height extension W̄ , definable long

well-orders can be coded more directly using coding pairs.

In sum, we have seen thus far that (i) extensions of V can be coded using the

consistency of theories in V -logic, and (ii) this can be coded within the class theory

licensed by the plural interpretation of proper classes. It remains, however, to show

that this coding is philosophically virtuous.

VII.5 Evaluation

We now have a coding in the (plurally rendered) class theory MK for consistency in

V -logic, which in turn can capture the intra-V consequences of extensions of V . This

is true even for higher-order axioms postulating the existence of inner models (such as

179



the IMH). We now wish to analyse the extent to which this coding is philosophically

satisfactory.

Recall the main challenge (outlined in II.4) that we wanted to satisfy:

The Hilbertian Challenge. Provide philosophical reasons to legitimise

the use of extra-V resources for formulating axioms and analysing intra-

V consequences.

The coding performs well with respect to The Hilbertian Challenge in this raw

form. We have provided philosophical reasons to accept the use of MK over V

using the mechanisms of plural reference. We then showed how to code extensions

of V using V -logic and that Hyp(V ) can formalise the notion of consistency in V -

logic. Since Hyp(V ) can be coded using MK over V , we have some things in V that

collectively code consistency in V -logic, and hence discourse about extensions of V .

Given the cogency of the resources of MK (argued for in the previous chapter) we

can see why talk of extensions will not lead us astray.

The Hilbertian Challenge was, however, tempered by three additional desiderata

on any interpretation of extension talk:

The Foundational Constraint. In responding to the Hilbertian Chal-

lenge, do so in a way that does not necessitate the use of resources that

cannot be represented by sets within V .

The Ontological Constraint. Any interpretation of extra-V resources

should make clear the ontological difference between the interpretation of

extensions and normal sets within V . In other words, any interpretation

must make clear in what sense the interpretation does not literally refer

to extra-V sets.

The Methodological Constraint. In responding to the Hilbertian Chal-

lenge, do so in a way that accounts for our naive thinking about exten-

sions and links them to structural features of V .

As we noted earlier (V.5), these three constraints appear to be in tension with

one another. For, how could we be faithful to the naive talk, whilst ensuring that
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what we actually interpret as extensions of V is substantially ontologically different

from set-talk, without using objects not representable using sets from V ? Is it not the

case that in order to interpret discourse naively we have to use bona fide sets in our

interpretation?

We should pay attention to some features of the coding, and its relationship to the

countable transitive model strategy outlined in V.4. Since the underlying interpre-

tation of our coding is plural, the Foundational Constraint is immediately satisfied.

The coding does not require the use of entities not representable using objects from

V : everything is rendered in terms of plural reference to and quantification over the

sets.

For the Ontological Constraint, note that if we examine the coding, we can see

that our interpretation of extension talk concerning V makes the distinction between

sets and extensions clear. We are interpreting a claim concerning an extension of V

as a one about the consistency of a particular theory in V -logic, which in turn can be

coded as talk about some sets within V . There is little pressure for the Universist to

accept this talk as committing her to actual extensions of V , in much the same way

as talk of non-well-founded models of sets does not commit her to the existence of

actually non-well-founded sets.18

The Methodological Constraint is slightly more involved, however. We do not

have a naive interpretation of extensions of V : we are interpreting model-theoretic

claims about extensions of V as the syntactic consistency of theories in V -logic. We

would like to find a place for our naive thinking concerning extensions and relate

this discourse to our analysis of truth in V . The key fact here is that Hyp(V ) (and

hence claims about consistency in V -logic) is coded by a single class. Recall that, in

VI.4, we discussed the following embedding:

[Vickers and Welch, 2001] Suppose I ⊆ Ord witnesses Ord is Ramsey.

Then, definably over (V,∈, I), there is a transitive model M = (M,∈),

and an elementary embedding j : (M,∈) −→ (V,∈) with a critical point.

18The case for the actual existence of extensions of V is in fact weaker than that for non-well-founded
sets. For, the relevant interpretation of non-well-founded sets is both model-theoretic and syntactic. By
contrast, our interpretation of extensions of V is purely syntactic in that there are no models corresponding
to the relevant W̄ .
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We then noted that the most natural way of interpreting and talking about the

classes in this embedding was to talk of some sets that collectively are good indis-

cernibles for OnV . We then noted that, despite the non-definability of I , we could

perfectly well introduce a plural parameter ii and predicate I(x) to talk about the

indiscernibles and use them to define j.

In the case of our coding in V -logic, we have a single class H coding Hyp(V ).

In particular, there are some things hh in the language of plurals corresponding to

our use of the term ‘H’. But now we can introduce a predicate ‘H(x)’, such that

H(x) holds iff x ≺ hh. Now, consider the structure (V,∈, H) in first-order ZFC aug-

mented with the predicate H(x). This theory is countable, and so we can construct

the same Downward Löwenheim-Skolem argument as in the original countable tran-

sitive model strategy (V.4). There, we posited the existence of a set of Skolem func-

tions FV for V (by ‘choosing’ a witness for the countably many existential statements

in L∈ satisfied by V with a countable sequence of choices). Then, by Skolemising

and Collapsing, we obtained a countable transitive model V that satisfies exactly the

same parameter-free first-order sentences as V . In our current setting, we are taking

(given the determinateness of plural reference) our use of the predicate H(x) to be

well-understood. We have explained to what things the predicate applies, and hold

ourselves (if we are Universists) to be talking about a determinate range of objects

when we discuss V . Thus we augument L∈ with the predicate H(x) (let the re-

sulting language be denoted by L∈,H ), and (since we hold ourselves to understand

H(x)), admit its use in the Replacement and Comprehension Schema (let the result-

ing theory be ZFCH ). Again, we may now assume (by ‘choosing’ a witness for the

countably many existential statements in L∈,H satisfied by V with a countable se-

quence of choices), that there is a set of Skolem functions FVH for the language L∈,H

for V .

Again by Tarski’s Theorem on the undefinability of truth, while V can see FVH ,

it does not know that FVH provides its own set of Skolem functions. Again, we can

formalise this using a modification of Feferman’s approach in [Feferman, 1969]:

Definition 120. Let L∈,H,V be the language L∈,H augmented with a sin-

gle constant symbol V . ZFCV
H is then a theory in L∈,H,V with the follow-
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ing axioms:

(i) ZFCH

(ii) V is countable and transitive.

(iii) For every φ in L∈,H , φ ↔ φV (by Tarski’s Theorem, this is an axiom

scheme).

Again, we know by the Reflection, Löwenheim-Skolem, and Mostowski Collapse

Theorems that ZFCV
H is a conservative extension of ZFCH . However, V then satis-

fies exactly the same parameter-free first-order sentences of ZFCH as V . The end

result is a countable transitive model V (with its own V-logic) that satisfies both the

same first-order sentences and the same Hyp(V ) theory as V . However, since V is

countable, Barwise’s V-logic completeness theorem does hold, and so any consis-

tency in V-logic is mirrored in the existence of an actual extension of V in V . We can

then represent our naive reasoning about extensions as concerned with V , exporting

the results obtained back up to V as desired. The same was not true of V, as there we

had no guarantee that the structure of V mirrored that of V with respect to certain

greater than first-order properties (such as the existence of inner models). This is

precisely what is delivered by the above coding in combination with a countable V .

Chapter VII: Conclusions

The chapter began by identifying our position within the dialectic. We had a motiva-

tion for MK based on the devices of plural reference. We then provided an extension

of our logical resources to V -logic, and argued that it could be used to interpret ex-

tensions of V . Next, we moved to a perspective on which height extensions of V

were available, and showed how to code proofs in V -logic into Hyp(V ). We then

showed how to code Hyp(V ) with some things hh within V . Finally, we provided

an evaluation of this coding. We first noted that by introducing a predicate for the

hh we could reduce to the countable. We then argued that this enabled us to satisfy

the Hilbertian Challenge in a manner consonant with the three constraints.
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Chapter VIII

Conclusions

We have arrived at a quite satisfying situation, providing a response to the Hilbertian

Challenge concerning extensions of V that performs well with respect to the Onto-

logical, Methodological, and Foundational constraints. However, a few concluding

remarks are in order to make precise exactly what the dialectic is with respect to the

problems discussed, and indicate some directions for future research.

VIII.1 What has been shown

We begin by reviewing what has been shown through the course of the thesis. Chap-

ter I situated the discussion within the current philosophical landscape, and identi-

fied the broad concerns with extending V . Chapter II then provided a more thorough

analysis of why extensions of V might be interesting for a Universist. In particular,

we argued that it is natural for a Universist to be interested in executing Gödel’s

Programme for formulating and justifying new axioms. The possibility for using

extensions of V in this execution was discussed, both with respect to problems of

formulation and also issues concerning justification. A Hilbertian Challenge was

identified; provide philosophical reasons to legitimise the use of extra-V resources

for formulating axioms and analysing intra-V consequences. Chapter III then lent

some mathematical precision to these difficulties, outlining several axioms that re-

quired extensions of V for non-trivial formulation, and noting that there were cases
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in which extensions were desirable for proving facts about V . In Chapter IV, we

examined attempts to interpret height extensions of V . We argued that the diffi-

culties associated with these attempts highlighted two desirable constraints on re-

sponses to the Hilbertian Challenge: the Ontological Constraint that extensions of V

should have a substantially different interpretation from sets in V , and the Founda-

tional Constraint that we should only use mathematical objects representable with

sets from V in any such interpretation. In Chapter V, we analysed some possibilities

for interpreting width extensions of V . Again, we argued that there were difficulties

with each interpretation considered, and that this highlighted the Methodological

Constraint on resolution of Gödel’s Programme: provide an interpretation that finds

a place for our naive thinking concerning extensions and link it to truth within V . A

tension between the three constraints was then identified; how can we possibly inter-

pret extensions of V using only sets from V , whilst making the ontological character

of said extensions substantially different from that of the sets, yet ensuring that our

naive (set-like) thinking concerning extensions was linked to truth in V ? We then in

Chapter VI returned to the issue of proper classes. We argued that there are both first

and second philosophical reasons to want to interpret non-definable talk concerning

classes. We then provided an interpretation of proper classes via plural quantifica-

tion and argued that it (i) performed well with respect to our three constraints, and

(ii) provided reasons to accept the use of MK as a first-order theory of classes. In

Chapter VII, we showed then how to interpret extensions of V using V -logic, and

how to code proofs in V -logic with classes. Finally, we argued that the coding of

Hyp(V ) by a single class facilitated a reduction to the countable, securing satisfac-

tion of our three constraints within the codification of extensions of V provided.

VIII.2 What has not been shown

So far so good. However, we should be fully precise as to the philosophical impact of

our discussion of codifications. Two points are especially important to clarify what

we have not shown.

Firstly, it might be claimed that the thesis shows that the statement “V has an
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extension such that Φ” is perfectly coherent. It is important to be clear that this is not

(and can never be) the case for a Universist. V is all the sets there are, and so such

a statement (with its natural interpretation), is obviously false. Further, we should

pay attention to just how gerrymandered the coding is. We do not claim that talk of

extensions of V is coherent for the Universist: rather we assert that, given the use of

additional expressive resources, she can reinterpret these statements in such a way as

to be about objects countenanced by her ontology. This rendering proceeds through

the mechanisms of V -logic and plural quantification, and allows us to capture the

relevant intra-V consequences and formulations we desire. However a particular

claim about an extension of V really says for the Universist that it is not the case that

there are some things coding a proof in V -logic of 0 = 1 from a particular theory

T. There is no claim that extensions are ‘fine after all’: such talk should rather be

understood as unintended and pathological but nonetheless useful.

The second point is to note how dialectically conservative many of the chapters

were. In Chapter II we noted that whether or not we can answer the Hilbertian

Challenge is an interesting question. Despite this, the interest of an interesting ques-

tion is highly defeasible. We might provide other reasons as to why we should not

use extension talk, despite its prima facie usefulness for talking about V . Similarly,

Chapter VI showed that if one is a Universist, there are reasons to accept MK class

theory (plurally rendered) for talking about sets in V . We do not purport to have

provided uncontroversial justification for MK, instead we merely claim that its use

appears both motivated and desirable. We are perfectly prepared to hold the justifi-

cation of MK as defeasible in the face of good arguments to the contrary. Chapter VII

showed how to code talk of extensions in class theory using an expansion of logical

resources, but again, we might provide reasons to reject such logical profligacy.

This dialectical conservativeness plays out in what the reader should take from

the thesis. What we have established is that if one is a Universist, and if one accepts

that extension talk concerning V is worth scrutiny, and if one thinks that the three

conditions are good constraints on an answer to Hilbert’s Challenge, and if one finds

the motivation of MK convincing and regards its use as legitimate, and if one thinks

that we can extend our logical resources in the manner outlined in Chapter VII, then
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one can encode a substantial amount of talk concerning extensions of V using sets

from V . That is an awful lot of conditionals, and we should be mindful of the dictum

“one person’s modus ponens is another’s modus tollens”. It is perfectly within the

remit of the thesis for the conclusion to be taken as absurd and call for a rejection of

one (or more) of the antecedents. One might take the thesis to show that there is a

problem with talking about extended languages or the use of MK. One might think

that the constraints are too strict, or not strict enough. Still further, one might think

that this shows incoherence in the current practice of set theorists. Further still, one

might take the sheer amount of talk of extensions of V that can be coded within the

Universist’s framework to be evidence of the falsity of her position. We have not

taken a stand on any of these issues here, but have shown what can be accomplished

given the acceptance of certain positions and resources.

VIII.3 Directions for future research

These observations indicate several possible directions of future research. In partic-

ular each of the antecedents in the above conditionals merits further scrutiny. Aside

from considering the general questions surrounding the nature of sets, we propose

several concrete recommendations:

Question 121. The use of what was effectively an infinitary language was

essential to the results of Chapter VII. How should we philosophically

view the use of these infinitary languages? Of course such a language

cannot be written down by a finite agent such as ourselves (it rather

corresponds to a particular way of talking about classes in the coding).

However, we might ask what our ability to use such languages in talk-

ing about V tells us about the relationship between ourselves, languages,

and mathematical objects.

Question 122. In Chapter VI, the class theory MK was given a plural

rendering, and motivated. However, some of the justificatory force was

provided by the Strong Limitation of Size Principle, which was noted to
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be on somewhat shaky ground. What is the status of these principles,

and more generally MK?

Question 123. More generally, the motivation of MK was flagged as one

of the more contentious aspects of the thesis. However, we do not need

full MK in order to capture the proofs of V -logic (and definable well-

orders) within Hyp(V ). In particular, having Σn-Collection and

∆n-Separation in (V )+ for any n is overkill. For V -logic, we just need

to be able to simulate the objects of Hyp(V ), all of which are well be-

low Lκ(V ) = (V )+. This raises two questions, one technical and one

philosophical. On the technical side, exactly how much Class Compre-

hension is required to capture consistency in V -logic and definable long

well-orders using coding pairs? On the philosophical side, how does

the required amount of Class Comprehension relate to other (less liberal)

conceptions of the values of class variables?

Question 124. Further, while motivating MK, we demured from provid-

ing a semantics for plural reference. Do our results (showing how much

can be coded if plural reference is assumed to be well-understood) have

any bearing on the debates in the semantics of plural reference and set

theory?

Question 125. Certain kinds of simulations of extensions of V within

V have been cited as evidence against the Universist’s position (see, for

example, the arguments in [Hamkins, 2012]). Do the new simulations

presented in this thesis present a different kind of challenge? Does the

fact that V is kept standard affect the debate here? On the other hand,

does the ability of the Universist to talk about extensions of V provide a

response to the charge that her view is overly restrictive?

Question 126. In particular, while it was shown how talk concerning long

well-orders could be interpreted as about objects within V , the concep-

tual problem raised by the Burali-Forti Paradox remains. Do our codings

serve to assuage these worries or exacerbate them?
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However, assuming that we accept the coding, there are several interesting open

questions and problems that spring from the thesis. The first is how, given that the

Universist accepts our results, the axioms considered might be motivated. In partic-

ular, given the fact that these axioms rely essentially on significant reinterpretation

of the statements concerning extensions, and the way that they are intimately con-

nected with the merely countable, we might ask:

Question 127. How might we motivate these axioms? Are there interest-

ing distinctions in motivation between these axioms and more ‘standard’

axioms of set theory?

and

Question 128. Does the reduction to the countable indicate any new re-

lationships between truth in V and the existence of countable models?

Finally, there were at least two classes of axioms that were perspicuously absent

from the discussion, despite their relevance. The first concerns the exact manner in

which the coding was proved. One can code a greater amount of talk (and with less

difficulty) if one accepts the following Class Bounding axiom:

∀x∃Aφ(x,A) → ∃B∀x∃yφ(x, (B)y)

where (B)y is defined as follows:

(B)y = {z|〈y, z〉 ∈∗ B}.

Such a principle is equivalent (assuming Global Choice) to the following Choice

principle for classes:

AC∞: ∀x∃Aφ(x,A) → ∃B∀xφ(x, (B)x)

There are, in fact, many stronger choice principles for classes. These principles

have received some attention from the mathematical community, but strengthenings

of Global Choice have been largely ignored by philosophers. This is both interesting

and represents a gap in philosophical discussion, especially from the point of view
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of the second philosopher; such principles are necessary for a wide variety of con-

structions involving classes (a good example being class ultrapowers).1 A natural

question then is:

Question 129. What is the philosophical status of class choice principles

stronger than Global Choice?

It was remarked in Chapter IV that one possibility for interpreting extensions of

V would be the use of modal notions, partly inspired by the work of [Reinhardt, 1974]

and [Reinhardt, 1980]. The suggestion was rejected as problematic for several rea-

sons. However, since we now have an interpretation of extensions, a natural question

is:

Question 130. How should we think about justification concerning Rein-

hardt’s axioms on a Universist picture?

Question 131. More generally, how does the ability to interpret exten-

sions of V facilitate an understanding of modal notions for a Universist?

In addition to all these specific questions though, there is one guiding question

that remains unresolved for Universist-inspired mathematics:

Question 132. What is true (in V )?

Precise answers to this question have not been uncovered by this thesis. How-

ever, we have shown that with a smidgeon of extra expressive resources, the Univer-

sist can utilise far more mathematics than previously thought. The doors are thus

open to new and exciting philosophical and mathematical discussions.

1See [Gitman et al., U] for discussion.
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