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Introduction

Saunder’s Mac Lane’s Categories for the Working Mathematician is widely regarded as
one of the seminal textbooks in category theory. There he shows how categorial con-
structions appear in various guises throughout mathematics. This is the pedagogi-
cal style of [Mac Lane, 1971]; he explains various categorial properties by providing
many examples using commonplace mathematical structures, thereby providing a
more concrete understanding of a very abstract subject-matter for the working math-
ematician. Elaine Landry has collected together several of the leading category theo-
rists and philosophers to try and do similarly for philosophers, explaining category
theory by showing how it appears in diverse philosophical contexts. Indeed, she
explicitly sets herself this task (along with her collaborators):

“Borrowing from the title of Saunders Mac Lane’s seminal work Cate-
gories for the Working Mathematician, this book aims to bring the concepts
of category theory to philosophers working in areas ranging from math-
ematics to proof theory to computer science to ontology, from physics
to biology to cognition, from mathematical modeling to the structure of
scientific theories to the structure of the world.” (Preface, p. vii)

Not content with this, she adds the following target:

“Moreover, it aims to do this in a way that is accessible to a general au-
dience. Each chapter is written by either a category-theorist or a philoso-
pher working in one of the represented areas, and in a way that is acces-
sible and is intended to build on the concepts already familiar to philoso-
phers working in these areas.” (Preface, p. vii)

Given the title of the work, and Landry’s description in the Preface, one might be
tempted to think that with Categories for the Working Philosopher we have a new text-
book on category theory aimed at philosophers, and one that is especially accessible
and shows how category theory is directly applicable in philosophy.
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This is not that book. This said, I am nonetheless enthusiastic about the work, and
would recommend it to anyone who has finished an introductory textbook in cate-
gory theory, or more generally anyone interested in applications of category theory
in philosophy (providing that they go in with the mindset of not getting too bogged
down in the details). Perhaps this review can help potential readers navigate the
tricky terrain. All in all, Landry has done a fine job of bringing together some of the
best minds in category theory and its philosophy on a timely topic that is ripe for
further discussion.

In what follows I’ll first very briefly summarise the chapters. I’ll then give an
overall appraisal of the structure and purpose of the work. I won’t, however, engage
in too much critical analysis of the individual essays; with 18 pieces by 20 differ-
ent authors, any such analysis would inevitably be a little superficial. Throughout,
names in square brackets refer to the author’s contribution to Categories for the Work-
ing Philosopher; the full list of essays with pagination can be found at [Philosophia
Mathematica, 2018].

1 The Essays

Landry helpfully summarises the chapters of Categories for the Working Philosopher
in the Preface, and divides the book into two parts. Roughly speaking, chapters
1–10 are ‘pure’ in the sense that they deal with issues central to logic and mathemat-
ics. Chapters 11–18, on the other hand, deal with applications of category theory to
philosophical debates surrounding topics such as quantum mechanics, theories of
space-time, biological organisms, and the subject-matter of scientific theories.

1.1 Pure

Colin McLarty’s essay ‘The Roles of Set Theories in Mathematics’ argues that whilst
the “orthodox set theory” underlying mathematics is commonly taken to comprise
ZFC, this is not supported by actual discourse in (non-set-theoretic) texts on math-
ematics. Instead, he argues that ETCS (a categorial theory of sets) can do the job
better. Pleasingly, he does the hard work of finding texts in mathematics that sup-
port his claim. Occasionally it feels as though some of the positions he is attacking
are something of a straw-man; for example he often criticises set theorists for think-
ing that numbers are literally von Neumann ordinals. To my mind, it is at least open
whether or not material1 set theorists ascribe to such a strong set-theoretic reduction
(e.g. by thinkng that the number 2 is literally {∅, {∅}}). Instead many opt for the von
Neumann interpretation of natural numbers as a device of representation, a claim evi-
denced by the fact that set theorists will happily assume that ordinals are represented
by restricted equivalence classes when constructing an ultrapower embedding from
a measurable cardinal. Despite this mild quibble, the points addressing what most
mathematicians really need from an underlying set theory (e.g. that functional com-
position be associative and have identities, or that functions are determined by their
effects on elements) are important and worth further scrutiny.

David Corfield’s ‘Reviving the Philosophy of Geometry’ begins by stating that
the philosophy of geometry has largely been neglected in the Anglophone commu-
nity at least outside its uses in physics. While I do not agree with the first claim

1Material set theories are those which involve axiomatising a single non-logical symbol ‘∈’. They are
to be contrasted with categorial or structural set theories that aim to characterise in categorial terms the
topos Set, and in which membership is a symbol defined in terms of arrows from terminal objects.

2



when read in full generality2, much of the philosophical literature on geometry is
focussed on traditional questions concerning the epistemology and metaphysics of
the Euclidean plane, whereas Corfield has more recent mathematical developments
in mind. Corfield goes on to make some interesting points, but his main focus is that
modern geometry is best understood through Homotopy Type Theory3 (or HoTT); a
framework with close connections to category theory.

Michael Shulman’s ‘Homotopy Type Theory: A Synthetic Approach to Higher
Equalities’ provides a survey of some aspects of the Homotopy Type Theory and
Univalent Foundations4 programme (including ∞-groupoids). It represents a wel-
come intuitive summary and primer for those wanting to approach the more de-
tailed [The Univalent Foundations Program, 2013]. Shulman also provides a clear
and concise example of an application, namely to general covariance in the study of
space-time manifolds.

Steve Awodey’s ‘Structure, Invariance, and Univalence’ continues the HoTT-theme
by considering how the Univalence Axiom might be supported by structuralist con-
siderations. He argues that we should define structure via an abstraction principle
and isomorphism, where isomorphisms are understood category-theoretically5. Us-
ing HoTT with the Univalence Axiom added we then arrive at a theory with a high
degree of structural invariance.

Michael Ernst’s ‘Category Theory and Foundations’ surveys some categorial foun-
dations (in particular ETCS and CCAF)6 and their features. He also surveys some
of the criticisms of foundational adequacy levelled at both kinds of foundation, in
particular that ETCS is too weak to carry out all desired constructions in analysis
([Mathias, 2000], [Mathias, 2001]), and various kinds of criticism levelled against ma-
terial set-theoretic foundations (e.g. that it always misses some mathematical subject
matter when interpreting large categories either through the use of Grothendieck
universes or class theory). He then considers [Feferman, 2013]’s desiderata on a
foundation for category theory, one should be able to: (1.) form the category of all
structures of a given kind, e.g. the category of all groups, topological spaces etc. (2.)
form the category of all functors fromA toB, whereA andB are any two categories,
and (3.) establish the existence of the natural numbers, and perform various kinds of
mathematical construction (e.g. taking unions, products, etc.). He then explains his
own result (in [Ernst, 2015]) that (1.)–(3.) are not jointly satisfiable, before discussing
the significance of this fact for categorial foundations.

Jean-Pierre Marquis’ ‘Canonical Maps’ argues that within mathematics there are
certain mappings that are ‘canonical’ in the sense of being uniquely determined by
some data (or part of that data). Category theory, he argues, highlights and provides
examples of certain mathematical mappings as privileged, for example when the

2The first five chapters of [Giaquinto, 2007], and the references contained therein, is a good starting
point for seeing that the philosophy of geometry is alive and well.

3For the uninitiated: Homotopy Type Theory (or HoTT) comprises comprises a cluster of frame-
works in which intuitionistic type theories are endowed with homotopical interpretations. It’s a rich area
of contemporary study, with some interesting possible implications with respect to the formalisation of
mathematics (notably with respect to computerised proof-assistants). See [The Univalent Foundations
Program, 2013] for a textbook treatment.

4Univalent Foundations is Homotopy Type Theory with the Univalence Axiom added (which,
roughly speaking, says that the identity relation is (in a certain precise sense related to isomorphism)
equivalent to equivalence).

5The category-theoretic definition of isomorphism is that A is isomorphic to B iff there are maps
f : A → B and g : B → A such that f ◦ g = IdB and g ◦ f = IdA. It differs from the set-theoretic
definition in that there are category-theoretic isomorphisms that are not underwritten by bijections. See
[Marquis, 2013] for some philosophical discussion.

6ETCS is an attempt in [Lawvere, 1964] to axiomatise the category of sets, CCAF attempts to ax-
iomatise the category of all categories (see [Lawvere, 1966]).
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relevant morphism is the unique one with a certain property within a category.7 He
gives several examples of contexts in which one would assert that a particular map
is canonical, and then argues that these canonical maps provide a unified class of
global organising principles of mathematics (what he calls the “archetechtonic” of
mathematics).

John L. Bell’s ‘Categorial Logic and Model Theory’ provides a handbook-style
exposition of how one can do semantics using topoi8. After some enlightening his-
torical remarks, he explains how a the algebra of subobjects in a category forms a
Heyting algebra, and hence that the internal logic of a topos is in general intuition-
istic (though it may be classical). He also links this to the internal language of a
topos, and provides exposition of the fact that every topos determines a particular
(intuitionistic) type theory, and every intuitionistic type theory generates a topos.
He then describes functorial semantics with quantifiers interpreted as adjoints, how
one can do model theory categorially, and explains geometric theories9 and their
categorial properties.

Jean-Pierre Marquis’ ‘Unfolding FOLDS: A Foundational Framework for Ab-
stract Mathematical Concepts’10 explains how Makkai’s theory of First-Order Logic
with Dependent Sorts (FOLDS) can be used as a language that is invariant with
respect to certain abstract concepts. In particular he gives an exposition of FOLDS,
before describing an invariance theorem that, for two models M and N, and a cer-
tain kind of equivalence ≡L, M |= φ and M ≡L N implies that N |= φ, thereby
showing that FOLDS respects invariance. He then outlines some details concerning
higher-dimensional categories, before reviewing some philosophical upshots (e.g.
that FOLDS only expresses invariant properties, and hence is of interest for struc-
turalism).

Kohei Kishida’s ‘Categories and Modalities’ presents a detailed explanation of
how modal logic and category theory are often related. He exposits some categorial
relationships within propositional logic, Kripke semantics, and connections between
topology and modal logic, as well as a categorial study of quantification and free
logic. He then provides discussion of some philosophical questions (e.g. regarding
the use of epistemic modality, impossible worlds, and counterpart theory). He also
interestingly argues that the idea that the Converse Barcan Formula is solely about
increasing domains is somewhat misleading; the Converse Barcan Formula holds
more generally in non-Kripkean semantics when the domains are autonomous (in a
certain precise sense). This condition of autonomy then corresponds to increasing
domains in the Kripkean framework.

J. R. B. Cockett and R. A. G. Seely’s ‘Proof Theory of the Cut Rule’ shows how the
Cut Rule can be given a categorial semantics in terms of multicategories and polycat-
egories. For example, in certain contexts Cut corresponds to categorial composition.
Moreover, they provide a detailed explanation of how circuits are related to the proof
theory of fragments of linear logic, in particular providing a nice visualisation (with
formal backing) of several notions including commutativity. Using this they are then
able to provide an interesting treatment of negation as a contravariant functor, and

7This state of affairs is often referred to as a universal property.
8Topoi (or toposes) are particular kinds of category that contain the right kinds of morphism to admit

of an internal logic. They can be viewed as a generalisation of the category of sets, but where claims
about whether one object is a subobject of another (a generalisation of the idea of subset) take values in a
Heyting algebra, rather than always taking either the value true or the value false.

9A (finitary) geometric formula of some language L is one which does not contain implication or
universal quantification. We then define a a geometric implication as a sentence of the form ∀xφ → ψ
where φ and ψ are geometric formulas. A geometric theory consists solely of geometric implications.

10Since Marquis has contributed two essays to the volume, we will refer to ‘Canonical Maps’ as
[Marquis-a] and ‘Unfolding FOLDS’ as [Marquis-b].
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present some similarities between their analysis and modal logic. Especially pleas-
ing in this piece is the presentation of a wide variety of visual diagrams to underpin
what is quite complex material.

1.2 Applied

Samson Ambramsky’s ‘Contextuality: At the Borders of Paradox’ shows how the
broad phenomenon of contextuality in quantum mechanics—that we can have lo-
cally consistent but globally inconsistent data11—is a notion that is both fine-grained
(in that there are multiple different strengths of contextuality) and widely applica-
ble. In particular, if we have a set of contexts of observation and a set of features
present in these contexts, we can think of the idea that there is a set of possible data
descriptions which can arise from performing measurements via a functor. Several
interesting results then follow; local consistency corresponds to being a compatible
family in a sheaf-theoretic sense, and global consistency is characterised via the usual
gluing condition. Thinking of empirical models as families of (certain kinds of) com-
patible distributions, an empirical scenario is contextual (i.e. locally but not globally
consistent) iff it has no global section. He then goes on to examine the Hardy paradox
in this light and then compare some more fine-grained notions of contextuality for
these empirical models (probabilistically, possibilitically, and strongly contextual).
Especially interesting for philosophers concerned with the philosophy of logic more
widely is that some of these phenomena turn out to have bearing on technical re-
sults like Liar cycles and the Robinson Joint Consistency Theorem. Thus Abramsky
shows how category theory can provide useful geometric intuitions (in this case, via
the use of bundles) to multiple (often quite abstract) areas.

Bob Coecke and Aleks Kissinger’s ‘Categorial Quantum Mechanics I: Causal
Quantum Processes’ uses circuits and diagrams to present a survey of the initial
steps in the categorial interpretation of quantum mechanics. They take the interest-
ing approach of taking diagrams composed of boxes and wires (rather than category
theory) as their starting point, and then use them as a representation for categorial
properties. They view processes as diagrams, and wiring together of processes as a
way of generating new processes. This can then be used to describe a process theory
applicable to many areas (e.g. physics, chemistry, biology, computation), but the fo-
cus of their paper is quantum mechanics. Using their diagrams, they define different
diagrammatic notions with distinct purposes, that can be put to use in interpret-
ing certain kinds of physical structure. In particular (i) circuit diagrams (that admit
causal structure) correspond to symmetric monoidal categories, (ii) diagrams (where
outputs are always wired to inputs) correspond to traced symmetric monoidal cate-
gories, and (iii) string diagrams (where inputs can also be wired to inputs and out-
puts to outputs) are related to compact closed categories. Using these diagrams they
provide a discussion of quantum teleportation, quantum types, and give an analysis
of causality in this setting. As with many of the papers in the volume, it is very good
at situating the abstract material with concrete examples from fields such as comput-
ing and regular-everyday-life, and provide helpful diagrams to aid visual intuition
(as well as some that contain enjoyable comic relief).

James Owen Weathrall’s ‘Category Theory and the Foundations of Classical Space-
Time Theories’ surveys some notions of sameness and difference in structure be-
tween space-time theories using categorial tools. He begins with a helpful introduc-
tion to forgetful functors. He explains how functors can forget (i) structure when

11Examples of contextuality include the Kochen-Specker Paradox, Bell’s Theorem, and the Hardy Para-
dox.
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they are not full (as when we take a functor F : Top → Set forgetting topologi-
cal structure), (ii) properties when they are not essentially surjective (for example
F : AblGrp→ Grp from the category of Abelian groups to the category of groups for-
gets the property of being Abelian), and (iii) stuff when they are not faithful (e.g. the
functor F : Set → 1, where 1 is the category consisting of a single object and single
identity arrow, forgets all the elements of sets). He then uses these notions of for-
getfulness to analyse how one theory can have more structure than another. For ex-
ample, it is an observation of Earman that Newtonian space-time has more structure
than Galilean space-time; in the former we have a notion of absolute rest (allowing
us to define absolute velocity) whereas in the latter we do not. Thus, we have more
symmetries when working in the Galilean framework. This is brought out by con-
sidering the category Gal and New which have Galilean and Newtonian space-time
as their objects, and automorphisms thereof as their arrows. There is then a functor
F : New → Gal that is essentially surjective and faithful, but not full, and so forgets
only structure. He shows that there is a similar functor forgetting structure between
the category of models of Newtonian Gravitation (NG) and Geometrised Newtonian
Gravitation (GNG), and categories corresponding to the theory of electromagnatism
formulated with vector potential (EM2) and the version formulated using the Fara-
day tensor (EM1). However, in this latter case, adding in the gauge transformations
as extra arrows in EM1 allows us to have a functor to the category corresponding to
EM2 forgetting nothing. He then uses this idea of analysing an excess of structure
through forgetful functors to examine other gauge theories, in particular Yang-Mills
theory and general relativity. Specifically, by defining a category from Yang-Mills
theory, Weatherall surveys results that show that there is a functor from this category
to the category associated with EM1 which does not forget structure. He then goes
on to discuss a result that there is a functor (forgetting nothing) from the category
of relativistic space-times (where the objects are relativistic space-times and arrows
are isometries) to the category of Einstein algebras (with objects Einstein algebras
and arrows homomorphisms preserving the relevant metric). This has immediate
bearing on Earman’s claim12 that formulating general relativity in terms of Einstein
algebras results in a theory with less excess structure than the standard formalism.

Joachim Lambek’s posthumous ‘Six-Dimensional Lorentz Category’ presents a
view on which time is understood as two-dimensional. Specifically he argues that
mathematical elegance would require three dimensions of time, but these can be re-
duced to two via a categorial proof that the first-order Dirac equation is equivalent
to the second-order Klein-Gordon equation. We can then consider a finite additive
category with three objects, whose arrows correspond to four-vectors, six-vectors,
and Dirac spinors of four-dimensional relativistic quantum mechanics. Lambek then
represents six-dimensional space-time using quaternions, showing that (in a certain
sense) the three timelike dimensions can be reduced to two. He then applies this
to show that certain elements of relativistic quantum mechanics can then be repre-
sented, before closing with some brief remarks on the possible physical meaning of
the two dimensions.

Andrée Ehresmann’s ‘Applications of Categories to Biology and Cognition’ pro-
vides an explanation of how category theory can be used to systemise relationships
in dynamic systems; structures like organisms that might change their parts and
internal organisation through time. This representation is achieved by having a cat-
egories indexed by points on some timescale, and certain functors indicating the
possible transitions from one state to another (these turn out to be semi-sheaves of
categories). Hierarchical systems of biological structures (e.g. as in the relationship

12See [Rosenstock et al., 2015] for the details.
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of cell to molecule, and organ to cell) can then be represented by further indexing
and colimits. For these hierarchical systems, complexity can be seen to be part of
their ability to have components playing radically different roles, something which
is formalised by the Multiplicity Principle; a requirement on these systems having
decompositions which are independent in a certain precise category-theoretic sense.
Ehresmann then shows that this property is preserved by complexification processes;
categorial interpretations of the selection of particular successive states for the hi-
erarchical system. She then uses this to further systematise relationships between
several biological concepts including the memory of an organism, before providing
an application of these concepts and frameworks to neural and mental systems.

David I. Spivak’s ‘Categories as Mathematical Models’ argues that various kinds
of mathematical models of intuitive ideas (e.g. linearity, symmetry) are best under-
stood via their relationship to other models (an idea naturally formalised in cate-
gory theory). In this way, we can think of category theory as a universal modelling
language. He begins by noting that category theory leaves the specific encoding of
mathematical properties entirely absent, allowing one to categorise the hierarchical
nature of models rather than getting bogged down in coding questions. He makes
some philosophical remarks about the nature of modelling to the effect that we wish
to emphasise certain observable aspects of an environment. He then discusses the
idea that the value of a model lies in its interactions with other models, an idea
which he relates to the work of Kant. Next, he examines various algebraic structures
including; the group of invertible n × n Matrix multiplication, the monoid of n × n
matrix multiplication, the category of matrix multiplication, and the group-enriched
category of matrix arithmetic. He then considers vector spaces as models of linearity,
and then argues that higher-order vector spaces are models of linearity itself. Simi-
larly groups can be understood as models of symmetry, whereas the category of all
groups is a model of symmetry itself. He then considers some applications for this
framework, before closing with some final remarks about how category theory is
not to be viewed as a foundational language in which science should be done, but
rather as a tool to yield conceptual clarity, if so desired.

Hans Halvorson and Dimitris Tsementzis’ ‘Categories of Scientific Theories’ sug-
gests that we can view the structure of all scientific theories as a 2-category of cate-
gories. They begin by reviewing two ways we may think of theories as categories.
First, we obtain a category from a theory T syntactically by taking as objects formu-
las in contexts, and as arrows equivalence classes (up to T-provable equivalence) of
T-provably functorial relations. Second, we could look at the category of models
of T that has models of T as objects and either homomorphisms13 or elementary
embeddings as arrows (these are denoted by ‘Mod(T)’ and ‘Mode(T)’ respectively).
There are then different notions of equivalence we could examine for theories. We
could treat two theories T and T′ as equivalent when Mod(T) and Mod(T′) (or pos-
sibly Mode(T) and Mode(T

′)) are equivalent as categories. Alternatively, we could
examine syntactic categories and look at either standard categorial equivalence or
Morita equivalence14. Next, they argue that neither of the semantic options (Mod(T)
and Mode(T)) is an adequate representation of T. They then consider different can-
didates for the category of all theories (conceived of as syntactic categories), before
opting for Pretop; the category of all pretoposes. Under this suggestion, the category
of first-order theories is then a 2-category. They then consider some results that seem

13Interestingly Halvorson and Tsementzis use a different notion of homomorphism from the version
standard in model theory; it is not required to be one-to-one, and equality need not be respected (in a
certain sense).

14Morita equivalence is an idea from topos theory of two theories having a common definitional exten-
sion, in a certain precise sense.
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to suggest that there may be a duality between the syntactic theories as conceived of
through Pretop and a characterisation of semantic theories through the category of
topological groupoids, before closing with some some directions for future research
and possible philosophical payoffs for the philosophy of science.

Landry herself writes the final chapter entitled ‘Structural Realism and Category
Mistakes’. In her essay she targets several positions making ontological claims from
formal ones in the philosophy of science, and at the core of her argument is the claim
that category mistakes (in the ordinary philosophical sense of the term) are often
made when trying to make claims about the structure of the world. Of particular fo-
cus is the debate surrounding structural realism (and its ontic and epistemic varietes;
the claims that all there is is structure, and the claim that all we know is structure, re-
spectively) as a way of threading the needle between the no-miracles argument and
pessimistic meta-induction. She proposes an in re Hilbertian version of structural-
ism, and contends that the language of category theory can be used as a conceptual
tool, enabling one to talk about structure whilst eschewing any mention of objects.15

Throughout, as well as providing an interesting position, she helpfully and carefully
clarifies portions of the debate. A nice example is her identification of three possi-
ble roles for category theory in the talking about structural realism: (1.) It can be
used as a meta-level formal framework for a structural realist account of the struc-
ture of scientific theories, (2.) One might appeal to the category-theoretic structure of
a particular successful theory in arguing we should be epistemically/ontically com-
mitted to this theory, and (3.) One can use category theory to make sense of the claim
that it is possible to talk about structure without talking about relata or objects. She
uses these distinctions to argue against some other rival positions. For example, she
criticises French’s arguments for ontic structural realism as using claims about (1.)—
the appropriate language for formal frameworks—to make ontological claims (and
hence making a kind of category mistake). She takes aim at [Bain, 2013]’s arguments
for radical ontic structural realism (that structure exists independently of the objects
instantiating it) by arguing that physical motivation at the level of mathematical the-
ory is not the same as object-level physical significance. She then uses support of (3.)
to argue that there is a conceptual (though possibly not physical) collapse between
radical ontic structural realism and the ‘more balanced’ version of structural realism
explained in [Lam and Wüthrich, 2014].

2 Appraisal

The book contains high-quality material, bringing together many talented authors.
The breadth of the material covered showcases the fruits of category theory in a
diversity of different areas, and the authors have done a good job of keeping difficult
material as concisely expressed as possible. Moreover, the book is pleasingly cross-
referenced, and it certainly feels as though the work is a collaborative collection of
essays, rather than a mere conglomerate of separate works.

I do, however, have a few comments on the shape and structure of the collection.
The first is a simple point I already mentioned in the introduction; this is definitively
not a textbook designed to help experienced philosophers approach category theory
(in contrast to what Mac Lane did for mathematicians). Whilst the book does a good
job of showing how category theory is applicable in a variety of contexts, in order

15It is interesting here that these debates echo ones in the foundations of mathematics as to whether
or not category theory presupposes some notion of object and/or collection, see [Feferman, 1977] for the
original criticism, and [Linnebo and Pettigrew, 2011] for analysis and a survey of responses.

8



to really appreciate what is going on in each essay one would have to have a re-
ally quite significant background in category theory already (probably at least a first
course/textbook is required). At many points in several essays, notions are assumed
rather than defined and explained. Whilst this is a necessary part of producing ma-
terial concise enough to cover such a wide range of topics in a manageable amount
of time, it is nonetheless it is likely to confuse the student, even if not the expert.

For this reason I think some more introductory material, early on, with obvious
application to philosophy, would have been welcome. Whilst one can piece together
introductions to the basic concepts of category theory from various other textbooks
(e.g. [Goldblatt, 1984], [McLarty, 1992], [Awodey, 2010]), very little time is spent
setting the stage and core definitions (a little occurs in [Bell], but this appears mid-
way through the volume). The book is already reasonably long, running to approx-
imately 450 pages, so perhaps considerations of space prevent the inclusion of such
material. A short guide to the literature or brief introduction to the core concepts for
the uninitiated philosopher would have nonetheless been a handy contribution.16

This brings us on to a further point concerning the way the book is structured.
Landry explicitly divides the book into two parts, the first being pure and concern-
ing the use of category theory in the philosophy of mathematics and logic, and the
second concerning applications (especially in the sciences). However, one might
question if this is the most helpful taxonomy, given the structure of the articles and
the hoped aim of bringing category theory to philosophers. One might instead opt
for the following division of papers into the following three categories: (1.) Sur-
vey articles, designed to give a helpful overview of an area but not delving too
deeply into the details (e.g. [McLarty], [Shulman], [Ernst], [Coecke and Kissenger],
[Weatherall]), (2.) Handbook-style articles, designed to give a thorough but con-
cise explanation of the details of the relevant mathematics (e.g. [Bell], [Marquis-b],
[Kishida], [Cockett and Seely], [Abramsky], [Lambek], [Ehresmann], [Spivak]), and
(3.) Research articles, making specific arguments about particular aspects of cate-
gory theory (e.g. [Corfield], [Awodey], [Marquis-a], [Halvorson and Tsementzis],
[Landry]). It is possible that organising the papers along these lines rather than by
subject-matter would help to introduce the reader more gently; first beginning with
some overviews of various areas, then delving into technical details but with a fo-
cus on exposition, before finally presenting some new (and often quite complicated)
research.

The focus on the difference between pure and applied, rather than pedagogi-
cal function, results in some slightly unusual aspects of the order. For example,
[McLarty] and [Ernst] are both survey-style articles dealing with the use of category
theory as a foundational theory, and how it behaves in contrast to set theory. They
are separated, however, by [Corfield] which is a challenging (but interesting) article
on geometry and Homotopy Type Theory referencing several difficult constructions.
Issues with the ordering like these somewhat disrupt the flow of the book, and sim-
ilar clashes occur quite frequently. For example [Shulman] occurs after [Corfield],
but presents some ideas that would have been helpful for reading the latter, [Cock-
ett and Seely] is separated from [Coecke and Kissenger] by [Abramsky] despite the
fact that both are intimately concerned with circuits, and [Weatherall] appears after
many other more difficult essays, despite the fact that the category theory contained
therein is relatively accessible.

A final point (and I should flag here that I am biased) is that many of the pieces
(e.g. [McLarty], [Corfield], [Shulman], [Awodey], [Marquis-a], [Coecke and Kissen-
ger]) situate category theory in direct opposition to set theory as a foundational lan-

16I hope that this review can at least provide a partial guide for newcomers.
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guage. There are some exceptions here; [Ernst] provides some defence of set theory,
but doesn’t really analyse how they may be complementary (other than remarks
about how the hierarchical structure enforced by contemporary set theory may be
useful for facilitating a size distinction necessary for certain parts of category the-
ory17), [Marquis-a] does acknowledge that set theory is “combinatorially rich” (p.
106) and in [Marquis-b] he views then as non-competing, however he claims that
set theory “does not encode mathematical objects properly” (p. 139). [Bell] is also
not anti-set theory, and [Halvorson and Tsementzis] explicitly refrain from trying to
adjudicate the debate. Despite these exceptions, many of the essays stand in opposi-
tion to set theory. Whilst anti-set-theoretic foundationalism is a legitimate position,
one worthy of close scrutiny, my concern here is that certain deep foundational con-
nections may be missed by viewing the two languages as competitors in a winner-
takes-all bout to determine the one best foundational framework, or even if they
are viewed merely as orthogonal disciplines. This is especially so when one con-
siders the fact that fusions of perspective have yielded some foundational fruits, for
example the connections between set-theoretic forcing and sheaves are well-known
(this is mentioned, but not dealt with in depth, by [Bell]18). More recently, Bagaria
and Brooke-Taylor have shown that category theory can be used to calibrate various
strong large cardinal principles (see here [Bagaria and Brooke-Taylor, 2013]). Whilst
these observations possibly lie outside the scope of Landry’s collection, it is possible
that a philosopher might get the impression that the friend of set-theoretic founda-
tions is locked in battle with her category-theoretic counterpart, where in reality it is
at least possible that the two have much to learn from one another.

These comments though, should not detract from the fact that the book con-
tains important and interesting work. Landry has curated some wonderful essays
on category theory for the working philosopher, and as long as one goes in with an
understanding of the difficulty of the material, I can heartily recommend it to the
philosopher wishing to know more about category theory and its applications.19
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