Skip to main content
Log in

From Biosemiotics to Code Biology

  • Letter to the Editor
  • Published:
Biological Theory Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Anderson M, Deely J, Krampen M, Ransdell J, Sebeok TA, von Uexküll T (1984) A semiotic perspective on the sciences: steps toward a new paradigm. Semiotica 52:7–47

    Google Scholar 

  • Arnellos A, Bruni LE, El-Hani CN, Collier J (2012) Anticipatory functions, digital-analog forms and biosemiotics. Biosemiotics 5:331–367

    Article  Google Scholar 

  • Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencow BJ, Frey BJ (2010) Deciphering the splicing code. Nature 465:53–59

    Article  Google Scholar 

  • Barbieri M (1998) The organic codes: the basic mechanism of macroevolution. Riv Biol Biol Forum 91:481–514

    Google Scholar 

  • Barbieri M (2002) Has biosemiotics come of age? Semiotica 139:283–295

    Google Scholar 

  • Barbieri M (2003) The organic codes: an introduction to semantic biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Barbieri M (2011) Origin and evolution of the brain. Biosemiotics 4:369–399

    Article  Google Scholar 

  • Barbieri M (2012) Codepoiesis: the deep logic of life. Biosemiotics 5:297–299

    Article  Google Scholar 

  • Barbieri M (2013) The paradigms of biology. Biosemiotics 6:33–59

    Article  Google Scholar 

  • Berridge M (1985) The molecular basis of communication within the cell. Sci Am 253(4):142–152

    Article  Google Scholar 

  • Brier S, Joslyn C (2012) What does it take to produce interpretation? Biosemiotics 6:143–159

    Article  Google Scholar 

  • Csikszentmihalyi M (1996) Creativity: flow and the psychology of discovery and innovation. Harper Collins, New York

    Google Scholar 

  • de Saussure F (1916) Cours de linguistique générale. Payot, Paris

    Google Scholar 

  • Dhir A, Buratti E, van Santen MA, Lührmann R, Baralle FE (2010) The intronic splicing code: multiple factors involved in ATM pseudoexon definition. EMBO J 29:749–760

    Article  Google Scholar 

  • Favareau D (2007) The evolutionary history of biosemiotics. In: Barbieri M (ed) Introduction to biosemiotics. Springer, Dordrecht, pp 1–67

    Chapter  Google Scholar 

  • Florkin M (1974) Concepts of molecular biosemiotics and molecular evolution. In: Florkin F, Stotz EH (eds) Comprehensive biochemistry, vol 29A. Elsevier, Amsterdam, pp 1–124

    Google Scholar 

  • Gabius H-J (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121

    Article  Google Scholar 

  • Gabius H-J (2009) The sugar code. Fundamentals of glycosciences. Wiley-Blackwell, Weinheim

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  Google Scholar 

  • Knoll AH (2003) Life on a young planet: the first three billion years of evolution on Earth. Princeton University Press, Princeton

    Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  Google Scholar 

  • Krampen M (1981) Phytosemiotics. Semiotica 36:187–209

    Article  Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. Chicago University Press, Chicago

    Google Scholar 

  • Kull K (ed) (2001) Jakob von Uexküll: a paradigm for biology and semiotics. Semiotica vol 134(1/4). Mouton de Gruyter, Berlin

  • Maraldi NM (2008) A lipid-based code in nuclear signalling. In: Barbieri M (ed) The codes of life: the rules of macroevolution. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Nicolelis M, Ribeiro S (2006) Seeking the neural code. Sci Am 295(6):70–77

    Article  Google Scholar 

  • Osborne LC, Palmer SE, Lisberger SG, Bialek W (2008) The neural basis for combinatorial coding in a cortical population response. J Neurosci 28:13522–13531

    Article  Google Scholar 

  • Peirce CS (1906) The basis of pragmaticism. In: Hartshorne C, Weiss P (eds) The collected papers of Charles Sanders Peirce, vol I. Harvard University Press, Cambridge, pp 1931–1935

    Google Scholar 

  • Pertea M, Mount SM, Salzberg SL (2007) A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana. BMC Bioinform 8:159

    Article  Google Scholar 

  • Posner R, Robering K, Sebeok TA (1997) Semiotik/Semiotics: a handbook on the sign-theoretical foundations of nature and culture, vol 1. Walter de Gruyter, Berlin

    Google Scholar 

  • Readies C, Takeichi M (1996) Cadherine in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Dev Biol 180:413–423

    Article  Google Scholar 

  • Schopf JW (1999) Cradle of life: the discovery of Earth’s earliest fossils. Princeton University Press, Princeton

    Google Scholar 

  • Sebeok TA (1963) Communication among social bees; porpoises and sonar; man and dolphin. Language 39:448–466

    Article  Google Scholar 

  • Sebeok TA (1972) Perspectives in zoosemiotics. Mouton, The Hague

    Google Scholar 

  • Sebeok TA (2001) Biosemiotics: its roots, proliferation, and prospects. In: Kull K (ed) Jakob von Uexküll: A paradigm for biology and semiotics. Semiotica vol 134. Mouton de Gruyter, Berlin, pp 61–78

  • Sebeok TA, Umiker-Sebeok J (1992) Biosemiotics: the semiotic web. Mouton de Gruyter, Berlin

    Google Scholar 

  • Shapiro L, Colman DR (1999) The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 23:427–430

    Article  Google Scholar 

  • Strahl BD, Allis D (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  Google Scholar 

  • Tomkins MG (1975) The metabolic code. Science 189:760–763

    Article  Google Scholar 

  • Trifonov EN (1987) Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequence. J Mol Biol 194:643–652

    Article  Google Scholar 

  • Trifonov EN (1989) The multiple codes of nucleotide sequences. Bull Math Biol 51:417–432

    Article  Google Scholar 

  • Trifonov EN (1999) Elucidating sequence codes: three codes for evolution. Ann NY Acad Sci 870:330–338

    Article  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays 22:836–845

    Article  Google Scholar 

  • Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    Article  Google Scholar 

  • Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9:2–6

    Article  Google Scholar 

  • Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6:2152–2160

    Article  Google Scholar 

  • von Uexküll J (1928) Theoretische biologie. Zweite Auflage. Julius Springer, Berlin

    Book  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Barbieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, M. From Biosemiotics to Code Biology. Biol Theory 9, 239–249 (2014). https://doi.org/10.1007/s13752-013-0155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-013-0155-6

Keywords

Navigation