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Abstract

Glymour (1970, 1977, 1980) and Quine (1975) propose two different
formal criteria for theoretical equivalence. In this paper we examine the
relationships between these criteria.

1 Introduction

Philosophers of science have long been concerned with the conditions under
which theories might be considered equivalent.1 One way that this issue has
been approached is by proposing different formal criteria for theoretical equiv-
alence. In this paper we will discuss two such criteria. The first was proposed
by Glymour (1970, 1977, 1980) and the second was proposed by Quine (1975).

We begin by showing that Quine’s criterion is unsatisfactory. It considers
some theories to be equivalent that one has good reason to consider inequivalent.
But Quine’s criterion can be amended in such a way that it no longer makes these
undesirable verdicts. Indeed, we will isolate a precise sense in which Glymour’s
criterion is such an amendment.

2 Preliminaries

The criteria for theoretical equivalence that we will discuss are most naturally
understood in the framework of first-order logic. We therefore begin by present-
ing some preliminaries about this framework.2

∗Thanks to JB Manchak, Jim Weatherall, Jeff Barrett, and Albert Visser for comments
and discussion.
†thomaswb@princeton.edu
‡hhalvors@princeton.edu
1For example, North (2009), Halvorson (2011), Swanson and Halvorson (2012), Curiel

(2014), and Barrett (2014) discuss whether Hamiltonian and Lagrangian mechanics are the-
oretically equivalent. Glymour (1977), Weatherall (2014), and Knox (2013) discuss standard
Newtonian gravitation and geometrized Newtonian gravitation. And Sklar (1982), Halvorson
(2012, 2013), Glymour (2013), van Fraassen (2014), and Coffey (2014) discuss more general
issues about theoretical equivalence.

2The reader is encouraged to consult Hodges (2008) for details and notation.
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A signature Σ is a set of predicate symbols, function symbols, and constant
symbols. The Σ-terms, Σ-formulas, and Σ-sentences are recursively defined in
the standard way. A Σ-structure A is a nonempty set in which the symbols of
Σ have been interpreted. One recursively defines when a sequence of elements
a1, . . . , an ∈ A satisfy a Σ-formula φ(x1, . . . , xn) in a Σ-structure A, written
A � φ[a1, . . . , an]. If φ is a Σ-sentence, then A � φ just in case the empty
sequence satisfies φ in A.

A Σ-theory T is a set of Σ-sentences. The sentences φ ∈ T are called the
axioms of T . A Σ-structure M is a model of a Σ-theory T if M � φ for all
φ ∈ T . We will use the notation Mod(T ) to denote the class of models of a
theory T . A theory T entails a sentence φ, written T � φ, if M � φ for every
model M of T .

We begin with the following preliminary criterion for theoretical equivalence.

Definition. Theories T1 and T2 are logically equivalent if they have the same
class of models, i.e. if Mod(T1) = Mod(T2).

One can easily verify that T1 and T2 are logically equivalent if and only if
{φ : T1 � φ} = {ψ : T2 � ψ}. Note that logical equivalence can only apply to
theories T1 and T2 that are formulated in the same signature.

3 Glymour and Quine

Although we have the notion of logical equivalence, one might want other criteria
for theoretical equivalence. Logical equivalence is too strict to capture the sense
in which some theories are equivalent. Indeed, as remarked above, theories can
be logically equivalent only if they are formulated in the same signature. And
there are many theories in different signatures that are nonetheless equivalent in
some sense. For example, group theory can be formulated in different signatures.

Example 1. Let Σ1 = {·, e} be a signature where · is a binary function symbol
and e is a constant symbol. The theory of groups1 is the following Σ1-theory:{

∀x∀y∀z
(
(x · y) · z = x · (y · z)

)
,∀x(x · e = x ∧ e · x = x),

∀x∃y(x · y = e ∧ y · x = e)
}

Group theory can also be formulated in the signature Σ2 = {·,−1}, where · is
again a binary function symbol and −1 is a unary function symbol. The theory
of groups2 is the following Σ2-theory:{

∀x∀y∀z
(
(x · y) · z = x · (y · z)

)
,

∃x∀y
(
y · x = y ∧ x · y = y ∧ y · y−1 = x ∧ y−1 · y = x

)}
One can easily see that these two theories are not logically equivalent. A model
M of the theory of groups1 is a set with a binary function ·M and a distinguished
element eM . A model N of the theory of groups2 is a set with a binary function
·N and a unary function −1N . These are not the same, so the theories do not
have the same class of models. y
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If one wants to capture the sense in which these two formulations of group
theory are equivalent, then one needs a more general criterion for theoretical
equivalence than logical equivalence. Glymour and Quine’s proposals are two
candidates for such a criterion.

3.1 Glymour’s criterion

Glymour (1970, 1977, 1980) proposed definitional equivalence as a criterion
for theoretical equivalence.3 The basic idea behind definitional equivalence is
simple. Theories T1 and T2 are definitionally equivalent if T1 can define all of
the vocabulary that T2 uses, and in a compatible way, T2 can define all of the
vocabulary that T1 uses. In order to state this criterion carefully we need to do
some work.

We first need to formalize the notion of a definition. Let Σ ⊂ Σ+ be signa-
tures and let p ∈ Σ+−Σ be an n-ary predicate symbol. An explicit definition
of p in terms of Σ is a Σ+-sentence of the form

∀x1 . . . ∀xn
(
p(x1, . . . , xn)↔ φ(x1, . . . , xn)

)
where φ(x1, . . . , xn) is a Σ-formula. Similarly, an explicit definition of an n-ary
function symbol f ∈ Σ+ − Σ is a Σ+-sentence of the form

∀x1 . . . ∀xn∀y
(
f(x1, . . . , xn) = y ↔ φ(x1, . . . , xn, y)

)
(1)

and an explicit definition of a constant symbol c ∈ Σ+ − Σ is a Σ+-sentence of
the form

∀x
(
x = c↔ ψ(x)

)
(2)

where φ(x1, . . . , xn, y) and ψ(x) are both Σ-formulas.
Although they are Σ+-sentences, (1) and (2) have consequences in the sig-

nature Σ. In particular, (1) and (2) imply the following sentences, respectively:

∀x1 . . . ∀xn∃=1yφ(x1, . . . , xn, y)

∃=1xψ(x)

These two sentences are called the admissibility conditions for the explicit
definitions (1) and (2).

A definitional extension of a Σ-theory T to the signature Σ+ is a Σ+-
theory

T+ = T ∪ {δs : s ∈ Σ+ − Σ},

that satisfies the following two conditions. First, for each symbol s ∈ Σ+ − Σ
the sentence δs is an explicit definition of s in terms of Σ, and second, if s is a
constant symbol or a function symbol and αs is the admissibility condition for
δs then T � αs.

We now have the machinery necessary to state Glymour’s criterion.

3Logicians were familiar with definitional equivalence before the 1970s, but Glymour was
the first to introduce the notion into philosophy of science.
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Definition. Let T1 be a Σ1-theory and T2 be a Σ2-theory. T1 and T2 are
definitionally equivalent if there is a definitional extension T+

1 of T1 to the
signature Σ1∪Σ2 and a definitional extension T+

2 of T2 to the signature Σ1∪Σ2

such that T+
1 and T+

2 are logically equivalent.

One often says that T1 and T2 are definitionally equivalent if they have a
“common definitional extension.”

Definitional equivalence captures a sense in which theories formulated in
different signatures might nonetheless be theoretically equivalent. For example,
although they are not logically equivalent, the theory of groups1 and the theory
of groups2 are definitionally equivalent.

Example 2. Recall the two formulations of group theory from Example 1 and
consider the following two Σ1 ∪ Σ2-sentences.

δ−1 := ∀x∀y
(
x−1 = y ↔ (x · y = e ∧ y · x = e)

)
δe := ∀x

(
x = e↔ ∀z(z · x = z ∧ x · z = z)

)
The theory of groups1 defines the unary function symbol −1 with the sentence
δ−1 and the theory of groups2 defines the constant symbol e with the sentence
δe. One can verify that the theory of groups1 satisfies the admissibility condi-
tion for δ−1 and that the theory of groups2 satisfies the admissibility condition
for δe. The theory of groups1 ∪ {δ−1} and the theory of groups2 ∪ {δe} are
logically equivalent. This implies that these two formulations of group theory
are definitionally equivalent. y

Definitional equivalence is well-known among logicians, and many results
about it have been proven.4 Here we state one particular fact that will be useful
in what follows. Let Σ ⊂ Σ+ be signatures. A Σ+-theory T+ is a conservative
extension of a Σ-theory T if for every Σ-sentence φ, T+ � φ if and only if
T � φ.

Proposition 1. If T+ is a definitional extension of T , then T+ is a conservative
extension of T (Hodges, 2008, 66).

3.2 Quine’s criterion

The criterion that Quine (1975) proposes is of a different flavor than Glymour’s
criterion. Quine suggests that two theories should be considered theoretically
equivalent if there is a “suitable translation” between the theories. In order to
state Quine’s criterion carefully we again need to do some work.

We begin by introducing the idea of a reconstrual between signatures Σ1 and
Σ2. A reconstrual F of Σ1 into Σ2 is a map from elements of the signature
Σ1 to Σ2-formulas that satisfies the following three conditions.

4For example, see (Hodges, 2008, 58–62), de Bouvére (1965), Kanger (1968), Pelletier and
Urquhart (2003), Andréka et al. (2005), Friedman and Visser (2014) for some results.
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• For every n-ary predicate symbol p ∈ Σ1, Fp(x1, . . . , xn) is a Σ2-formula
with n free variables.

• For every n-ary function symbol f ∈ Σ1, Ff(x1, . . . , xn, y) is a Σ2-formula
with n+ 1 free variables.

• For every constant symbol c ∈ Σ1, Fc(y) is a Σ2-formula with one free
variable.

One can think of the Σ2-formula Fp(x1, . . . , xn) as a “translation” of the Σ1-
formula p(x1, . . . , xn) into the signature Σ2. Similarly, Ff(x1, . . . , xn, y) and
Fc(y) can be thought of as “translations” of the Σ1-formulas f(x1, . . . , xn) = y
and c = y, respectively. We will use the notation F : Σ1 → Σ2 to denote a
reconstrual F of Σ1 into Σ2.

Before stating Quine’s criterion we need to take a moment to discuss recon-
struals. The important fact about a reconstrual F : Σ1 → Σ2 is that it naturally
induces a map from Σ1-formulas to Σ2 formulas.

In order to describe this map we first need to describe what F does to Σ1-
terms. F extends to a map from Σ1-terms to Σ2-formulas. Let t(x1, . . . , xn) be
a Σ1-term. We define the Σ2-formula Ft(x1, . . . , xn, y) recursively as follows.

• If t is the variable xi then Ft(xi, y) is the Σ2-formula xi = y.

• If t is the constant symbol c ∈ Σ1 then Ft(y) is the Σ2-formula Fc(y).

• Suppose that t is the term f(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)) and that
the Σ2-formula Fti(x1, . . . , xn, y) has been defined for each i = 1, . . . , k.
Then Ft(x1, . . . xn, y) is the Σ2-formula

∃z1 . . . ∃zk
(
Ft1(x1, . . . , xn, z1)∧. . .∧Ftk(x1, . . . , xn, zk)∧Ff(z1, . . . , zk, y)

)
Using this induced map from Σ1-terms to Σ2-formulas, we can describe how

F maps Σ1-formulas to Σ2-formulas.5 Let φ(x1, . . . , xn) be a Σ1-formula. We
define the Σ2-formula Fφ(x1, . . . , xn) recursively as follows.

• If φ(x1, . . . , xn) is the Σ1-atom s(x1, . . . , xn) = t(x1, . . . , xn), with s and
t Σ1 terms, then Fφ(x1, . . . , xn) is the Σ2-formula

∃z
(
Ft(x1, . . . , xn, z) ∧ Fs(x1, . . . , xn, z)

)
• If φ(x1, . . . , xn) is the Σ1-atom p(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)), with
p ∈ Σ1 a k-ary predicate symbol, then Fφ(x1, . . . , xn) is the Σ2-formula

∃z1 . . . ∃zk
(
Ft1(x1, . . . , xn, z1)∧ . . .∧Ftk(x1, . . . , xn, zk)∧Fp(z1, . . . , zk)

)
5We are abusing notation by calling all of these maps F . In what follows, the important

map is the map F from Σ1-formulas to Σ2-formulas. Whenever we refer to a reconstrual
F : Σ1 → Σ2 from now on, we will be referring to this induced map from Σ1-formulas to
Σ2-formulas.
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• Lastly, suppose that Fφ(x1, . . . , xn) and Fψ(x1, . . . , xn) have already been
defined for Σ1-formulas φ(x1, . . . , xn) and ψ(x1, . . . , xn). Then we define
F¬φ to be ¬Fφ, F (φ ∧ ψ) to be F (φ) ∧ F (ψ), F (φ → ψ) to be F (φ) →
F (ψ), F (φ∨ψ) to be F (φ)∨F (ψ), F (φ↔ ψ) to be F (φ)↔ F (ψ), F (∀xφ)
to be ∀xF (φ), and F (∃xφ) to be ∃xF (φ).

In this way a reconstrual F : Σ1 → Σ2 gives rise to a map between Σ1-formulas
and Σ2-formulas. This map allows one to “translate” Σ1-theories into Σ2-
theories. If T1 is a Σ1 theory and F : Σ1 → Σ2 a reconstrual, then the Σ2-theory
F (T1) is defined by

F (T1) = {F (φ) : φ ∈ T1}

We now have the machinery necessary to state Quine’s criterion for theoret-
ical equivalence.6

Definition. Let T1 be a Σ1-theory and T2 a Σ2-theory. T1 is Quine equivalent
to T2 if there is a reconstrual F : Σ1 → Σ2 such that the theories F (T1) and T2
are logically equivalent.

At first glance, Quine equivalence seems to be a promising way to understand
theoretical equivalence. And indeed, one can use it to capture a sense in which
the theory of groups1 is equivalent to the theory of groups2.

Example 3. Recall again the theory of groups1 and the theory of groups2. We
define a reconstrual F : Σ1 → Σ2 by letting F · (x1, x2, y) be the Σ2-formula
x1 · x2 = y and Fe(y) be the Σ2-formula ∀z(y · z = z ∧ z · y = z ∧ z · z−1 =
y ∧ z−1 · z = y). One can then verify that the Σ2-theory F (theory of groups1)
is logically equivalent to the theory of groups2. The theory of groups1 and the
theory of groups2 are therefore Quine equivalent. y

3.3 Problems with Quine equivalence

Unlike definitional equivalence, Quine equivalence has not yet been investigated
by logicians.7 And upon investigation one finds that Quine equivalence is un-
satisfactory. The following two examples illustrate some of its shortcomings.

These examples show that Quine equivalence is too liberal a criterion for
theoretical equivalence. It considers some theories to be equivalent that one has
good reason to consider inequivalent.

6Quine explains his proposal as follows: “By a reconstrual of the predicates of our language,
accordingly, let me mean any mapping of our lexicon of predicates into our open sentences
(n-place predicates to n-variable sentences). [. . . ] I propose to individuate theories thus:
two formulations express the same theory if they are empirically equivalent and there is a
reconstrual of predicates that transforms the one theory into a logical equivalent of the other”
(Quine, 1975, 320).

7As of February 24, 2015, according to scholar.google.com, there have been no technical
investigations of Quine’s proposal.
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Example 4. Let Σ = {p, q} be a signature with p and q both unary predicate
symbols. Consider the following two Σ-theories.

T1 = {∃=1x(x = x),∀x(p(x) ∧ q(x))}
T2 = {∃=1x(x = x),∀xp(x)}

The theory T2 is Quine equivalent to the theory T1. We define the reconstrual
F : Σ→ Σ by letting Fp(x) be p(x) ∧ q(x) and letting Fq(x) be q(x). One can
then easily verify that the following hold.

F
(
∃=1x(x = x)

)
is equivalent to ∃=1x(x = x)

F
(
∀x(p(x)

)
is equivalent to ∀x(p(x) ∧ q(x))

This implies that F (T2) is logically equivalent to T1. y

T2 is Quine equivalent to T1, and that is a strange verdict. In fact, one
can make precise a sense in which T1 and T2 are inequivalent theories. We call
a Σ-theory T complete if either T � φ or T � ¬φ for every Σ-sentence φ.
Consider the theory T1 from the above example. Every model M of T1 has a
domain with one element, and this one element is in both the sets pM and qM .
So up to isomorphism, T1 has a unique model. Since this model M satisfies
either M � φ or M � ¬φ for every Σ-sentence φ, it must also be that T � φ or
T � ¬φ for every Σ-sentence φ. The theory T1 is therefore complete. But the
theory T2 is not complete. Consider the Σ-sentence ∀xq(x). One can easily see
that T2 6� ∀xq(x) and T2 6� ¬∀xq(x). T1 is Quine equivalent to T2, but these
two theories are inequivalent in a precise sense: T1 is complete and T2 is not.

Example 4 shows that completeness is not an “invariant” under Quine equiv-
alence, and this might strike one as a shortcoming Quine equivalence. The fol-
lowing example provides another case where Quine equivalence makes a puzzling
verdict.

Example 5. Let Σ1 = ∅ and Σ2 = {c, d} be signatures with c and d constant
symbols. Consider the Σ1-theory T1 = ∅ and the Σ2-theory T2 = {c = d}.
The theory T2 is Quine equivalent to the theory T1. We define the reconstrual
G : Σ2 → Σ1 by letting both Gc(y) and Gd(y) be the Σ1-formula y = y. One
can then easily see that

G(c = d) is equivalent to ∃z(z = z)

It follows that G(T2) is logically equivalent to T1, so T2 is Quine equivalent to
T1. y

There are two things to notice about Example 5. First, note that Quine
equivalence is again making a strange verdict. There is a sense in which T1 and
T2 are inequivalent theories. The theory T2 uses the constant symbols c and d
to single out a preferred point in every model. The theory T1 does not single out
a preferred point in any model. For this reason one might not want to consider
these two theories equivalent.
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Second, note that although T2 is Quine equivalent to T1, T1 is not Quine
equivalent to T2. There is a unique reconstrual F : Σ1 → Σ2, the “empty
reconstrual.” The theory F (T1) is the empty theory in the signature Σ2. And
so F (T1) is not logically equivalent to T2. This implies that Quine equivalence
is not a symmetric relation on theories.8

Neither of these examples pose a problem for definitional equivalence. The
two theories from Example 4 are not definitionally equivalent, and neither are
the two theories from Example 5. Quine equivalence, however, makes puzzling
verdicts in both of these cases.

4 Intertranslatability

One might wonder whether there is a way to amend Quine’s original proposal
so that it no longer makes these undesirable verdicts. The basic idea behind
Quine equivalence is that two theories should count as theoretically equivalent
if there exists a “suitable translation” between them. Definitional equivalence
is often thought of as imposing a similar requirement. For example, Glymour
(1970) remarks that definitional equivalence captures the idea that two theories
are “intertranslatable.”9 In this final section we make this remark precise, and
in doing so, we show that definitional equivalence can itself be understood as
an amendment to Quine’s original proposal.

The way that Quine explicates the notion of a “suitable translation” be-
tween theories makes Quine equivalence too liberal a criterion for theoretical
equivalence. But one can be more restrictive about what counts as a “suitable
translation” than Quine is. We call a reconstrual F : Σ1 → Σ2 a translation
of a Σ1-theory T1 into a Σ2-theory T2 if T1 � φ implies that T2 � Fφ for all
Σ1-sentences φ. We will use the notation F : T1 → T2 to denote a translation
of T1 into T2.

We can then consider an amendment to Quine’s criterion, which we call
“intertranslatability.”

Definition. Let T1 be a Σ1-theory and T2 a Σ2-theory. T1 and T2 are inter-
translatable if there are translations F : T1 → T2 and G : T2 → T1 such
that

T1 � ∀x1 . . . ∀xn
(
φ(x1, . . . , xn)↔ GFφ(x1, . . . , xn)

)
(3)

T2 � ∀x1 . . . ∀xn
(
ψ(x1, . . . , xn)↔ FGψ(x1, . . . , xn)

)
(4)

for every Σ1-formula φ(x1, . . . , xn) and every Σ2-formula ψ(x1, . . . , xn).

The conditions (3) and (4) can be thought of as requiring the translations F :
T1 → T2 and G : T2 → T1 to be “almost inverse” to one another. Note, however,

8Coffey (2014) argues that symmetry is not a good feature for a proposed criterion for
theoretical equivalence to have. But both Coffey and Quine suggest that Quine equivalence
is an equivalence relation. We have shown here that this is not the case.

9Knox (2013) and Coffey (2014) make this same remark.
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that F and G need not be literal inverses. The Σ1-formula GFφ(x1, . . . , xn) is
not required to be equal to the Σ1-formula φ(x1, . . . , xn). Rather, these two
formulas are merely required to be equivalent according to the theory T1.

Like Quine’s original proposal, intertranslatability judges theories to be
equivalent when “suitable translations” exist between them. It is just more
restrictive about what should count as a “suitable translation.” Our goal in
the remainder of this section is to show how intertranslatability relates to def-
initional equivalence. The following theorem provides a partial answer to this
question.10

Theorem 1. If T1 and T2 are definitionally equivalent, then they are inter-
translatable.

Proof. Suppose that T is a common definitional extension of a Σ1-theory T1 and
a Σ2-theory T2. We define a reconstrual F : Σ1 → Σ2 as follows. Let p ∈ Σ1 be
an n-ary predicate symbol. Then since T is a definitional extension of T2,

T � ∀x1 . . . ∀xn
(
p(x1, . . . , xn)↔ δp(x1, . . . , xn)

)
for some Σ2-formula δp(x1, . . . , xn). We define Fp(x1, . . . , xn) to be the Σ2-
formula δp(x1, . . . , xn). Let f ∈ Σ1 be an n-ary function symbol. We define
Ff(x1, . . . , xn, y) to be δf (x1, . . . , xn, y), where δf is the formula that T uses
to define the function symbol f . Lastly, let c ∈ Σ1 be a constant symbol. We
again define Fc(y) to be δc(y). A reconstrual G : Σ2 → Σ1 is defined in the
analogous way. One can then verify by induction on complexity that

T � ∀x1 . . . ∀xn(φ(x1, . . . , xn)↔ Fφ(x1, . . . , xn)) (5)

T � ∀x1 . . . ∀xn(ψ(x1, . . . , xn)↔ Gψ(x1, . . . , xn)) (6)

for every Σ1-formula φ(x1, . . . , xn) and every Σ2-formula ψ(x1, . . . , xn).
We need to show that F : Σ1 → Σ2 and G : Σ2 → Σ1 are translations.

Without loss of generality we show that F is. Suppose that T1 � φ for some Σ1-
sentence φ. Then by equation (5) above, T � φ↔ Fφ. Proposition 1 guarantees
that T � φ, so it must be that T � Fφ. Since Fφ is a Σ2-sentence, Proposition
1 then implies that T2 � Fφ. So F : T1 → T2 is a translation.

Now let φ(x1, . . . , xn) be any Σ1-formula. Equations (5) and (6) together
imply that T � ∀x1 . . . ∀xn(φ(x1, . . . , xn) ↔ GFφ(x1, . . . , xn)). Since T is a
conservative extension of T1 by Proposition 1, it must be that

T1 � ∀x1 . . . ∀xn
(
φ(x1, . . . , xn)↔ GFφ(x1, . . . , xn)

)
10Glymour (1970) remarks that definitional equivalence “guarantees that all and only the-

orems of [T1] are translated as theorems of [T2], and conversely” (Glymour, 1970, 279). But
he also claims that requiring the conditions (3) and (4) above to hold is “stronger” than def-
initional equivalence. Theorems 1 and 2 make precise a sense in which this requirement is
no stronger and no weaker than definitional equivalence. Friedman and Visser (2014) state
these two results, but do not provide proofs. Ingredients for proofs using tools of category
theory are contained in Visser (2006). Pelletier and Urquhart (2003) provide proofs for the
special case of propositional logic. Here we extend the results to full first-order logic using
only elementary methods.
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A similar argument yields T2 � ∀x1 . . . ∀xn(ψ(x1, . . . , xn) ↔ FGψ(x1, . . . , xn))
for every Σ2-formula ψ(x1, . . . , xn).

This result immediately provides us with many examples of theories that are
intertranslatable. For example, we have already seen that the theory of groups1
and the theory of groups2 are definitionally equivalent. Theorem 1 implies that
they are intertranslatable too.

The converse of Theorem 1, however, does not hold. The following exam-
ple provides a case of theories that are intertranslatable but not definitionally
equivalent.

Example 6. Let Σ = {p} be the signature containing a unary predicate symbol
p. Consider the following two Σ-theories.

T1 = {∃=1x(x = x),∀xp(x)}
T2 = {∃=1x(x = x),¬∀xp(x)}

T1 and T2 are not definitionally equivalent since they do not have a common
conservative extension. But T1 and T2 are intertranslatable. Consider the re-
construal F : Σ → Σ defined by letting Fp(x) be ¬p(x). One can verify that
F : T1 → T2 is a translation and that both

T1 � ∀x1 . . . ∀xn
(
φ(x1, . . . , xn)↔ FFφ(x1, . . . , xn)

)
T2 � ∀x1 . . . ∀xn

(
φ(x1, . . . , xn)↔ FFφ(x1, . . . , xn)

)
hold for every Σ-formula φ(x1, . . . , xn). This implies that T1 and T2 are inter-
translatable. y

Although the converse of Theorem 1 is not true in general, the following
theorem establishes that it is true when one only considers theories in disjoint
signatures.

Theorem 2. Let Σ1 and Σ2 be disjoint signatures with T1 a Σ1-theory and
T2 a Σ2-theory. If T1 and T2 are intertranslatable, then they are definitionally
equivalent.

Before proving Theorem 2 we need to do some work. Consider a translation
F : T1 → T2 between a Σ1-theory T1 and a Σ2-theory T2. The translation F
gives rise to a map F ∗ : Mod(T2)→ Mod(T1), which takes models of the theory
T2 to models of the theory T1.11 For every model A of T2 we first define a
Σ1-structure F ∗(A) as follows.

• dom(F ∗(A)) = dom(A).

• (a1, . . . , an) ∈ pF∗(A) if and only if A � Fp[a1, . . . , an].

• fF∗(A)(a1, . . . , an) = b if and only if A � Ff [a1, . . . , an, b].

11One can compare this with Gajda et al. (1987).
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• cF∗(A) = a if and only if A � Fc[a].

One needs to verify that fF
∗(A) and cF

∗(A) are well-defined. For example, in
the first case one needs to check that fF

∗(A) is a function. We trivially know
that T1 � ∀x1 . . . ∀xn∃=1yf(x1, . . . , xn) = y. Since F is an interpretation, this
implies that

T2 � F
(
∀x1 . . . ∀xn∃=1yf(x1, . . . , xn) = y

)
Unraveling the sentence on the right hand side, we see that this means that for
all a1, . . . , an ∈ F ∗(A) there is a unique b ∈ A such that A � Ff [a1, . . . , an, b].
So fF

∗(A) is indeed a function. One goes through a similar argument to show
that the element cF

∗(A) is well-defined.
For every model A of T2 we have defined a Σ1-structure F ∗(A). In order to

show that F ∗(A) is actually a model of T1 we need the following lemma.

Lemma. Let A be a model of T2 and φ(x1, . . . , xn) a Σ1-formula. Then A �
Fφ[a1, . . . , an] if and only if F ∗(A) � φ[a1, . . . , an].

Proof. By induction on the complexity of φ.

Using the Lemma we can verify that for every model A of T2, F ∗(A) is a
model of T1. We let φ ∈ T1 be an axiom of T1 and we show that F ∗(A) � φ. Since
F is a translation, it must be that T2 � Fφ, which means that A � Fφ since A
is a model of T2. Then the Lemma implies that F ∗(A) � φ. So indeed, F ∗(A) is
a model of T1 and we have successfully defined a map F ∗ : Mod(T2)→ Mod(T1)
between models of T2 and models of T1.

We conclude our discussion of intertranslatability and definitional equiva-
lence with a proof of Theorem 2.

Proof of Theorem 2. Suppose that T1 and T2 are intertranslatable, with F :
T1 → T2 and G : T2 → T1 the relevant translations. We begin by defining
definitional extensions T+

1 and T+
2 of T1 and T2 to the signature Σ1 ∪ Σ2.

We define T+
1 = T1 ∪ {δs : s ∈ Σ2}, where for each symbol s ∈ Σ2 the Σ2-

sentence δs is an explicit definition of s. If q ∈ Σ2 is an n-ary predicate symbol
then we let the definition δq be the sentence

∀x1 . . . ∀xn
(
q(x1, . . . , xn)↔ Gq(x1, . . . , xn)

)
If g ∈ Σ2 is an n-ary function symbol then we let the definition δg be the
sentence ∀x1 . . . ∀xn∀y(g(x1, . . . , xn) = y ↔ Gg(x1, . . . , xn, y)). And if d ∈ Σ2

is a constant symbol then we let δd be the sentence ∀y(d = y ↔ Gd(y)). Using
the Lemma one can verify that T1 satisfies the admissibility conditions for δg
and δd.

We define T+
2 = T2∪{δt : t ∈ Σ1} in the same manner. If p ∈ Σ1 is an n-ary

predicate symbol then we let the definition δp be the sentence

∀x1 . . . ∀xn
(
p(x1, . . . , xn)↔ Fp(x1, . . . , xn)

)
If f ∈ Σ1 is an n-ary function symbol then we let the definition δf be the
sentence ∀x1 . . . ∀xn∀y(f(x1, . . . , xn) = y ↔ Ff(x1, . . . , xn, y)). If c ∈ Σ1 is a
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constant symbol then we let δc be the sentence ∀y(c = y ↔ Fc(y)). Using the
above Lemma one can verify that T2 satisfies the admissibility conditions for δf
and δc.

We show that T+
1 and T+

2 are logically equivalent. Without loss of generality,
we show that every model of T+

2 is a model of T+
1 . The converse follows via an

analogous argument. Let A be a model of T+
2 . We show that A is a model of

T+
1 . There are two cases that need checking.

First, we show that A � φ for every φ ∈ T1. We know that F ∗(A) is a model
of T1, so F ∗(A) � φ. By the Lemma this means that A � Fφ. One can verify
by induction on the complexity of ψ that for every model A of T+

2 and every
Σ1-formula ψ(x1, . . . , xn),

A � ψ[a1, . . . , an] iff A � Fψ[a1, . . . , an]. (7)

In particular, (7) implies that A � φ.
Second, we show that A � δs for every s ∈ Σ2. Let q ∈ Σ2 be an n-ary

predicate symbol. We show that A � δq. This follows since for all a1, . . . , an ∈ A

A � q[a1, . . . , an] iff A � FGq[a1, . . . , an] iff A � Gq[a1, . . . , an]

The first equivalence follows from condition (4) in the definition of intertrans-
latability and the fact that A is a model of T+

2 . The second equivalence follows
from (7). This string of equivalences implies that A � δq. In a similar manner
one can verify that A � δg for every function symbol g ∈ Σ2 and that A � δd
for every constant symbol d ∈ Σ2.

We have therefore shown that A is a model of T+
2 . We conclude that T+

1

and T+
2 are logically equivalent, so T1 and T2 are definitionally equivalent.

5 Conclusion

It is important to note that intertranslatability does not suffer from the same
shortcomings as Quine’s original criterion. Theorem 2 implies that the two
theories from Example 5 are not intertranslatable. Example 4 does not pose a
problem for intertranslatability either. One can easily verify that if T1 and T2
are intertranslatable, then T1 is complete if and only if T2 is complete. So the
two theories in Example 4 are not intertranslatable.

Quine originally considered theoretical equivalence because of its relationship
to underdetermination.12 Our discussion of Quine equivalence yields a small
remark concerning this relationship. A theory T is underdetermined if there
is another theory T ′ such that (i) T and T ′ are empirically equivalent but (ii)
T and T ′ are theoretically inequivalent. Quine proposed Quine equivalence
as a way to make condition (ii) precise. We have shown here, however, that
it is too liberal a criterion for theoretical equivalence. According to Quine
equivalence, there are few pairs of theories that satisfy (ii), and so there are few

12See (Quine, 1975, 318–322) and Coffey (2014).
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cases of underdetermination. If one takes Quine equivalence as the standard for
theoretical equivalence, one underestimates the threat of underdetermination.

Our discussion also allows one to evaluate Quine’s criterion against Gly-
mour’s. Theorems 1 and 2 demonstrate a natural and precise sense in which
definitional equivalence is an amendment to Quine equivalence. Quine’s original
criterion for theoretical equivalence was unsatisfactory, and when it is fixed it
becomes essentially the same as Glymour’s criterion.?
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