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Abstract

Let’s suppose you think that there are no uncountable sets.
Have you adopted a restrictive position? It is certainly tempting
to say yes—you’ve prohibited the existence of certain kinds of
large set. This paper argues that this intuition can be challenged.
Instead, I argue that there are some considerations based on a
formal notion of restrictiveness which suggest that it is restrictive
to hold that there are uncountable sets.

Keywords. set theory; restrictive theory; countabilism; uncount-
abilism

Introduction

This paper is directed towards the debate concerning whether or not
there are uncountable infinite sets. The ‘standard’ answer (at least
post-Cantor) is that there are, and we know this by Cantor’s Theorem.
To get going, let’s define the following two positions:

Uncountabilism is the position that there are uncountable infinite sets.

Countabilism is the position that every infinite set is countable.

One way of proceeding is to provide plausible philosophical rea-
sons to argue directly for one or other position. There is a separate but
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related question of whether either position is restrictive, which sup-
ports a position indirectly if we assume that restrictiveness is a the-
oretical vice. And it’s tempting to think that countabilism is the re-
strictive position—after all, doesn’t the uncountabilist just straightfor-
wardly claim that there are more sets than the countabilist? Let’s dub
this thought the Restrictiveness Intuition.

It is the objective of this short paper to argue that the Restrictive-
ness Intuition can be challenged. In fact, we will see that there is a
reasonable position on which the opposite is true. I’ll start by identi-
fying the following:

Main Aim. I will present a formal analysis of restrictiveness, based
on Maddy’s analysis in [Maddy, 1998], on which it is the uncountabilist
and not the countabilist that makes restrictive claims. Furthermore,
many of the natural responses on behalf of the uncountabilist achieve
only parity with the countabilist.

On this basis, I will conclude that it is not obvious that countabilism
is a restrictive position and that the opposite may well be correct.

Here’s the plan: In §1 will explain why the Restrictiveness Intu-
ition isn’t obviously correct, and ignores some important considera-
tions about models of set theory. §2 will explain Maddy’s account of
restrictiveness as it appears in [Maddy, 1998]. §3 will provide a modi-
fication of Maddy’s definition to fit in the countabilist/uncountabilist
debate, and show that given this modification it is the uncountabilist
who makes restrictive claims. §4 will provide some philosophical ex-
amination of the results and consider some objections. We’ll note that
whilst the uncountabilist can respond, the Restrictiveness Intuition is
still shown to be flawed. §5 concludes that the countabilist position is
not clearly restrictive, and presents some open questions.

1 Why the Restrictiveness Intuition isn’t ob-
viously correct

The reason the Restrictiveness Intuition isn’t obviously correct stems
from the observation that although an uncountabilist can view the
countabilist as saying correct things about some restricted domain(s),
the countabilist can make exactly the same move. Let’ make this clearer
with some formal details.

The uncountabilist’s theory is normally taken to include at least
ZFC, although any theory that implies that there is at least one un-
countable set would do. For the countabilist on the other hand,
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there are several options (depending on one’s background motiva-
tions). One could, for instance, hold a variety of predicativism (e.g.
[Feferman and Hellman, 1995]). Whilst interesting, we’ll set these
views aside—our interest in this article will be what happens when
we merely drop the Powerset Axiom and assume that every set is
countable. Whilst our discussion won’t address philosophical moti-
vations for this idea beyond restrictiveness, it bears mentioning that
there are pictures that provide such grounds (cf. [Scambler, 2021,
Builes and Wilson, 2022]).

As is now known in set theory, dropping the Powerset Axiom is
not a trivial move. Simply deleting it results in a theory weaker than
one would like. We therefore need some distinctions:

Definition 1. We distinguish between the following theories:

(1.) ZFC− is ZFC with the Powerset Axiom Removed and the Axiom
of Choice (AC) formulated as the claim that every set can be well-
ordered.

(2.) ZFC− is ZFC− with the Collection and Separation Schema substi-
tuted for the Replacement Scheme.

(3.) ZFC−
Ref is ZFC− with the following schematic reflection principle

added (for any ϕ in the language of set theory):

∀x∃A(x ∈ A ∧ “A is transitive” ∧ ϕ ↔ ϕA)

i.e. for any set x there is a transitive set A such that x ∈ A and
ϕ is absolute between A and the universe. We will refer to this
principle as the First-Order Reflection Principle (or just ‘Reflection’).

(4.) By NBG−, NBG−, and NBG−
Ref we mean the corresponding ver-

sions of NBG, with two sorts of variables and any corresponding
schema replaced by single second-order (predicative) axioms.

It’s known that these theories don’t have the same models (given
mild consistency assumptions).1 Generally speaking ZFC−/NBG− is
regarded as too weak for many purposes (see [Gitman et al., 2016] for
some discussion of this point).

Since we’re going to be discussing countabilism/uncountabilism,
it will be useful to provide the following abbreviation:

1See here [Zarach, 1996] and [Gitman et al., 2016].
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Definition 2. We will abbreviate the axiom “Every set is countable” by
Count.

With these definitions in hand, let’s consider how uncountabilists
and countabilists might interpret one another. Since we want the Ax-
iom of Foundation to have its intended interpretation, to get the ball
rolling we’ll just insist that each of the countabilist and uncountabilist
can adopt a theory that lets them produce a transitive model of the
base theory their opponent advocates (assuming that it is consistent
to do so). So, for example, the countabilist might adopt ZFC−

Ref plus
“There is a transitive model of ZFC” whereas the uncountabilist might
just stick with ZFC for now (since ZFC proves that there is a transi-
tive model of ZFC−

Ref + Count). For example, in any model of ZFC, the
hereditarily countable sets (often denoted H(ω1)) provides a model of
ZFC−

Ref + Count. What do these models look like from each perspective
under these assumptions?

Well, the uncountabilist can find very ‘nice’ transitive models of the
countabilist theory. To do so, she needs to interpret the countabilist as
leaving out a bunch of sets. In particular, she needs to forget about all
the uncountable sets that live in her ZFC world.

However, given how we’ve set things up, the same is true for the
countabilist. They can interpret the uncountabilist as talking about
some transitive model or other that misses out functions witnessing
the countability of various sets. There is thus a kind of ‘duality’ or
‘symmetry’ between the two positions. From the perspective of the un-
countabilist, the countabilist always misses a whole bunch of sets from
their picture (viz. everything that is not hereditarily countable). How-
ever from the countabilist’s perspective it is the uncountabilist who
misses a bunch of sets—namely they have to miss out all the bijections
that should exist between some ‘uncountable’ set and the natural num-
bers. It’s thus not clear that either view postulates ‘more’ sets than the
other. Whilst the uncountabilist has ‘more’ in the sense that if uncount-
abilism is true then there’s no bijections between certain sets, from the
countabilist’s perspective this is achieved by an artificial restriction. In
other words, what counts as ‘more’ depends on which of the two is
true. Thus, without further argument there is no particular reason to
prefer one position over the other (at least insofar as restrictiveness is
concerned).2

2Similar observations were made by [Skolem, 1922] and are in the back-
ground of much of the literature on the indeterminacy of reference (see
[Button and Walsh, 2018]). But as we’ll see there’s no need to hold some kind of
‘indeterminacy of reference’ to get the ball rolling here—we’ll just be looking at how
theories can provide interpretations and what this might say about restrictiveness.
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2 Maddy-restrictiveness

Is there a way to break the deadlock? In this section and the next,
we’ll suggest that by modifying Maddy’s analysis of restrictiveness (cf.
[Maddy, 1998]) we can obtain results on which it is the uncountabilist
that makes restrictive claims.

In order to make this out, we will build on the idea considered in
the last section of providing ‘good’ or ‘nice’ interpretations, and what
this might tell us about restrictiveness. That ‘good’ interpretations are
central to the ability of a theory to interpret mathematics without re-
striction has been advocated informally by [Steel, 2014] and formally
by [Maddy, 1998] and [Meadows, F] (often this is referred to as the in-
terpretive power of a formal theory). Maddy’s core idea is that a theory
T maximises over another T′ when one can find a ‘good’ interpretation
of T′ in T, but not the other way around (and no extension of T′ could
do the job either).

Maddy makes this out using the following definitions:

Definition 3. [Maddy, 1998] T shows ϕ is an inner model iff:

(i) For all σ ∈ ZFC, T ⊢ σϕ.

(ii) T ⊢ ∀αϕ(α) or T ⊢ (∃κ“κ is inaccessible” ∧ ∀α[α < κ → ϕ(α)])

(iii) T ⊢ ∀x∀y([x ∈ y ∧ ϕ(y)] → ϕ(x)).

Definition 4. [Maddy, 1998] ϕ is a fair interpretation of T1 in T2 (where
T1 extends ZFC) iff:

(i) T1 shows ϕ is an inner model, and

(ii) for all σ ∈ T1, T2 ⊢ σϕ.

Definition 5. [Maddy, 1998] T2 maximizes over T1 iff there is a ϕ such
that:

(i) ϕ is a fair interpretation of T1 in T2.

(ii) T2 ⊢ ∃x¬ϕ(x).3

Definition 6. [Maddy, 1998] T2 properly maximizes over T1 iff T2 maxi-
mizes over T1 but T1 does not maximize over T2.

3Maddy actually has a slightly more complicated definition, but (as she) notes,
this condition suffices for current purposes in the presence of Foundation (which
we’ve assumed).
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Definition 7. [Maddy, 1998] T2 inconsistently maximizes over T1 iff T2

properly maximizes over T1 and T2 is inconsistent with T1.

Definition 8. [Maddy, 1998] T2 strongly maximizes over T1 iff T2 incon-
sistently maximizes over T1 and there is no consistent extension of T1

that properly maximizes over T2.

Definition 9. [Maddy, 1998] T1 is restrictive iff there is a consistent T2

that strongly maximizes over T1.

The rough idea of Maddy’s proposal is that a theory T2 extending
ZFC is maximises over another T1 just in case:

1. T2 is consistent,

2. T2 inconsistent with T1,

3. T2 can represent T1 in an appropriately ‘nice’ context (either an
inner model, truncation at an inaccessible, or an inner model of
a truncation at an inaccessible), and

4. There’s no way of extending T1 to get a ‘nice’ context in which to
interpret T2.

Maddy then uses her definition to show that V = L is restrictive
in her sense. Informally speaking, this is because ZFC+“There exists a
measurable cardinal” is inconsistent with V = L, can produce an inner
model satisfying V = L (namely L), and no extension of ZFC + V = L
can ever find a nice model for ZFC + “There exists a measurable car-
dinal” (roughly, this is because L is the smallest possible inner model
under inclusion4). With Maddy’s account in hand, let’s see how we
might apply a similar notion to the current context.

3 Countabilist maximisation

We will need to modify Maddy’s definition slightly, since she is con-
sidering extensions of ZFC and we want to leave it open that count-
abilism is true. In this section I’ll explain the relevant modification,
before pointing out that it leads to maximisation of the countabilist
perspective over the uncountabilist one (and hence uncountabilism is
restrictive, given the definition).

4One also needs to handle truncation at an inaccessible, but this is easy to
check—see [Maddy, 1998] for details (the basic point is that if you’ve got a mea-
surable cardinal, you’ve got to have 0♯ floating around).
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We want to consider cases where we don’t have ZFC as the base
theory, but rather allow every set to be countable. For this, we need
our base theory to be one not including the Powerset Axiom. For the
purposes of this paper we’ll consider ZFC−

Ref . We then define:

Definition 10. In Maddy’s definition, replace every occurrence of ZFC
with ZFC−

Ref . We say that a theory T2 extending ZFC−
Ref modified Maddy

maximizes over T1, iff T2 strongly maximizes over T1 in this new sense.
For the sake of ease, we will simply refer to this phenomenon as strong
maximisation from hereon out.

But with this definition in hand, we can immediately identify the
following simple fact:

Fact 11. Let A be one of the usual large cardinal axioms (of course
this is somewhat imprecise, so the reader should feel free to substi-
tute their favourite e.g. “There is an inaccessible cardinal”, “There is
a measurable cardinal” if they wish to have a precise result). Let T
be a consistent extension of ZFC−

Ref+“Every set is countable” capable
of producing a definable inner model for A (we’ll see some concrete
examples of such theories soon). Then T always strongly maximises
over ZFC+ A.

The proof is short and instructive, and so we include it here:

Proof. For brevity, let’s denote the theory ZFC−
Ref+“Every set is count-

able”+“There is a definable inner model for ZFC + A” by TA
Count. We

have simply assumed that there is an inner model of ZFC + A in TA
Count,

so the existence of a fair interpretation is handled from the off. Clearly
TA

Count proves that there are sets outside this interpretation, in particu-
lar the relevant collapsing functions witnessing the actual countability
of the ‘uncountable’ sets in the fair interpretation, so we have maximi-
sation. Clearly also ZFC + A does not maximise over TA

Count. In partic-
ular, no extension of ZFC + A can ever produce a fair interpretation of
any theory including the statement “Every set is countable”, since this
statement can only be true in a transitive model of height at most ω1

(i.e. the ordinals of the model can be at most ω1). To get inconsistent
(and hence strong) maximisation, we now only need note that TA

Count is
trivially inconsistent with ZFC + A.

The core point, given ZFC−
Ref , is that when every set is countable

we can still have ZFC in an inner model, where an inner model contains
all ordinals. However the same isn’t true within ZFC (even when we
restrict to an inaccessible rank) since the notion of countability is up-
wards absolute. One is always restricted to models of at most height

7



ω1 in transitive interpretations of ZFC−
Ref + “Every set is countable”.

In this sense, the countabilist has an interpretive advantage, they can
have all ordinals in interpretations of ZFC plus large cardinals by sim-
ply leaving out the subsets that witness countability, but going back
the other way is not possible.

Already in [Maddy, 1998], Maddy was aware that there could be
trivial counterexamples to her definition in the context of ZFC based
on ‘dud’ theories—those that are simply ‘cooked up’ to strongly max-
imise over others but for the ‘wrong’ reasons. One considered by
Maddy is ZFC + V ̸= L + ¬Con(ZFC), which strongly maximises over
ZFC + V = L but for clearly ‘bad’ reasons.

A theory of the form TA
Count, whilst not clearly dud, is certainly ger-

rymandered to get the result by just throwing in the assumption that
we can find an inner model of the required kind. As it stands then, the
result given above is not especially strong. Certainly it would be sub-
stantially strengthened if there were ‘natural’ theories compatible with
ZFC−

Ref + Count that yielded the required inner models. I contend that
there are at least two candidates (in ascending order of naturalness):
(i) axioms of definable determinacy, and (ii) inner model hypotheses.
Let’s examine each in turn.

Inner models for large cardinals and determinacy. Axioms of de-
finable determinacy are claims about the existence of strategies for cer-
tain kinds of game. For the purposes of this paper the details are not so
critical, the main point is that they reverse to the existence of large car-
dinals in inner models and can be formulated within ZFC−

Ref .5 This has
been known for a long time in the context of ZFC (see [Koellner, 2014]
for a survey). However, many of these equivalences still hold in
ZFC−

Ref .6 A clear exposition and survey of several results appears in
Regula Krapf’s thesis [Krapf, 2017]. In particular, within ZFC−

Ref , if
one has

˜
Π1

1-Determinacy and the
˜
Π1

2-Perfect Set Property one can ob-
tain inner models of ZFC+“Every set of ordinals has a sharp” (and in-
deed this implication can be reversed from a model of ZFC+“Every set
of ordinals has a sharp”).7 With Projective Determinacy one gets inner
models with Woodin cardinals (in particular n-many for every n ∈ N).8

5A folklore result (see §5.1 of Regula Krapf’s PhD thesis [Krapf, 2017]) shows that
second-order arithmetic and ZFC− + “Every set is countable” are bi-interpretable,
and many axioms of definable determinacy are formalisable as statements of second-
order arithmetic.

6Roughly speaking, so long as one can construct well-founded ultrapowers, you
can build the inner models, and ZFC−

Ref suffices for this.
7See [Krapf, 2017], Ch. 5 for a proof of this equivalence.
8See [Koellner and Woodin, 2010] for a description of how to get models of large

cardinal axioms from determinacy hypotheses.
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In all of these cases, ZFC−
Ref + Count, when augmented with definable

determinacy, will strongly maximise over the relevant theories extend-
ing ZFC of weaker consistency strength. So, for example:

Fact 12. Let X be a set of ordinals. ZFC−
Ref + Count +

˜
Π1

1-Determinacy
+
˜
Π1

2-Perfect Set Property strongly maximises over ZFC + “X♯ exists”.

or:

Fact 13. Fix some natural number n. Then ZFC−
Ref + Count + PD

strongly maximises over the theory ZFC + “There are n-many Woodin
cardinals”.

Thus there are countabilist perspectives, based on natural axioms,
that do strongly maximise over the uncountabilist perspective axioma-
tised by ZFC.

Whilst this result goes some way towards providing ‘natural’ ax-
iom compatible with countabilism, there are still a couple of disadvan-
tages to the approach. First whilst axioms of definable determinacy
are natural enough from a mathematical standpoint, they are not ob-
viously directly justifiable from any known conception of set. Martin,
for example, writes:

Is PD true? It is certainly not self-evident. ([Martin, 1977],
p. 813)9

Most justifications for axioms of definable determinacy therefore
appeal to ‘extrinsic’ justifications, or try to justify other axioms that
imply them.10 It would thus be preferable if there were axioms provid-
ing inner models of large cardinals for the countabilist that are more
clearly intuitively plausible and/or respond to a particular conception
of set.

A second difficulty is that whilst many axioms of definable deter-
minacy can be formulated as statements of second-order arithmetic,
they are not obviously countabilist in any sense. That is, they are still
(believed to be) consistent with the existence of uncountable sets and
ZFC. From the countabilist’s perspective, it would thus be preferable
to have an axiom that is countabilist (i.e. implies that every set is count-
able) and yields large cardinal strength. This brings us on to:

9There are many similar examples, such as [Martin, 1976], p. 90
[Moschovakis, 1980], p. 610. For a survey of some of the (lack of) motivation for
determinacy axioms, see [Maddy, 1988].

10For an attempt within ZFC, see [Welch and Horsten, 2016] and [Roberts, 2017].
The distinction between intrinsic and extrinsic justification is far from controversial,
see [Barton et al., 2020] for discussion.
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Inner Model Hypotheses. Recently, [Barton and Friedman, S]
have developed such an axiom drawing on previous work in
[Friedman, 2006] and [Friedman et al., 2008]. Their axiom is based on
absoluteness—the idea that anything that ‘could’ be true in an outer
model is true in the universe. It reads as follows:

Definition 14. [Barton and Friedman, S] Ordinal Inner Model Hypothe-
ses. The Ordinal Inner Model Hypothesis for T or OIMHT states that if
a first-order sentence ϕ(⃗a) with ordinal parameters a⃗ in V is true in a
definable inner model I∗ |= T of an outer model V ∗ |= T of V obtained
by a definable pretame class forcing, then ϕ(⃗a) is already true in a de-
finable inner model I |= T of V . We shall use OIMH− and OIMH−

Ref to
denote the OIMH for ZFC− and ZFC−

Ref respectively.

The axiom is somewhat technical to state, and a few remarks are in
order. Firstly, a class forcing is simply a forcing notion that can have
a proper class of conditions. Such a forcing is ‘pretame’ exactly when
it preserves ZFC−.11 Secondly, the restriction to ordinal parameters
is desirable since the introduction of arbitrary real parameters yields
an inconsistency with ZFC−

Ref .12 Thirdly, the axiom is not first-order
expressible, but can be expressed in some extensions of NBG−

Ref .13

These complications aside, the thought behind the axiom is that
anything realisable in an inner model of an outer model is already re-
alised in an inner model. In this way, the universe has been maximised
with respect to what could be true. Our focus will be on the OIMH−

Ref .
Clearly the OIMH−

Ref implies that every set is countable, since one
can collapse the cardinality of any set in an outer model. Moreover, it is
consistent relative to ZFC with Projective Determinacy added, partially
assuaging any worries concerning its consistency.14 Importantly for
us:

Theorem 15. Suppose that the universe satisfies ZFC−
Ref + OIMH−

Ref .
Then the universe satisfies “0♯ exists”.15

11For the details of the definition, see [Friedman, 2000].
12See [Barton and Friedman, S] Theorem 25 for the result.
13The core problem is that we can’t express that something is a model of ZFC−

or ZFC−
Ref with one sentence (in the powerset context, the Vα hierarchy handles this

issue). Rather, in order to express the axiom, one needs to quantify over models ex-
istentially, so the conclusion is an infinite disjunction. The natural formulation of the
OIMH− and OIMH−

Ref are thus not first-order and is not even given by a first-order
scheme (i.e. infinite conjunction of first-order sentences). Instead it is an infinitary
Boolean combination of first-order sentences of low infinitary rank. However if one
adopts a theory with more class comprehension—such as MK−

Ref—the axiom is for-
malisable using the technique of coding outer models given in [Antos et al., 2021].

14See [Barton and Friedman, S], Theorem 28.
15See [Barton and Friedman, S], Theorem 31.
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Here we use “the universe” to denote any structure of the required
form, recalling that some higher-order resources are needed to formu-
late the axiom. We can now note:

Fact 16. Let T be a recursive first-order fragment of the theory of such
a universe satisfying ZFC−

Ref + Count + “0♯ exists” (e.g. ZFC−
Ref + Count

+ “0♯ exists” itself will do). Then T strongly maximises over ZFC.

Proof. Since “0♯ exists” implies that L satisfies ZFC, this is an immedi-
ate consequence of Fact 11.

The existence of 0♯ in fact goes substantially beyond ZFC. We can
identify:

Fact 17. Let ϕ be a large cardinal axiom that holds in L when 0♯ exists
under the theory ZFC−

Ref + Count. Let T be a a recursive first-order
fragment as in the above Fact 16. Then T strongly maximises over ZFC
+ ϕ.

Proof. Exactly as in Fact 16, the result is immediate by Fact 11.

Examples of theories strongly maximised over by such T include
ZFC with any of “There is an inaccessible cardinal”, “There is a Mahlo
cardinal”, “There is a proper class of inaccessible cardinals”, and
“There is a proper class of Mahlo cardinals”.16 So there are reason-
able countabilist theories that modified-Maddy-maximise over not just
ZFC, but also ZFC extended with many large cardinal axioms. Note
that for large cardinals stronger than 0♯ no such maximisation result
is known (measurable cardinals, for example, remain out of reach).
Nonetheless, it may be that there are other unknown consequences of
the OIMH−

Ref or other axioms that do yield further maximisation re-
sults.

Thus, at least as far as our modified version of restrictiveness goes,
it is the uncountabilist rather than countabilist who seems to have the
restrictive theories. What should we make of all this?

4 Philosophical analysis

Before we move on to philosophical discussion, let’s sum up the above
mathematical observations. We’ve seen that:

16In fact, this strong maximisation will hold as we move up through the hierarchy
of indescribable cardinals. Since the details will be obscure to non-specialists and
known to specialists, I omit them here.
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(1.) If we move to a modification of Maddy-maximisation on which
we take ZFC−

Ref to be the base theory, then if ϕ is a large cardinal
axiom and an extension T of ZFC−

Ref + Count is able to produce an
inner model of ZFC + ϕ, then T will modified-Maddy-maximise
over ZFC + ϕ (this was Fact 11).

(2.) There are natural axioms (e.g. axioms of definable determinacy)
that produce such T when added to ZFC−

Ref + Count.

(3.) There is at least one natural and intuitively plausible axiom
(namely OIMH−

Ref ) that both implies that every set is countable
and yields recursive first-order theories that strongly Maddy max-
imise over ZFC with many large cardinals added.

These observations imply that there is at least one sense in which
the uncountabilist perspective is restrictive in contrast to the count-
abilist one. The idea that missing out subsets is ‘worse’ than failing to
produce uncountable sets is vindicated if we assume the characterisa-
tion of restrictiveness given. There are, however, numerous reactions
one might have to this state of affairs. I do not take any stand on which
is ‘correct’, but rather I am merely aiming to articulate the space of pos-
sibilities.

Reaction 1: Be strong. One response we might put forward on
behalf of the uncountabilist begins by noting that in order for a the-
ory T1 to provide a fair interpretation of another T2, T1 must have
at least as high consistency strength as T2. This is because if one as-
sumes Con(T1), one can always obtain a model of T2 by restricting to
the fair interpretation available in any model of T1. A way of dodging
the restrictiveness results for the natural theories we considered (i.e.
the ones based on determinacy and the OIMH−

Ref ) then would simply
be to move to an uncountabilist theory that has stronger consistency
strength. For instance ZFC + “There is a supercompact cardinal” more
than suffices.

Response. Let’s first remark that even for the weakest results we’ve
considered here, we already have 0♯, and 0♯ suffices to yield a fair in-
terpretation of ZFC plus many large cardinals (in L). In fact, 0♯ is often
seen as beyond the limit of ‘intrinsic’ justification for uncountabilist
theories.17 Justificatory subtleties aside, I fail to see what the uncount-
abilist could appeal to here that the countabilist couldn’t also make use
of. For, all that the countabilist needs to justify to gain strong maximi-
sation (and hence restrictiveness) is the claim that the uncountabilist’s

17See here [Koellner, 2009]. See also [Roberts, 2017] and
[Welch and Horsten, 2016] for dissenting voices.
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theory is true in some definable inner model. But this seems to be a
weaker requirement that justifying the truth of the theory, whatever
base one is working with (ZFC vs. ZFC−

Ref has very little role to play
in this question). So, if ϕ is a large cardinal axiom, it seems like if the
uncountabilist can justify acceptance of ZFC + ϕ then the countabilist
can easily justify the acceptance of ZFC−

Ref + Count + “There is a (de-
finable) inner model of ZFC + ϕ”. Perhaps there are responses here in
terms of something like ‘the absolute’ (e.g. justification via reflection
principles), but any such argument will have to make it clear why the
countabilist cannot simply ‘piggy back’ off this justification to obtain
consistency in a definable inner model.

Reaction 2: Reject the modification to Maddy restrictiveness. A
different response would be to object to the modification of Maddy-
restrictiveness I made. A rough intuition behind Maddy’s character-
isation of restrictiveness is to look at cases where one theory can in-
terpret another in a ‘nice’ model. One might think, however, that a
shift in base theory can precipitate a shift in the class of models that
are considered especially ‘nice’. This is particularly salient when mov-
ing from ZFC to ZFC−

Ref . The natural models of the former theory are
normally understood to be of the form Vκ for κ inaccessible,18 whereas
natural models of the latter are usually understood to be H(κ)—the
hereditarily κ-sized sets. This might affect what one considers to be
a ‘fair interpretation’. If, for example, we allow inner models of H(κ)
to be fair interpretations, then we will lose strong maximisation since
ZFC−

Ref + Count + “There is a definable inner model for ϕ” can be true in
models like H(ω1), and hence it is not true that there is no extension of
ZFC and its cognates that has a fair interpretation for our countabilist
theory.

Response. This, I think, is in one sense a strong objection. Once
we have adopted ZFC−

Ref as the base theory, the whole notion of what
should be a fair interpretation has plausibly shifted from the ZFC con-
text. Really, discussion of Maddy-style restrictiveness should incorpo-
rate consideration of a wide variety of possible ‘nice’ interpretations,
and what comes out as restrictive dependent upon the class of inter-
pretations allowed.19

However there’s a sense in which the uncountabilist isn’t vindicated
here. Recall that we started our discussion with the Restrictiveness

18Although Maddy insists that κ be inaccessible, it is an interesting question
whether it need be. One could consider worldly cardinals (i.e. where Vκ |= ZFC)
for example.

19Indeed this is already so in the ZFC-context. See, for example,
[Incurvati and Löwe, 2016].
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Intuition that the uncountabilist straightforwardly postulates the ex-
istence of more sets. Given ZFC + ϕ, a move to a modified version of
restrictiveness that allows for a fair interpretation of ZFC−

Ref + Count

can only every achieve parity with ZFC−
Ref + Count + “There is a defin-

able inner model for ZFC + ϕ”, in the sense that neither will strongly
maximise over the other because of the existence of possible fair inter-
pretations going each way in extensions of the relevant theories.20 So,
even if we accept that it’s not restrictive to say that there’s uncount-
able sets, the Restrictiveness Intuition is still misguided since it’s not
restrictive to say that there are only countable ones.

Reaction 3: Reject Maddy-style restrictiveness altogether. If one
wishes to obtain a vindication of uncountabilism over countabilism,
it’s thus preferable to come up with a notion of restrictiveness that
does legislate in favour of the uncountabilist. It should be noted that
there are such notions out there. [Meadows, F], for example, consid-
ers a category-theoretic analysis of restrictiveness based on a notion of
retraction (this builds on work by Visser in [Visser, 2004]). Assessing
the details would take us too far afield, however we should note that
given this notion of restrictiveness ZFC− + Count is restrictive relative
to ZFC−, where ZFC is not.21 So there is at least one notion of restric-
tiveness on which it is the countabilist, and not the uncountabilist, who
makes restrictive claims.

Response. This response strikes me as the most attractive for the
uncountabilist, and might be a good place to push. However, I also
think that it’s unlikely that just one account of restrictiveness provides
the whole story here. Instead, I think of different formal accounts of
restrictiveness—including the ones put forward by Maddy, Meadows,
and myself—as making different intuitions about restrictiveness for-
mally precise. So, as a formalisation of the intuition behind the count-
abilist’s position, our account performs well, even if there are other ac-
counts of restrictiveness based on different intuitions that pull in other
directions. Moreover, our analysis shows that interpretations based on
‘niceness of interpretation’ are unlikely to tell against the countabilist
since inner models are some of the ‘nicest’ interpretations we have. We
thus see that the Restrictiveness Intuition cannot just be naively held,
since there are at least reasonable positions on which countabilism is
not restrictive. If one wants to support the Restrictiveness Intuition,
there is pressure to make precise the relevant sense(s) of restrictiveness

20Of course one could muscle a restrictiveness result by prohibiting inner models
as fair interpretations, but this is a sufficiently unattractive prospect as to not merit
serious consideration.

21See Proposition 6 of [Meadows, F].
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on which it comes out as vindicated.
Reaction 4: Accept countabilism. The final reaction we shall con-

sider is to simply accept countabilism.
Response. Whilst I personally find this somewhat attractive, it

should be noted that this is not a ‘magic bullet’ that closes the issue.
Apart from the fact, noted above, that there are other notions of re-
strictiveness that legislate in the opposite direction, it should be noted
that countabilism comes with substantial costs. There is a reason that
ZFC has become the ‘standard’ set theory: It is theoretically simple,
provides us with all the usual mathematical objects, and can be given
a robust underlying conception (in the form of the iterative conception
of set). Whilst ZFC− + Count and its extensions are perfectly theoret-
ically simple, its adoption results in a substantially different picture
of mathematics; in particular the reals make up a proper class and it
is unclear how one should think of objects of third-order arithmetic.
Moreover, the iterative conception of set as normally articulated de-
pends on power set, and thus is not automatically available in ZFC−.22

The point to be emphasised is simply that restrictiveness is just one
theoretical virtue among many. A proper decision between countabil-
ism and uncountabilism (or an explanation of why no such decision
is desirable) should consider restrictiveness as part of a wider exami-
nation and weighing of various theoretical virtues. This suggests that
analysing possible underlying conceptions of countabilism and the lie
of mathematical landscape when it is adopted are important tasks for
philosopher examining the foundations of mathematics.

5 Conclusions

In this article, we’ve seen that there are perspectives on which count-
abilism is very far from restrictive, and indeed can have an interpre-
tive advantage over uncountabilism. Of course the issues are subtle,
and the arguments here are not meant to be conclusive. The point is
simply that countabilism is not a mathematically sterile and restrictive
position, but rather admits of pleasant theoretical features.

In the end, we will have to ask: What do we want/expect from a (set-
theoretic) foundation? Do we really need a hierarchy of uncountable sets?
Or is it enough to find ‘good’ interpretations of our mathematical the-
ories and results?

22For some discussion of how we might incorporate mathematics and the iterative
conception under countabilism, see [Scambler, 2021] and [Barton and Friedman, S].
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