
Make It So: Imperatival Foundations for
Mathematics

Neil Barton∗, Ethan Russo†, Chris Scambler‡

September 12, 2023

Abstract
This article articulates and assesses an imperatival approach to the

foundations of mathematics. The core idea for the program is that math-
ematical domains of interest can fruitfully be viewed as the outputs of
construction procedures. We apply this idea to provide a novel formalisa-
tion of arithmetic and set theory in terms of such procedures, and discuss
the significance of this perspective for the philosophy of mathematics.

“Philosophers have hitherto only interpreted the world: the point is to change
it.” Karl Marx, Theses on Feuerbach

1 Introduction
In contemporary philosophy of mathematics it is common to think of mathemat-
ical discourse as primarily if not entirely propositional. Propositions describe
how things are in the world; on this picture, then, mathematics is primarily
a descriptive enterprise, one that aims to work out and then clearly articulate
what is the case with the mathematical ‘parts of reality’.

This article will explore the prospects for an alternative view, one according
to which mathematical discourse is at least in a significant part imperatival.
Imperatives in the form of instructions or commands tell someone (how) to do
something; on this picture, then, mathematics is at least in part concerned with
action, with ways of changing the world rather than describing it.

There are hints of this idea in ancient Greek mathematics. In Euclid’s ele-
ments, for example, one encounters two sorts of “proposition”: on the one hand,
one has declarative theorems (theoremata), results that show some relation be-
tween geometric objects must obtain; on the other, one has what came to be
known as “problems” (problemata), which detail something approximating a
recipe for the construction of a particular geometrical figure. As an example of
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the former, we have proposition 4: that two triangles with two similar sides and
the same angles are similar. On the side of the latter, we have proposition 1,
which shows how to construct an equilateral triangle about a given segment.1

The grammar of the solution to a problem is imperatival. In standard trans-
lations of Euclid, the solution to a problem takes the form of a series of “Let...”
statements, where what follows is an assertion that one of the basic allowed
actions has been performed. In such reasoning, Euclid will say: “Let P have
been done...” and reason thereafter as though it has in fact been done. But we
can equally well conceive of such arguments being given without using “Let...”
clauses. For example, we might give a solution to the problem “Make an equilat-
eral triangle over a given segment PQ!" in a series of commands or instructions:
“Create a circle with radius PQ centered at P! Then, create a circle with radius
PQ centered at Q!”, etc.

Although this way of arguing is still present in what you might call “informal”
mathematics, it is generally translated away by formalisations on the grounds
that the purely quantificational/propositional idiom seems sufficient. But there
is no principled obstacle to giving a logic for such constructive processes and for-
malising constructive arguments in the Euclidean style. This article will explore
a way of doing precisely this, offering imperatival formalisations of arithmetic
and set theory in the Euclidean spirit.

Why bother with this grammatical reconstruction? One reason is simply
that the Euclidean, activity-based conception of mathematics seems to us to be
interesting and neglected. But to raise the stakes, there is also the possibility
that such a formulation of mathematics may offer philosophical benefits, includ-
ing a well-motivated solution to the paradoxes of set theory, and a new source
of evidence for the consistency of mathematical theories. Claims of this kind
have in fact been made on behalf of imperatival foundations of mathematics in
the literature – most notably, by Kit Fine (2005) – but there has been little sys-
tematic work to develop relevant logical programs and assess their philosophical
merits. This article will aim to do precisely this.

We begin (in sections 2 and 3) by developing an imperatival language and
logic that allows us to reason rigorously about the effects of performing certain
specified actions. We’ll then (in section 4) use this logic to show that the
execution of certain commands would result in structures satisfying axioms of
standard mathematical theories – we focus on arithmetic and set theory. Finally,
we turn (in section 5) to a philosophical assessment of the results, and the
corresponding imperativalist foundation for mathematics they suggest.

2 Language
The logic we will employ is a higher-order logic, based on a modification of the
standard (functionally) typed λ calculus. In any such typed system, one first
defines a set of grammatical types, designed to represent idealized grammatical

1For more on this distinction, see Sidoli (2018) and references therein.
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categories familiar from natural language, and then provides a vocabulary of
terms in the relevant type system.

Our approach will be no different, although we will have recourse to some
types in our type system that do not feature in standard treatments.

The types are built up recursively: we first give some ‘basic’ types, and then
specify means of constructing complex types from the basic ones. In standard
typed λ calculi, there are usually only two basic types: the type e, of entity
denoting expression, is designed to model expressions like “Jack” and “Jill” and
“the number 9” that serve to pick out objects; and the type t, of truth-evaluable
expression, is designed to model expressions like “snow is white” and “grass is
green” that are used to make complete declarative statements. But for our
purposes, we will require in addition to these two the type ι, of imperatival
expression, which is designed to model expressions like “eat your greens!” and
“plug in the TV, then turn it on!” that are used to make commands and give
instructions.

In addition to these basic types, we also have means of generating complex
types from simple ones. Here, the standard machinery in functional type theory
is the → operator, which carries us from given types σ and τ to the type of
expression σ → τ , where expressions of the latter type are ones that make an
expression of type τ when completed by one of type σ. These include e.g. the
predicate-of-entities type e → t, with corresponding expressions like “... is a
dog”. In addition to these complex types, we will also make use of plural types:
where σ is any given type, the type σσ will be the type of expression that ranges
over multiples of things of type σ. For example, “Jack and Jill”, “the planets”,
and “the numbers under 9000” correspond to terms of type ee.

For future reference:

Definition 2.1 (ι-types). ι-types, henceforth just types, are defined inductively
as follows.

• e is a basic type, the type of entity denoting expression;

• t is a basic type, the type of truth-evaluable expression;

• ι is a basic type, the type of imperatival expression;

• whenever τ is a type, so too is ττ , the type of pluralities at type τ .

• whenever σ, τ are types, σ → τ is the type of expression which, on com-
pletion by one of type σ, yields one of type τ .

There is room for discussion about whether our type classifications are in
some sense “correctly” capture the grammatical classifications present in nat-
ural language. One might wonder, for instance, if imperative and declarative
sentences should really be seen as having a different syntactic category, with
corresponding semantic denotations, as opposed to being one and the same cat-
egory associated with a different pragmatic force. At least one of us thinks such
questions are misguided: there is always theoretical artifice in such divisions,
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and consequently one should feel free to divide up linguistic practices into syn-
tactic and semantic buckets subject only to minimal requirements of accordance
with practice. But even for those who think there are facts of this kind, evidence
from language at the very least leaves the question open. To the extent that
expressions like “the door is shut” and “someone is smoking” belong to a coher-
ent, common grammatical category, there seems an equally good, if prima facie,
case to be made that “shut the door!” and “smoke!” have their own, separate
one. Such expressions are almost never, for example, substitutable for one an-
other without loss of grammaticality, and in a way that seems somehow deeper
than those failures of substitution known already for sentences and names in
the traditional theory.

We can now turn to a discussion of the language we will be using. As usual,
we allow an infinite stock of variables at every type, and will avail ourselves of
standard propositional connectives, quantifiers, and the identity symbol at each
type.

As to complex terms, we will make heavy use of the device of λ-abstraction:
for each term T of type τ and variable x of type σ, λx.T is a term of type σ → τ .
We also have terms generated by application: where X is a term of type σ → τ ,
and Y a term of type σ, XY is a term of type τ .

We will also officially have a term ≺τ of type ττ → τ → t, which intu-
itively corresponds to membership among pluralities: ≺ Xx means x is one of
the Xs. Instead of writing ≺ Xx we will generally just write Xx, though it
should be borne in mind that strictly speaking Xx is not application in the
sense above. Also, we will adopt the convention throughout that upper-case
latin variables X,Y, Z will range over pluralities, and F,G,H will range over
intensional properties (i.e. will be variables of type σ → t).

Finally, we can come to the more interesting parts of the language, namely
that fragment which involves the distinctively imperatival apparatus.

Throughout the paper we will be focused on command that are in a natural
sense “creative”: they command the creation of new objects, or correspond to
iterations or other complex combinations of such commands. Thus, our sole
“atomic” command forming operator, which we will write as !σ (for various
types σ), commands the creation of something with a certain type σ feature.
Slightly more precisely: it takes in a predicate F of type σ → t, and yields the
command “Make something which is F !”.

We will also need complex imperatival operators. These allow us to make
more complex commands out of our basic ones. For example, given commands
i and j we will have the command to do i and then do j, which we will write
i; j; similarly, p → i is the command to check and see if p is true, and if it is do
do i (and otherwise, do nothing).

We also have quantificational commands: ∀σi is an operator that takes in
an imperatival property, for example something like “Kick x!”, and yields the
quantified command to do the command to each thing: in this case, yielding
the command to kick everything. (We will generally drop the subscripted i and
superscripts σ from quantifiers, where it is clear from context what is meant.)

Finally, we have a collection of modal terms that serve to connect the im-
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peratival and declarative parts of the language. Given an imperative i, [·] gives
us a modal operator [i]. The primary interpretation for [i]p is as “no matter
how you do i, p”, or “p will be true after i has been done”. But one can also
interpret it in other ways: in many contexts, it makes sense to read it along the
lines of Euclid’s “Let i have been done”, so that [i]p means: “Let i have been
done; then p”.

We also have a general notion of necessity, which we write with the plain �;
this we take to express something like “absolute necessity”, with �p meaning p
must be the case no matter what, and so in particular will be true no matter
what constructions we carry out, was true before we did any constructions, etc.

We sum up the language in Definition 2.2.

Definition 2.2 (L). The language L contains:

1. Variables:

• If σ is a type, then we have a countable stock of variables xσ
1 , ..., x

σ
n, ...

of type σ.

2. Propositional terms:

• ∧ of type t → t → t;
• ¬ of type t → t;
• ∀σ of type (σ → t) → t;

3. λ-abstracts, plural and applicative terms:

• the term λx.a : σ → τ , whenever it contains x : σ a variable and
a : τ ;

• the term ≺τ of type ττ → τ → t

• the term ab : τ , whenever it contains a : σ → τ and b : σ;

4. Imperatival terms:

• the term !σ of type (σ → t) → ι

• the term ; of type ι → ι → ι

• the term → of type t → ι;
• the term ∀σi of type (σ → ι) → ι;

5. Modal operators:

• the term [·] of type ι → t → t)

• the term � of type t → t
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3 Logic
Now that we’ve laid down an imperatival language, and glossed the intended
interpretations for its vocabulary, we describe the logical axioms and rules that
will be assumed in our axiomatization of mathematical theories in §4.

§3.1 deals with the declarative fragment of the logic, which is more or less
standard. §3.2 then discusses the central axioms relating to imperatives and
modalities: these axioms provide a bridge between the imperatival and declara-
tive terms, allowing one to reason about what effect the execution of commands
of various kinds will have. §3.3 then shows how to use the logic of §3.2 to define
the notion of a chain of iterations of a command, and then to define the notion
of indefinite iteration, which will be one of our key tools in the sequel. Finally,
§3.4 formalizes the notion of executability of a command.

3.1 Declarative Logic
The axioms for the “declarative” part of our logic, are more or less standard: we
assume classical propositional logic, positive free logic for the quantifiers, and
other principles governing application and λ-abstraction:

PL Every closed classical tautology

QL Rules for positive free quantifier logic

Ex1 Existence for all the propositional and imperatival connectives and quan-
tifiers, and identity

Ex2 Closure of existence under function application

Con α, β and η conversion rules

We also assume a strong form of the axiom of choice as part of our higher-
order logic, along with some standard principles governing the plural terms:

PlurExt ∀X,Y ((Xx ≡ Y x) ⊃ X = Y )

PlurComp ∃X∀x(Xx ≡ Φ), no free X in Φ

Choice ∃f (σ→t)→σ∀Fσ→t(∃xFx ⊃ F (fF ))

The Choice principle given here perhaps calls for some explanation, as it is
not completely standard. It asserts the existence of a relevantly typed function
which, given any non-empty property of the relevant type, returns something to
which that property applies, if there is any such entity. Such an f is naturally
thought of as a “global” choice function for properties, as it is a single function
that picks a witness for every instantiated property ‘at once’. The existence of
such functions is perhaps controversial, but the assumption is made here purely
for convenience.2

2We could get by, for example, with just a restricted form of choice for pluralities.
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3.2 Imperative Logic
With the declarative fragment of the logic in place, the business of this subsec-
tion is to give axioms governing the imperatival terms of L. These work by con-
necting the imperatival terms i to declarative ones p through modal-imperatival
claims [i]p.

The first axiom governs the ! commands. The idea behind these is that
formulas of the form !F correspond to commands to make an F . To capture
this idea axiomatically, we first impose the requirement that no matter how you
make an F , there is an F :

Make [!F ]∃F

Variable binding is, as usual, handled by λ abstraction, with !x.Φx abbreviating
!(λx.Φx).

Make is a minimum requirement on the execution of the command to make
an F ; but there other questions about what’s required by such a command that
it does not settle. For example, if asked to make an F , what should one do if
there is an F? And is one allowed to do anything besides making an F?

The answers to these questions don’t matter tremendously, but answering
them (in a certain way) will smooth out our theory considerably later on. In
effect, our policy is to require that Make commands are always executed as
frugally as possible: if there is an F , nothing should be done, and if there isn’t,
only a single F should be made.

It turns out that we have the means to formalise this idea using the modal
and plural apparatus we have, and that along the way we will encounter some
concepts that will find frequent application in the sequel and that therefore
warrant definition.3

First, we impose the following principle, designed to ensure that if there is
an F , nothing should be done to comply with the command to make one.

Eco1 ∃F ⊃ ∀p([!F ]p ≡ p)

Notice how we have defined the idea of !F ’s “doing nothing” here in terms of
quantification over propositions. We will make heavy use of this notion, and so
we will give it a memorable definition. Set:

:= λi.∀p([i]p ≡ p)

then (i) holds exactly when anything you can make the case by doing i is
already true, and vice versa; i.e., i does nothing.

Next, we want to impose the constraint that if there isn’t an F the only
new thing you make is a thing that F s – you do “nothing other” than making
a single F . In our logic, this requires a rather fiddly formulation, since we do
not have readily available backtracking operators. But we can define the notion
using our plural logic, and as with the case of Eco1, we will use this occasion

3In fact, Make is a consequence of these Economy principles, but we leave the former in
for expository reasons.
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to introduce defined notions making such concepts more readily available to us
down the line.

Eco2 ¬∃F ⊃ (∃X(∀y(Xy) ∧ [!F ]∃y(Fy ∧ ¬Xy ∧ ∀x(¬Xx ⊃ x = y))

Eco2 says that, if there are no F s, then no matter how you make an F , it
should be true that there is an object that is F , and that is the sole object that
did not exist before you made an F .

Note the use of plural logic in formalising this idea: in effect, we use plural
comprehension outside the scope of [!F ] to pick out the things that exist before
we make an F , and say that after making an F we have an F which is not one
of those.4

We will make heavy use of this device. But to avoid the proliferation of
plural quantifiers and instances of comprehension this definition involves, we
will henceforth use a scheme of metalinguistic abbreviation to capture the same
idea. Specifically, we introduce a meta-linguistic abbreviation new(x) to mean
that x is an object that is “new” relative to the previously occurring modal, as
just defined with the device used in Eco2. Thus for Eco2 we can now write

¬∃F ⊃ [!F ]∃x(Fx ∧ new(x) ∧ ∀y(new(y) ⊃ y = x))

with the latter simply intended as an abbreivation of the former. We will
also use new (no variable) to abbreviate the claim that there is something in
the relevant modal context that is new. (A formal definition of the new pseudo-
predicate is given in the next footnote.5)

We now turn to the complex commands. For ;, our intended interpretation
is that i; j should mean “Do i, then j!”. This we axiomatize as follows:

4That we can use pluralities in this way—to pick out only those objects which existed
“before" the command was executed—requires principles about the rigidity of plurality mem-
bership which we discuss at the end of the section. Also note that apparent simplifications
of Eco2, such as replacing the [!F ] formula with ∃!x.Fx ∧ ¬Xx, fall short of their intended
significance.

5We will use formulas ϕ involving a predicate new(x) as metalinguistic abbreviations for
a formulas ϕ∗ in our official language, not containing new(x), subject to the following rules:

• for atomic ϕ, ϕ∗ := ϕ[new/λx.x 6= x];
• ∗ commutes with modals, connectives and quantifiers (with a restriction implicit in the

next condition);
• if ϕ is of the form ◦ψ, where ◦ may be any of �,♦, [i] or 〈i〉, and new only occurs

in the scope of the instance of the ◦ in question, then ϕ∗ := ∃X∀y(Xy ≡ y = y ⊃
◦ψ[new/λy.¬Xy]∗).

• we will use new (no variable) as an abbreviation for ∃xnew(x).

This gives a systematic way of translating away uses of new. The following rules of inference
hold given these definitions:
r1 ¬Ex, ◦Ex ` ◦newx
r2 ◦newx ` ¬Ex
r3 ◦newx ` ◦Ex
Moreover, our definitions can be used to show that the expansion of our language by a predicate
new satisfying these constraints is a conservative extension of our logic.
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Then [i; j]ϕ ≡ [i][j]ϕ

This definition is standard in dynamic logic (see Harel et al. (2000), e.g.) and
reflects the simple fact that something must result from doing i then j exactly
when it must result from doing i, that it must result from doing j.

For p → i, we want to get at the idea of “check and see if p is true, if so do
i”. This we axiomatize as follows:

If1 p ⊃ ∀q([p → i]q ≡ [i]q)

If2 ¬p ⊃ (p → i)

The second here says that if p is false, p → i does nothing. The first says that,
if p is true, then you can make something the case by doing p → i exactly when
you can make it the case by doing i. We can think of p → i as “indiscriminable”
from i in these circumstances.6

Next, we want principles governing the imperatival quantifier. There is
perhaps more than one way to understand a quantified command like “Kick
every ball!"—does one execute this command in “parallel" (i.e., kick all the balls
simultaneously), or in series (“kick this ball, then that one, then that one, ...!").
We shall opt for for the former understanding. We are therefore looking for
axioms connecting the action of i on each individual entity with its “collective”
result when applied to all (current) entities at once (i.e. in parallel). Since here
we are interested only in commands that bottom out in “make” commands, i.e.
that are fundamentally concerned with the introduction of entities with desired
properties, the following axioms are natural and turn out to be sufficient. (Here
and throughout, Ey abbreviates the existence predicate ∃z(z = y) or suitable
alphabetic variant.)

All1 ∃x[i]Ey ⊃ [∀x i(x)]Ey

All2 〈∀x i〉Ey ⊃ ∃x〈i(x)〉Ey

All3 ∀x (i(x)) ⊃ (∀xi)

The first of these is a sort of “union” principle: it ensures that anything you
must get by doing i to some given x is something you must get by doing i to
every x. This seems natural given that doing i to all xs involves at least doing
i to each particular x.

The latter two more like “intersection” principles: All2 says that if you can
get something by doing i to everything, then there is some x such that you can
get that thing by doing i to it. All3 says that if doing i to each particular x
does nothing, then so too does doing i to every x. These reflect the idea doing
i to every x involves nothing more than doing i to each particular x.7

6We note, as an aside, that necessary indiscriminability is a natural criterion of identity
for imperatives.

7The status of the converses to these principles is subtle. We think that in the general
logic the converses admit of intuitive counterexamples. But when we eventually turn to
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The final component of the imperatival logic involves specifying the modal
logic that should hold for the imperatival-modals [i].

Here we assume that, at a minimum, the modal logic of each satisfies K, has
necessitation, and has the converse Barcan formula. The first two are intuitively
just saying that after we’ve done a command – assuming we can in fact do it
– we end up in normal circumstances where the laws of logic hold. The latter,
again, may be construed as a stipulative restriction on the kinds of commands
we will consider. Accepting CBF means that we can only create, and never de-
stroy. This is really just a simplifying assumption we could do without, adopted
because we are interested more in creation than destruction here.

While we could get by with only these assumptions on the logic of [i], we can
achieve a great simplification in future arguments and by requiring, in addition,
what we call the determinism axiom:

D 〈i〉p ⊃ [i]p

Intuitively, axiom D tells us that there is at most one way to execute a command.
Since it is so useful in simplifying arguments further down the line, we will
henceforth accept axiom D for each i. Again, we emphasize we do not think
of this as an axiom that somehow reflects a deep truth about the nature of
commands, indeed we think it is pretty obviously false in general. (Consider
“Bake a cake!” or “Draw a line!”.) Nevertheless, it seems plausible that there
are classes of “maximally specific” commands satisfying D, and we can always
restrict our attention to those, just by stipulating that our commands are “filled
in” maximally outside our explicit postulations.

We now consider the modal logic of the simple modality, �. The intended
interpretation of �p, again, is that p must be the case no matter what, and so
in particular will be true no matter what constructions we carry out, was true
before we did any constructions, etc. Accordingly, we make � an S5 modality
and relate it to the [i] as follows:

ML S5 for �, with neither Barcan nor its converse

Nec �ϕ ⊃ [i]ϕ

Finally, we will need some principles governing the interaction between plural
terms and �. We first have two principles stating the membership in plurali-
ties is “rigid”: pluralities can neither lose or gain members as we move across
possibilities:8

PlurStab Xx ⊃ �Xx

deterministic imperatives—imperatives such that 〈i〉p ⊃ [i]p– then we think that the converses
of all three principles are natural and reasonable. Indeed, All1 and All2 each yield the
converse of the other in the deterministic setting. Since later on we will exclusively be concered
with deterministic commands, we could strengthen these to biconditionals, but since we don’t
need to, and think the biconditionals generally questionable, we will leave these as they are.

8Compare the similarly named principles of Linnebo (2013). For a general discussion of
the interaction between plural logic and modality, see also Roberts (2022).
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PlurInext ∀X(∀x(Xx ⊃ �F ) ⊃ �∀x(Xx ⊃ F ))

Often, we’ll invoke both of these principles simultaneously under the label
of “plural rigidity”.

Finally, we have a principle to the effect that whenever a plurality exists, all
its members must as well:

PlurD Xx ⊃ �(E(X) ⊃ E(x))

That concludes our presentation of the basic logic.

3.3 On Iteration
Many of the operators we have axiomatized are considered in Fine (2005). But
Fine also includes a device for forming complex imperatives that we have not:
namely, an operator ·∗ which takes an imperative i and returns its “indefinite
iteration” i∗. The thought behind this command is that it should require re-
peatedly doing i as many times as is possible.

Indefinite iterations of commands was central’s to Fine’s proposal for how
to construct the natural numbers and sets—the construction of each required,
roughly, the indefinite iteration of a more basic number- or set-introduction
command. One advantage of our higher-order framework, in which quantifi-
cation over imperatives and propositions is allowed, is that we do not need to
take the operator as primitive, but rather can define it—or at least, can define
something that has all the logical features needed of it.

We’ll build up to the definition in stages. First, it is clear that with the
resources we have in hand, we can define commands that, intuitively, correspond
to the finite iterations of a given imperative i. Let

♥ := (∃y(y = y)) → (!x.x = x)

and observe that ♥ provably does nothing. (Argue by cases on whether there
is anything or not.) Now, set

i0 = ♥

and
in+1 = in; i

to get the various definable finite iterations of i.
We can define infinite iterations of i too: for we may define a property Ω

that picks out the finite iterations of i using the ancestral

Ω := λi, j.∀F (F♥ ∧ ∀k(Fk ⊃ F (k; i))) ⊃ Fj

and if we then set
α := λF.∀j(Fj → j)
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α(Ωi) will then have the force of “do every finite iteration of i”. By the All
axioms and D, it produces exactly the things that are produced by the finite
iterations of i.9

α(Ωi), then, loosely corresponds to the ωth iteration of i. But it is not the
final definable iteration, since we also have α(Ωi); i, and so on. How long do
these things go on? Is there a “maximal iteration”?

It turns out that, perhaps surprisingly, we do have a natural candidate for
the longest iteration in this setting. Specifically may consider the command to
do all the iterations of i, which we will call i∗ and construe as the command to
repeat i forever.

The definition works by extending the above trick with the ancestral so as
to characterize all the iterations of i, since we may then consider the quantified
command to do all of them and show this has the required force.

Towards this, we’ll use the following definitions:

Definition 3.1. Say F is weakly closed for i when, if it applies to some j, it
applies to the command to do j then do i.

Symbolically:
Cl := λi, F.∀j(Fj ⊃ F (j; i))

Definition 3.2. Say F is closed under limit procedures iff, whenever it ap-
plies to all commands with a property F , it applies to the command to do all
commands with property F . Symbolically,

Lim := λF.∀G(G ⊆ F ⊃ F (α(G)))

Definition 3.3. Say that a property F of commands is strongly closed for i
when it is closed for i, and is closed under limit procedures. Symbolically:

Scl := λi, F.Cl(F, i) ∧ Lim(F )

Strong closure captures a form of transfinite iteration. For, note that if a
property is strongly closed, and it applies to some j, then it applies to j; i, and
j; i; i, j; i; i; i and so on by weak closure. It is clear also that any strongly closed
property applying to j; i must also apply to the command to do every finite
j-iteration of i, and the command to do every finite j-iteration of i and then do
i, and so on.

We may then define the notion of an iteration by taking the least strongly
closed property. Actually for technical reasons it is convenient to define the
slightly more general notion of a j-iteration of i, which is an iteration of i that
begins with j.

Definition 3.4. Say that a command k is a j-iteration of i iff k has every
property F that (i) applies to j and (ii) is strongly closed for i. Symbolically,

It := λj, i, k.∀F (Scl(F, i) ∧ Fj ⊃ Fk)
9Note that there need be no sense in which α(Ωi) actually involves some infinite task.

Indeed there is no reason that there be any more than one iteration of i, as i might equal i; i,
and so on, in which case α(ωi) will be just i.
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We write Itij for Itji, and Iti for Iti♥. The commands in Itji are the iterations
of i beginning with j; the commands in Iti are iterations of i (starting by doing
nothing).

It is easy to show that j; i, j; i; i, j; i; i; i, and even ‘do every finite j-iteration
of i’ are all j-iterations of i. More generally:

Lemma 3.5. ∀i(Itijj; i ∧ Scl(Itij , i))

Proof. This follows immediately from the definitions.

We also have a form of induction provable for iterations.

Lemma 3.6 (Induction on Iterations.). For any F, i, j, if

1. Fj; and

2. whenever Fk and Iij(k), F (k; i); and

3. for any G with G ⊆ F and G ⊆ Iij, F (α(G));

then for any k with Itij(k), we have Fk.

Proof. Again, an immediate consequence of definitions.

We may now define indefinite iteration, as suggested above, to be the com-
mand to do all the iterations of i.

Definition 3.7. Given i, j, set i∗j := α(Itij), and i∗ := i∗♥.

This definition, though natural, has a curious impredicativity about it: for
the command i∗ to do all iterations of is itself just one among the iterations of
i.

Lemma 3.8. ∀i(Itii∗)

Proof. Every strongly closed F that applies to every iteration of i must also
apply to i∗, by the limit condition in strong closure.

Note that the lemma implies that i∗; i, i∗; i; i, and so on, are all iterations
of i. Our logic does not suffice to prove (we think) the generalisation to infinite
iterations and to i∗; i∗ itself, but these are natural extensions of the system.10

Our imperatival logic is strong enough to ensure that i∗j tolerably well be-
haved. To close this section, we give one example of this and prove a lemma
which will be important in what follows. The lemma tells us that, if something
is made by an indefinite iteration of i, it must be made first by some particular
application of i: nothing new gets generated ‘in the limit’.

Lemma 3.9. If ¬Eo ∧ [i∗j ]Eo, then either [j]Eo or there is a j-iteration k of i
such that [k]¬Eo ∧ [k; i]Eo

10There are various ways we could augment our logic so as to make such principles provable,
for instance by adding the quantifier distribution principle ∀x(i; jx) = i; ∀xjx, no x free in i.
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Proof. Suppose ¬[j]Eo and there is no such k, so that for any j-iteration k of i:

[k]¬Eo ⊃ [k; i]¬Eo

Then by induction on iterations, we then have that for every j-iteration k of
i, [k]¬Eo. It then follows by All1 that [i∗j ]¬Eo, contradicting the hypothesis.

3.4 Executability
The modal logic of the operators [i] has been stipulated to contain K and be
closed under necessitation. When combined with the axiom Make, this entails
[!x.x 6= x]p for every proposition p. Hence in the case of !x.x 6= x, everything
is necessary and nothing is possible. But intuitively !x.x 6= x is not something
that can be done. This leads naturally to the following definition:

Definition 3.10. i is executable iff 〈i〉>.

Note that in the case of a non-executable command, ¬〈i〉p for all p. For non-
executable i, then, everything is i-necessary and nothing is i-possible. (“There
are no i-worlds.”)

Since many of the commands in our imperatival approach to foundations
of mathematics are indefinite iterations, it will be useful to prove some general
results on what executability for indefinite iterations entails. The key result
here is something we call the fixed point lemma: it says that, for commands
that are “essentially creative” in that they effect changes always by making
things, executability for an indefinite iteration i∗ is equivalent to the iterations
of i reaching a fixed point, in the sense that after doing i∗ doing i does nothing
more.

Definition 3.11. Say that i is essentially creative if and only if it makes a
difference when and only when it makes a new object. Symbolically,

EC := λi.∀p
(
p ≡ 〈i〉(¬new ⊃ p

)
The following lemma shows that “Make!” commands are essentially creative,

and that essential creativity is “transmitted upwards” along complex command
forming operators.

Lemma 3.12 (EC lemma). We have the following.

1. !F is essentially creative for any F ;

2. If i and j are essentially creative, then i; j is essentially creative;

3. If i is essentially creative, then φ → i is essentially creative;

4. If, for all x, i(x) is essentially creative, then ∀xi is essentially creative.

Proof. As follows:

14



1. Use Eco2, Eco1.

2. Suppose (for reductio) that p ∧ 〈i; j〉(¬new ∧ ¬p). Then for U a plurality
such that ∀xUx,

〈i〉(∀yUy ∧ 〈j〉(∀zUz ∧ ¬p)) (1)

Since j is essentially creative and p is the case, we have [j]∀zUz ⊃ p.
Since i is also essentially creative, [i](∀yUy ⊃ ([j]∀zUz ⊃ p))11, which
contradicts (1).

3. Immediate.

4. Suppose for reductio p ∧ 〈∀xi〉(¬new ∧ ¬p). Then by determinism (D),
[∀xi]¬new, and hence for all x, [i(x)]¬new. Since each i(x) is essentially
creative, it follows that (i(x)) for each x, and hence that (∀xi) by
All3, which contradicts p ∧ 〈∀xi〉¬p.

The EC Lemma helps us determine some useful properties of indefinite iter-
ations. For instance, putting together parts 2. and 4. yields:

Lemma 3.13. If i is essentially creative, i∗ is essentially creative.

We’re now ready to establish that for essentially creative i, the executability
of i∗ gets us i-fixed-points:

Theorem 3.14 (Fixed point lemma). For any essentially creative i, j, no mat-
ter how you do i∗j , doing i again does nothing more. Hence, if i∗j is executable,
you can do it so that doing i again does nothing.

Proof. The previous lemmas entail all j-iterations of i are essentially creative.
Thus, we need only show that

[i∗j ][i]¬new.

Suppose, for reductio, 〈i∗j 〉〈i〉Eo ∧ new(o) for some o. Then 〈i∗j ; i〉Eo, and
hence [i∗j ; i]Eo by D. Given that i∗; i is itself an iteration of i, it follows from
All1 that [i∗j ]Eo, and hence that [i∗j ][i]¬new(o) by plural rigidity principles.
But we now have that 〈i∗j ; i〉Eo ∧ ¬new(o) ∧ new(o), which is a contradiction.

We thus conclude [i∗j ][i]Eo ⊃ ¬new(o), as required.
11Note we rely here on Ex2
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4 Mathematics
With our language and logic in place, we now turn to the project of char-
acterising mathematical domains of interest in imperatival terms, focusing on
arithmetic and set theory. In each case, we will offer commands whose execution
would demonstrably suffice to produce domains of numbers and sets sufficient
to model standard axioms for number and set theory. Later, we will relate these
results to the philosophical ideas surrounding Euclideanism about mathematics
discussed in the first section.

The background structure to our imperatival formalizations of mathematical
theories will always be the same – a template suggested already in Fine (2005).
The idea is that we will introduce commands whose execution will construct a
model for the mathematical theory of interest.

We approach this task in four stages. First, we introduce a stock of new
basic predicates into the domain that are tailored to the mathematical domain
we want to formalize. So in geometry they might be predicates for point and
line, in set theory for set and member, etc. Next, we lay down what we will call
(following Fine) “postulational constraints”. These are universal rules governing
the postulational predicates that “constrain” allowed courses of action. After
that, we specify a particular command in the postulational predicates whose
execution would produce a model for the relevant theory. Finally, we prove this
is so in the logic.

Before moving on to the details, we should briefly mention a point about how
the treatment of mathematics offered here in imperatival terms correlates with
the broadly “Euclidean” conception of mathematics we discussed at the outset.
In the Euclidean paradigm, there is an important role for imperatives in setting
out arguments that certain mathematical objects can be produced, as distinct
from arguments that the objects in question have certain properties or stand
in certain relations (assuming they exist). This was the distinction between
theoremata and problemata from the first section. Now, our imperatival logic
enables us to reimpose this distinction and in fact to argue that certain canonical
mathematical objects can be constructed (assuming the executability of certain
basic commands sufficiently many times). This enables us, in principle, to put
number theory and set theory in terms similar to Euclid’s approach to geometry:
we might argue, for example, that one can construct the sum n+k for any given
n and k, much as Euclid shows that one can construct an equilateral triangle
over a given base.

We have chosen, however, to focus on more powerful constructions – ones
that not only enable us to construct particular numbers (or sets) of interest, but
that enable us to construct all the natural numbers at once, or that enable us to
construct initial segments of the cumulative hierarchy strong enough to satisfy
axioms of standard set theory. That is, we focus on commands that enable us
to produce models for the mathematical theory in question, rather than just
to produce particular objects of interest in the theory; in this respect, we are
doing Euclidean metamathematics as much as we are doing mathematics. Part
of the reason for this is to enable a discussion (in the spirit of Fine (2005)) of
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the significance of the imperatival paradigm for the epistemology of consistency
and the solution to the set-theoretic paradoxes; another part of the reason is
that, as we will discuss in section 5, this approach contains within it, implicitly,
the weaker and more direct Euclidean approach to the relevant domains. That
said, we think that a direct presentation of number theory or set theory in the
Euclidean spirit would be independently interesting, and is something we hope
to pursue in future work.

4.1 Arithmetic
We will first consider the case of arithmetic.

4.1.1 Signature and Postulational Constraints

In line with the template just given, we begin by expanding our signature by
primitive predicates N and S, for number and successor, and impose the fol-
lowing postulational constraints.

Successor Uniqueness Sxy ∧ Sxz ⊃ y = z
Predecessor Uniqueness Syx ∧ Szx ⊃ y = z

Number Stability Nx ⊃ �Nx
Successors are Numbers Sxy ⊃ Nx ∧Ny

Predecessor Stability Sxy ⊃ �Sxy
Predecessor Inextensibility ∀y(Syx ⊃ �Fy) ⊃ �∀y(Syx ⊃ Fy))

4.1.2 The “Make Numbers!” command

With the postulational constraints in hand, we move on to the next step—
devising a command Num to produce the natural numbers.

Definition 4.1. Let ζ be the command to make a number:

!x.Nx

Definition 4.2. Let σ be the command to make a successor of each given num-
ber:

σ := ∀x(Nx →!y.Sxy).

Definition 4.3. Let Num be the command σ∗
ζ .

Thus, the “Make numbers!” command Num is the instruction to do all ζ-
iterations of σ. By our All principles, doing this will get us anything you can
get by doing ζ (effectively making zero), by doing ζ;σ (making zero then one),
doing ζ;σ;σ, etc.
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4.1.3 Main Theorem

We will now show that if Num can be done, then once it has been done ev-
ery theorem of arithmetic holds of the numbers, assuming that there were no
numbers to begin with.

Here and throughout we let PAN abbreviate the second-order Peano Axioms
written in terms of N and S.

Theorem 4.4. If there are no numbers to begin with, then no matter how you
do Num, PAN holds. Symbolically,

¬∃xNx ⊃ [Num]PAN .

The assumption that there are no numbers to begin with is annoying, but
needed. Without it, we might start out with an infinite descending chain of
numbers, and would therefore be unable to prove PAN holds after we do Num,
which only throws more numbers on the unruly pile.

Since issues of this kind will recur, we will introduce some new terminology,
writing [i]0p to mean ¬∃xNx ⊃ [i]p, where typically i will be a ζ-iteration of σ,
and will say that i has been done “starting from scratch” in such cases.

We now establish some auxiliary lemmas toward the main theorem. First,
a lemma to the effect that the existence of a number entails the existence of its
predecessors.

Lemma 4.5 (Predecessor Lemma).

�∀x�∀y(Syx ⊃ �(Ex ⊃ Ey))

Proof. Suppose Ey and Syx. Necessarily, there is a plurality X of all predeces-
sors of x. Now, by Predecessor Rigidity, if x exists, then any plurality applying
only to predecessors of x is such that necessarily it applies to any predecessor
of x. Hence necessarily, if x exists, then there is an X such that necessarily any
predecessor of x is one of the X’s.

Since y is actually a predecessor of x, it’s necessarily possible that y is so.
Hence it is necessary that if x exists, then there is an X such that it possibly
it applies to y. But since plurality membership is rigid, necessarily if x exists,
then there is an X which applies to y. But then we have that necessarily, if x
exists, y exists by PlurD.

Next, we show that Num has the fixed point property, using results estab-
lished earlier.

Lemma 4.6. Num is essentially creative.

Proof. Follows straightforwardly from the EC lemma (lemma 3.12).

Corollary 4.7. [Num] (σ).

We are now in a position to prove the Main Theorem.
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Proof. We assume throughout that Num is executable, since otherwise the re-
sult is trivially true.

Assume there are no numbers. Then, letting Z := λx.¬∃y(S(y, x)), we have:

(1) [Num]∃x(Nx ∧ Zx);

(2) [Num]∀x(Nx ⊃ ∃!y(Ny ∧ S(x, y)));

(3) [Num]∀x, y, z((S(x, z) = S(y, z) ⊃ x = y)

(4) [Num]∀x(Nx ⊃ Z(x) ∨ ∃y[S(y, x)])

(5) [Num]∀F (F0 ∧ ∀n(Fn ⊃ Fn+ 1) ⊃ ∀n(Fn)).

in (5), we make use of certain obvious notational conventions.
To establish (1), note that in order to do Num we must do ζ. Since there

are no numbers, ζ does something, and introduces a number, which we may
call 0.12 By All1, 0 also exists after doing Num from scratch. Note, moreover,
that 0 is also the unique number existing after ζ. If after Num 0 did have a
predecessor, that predecessor would have to exist also after ζ, contradicting the
uniqueness claim.

For (2), suppose to the contrary that 〈Num〉∃x(Nx ∧ ¬∃y[Ny ∧ S(x, y)]).
Then 〈Num〉〈σ〉new, since σ will then make a successor y of any such x, and
that y could not have existed before, else it would have been a successor of x by
Predecessor Rigidity. But this contradicts 4.7. Uniqueness of such y for each x
also follows by the postulational constraints.

(3) follows from predecessor uniqueness.
We show (4) and (5) at once by an induction on iterations. To begin, define

the transitive closure of 0 under S in the standard Fregean way, and say that a
number is good when it is in TC(0, S). Note that the postulational constraints
imply that if a number x is good after some ζ-iteration i of σ, then x is still
good after all further iterations.13

Now, plainly any good number is either 0 or the successor of some number,
so it suffices to show that for every ζ-iteration i of σ, [i]∀x[Nx ≡ good(x)] to
get (4). (5) follows by the Fregean definition of transitive closure.

For the base case, let us show that [ζ]∀x[Nx ≡ good(x)]. Since there are
no numbers, the effect of ζ is to introduce a single number, 0, which is clearly
good. So we have the result for ζ alone.

For the successor-inductive step, suppose some ζ-iteration j of σ only makes
good numbers. Now either σ does something, or it does nothing. If σ does
nothing, then all numbers are still good after j;σ. If σ does do something, it
must introduce the successor of a good number, which will then be good as well.

12By our determinism axiom/ the postulational constraints, this entity is the only thing we
can get by doing ζ, so introducing a name for it is fine.

13More formally: if there are no numbers, then after any ζ-iteration i of σ, any good number
x is such that, necessarily, if a ζ-iteration j makes x from scratch, then x is good after j also.
The proof is by induction on good numbers.
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For the limit-inductive step, if all ζ-iterations of σ in some X only produce
good numbers, by All2 any number produced by αX must be produced by one
of the Xs, and the result follows.

4.2 Set Theory
We now turn to the case of set theory. Our plan, just as in the case of arithmetic,
is to lay down some postulational constraints, devise a command for creating
the sets, and then to prove that after this command is executed, ZFC holds of
the sets. Here, however, matters are complicated by issues relating to Russell’s
paradox.

4.2.1 Signature and Postulational Constraints

We assume the language to contain a predicate S for sethood and a relation
symbol ∈ for membership. We use Set(x,X) to abbreviate

∀y(y ∈ x ≡ Xy).

The postulational constraints for sets parallel those for numbers:

Extensionality ∀x, y(Set(x,X) ∧ Set(y,X)) ⊃ x = y)
(Plurality-Uniqueness) ∀X,Y (Set(x,X) ∧ Set(x, Y ) ⊃ X = Y )

Set Stability Sx ⊃ �Sx
Set-member x ∈ y ⊃ Sy

Membership Stability x ∈ y ⊃ �x ∈ y
Membership Inextensibility ∀y(y ∈ x ⊃ �Fy) ⊃ �∀y(y ∈ x ⊃ Fy)

Plurality Uniqueness, the set-theoretic parallel for Predecessor Uniqueness,
is given in brackets, because it in fact follows from the definition of Set and the
rest of our logic.

4.2.2 The “Make sets!” command

It is common to describe an iterative set construction process when motivating
standard axioms of set theory. Start with some things, possibly none; introduce
all possible sets of things you currently have; once finished, do the same thing
again; and then again; and so on, continuing indefinitely in this fashion, taking
unions at limits.

We will axiomatize such a process directly here, in the form of instructions
for an iterative procedure. The procedure to be iterated is: make sets of all
things you currently have.

Definition 4.8. Let ρ be the command to take each plurality X and to make a
set with those things as its elements. Symbolically:

∀X!x.S(x) ∧ ∀y(y ∈ x ≡ Xy)
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Definition 4.9. Let Set be ρ∗ – the command to repeatedly introduce all sets
of things in the domain.

Our earlier lemmas on essential creativity and fixed points then imply:

Lemma 4.10. Set is essentially creative.

Corollary 4.11. No matter how you do Set, doing ρ will do nothing after.
Symbolically, [Set] (ρ).

One might hope to leverage this fixed-point result, just as we did in the case
of arithmetic, to derive the axioms of ZFC. But there is a problem here:

Theorem 4.12 (Generative Russell). The Set command is not executable.
Symbolically, ¬〈Set〉>.

Proof. 〈Set〉> iff 〈Set〉 (ρ), by the fixed point lemma. But if 〈Set〉 (ρ)
then by All2 and Eco1 it follows that 〈Set〉∀X∃xSet(x,X), something which
generates a contradiction by the familiar Russell-reasoning.

The generative Russell shows that one cannot have an executable command
that iterates ρ (the set introduction command) indefinitely. Since our goal is to
have devise a command for producing the sets which is plausibly executable, or
at least not provably inexecutable, we will need a more subtle approach.

4.2.3 Hedging one’s sets

There is in fact a general moral to the Russell paradox. Say that a command i
is a necessary difference maker iff

�(〈i〉> ⊃ ¬ (i)).

Then:

Fact 4.13. No essentially creative necessary difference maker has an executable
indefinite iteration.

However, what we can do (following a suggestion of Fine (2005)) is employ
“hedged” versions of necessary difference makers. These are commands of the
form (p → i)∗, which have the intuitive force of “While p, do i!”: the command
says to repeatedly check and see if p is true and to stop only when p is false (or
i fails to run).

The lemmas below demonstrate the that, where i is an essentially creative
necessary difference maker, “While p, do i!” is executable just if one can iterate
i in such a way that ¬p eventually results.

Definition 4.14. Set
w := λp, i : (p → i)∗.

Lemma 4.15. If i is essentially creative, w(p, i) is essentially creative.
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Lemma 4.16 (while-do lemma). [w(p, i)]¬p for any essentially creative NDM
i.

Proof. This is trivial if w(p, i) isn’t executable. Otherwise, if you can do w(p, i)
so that p, p → i behaves like i, which must do something. The result follows by
essential creativity of w(p, i).

Definition 4.17. Redefine Set to be an operation of type t → ι that takes in a
hedge condition h and returns the command to iterate set introduction until h
is violated. Formally,

Set := λh.whρ.

We will generally write Seth for Set(h).

By choosing suitable h, we may then use these hedged commands to gener-
ate indefinitely large universes of sets without running into the contradictions
involved in ρ∗ – or at least, without obviously running in to them. (We will
discuss these issues of consistency/executability in more detail later on.)

4.2.4 Main Theorem

Our main result is that there is a plausibly executable hedged command by
which one can postulate the sets in such a way that they satisfy second-order
Zermelo-Fraenkel set theory with Choice (we’ll denote this with ZFC). As
before, we use [i]0p here in a manner analogous to its use in the arithmetic case,
to mean ¬∃xSx ⊃ [i]p (i.e. starting from scratch).

The requirement that our command be ‘plausibly executable’ perhaps re-
quires some explanation. The reason we need the restriction is that the forego-
ing results how that it is actually really easy to find hedges h for which we can
prove that if there are no sets, no matter how you do Seth, second-order ZFC
holds of the sets: just take h to be a tautology, so that Seth is just ρ∗. But
this case is uninteresting, since one demonstrably cannot follow this command.
Thus although no matter how you do it, ZFC holds, it is equally true that no
matter how you do it, the negation of ZFC holds.

There are other h for which the result is non-trivial, however, assuming
consistency of standard set theories. To establish this, we’ll show that:

Theorem 4.18. There is a hedge h for which:

(i) We can prove that, if there are no sets, no matter how you do Seth, second-
order ZFC holds of the sets (i.e. [Seth]0ZFCS), and

(ii) If ZFC is possibly true, then Seth is possibly executable (i.e. if ♦ZFC,
then ♦〈Seth〉>).

Note that ρ∗ violates (ii).
What should our “hedging” h be? Our ultimate proposal for h is a somewhat

unwieldy four-part disjunction characterizing various structural features of the
(von Neumann) ordinals. In effect, these will assert that the ordinals form
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an accessible plurality, in a sense intimately related to the familiar notion of
inaccessibility from large cardinal theory. The idea is that the process of making
sets will have to iterate until the ordinals no longer have any of these features,
at which point the process will have gone on long enough to ensure that the
axioms of ZFC hold.

By way of motivation for our hedge, and in the spirit of logical modularity,
it will be helpful to proceed by considering the axioms one by one, and inves-
tigating what sort of hedge is needed for deriving each of them. As we’ll see,
some axioms will hold no matter the hedge, while others require the hedge to
have certain properties.

It will be useful to establish some terminology before we properly get going.

Definition 4.19. Let η abbreviate h → ρ, leaving context to determine the
relevant h.

Definition 4.20. When 〈j〉h for some iteration j of η, say that the hedge is in
effect at j.

We now turn to proving that the axioms of set theory follow on the assump-
tion our hedge entails certain propositions.

Foundation, Separation, Union, Choice: No Hedging Required! We
first tackle the axioms of Foundation, Separation, Union, and Choice. Deriving
these axioms requires nothing specific of the hedge; no matter what h is, if there
are no sets, then after Seth, these axioms are true.

First up, the axiom of foundation, which we prove in the following series of
lemmas. The first will see many applications in the sequel.

Lemma 4.21 (Elements Lemma). If ¬Ex ∧ [η]Ex, then there is a plurality X
with [η]Set(x,X).

Proof. The assumption entails η is indiscriminable from ρ. So use All2 and
Eco1.

Say that a set x is irregular iff it has no member from which it is disjoint.
Say also that a plurality X is infinitely descending iff for each x ≺ X, there is
a y ≺ X such that y ∈ x.

Lemma 4.22. An application of ρ (or η) can make an irregular if and only if
there exists an infinitely descending X.

Proof. The right to left is obvious (and superfluous to our purposes). For the
left to right, observe that if η produces an irregular x, then the plurality X
of x’s members, which exists before η by the Elements Lemma, is infinitely
descending.

Lemma 4.23 (Foundation). Let h be any hedge. Then, for any iteration i of η
(starting from scratch), if there are no sets and you can get a set x by doing i,
either x is empty or else it has a member with which it has disjoint intersection.
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Proof. By the previous lemma, it is enough to show that after each iteration i
of η, there is no infinitely descending plurality. But this is a routine induction
on iterations.

This result is pleasing, in that it shows the standard axiom of foundation
does not need to be assumed in this setting but may be proved from more
basic features of the logic of set construction. (More cautiously: it follows if we
assume we start from scratch.)

Before we can prove the others, we need some more technical lemmas. The
first uses results already established on indefinite iterations to show that any
set that is produced by Seth is ‘first’ produced by doing η after doing some
iteration i of η.

Lemma 4.24 (Birthday Lemma). When starting from scratch,

[Seth]Ex ∧ S(x)

implies there is an iteration i of η such that [i]¬Ex and [i; η]Ex.

Proof. This is just lemma 3.9.

The next lemma parallels the Predecessor Lemma (Lemma 4.5) from before.

Lemma 4.25 (Member Dependence Lemma). For any possible set x and any
possible member y of x, necessarily, if x exists then y does as well and is a
member of x. Symbolically:

�∀x�∀y(y ∈ x ⊃ �(Ex ⊃ (Ey ∧ y ∈ x)))

Proof. By parallel argument to the Predecessor 4.5.

And finally, we can use the Birthday and Member Dependence lemmas to
prove a lemma to the effect that whenever you form a set x by doing η, the
“stage” at which you form it also contains pluralities corresponding to all pos-
sible combinations of elements of x.

Lemma 4.26 (Stage Lemma). For any plurality X of elements of a given set
x, then for any possible member z of X, necessarily: if x does not exist but can
be attained by doing η, then z exists.

Symbolically:

∀X∀x(∀y(Xy ⊃ y ∈ x) ⊃ �∀z(Xz ⊃ �(¬Ex ⊃ ([η](Ex) ⊃ Ez))))

Proof. Suppose E(X) and E(x), and every y in X has y ∈ x. Now suppose
for reductio that it is possible that there is a z ∈ X such that possibly ¬Ex ∧
[η](Ex) ∧ ¬Ez. Since ♦Xz, Xz by PlurStab. Then by PlurD z exists, since
X does, and hence is a member of x.
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Now, since it is possible that ¬Ex ∧ [η]Ex ∧ ¬Ez, we have

♦∃Y ([η](Ex ∧ Set(x, Y )) ∧ ¬Ez) (2)

Since (in fact) z ∈ x, it is necessary that if x exists, then z exists and is a
member of x, by the Set Dependence Lemma. Hence it is possible that ¬Ez
and that there is an Y such [η](Ex ∧ z ∈ x ∧ Set(x, Y )). Hence ♦Y z, so by
PlurStab, �Y z. But now we may derive

♦∃Y ([η](Ex ∧ Set(x, Y )) ∧ Y z ∧ ¬Ez)

using (2), which in turn yields a contradiciton by PlurD.

We are now in a position to derive Separation and Union.

Lemma 4.27 (Separation). For any hedge h:

[Seth]0∀x∃y∀z(z ∈ y ≡ z ∈ x ∧ φ(z))

Proof. Suppose x exists after Seth. By Plural Comprehension, there is a plu-
rality Y of all those members z of x such that φ(z).

Now by the Birthday Lemma, there is an iteration i of η such that after
i, x does not exist, but after doing η additionally it does. Now form, after i,
Y ′, the plurality of all and only those things which belong to Y . Since η does
something, after η there is a set y whose members are exactly those of Y ′.

Now, after Seth, y exists by All1. We need only show Set(y, Y ). Obviously,
any member of y belongs to Y , by the rigidity of plural membership. Suppose
Y z: by the Stage Lemma, z exists after i, and hence belongs to Y ′, and so is a
member of y.

Lemma 4.28 (Union). For any hedge h,

[Seth]0∀x∃y(Sy ∧ ∀z(z ∈ y ≡ ∃w(w ∈ x ∧ z ∈ w)))

Proof. Suppose x exists after SetH . Let Y be the plurality of elements of
elements of x (which exist after Seth, that is).

By the Birthday Lemma, we may find an iteration i of η with [i]¬Ex but
[i; η]Ex. Form after i the plurality Y ′ of things belonging to Y . Then after
doing η on top of i there is a set y with Set(y, Y ′).

By All1, y exists after Seth. We need only show Set(y, Y ). Obviously, any
member of y belongs to Y , by the rigidity of plural membership. Suppose Y z:
then z ∈ z′ for some z′ ∈ x, and by the Subset Lemma, z′ exists after i, and
hence, by the Set Dependence Lemma, z exists after i. Thus z belongs to Y ′,
and so is a member of y.

Lastly, the Axiom of Choice follows no matter the hedge, given our back-
ground plural logic.
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Lemma 4.29 (Choice). If there are no sets, then no matter how you do Seth,
the axiom of choice will be true.

Proof. We take the form of choice involving disjoint non-empty sets.
Suppose there are no sets, and that after Seth, x is a set X of non-empty

disjoint sets.
Then by the Birthday Lemma, there is some iteration i of η such that

[i](¬Ex ∧ [η]Ex). After i, then, all the members of x exist. Let X be the
rigid property applying to a plurality X just in case there is a member y of x
whose members are exactly the X’s. Then by Plural Choice, there is a functional
relation R such that ∃yR(X, y) ⊃ X(X) and if R(X, y), then y is among the
X’s. Let Z be the plurality consisting of those objects z such that ∃XR(X, z).
Then after i; η, there is a set whose members are exactly those in Z, and this
set witnesses the Choice principle.

Our results so far have not depended on particularities of the hedge h: if
there are no sets, then no matter the hedge h, after Seth, the sets satisfy Union,
Separation, and Foundation, and Choice. To derive the remaining axioms of
ZFC, however, we have to make more demands on our hedge. We first discuss
pair, power and infinity together before moving on to replacement.

Pair, Power, Infinity: Bounding Hedges The axioms of pair and power
require us to place non-trivial constraints on h. For example, set h := ¬∃xSx;
clearly [Seth]0¬“pair”.

The fix here is to choose h so that it fails only when there is no “final
round” of applications of η. We can concoct propositions with this property
by observing that certain features of the outputs of iterations of η tell you how
long the iteration has been going on: in particular, the length of (von Neumann)
ordinals that have been produced. Thus, by choosing h to fail only when the von
Neumann ordinals produced are unbounded, we acheive the affect of stopping
only when closed under iterations of ρ.

Let us be a bit more preicse. Say that a plurality X of ordinals is bounded in
Y iff some ordinal in Y has every ordinal in X (other than itself) as a member:

B := λXY.∃x[Y x ∧ ∀y(Xy ∧ y 6= x ⊃ y ∈ x)]

We will call X bounded in itself when BXX.
We then offer

Definition 4.30 (Ordinal Bound). Let Ω be the plurality of all ordinals (in
whatever context is ambient14), and let o be the proposition that the ordinals are
bounded in themselves.

o := B(Ω,Ω).
Say that a hedge requires unboundedness iff o (strictly) entails h, i.e. iff

�o ⊃ h.
14Technically, we are appealing to plural comprehension on the formula saying that x is an

ordinal.
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Our claim now is that if h requires unboundedness, then Seth yields a model
for pair and power (starting from scratch).

Toward proving this, we first sharpen the idea that we can use the ordinals
to measure how long iterations have been going on in a series of lemmas.

Lemma 4.31. For any iteration i of η, no matter how you do it, the resultant
plurality of (von Neumann) ordinals is transitive in the sense that Xy and x ∈ y
implies Xx and well ordered by membership in the sense that λx, y.x ∈ y∧Xx∧
Xy is a well-order.

Proof. A routine induction on iterations.

Lemma 4.32. Suppose that h requires unboundedness. Then, for any iteration
i of η,

[i](¬Ex ∧ [η]Ex) ⊃ [i; η]h.

Proof. Let X be the plurality of ordinals existing after i. Since doing η after
i creates something new, after i, the while-condition obtains, and so, after η,
there is an ordinal α whose members are exactly the X’s. But α cannot itself
be among the X’s, else α ∈ α, contradicting foundation. So α only exists after
the application of η.

Moreover, α contains any other ordinal that exists after doing η (after i):
hence the ordinals are bounded in themselves and so the hedge obtains.

We are now in a position to establish Pairing and Power Set, conditional on
using a suitable hedge condition.

Lemma 4.33 (Pair). Suppose that h requires unboundedness. Then,

[Seth]0∀x, y∃z∀w(w ∈ z ≡ w = x ∨ w = y).

Proof. Let x and y be sets which exist after Seth. Then there are iterations
ix and iy of η such that [ix]¬Ex ∧ [ix; η]Ex and [iy]¬Ex ∧ [iy; η]. Then after
[ix; η] there is an ordinal ox containing all other ordinals existing after ix; η, and
similarly an ordinal oy containing all other ordinals existing after iy; η.

Now consider the plurality X containing just ix; η and iy; η, and the corre-
sponding α(X), which is an iteration of η. Then either oy ∈ ox or ox ∈ oy, and
hence either ox or oy contains all other ordinals existing after α(X), since all
such ordinals exist either after ix; η or iy; η. Hence after α(X), the hedge is in
effect, and so α(X); η will then create a set of x and y.

Lemma 4.34 (Subset Lemma). For any sets x and y, if y ⊆ x, then necessarily:
if x does not exist but exists after η, then there exists after η a y′ necessarily
coextensive with y:

∀x∀y((Sx ∧ Sy ∧ y ⊆ x) ⊃ �((¬Ex ∧ [η]Ex) ⊃ [η]∃y′(�∀z(z ∈ y′ ≡ z ∈ y))))
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Proof. Because � is an S5 modality, it suffices to show:

♦(Ex ∧ Ey ∧ y ⊆ x) ⊃ ((¬Ex ∧ [η]Ex) ⊃ [η]∃y′(�∀z(z ∈ y′ ≡ z ∈ y)))

So suppose it is possible that Ex∧Ey∧y ⊆ x, and suppose ¬Ex∧[η]Ex. Let
Y be the plurality of all z ∈ y. Then after η, there is a y′ with ∀z(z ∈ y′ ≡ Y z).

We aim to show that, after η, y′ is necessarily coextensive with y. Suppose
not: then either it is possible that there is a z ∈ y but z /∈ y′, or z /∈ y but
z ∈ y′. Suppose the first. Since it is possible z ∈ y, it is necessarily so, and
hence possibly z ∈ x. It then follows by the Stage Lemma that z exists, and so
z ≺ Y ′. Hence after η, z ∈ y′ and so necessarily so. If, on the other hand, it is
possible that z ∈ y′, then z ∈ y′ after η, and so z ≺ Y ′. Again by the Stage and
Membership Dependence lemmas, z′ must exist before η, and so z ∈ y, and so
necessarily so.

Lemma 4.35 (Power). Suppose that h requires unboundedness. Then:

[Seth]0∀x∃y∀z(z ∈ y ≡ z ⊆ x).

Proof. Let x exist after Seth, and let X be the plurality of all its subsets. By
the Birthday Lemma, there is some iteration i such that [i](¬Ex ∧ [η]Ex)). By
plural comprehension, after i; η, there is a plurality X of all subsets of x. Since
the hedge is in effect after i; η (Lemma 4.32), after i; η; η, there is a set y such
that ∀z(z ∈ y ≡ Xz).

By All1, y exists after Seth, since i; η; η is an iteration of η, and moreover
by the rigidity of membership, ∀z(z ∈ y ≡ Xz) as well. By the Subset Lemma,
for every subset x′ of x, there is a necessarily coextensive set y′ which exists
after i; η, and hence which belongs to y. But then since y′ and x′ both exist
after Seth and are coextensive, y′ = x′. Hence y contains every subset x′ of
x.

Infinity, likewise, is handled by asserting the ordinals have an unbounded
proper initial segment.

Definition 4.36. Say that a hedge requires infinitude iff the proposition f that
Ω is finite (strictly) entails h.

Lemma 4.37 (Infinity). If h requires infinitude, then no matter how you do
Seth, the axiom of infinity obtains.

Replacement: Traversability and weakness. We will build up to Re-
placement in two steps. First, we introduce a hedge condition that ensures
Replacement holds when restricted to ordinals. Then, we introduce a further
hedge condition that ensures every set is equinumerous with some ordinal, from
which replacement follows in its full form.
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Say that a plurality X of ordinals is traversable iff there is a map that has
as domain some member of X and unbounded range in X:

T := λX.∃y, F [Xy ∧ F : y → X ∧ ¬B(ran(F ), X)]

Here, F is a second-order variable: we can take it to be a relation on sets,
for instance.

Definition 4.38. Let t be the proposition that the ordinals are traversable:

t := TΩ

Say that a hedge requires intraversability iff it is (strictly) entailed by t:

�(t ⊃ h)

Lemma 4.39 (Ordinal Replacement). Let h be any hedge that requires in-
traversability. Then, if there are no sets, after doing Seth, if α is an ordinal
and F (β) is a set for each β ∈ α, there is a set whose members are exactly F [α],
the image of α under F .

Since the proof of this lemma is a little involved we will start by outlining
the strategy: we will first show that any set made from scratch by an iteration
of η can be associated (after the iteration) with a certain ordinal, corresponding
to its rank in standard set theory; we will then show that, if the supremum of
the successors of the rank ordinals associated with the sets in some plurality X
is created (from scratch) by some iteration of η, then the set whose elements
are the X is also created by η. With those lemmas in tow, proving ordinal
replacement from the relevant hedge condition is a simple matter.

On to the details. First, let us agree to call a relation R between sets and
ordinals a rank relation when the following two conditions obtain:

1. R(x, 0) holds iff only non-sets are members of x;

2. If x has any set-elements, then R(x, α) holds only if every set-element of
x is related to an ordinal β < α.15

Note that the ‘union’ of rank relations is always a rank relation.
Next, say x has a rank if it is related by a rank relation to some ordinal; and

that it is of rank α if the least ordinal related by a rank-relation to x is α. Note
that if x has a rank, then it has rank α for some α. We will write Rk(x, α) to
mean that α is the least ordinal related by x in a rank relation, and Rk≤(x, α)
to mean that α and x are related to by some rank relation.

Lemma 4.40. If there are no sets, then after any iteration i of η, every set x
has a rank.

15A set-element is an element that is a set; we leave open the possibility that a set has
non-set-elements, to allow for impure set theory.
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Proof. By induction on iterations. The base and limit cases are immediate. For
the successor, in the non-trivial case x is made by an application of η, and all
its elements exist after j. By the IH they all have ranks. The union of the rank
relations of its elements is a rank relation, R, and exists by comprehension.
Moreover, the set of all ordinals after j is made after η and is a new ordinal.
The relation like R but that assigns that new ordinal to x is then the desired
rank relation.

Lemma 4.41. For any x and α, Rk≤(x, α) if and only if [η]Rk≤(x, α). Con-
sequently, the same holds for Rk(x, α).

Proof. Immediate.

Lemma 4.42. If there are no sets, then after any iteration i of η, if the supre-
mum of the successors of the rank ordinals of sets in some plurality X exists,
then so does the set whose elements are the X.

Proof. First, note that it is easy to show that after any iteration i of η (from
scratch), the rank ordinal of a set is always at least the supremum of the suc-
cessors of the rank ordinals of elements, with the proof an induction on sets.

For X a plurality of set let RX be the plurality of the rank ordinals of
elements of X; and for a plurality O of ordinals, let σO be the supremum of the
successors of ordinals in O. Finally, let us abuse notation and write Set(X) for
that object x (if it exists) with Set(x,X). We therefore seek to prove that

[i]0∀X(EσRX ⊃ ESet(X)) (3)

which we do by induction on iterations.
For the successor case, suppose [j; η]EX ∧ EσRX . Suppose first η does

nothing; then by the IH there is a set of the X’s. Suppose second it does do
something. Then form after j the plurality X ′ of all and only those things
belonging to X. Then since η does something, there is after η a set x with
Set(x,X ′). We need only show now that Set(x,X) as well. Obviously, if y ∈ x,
then Xy by the rigidity of plural membership.

Now suppose Xy. Note that z must exist after j. For, since it exists after
j; η, we know that after j the plurality Y of its elements exists, by the Elements
Lemma. But since σRY ∈ σRX exists after j, by the IH, y must already exist
after j as well. Hence after j Ey and X ′y, and so y belongs to x.

For the limit case, suppose [α(F )]EX ∧ EσRX . Then there is an iteration
i ∈ F such that [i]EσRX . We need only establish that [i]EX. This we do by
induction on sets after αF . In fact it will be easier to prove something slightly
stronger. For a plurality Z, say that a plurality TZ is the transitive closure
of Z under membership when every Z is a TZ , and whenever TZx and y ∈ x
then TZy. (Defining this in our logic is a simple application of Frege’s ancestral
trick.) Then we show

[α(F )]∀x(TXx ⊃ �(¬∃zSz ⊃ [i]Ex)) (4)
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which implies the result by plural comprehension within i. We prove (4) by
induction on membership. Suppose every member of x has the property indi-
cated, and suppose x itself is in TX . Since every member y of x is in TX we
may conclude that �¬∃xSx ⊃ [i]Ey. Hence the plurality of members of x exists
after i, and so by the IH we may conclude that x itself exists after i. The result
follows.

We proceed to prove Ordinal Replacement (Lemma 4.39).

Proof. We know every set after Seth has a rank. So after Seth, we have F as
given but also F ′ associating each set with its rank. By intraversibility, the
supremum of the range of (the successors of) F ′ exists. The result now follows
from the previous lemma.

To establish Replacement proper, we need a hedge that requires every set to
be isomorphic to an ordinal. This will allow us to take any function on set to a
function on the corresponding ordinal, and hence appeal to ordinal replacement
to secure full replacement.16

First, the condition on hedges. Say that some ordinals X are weak just
in case, for some α among them, α <c X but the plurality of subsets of α is
cardinally at least as great as X. (Here <c, the relation of being less than in
cardinality, and other cardinal comparison notions are defined in higher-order
terms.)

Definition 4.43. Say that a hedge requires strength iff it is (strictly) entailed
by the proposition, we, that the ordinals are weak.

Next, we will show how if our hedge requires infinitude, strength and in-
traversibility, then after doing it every set is isomorphic to a Von Neumann
ordinal; connecting this with ordinal replacement then yields a quick proof of
full replacement.

Toward that, we need still a further supporting lemma, one reflecting a
central part of the import of the standard axiom of replacement: namely, that
if our hedge requires intraversibility, then ordinal addition is everywhere defined
after doing Seth.

Say a relation R is summative when

• R(α, 0, γ) only if α = γ;

• R(α, β + 1, γ) only if γ is δ + 1 and R(α, β, δ);

• R(α, λ, γ) only if γ is the limit of δ with R(α, β, δ) for β < α.
16The situation here is a little subtle, in that how things play out will depend on whether

we take ourselves to be concerned with pure sets or impure sets as well. We will focus on
the case of the pure sets here, and indicate in footnotes how that of impure sets ought to be
handled.
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Now, let Σ(α, β, γ) iff every summative relation relates them; and note that Σ is
functional in α and β. We will write α+β for the γ (if it exists) with Σ(α, β, γ).
Note also that, if defined, α + β satisfies the standard recursion equations for
ordinal addition: α+ (β + 1) = (α+ β) + 1, etc.

If there are some ordinals, then Σ is always somewhere defined: it is easy to
see that 0 + 0 = 0 for example. On the other hand, after an arbitrary iteration
of η there is no reason to believe that Σ is everywhere defined, and indeed it is
not hard to see that this is not generally the case. However, this will hold after
Seth for suitable h:

Lemma 4.44 (Ordinal Addition). If h requires infinitude and intraversibility,
then after Seth, α+β exists for all ordinals α and β (if we started from scratch).

Proof. Induction on ordinals β in parameter α. For the successor step, use
infinitude, and for the limit, use intraversibility.

We may now show:

Lemma 4.45. Suppose h requires infinitude, strength and intraversibility. Then:
if there are no sets, then after Seth, every set injects into an ordinal.

Proof. Let us say that a set or plurality has a cardinality if it injects into an
ordinal. (Note that if a set injects into an ordinal, then it is trivial to find a
bijection between that set and an ordinal, by taking the least ordinal into which
it injects.)

For each ordinal α, let V (α) be the plurality of x with rank α. Since the
elements of any set are all contained among some V (α), it suffices to show that
(after Seth) V (α) has a cardinality for each α. This we show by induction on
ordinals.

Base case: when α = ∅, V (α) is also empty.
Successor step: By the IH, V (α) has a cardinality, β. By strength, the

subsets of β are cardinally smaller than the ordinals, and so we may choose γ
greater in size than the subsets of β. But clearly V (α+ 1) is bounded by γ.17

Limit step: if it holds for every α < λ, then every V (α) has a cardinality γα.
By intraversibility, these have a supremum, γ; we show that this supremum is
the carindality of V (λ).

Let the Fα be injections from each V (α) into ordinals γα for α < λ. Then,
we may produce a relation R that associates each α < λ with an injection Gα

into γα which, in addition, agrees with all Gβ for β < α in the common domain.
To do so, we prove by induction on ordinals that for each α < λ, a relation

exists that relates all ordinals up to α to such an injection. The base case is
17If we are dealing with impure sets, this argument will not do. We may instead argue as

follows.
Say that the ordinals X are big just in case, for any α among them, Xα <c X and U <c X,

where where Xα is the plurality of members of α, and <c is “strictly smaller in cardinality
than" (which is to be defined in higher-order terms), and U is the plurality of non-sets. We
then modify to lemma to require that if the ordinals are traversible and neither big nor strong,
then the hedge obtains.
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easy. In the successor β+1, just take the injection Fβ+1 on Vβ+1, add γβ to the
values of Fβ+1 in V (β + 1)− V (β), and use the values of the inductively given
Gβ for arguments on V (β). The limit case is immediate.

But now the unions of the injections Fα for α < λ is the desired injection
for V (λ).

We may now establish replacement.

Lemma 4.46 (Replacement). Suppose that the hedge requires intraversability
and weakness. Then, after doing Seth, Replacement holds.

Proof. Since traversability implies the hedge obtains, Ordinal Replacement holds.
Since the traversability and the weakeness of the ordinals implies the hedge ob-
tains, for every set there is some ordinal no smaller in cardinality to that set.
Given a function F on a set, we can then define a function F ′ on an ordinal
than which it is no smaller in cardinality, and argue by Ordinal Replacement to
the desired set.

Corollary 4.47. Suppose h is a hedge that requires unboundedness, infinitude,
intraversability and strength. Then the main theorem holds for h.

Proof. We have already established that (i) of the main theorem holds (Lemmas
4.23, 4.27, 4.29, 4.33, 4.35, 4.37, 4.46 together with the PCs). It remains to
establish (ii). It is enough to show that ZFC entails Seth can be done; but this
is easy to see, since if ZFC is true the ordinals violate all our hedging conditions
and hence Seth amounts to doing nothing.

That concludes our derivation of the axioms of set theory from the assump-
tion of the executability of Seth. We now turn to philosophical discussion.

5 Discussion and Assessment
In this paper, we have developed a logic that enables one to reason about the
effects certain iterative, constructive procedures would have on a given domain
if carried through; and we have showed how to use that logic, together with
the assumption that certain commands are executable, to argue that domains
of mathematical interest in number theory and set theory can be produced.
In this section, we turn to a brief discussion of the potential for philosophical
significance in this program.

We begin by discussing the broadly Euclidean paradigm in the foundations
of mathematics, according to which arguments that certain objects can be con-
structed form a legitimate part of mathematics, in the light of the technical
developments we have set out; in particular, we will discuss certain objections
one might raise to the application of these imperatival ideas to contemporary
mathematics. Ultimately we find these wanting: it is our belief that there is a le-
gitimate conception of contemporary mathematics underlying our formalisation,
indeed one that is well worth scrutiny by philosophers of mathematics.
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After that we will move on to a discussion of some potential advantages
offered by such imperatival views, advanced in a similar setting by Fine: in
particular, we will discuss the question of whether the imperatival approach
yields benefits for the epistemology of consistency, or for our understanding of
the set-theoretic paradoxes.

5.1 Mathematics in the imperatival idiom?
We set out this investigation by appeal to a broadly ‘Euclidean’ paradigm for
giving mathematical arguments. In this paradigm, one assumes ‘axiomatically’
that one has the ability to perform certain acts, and then argues that certain
states of affairs can be brought about by iterating said acts. Mathematics, so
understood, is at least in part a science of possible construction, in which one
describes means for bringing about states of affairs, and not just a description
of fixed states of affairs obtaining for antecedently given abstract objects.

One might have various sorts of questions about and objections to this gen-
eral picture of the nature of mathematics, and the extent to which our logical
work manifests it. In this subsection, we discuss such issues.

We should begin at the outset with a simple, scholarly concern: how “‘Eu-
clidean” is all this? The short answer is we aren’t Euclid experts and can’t
really say, but that equally we don’t think it a very important question. Al-
though reading translations of Euclid is certainly suggestive of the idea we are
discussing, we are not adamant that it or anything like it was going on in the
Elements.

Another, slightly more difficult issue is one that we already raised briefly in
section 4: one might object that we have not really shown how to do contempo-
rary mathematics in the imperatival idiom, but rather only to do metamathe-
matics, that is, we have only shown how to build models for arithmetic, but not
how to do arithmetic in these terms. The construction of a Euclidean triangle is
properly part of Euclidean geometry, in a way that the construction of a model
for arithmetic is not properly part of arithmetic.

We don’t find this objection too concerning. For a start, let’s note that
an approach to arithmetic proper is already implicit in what we have. (The
situation is analogous with set theory, but we’ll focus on the simpler arithmetic
case here.) That is, if we assume that there are no numbers, and we assume
that Num is executable, then we can view theorems of arithmetic as describing
states of affairs that can be brought about by doing various ζ-iterations of σ, or
(in quantificational cases) as results describing states of affairs that can always
be brought about by continuing ζ-iterations of σ by further iterations of σ.
For example, consider the theorem of arithmetic that says there are infinitely
many primes. We have [Num]0“for every prime there is a greater one”; by our
All clauses, this reduces to the claim that for every ζ-iteration of σ, one can
iterate σ further to produce a new prime. Thus, implicit in the characterisation
for models of arithmetic given here is a fundamentally different approach to
arithmetic in general, one in the genuinely Euclidean idiom.

A still more serious concern runs as follows. Even if one concedes that we
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can naturally think Euclidean geometry and even other sorts of geometry as
“sciences of construction”, in which recipes and procedures play an important
role and are relevant items in arguments, this is simply not going to be so for
the cases of interest to us, in particular in arithmetic and set theory. There
are two salient points of difference that one might point to: first, that while we
might have a handle on what it is to construct a triangle or a line, we have no
corresponding idea of what it could mean to make a set or a number; and second,
that were the constructions of Euclidean geometry require at most finitely many
iterations of a process, our constructions require transfinitely many.

On the first point, about not knowing what it means to construct sets or
numbers, there are two reasonable lines of reply, the one concessive and the
other agressive.

The concessive line says: sure, it is nonsense to talk about literally con-
structing sets and numbers. But one can also play along, talking as if one could
construct sets and numbers, and perhaps get some useful results by doing so.
We will elaborate the useful results you might hope for much more below, but
roughly one might think that be explicitly describing recipes for constructing
the sets or the numbers one might get evidence for the consistency of these
theories.

The more aggressive line would argue that we can make sense of processes
in which sets and numbers are made. In the case of set theory, one can think of
a set as something one gets if one by introducing an object as a representative
for a fixed plurality of other objects; then to make a set is just to make a thing
and fix it once and for all as the representative of those others. Or again in the
case of number theory, one might think of a number as an entity introduced as
a representative of a finite cardinality quantifier. All that is required of such an
object (in either case) is that it be an object, and that it be uniquely determined
by the plurality/cardinality quantifier, meaning that we do not assign it to any
other plurality or cardinality quantifier in the course of further constructions –
something that is required by the postulational constraints anyway. While this
may be a non-standard metaphysics of sets and numbers, it does not seem to
us to be incoherent, and is well-suited to making sense of the idea that sets or
numbers might be literally created: just make an object, say a paper hat, and
then assign it to the relevant entity. Now of course this sort of view does not
immediately square with the logic we have presented, which requires for example
that anything which can be the set of some things necessarily is their set; but
we can view this sort of postulational constraint equally well as a restriction on
the rules for the construction sequence we are interested in – once you’ve made
something the set of some things, never make a different thing the set of them
or it the set of something else – rather than reflecting an essentialist feature of
the nature of sets.

That leaves the second point, about the need for transfinite iteration. We
don’t dispute, of course, that infinity is present in our theory in a way that it is
not in Euclid: the instructions to produce a model for set theory or arithmetic
essentially involve transfinite iterations, whereas nothing like that is involved
in Euclidean geometry. This does not detract however from those respects in
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which our proposal is Euclidean.
But perhaps one thinks that the Euclidean paradigm is stronger philosoph-

ically because it only requires finite iterations. For example, maybe one has a
view of mathematics as the science of constructions possible, not for some god-
like creatures, but for finite creatures like us. Then Euclid’s constructions, being
finite, have a validity ours lack. But is it so clear Euclid is any more human than
we are? The Euclidean idiom taken seriously for geometry already involves a
reasonable amount of idealisation: one of Euclid’s already-cited postulates was
“to produce a finite line continuously in a straight line”, but as Simplicius al-
ready sagely observed in his 6th century commentary on the Elements, the
postulation that a straight line can be extended from Aries to Libra is, when
taken literally, somewhat “foolhardy”.18 Indeed we know that the production
of a genuine equilateral triangle in nature is impossible.

Any reasonable imperatival formulation of mathematics will therefore involve
idealisation and abstraction. In this then our approach is common with what
we attribute to the Euclidean, even if our approach has more of the flavor of
idealisation about it given its infinitary nature. We certainly differ from Euclid
in brooking infinity; but it’s a difference in degree, not kind.

There are other ways the finite and infinite come apart in our system, and
some of these ways may have philosophical consequences—in particular, in ways
with consequences to what light our system might shed on the consistency of
theories like PA2 and ZFC2.

Fine (2005) suggests that a broadly imperatival or procedural (or, to use
his term, “postulational”) approach to mathematics might provide some new
evidence for the consistency of mathematical theories like PA2 and ZFC2. The
idea is that if we can show that some command i is executable, and that 〈i〉PA2,
for instance, then we have some good evidence that PA2 is consistent.

Although the link between executability and consistency is subtle in various
ways, to be discussed below, nevertheless there is clearly some scope for an
argument of this kind. From the exectuability of Num, for example, it follows
that ♦PA2, something which in turn (given model-theoretic consistency of our
logic19) entails model-theoretic consistency of arithmetic.

But what grounds do we have for thinking Num and Seth are executable?
A natural thought here (a form of which can also be found in Fine (2005)) is
that we might hope to provide an inductive argument from the premises that
the basic commands are executable – say to introduce successors or to intro-
duce sets – to the conclusion that the iterative commands in question are also
executable. Such an argument would necessarily appeal to the idea that exe-
cutability somehow “flows upward” from the basic commands to the complex
ones. Indeed, as mentioned previously, our logic already proves some links be-
tween the executability of complex commands and their more basic constituents.
For instance: if both i and j are necessarily executable, then so is i; j (this is a

18Translation from Al-Nayziri. See final page of Hodges (2013).
19We have not provided a model theory here; its provision is for another time. But we take

it to be pretty clear that a modification of a possible worlds model theory, along the lines of
(Harel et al. 2000), will do the trick.
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quick consequence of Then). In other words, if you string two or even finitely
many necessarily executable commands together, the result itself is necessarily
executable. If we assume that each of Euclid’s basic construction procedures
is necessarily executable, then the whole complex procedure, being but a finite
sequence of basic ones, is provably so as well.20

It was with an eye exactly to give such proofs of executability that we de-
signed Num and Seth in the way we have, as complex imperatives based on more
basic ones of whose good standing we can more easily convince ourselves. There
are, after all, other imperatives we could have written down that would have
produced the natural numbers or the sets. Consider for instance, i =!x.PA2;
by Make, it follows that 〈i〉PA2. If i is executable, then it follows that PA2

is consistent, since we will have built a model for the axioms. But we have no
real grounds to assert that i is executable, perhaps excepting some antecedent
belief in the consistency of PA2 itself. On the other hand, the more fine-grained
structure of Num and Seth leaves open the possibility of getting an inductive
proof of executability going.

But at this point we run into what is perhaps the most significant difference
made by our appeal to infinitary commands. As just stated, our logic proves
that necessary executability is preserved by composition by p; q. We do not,
though, have a parallel theorem for composition by ∀: even if i(x) is executable
for every x, it does not follow that ∀xi(x) is executable. And this is a serious
obstacle in arguing for the consistency of Num and Seth. Even if we assume the
necessarily executability of σ and η, we cannot prove with our logic as it stands
that their indefinite iterations σ∗ = Num and η∗ = Seth are executable. (This
point will receive much more discussion in the next section, on consistency.)

One might think, then, that the Euclidean adherence to finitude is a wisely
cautious one: it ensures that, if we assume some basic commands are legitimate,
that we will not stray out of the realm of legitimacy. It should be noted, of
course, that we might be interested anyway in commands whose executability
we cannot prove, so that the Euclidean restriction would still be too demanding.
But the point remains: if we are to make some real epistemological gains via
this imperatival logic, we need to examine the prospects for principles relating
the executability of basic imperatives to infinite assemblages of them. In the
next section, we consider how we might do so.

5.2 Consistency
We’ve mentioned a few times that (following Fine (2005)) one might hope to
marsh al our imperatival constructions for models of standard mathematical
theories in to some sort of evidence for the consistency of the theories in question.
This subsection is devoted to discussing the extent to which that is so.

20One might worry that our system is ill suited for this purpose because it proves already
that some commands are executable which, intuitively, ought not to be. But so far as we
can tell, our system only proves that commands which do nothing at all are executable. For
consistency proofs of more robust commands, one will need to make substantive assumptions—
exactly as it should be.
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We have offered arguments from the assumption that certain commands are
executable to the existence of structures satisfying standard axioms for arith-
metic and set theory. Here, by a structure for the theory in question, we mean a
structure in the ‘internal’ sense (cf Button and Walsh (2018)): we have plurali-
ties X, after doing the commands, such that the second order (single sentence)
axiomatizations for these theories hold in X. This gives us a sort of relative
consistency argument: if we understand consistency of T as ♦∃XTX , then we
may argue from the executability of certain commands to the consistency of the
theories.

There is a subtlety here that needs addressing, however: that ♦PA2 or 〈i〉PA2

for some executable i is evidence for the consistency, in its more familiar sense, of
PA2 is a claim that needs some defending. After all, we cannot always infer the
consistency or logical possibility of some axioms (or sentences expressing them)
from a claim that those axioms (or sentences expressing them) are possible in
some other sense. We think that PA2 might be true, but from that epistemic
possibility we surely can’t infer that PA2 is consistent. This yields a challenge
for the imperativalist: how might possibility, in the sense at issue, bear upon
consistency?

There are many ways it might, depending on the intended interpretation
of our logic. If you think that imperatives like Num and Seth are commands
that we can actually carry out (if executable), just as we can carry out the
command: “Shut the front door!”, then the connection between executability
and consistency is clear. If it is metaphysically possible to execute Num, and
if, having done so, we will have made a structure satisfying PA2, then it’s meta-
physically possible that some structure satisfies PA2. And whatever the status
of postulational possibility, the connection between metaphysical possibility and
logical consistency is tolerably clear. (Note that this line of thought is available
whether or not we take the metaphysically possible entities to be produced in
the course of executing Num to really be numbers.

There are also less realist interpretations still of the logic which might be
attractive. One natural thought about why we believe set theory and arithmetic
to be consistent involves appeal to an ability we seem to have to describe struc-
tures in which these theories are true. Focusing on set theory, for example, we
have the cumulative hierarchy structure, which is often offered as part of the
support for believing the consistency of ZFC – contrasted negatively with cases
like NF , where no such intuitive structure is available. But of course, we might
be wrong in our descriptions, and the more confident we can be we aren’t the
more confident we can be in consistency. Here is where our imperatival logic can
enter the frame: for we might secure this confidence by not only describing the
finished model, but also describing a process for building the model, especially
one where we build it up in a series of more basic steps, whose consistency or
legitimacy are easier to grasp.

An example: suppose you were in doubt about whether the definition of
an equilateral triangle was logically consistent. You could convince yourself of
the consistency by going through Euclid’s construction. You have no doubt
that a line can always be drawn between two points, and that a circle with
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any radius can always be drawn about any point. Euclid’s proof shows how
from these two obviously legitimate procedures, a procedure for constructing
an equilateral triangle can be assembled. If the basic parts are legitimate, the
thought then goes, then so is the procedure for constructing the whole—with
the result that you have convinced yourself that an equilateral triangle can be
legitimately constructed and hence that the definition of one is consistent.

One can think of our imperatival logic as a system for making these construc-
tive intuitions precise, in the obvious way. One can fashion complex imperatives
using p; q, p→q, and p∀q out of more basic ones, and then, using our logic, indeed
prove that the construction procedure results in the structure desired. We can
take Euclid’s basic postulated procedures as basic commands; and then code
up his construction, a sequence of commands, as one complex command via
p; q; and then finally prove that the complex command results in an equilateral
triangle.

So we now have various models for thinking about how executability ties in
with consistency. But what about executability itself? How confident should
we be that Num or Seth are executable?

As we’ve already briefly mentioned, there is an idea suggested in Fine (2005)
that we might hope to attain inductive proofs of executability. The natural
way to do so would be to show that executability ‘flows upward’ from basic
commands to more complex ones. As we’ve said, this is easy in the case of ;,
and it is equally easy for →. More exactly, we have
Theorem 5.1 (Upwards Transmission Theorem).

〈p → i〉> ≡ ¬p ∨ 〈i〉>

〈i; j〉> ≡ 〈i〉〈j〉>
∀, however, is a different story. In that case, the natural analogue would be

Definition 5.2 (Universal Upwards Transmission).

〈∀xIx〉> ≡ ∀x〈Ix〉>

but it is easy to see that UUT will make big trouble. If we assume for
example that ρ is necessarily executable, it is clear (by induction on iterations)
that UUT implies ρ∗ is too, landing us back with the Russell paradox. Indeed,
more generally:
Theorem 5.3. If any essentially creative necessary difference maker is neces-
sarily executable, then UUT fails.

So the imperativalist cannot hope to give an inductive consistency argument
of the type hoped for. For if the basic commands in question are necessarily
executable, then the needed upwards transmission principles simply cannot hold.

A natural fallback position would be to consider restricted forms of UUT.
For example, in arguing for the exectuability of Num, one can actually show
that it is sufficient to assume only that if each particular finite ζ-iteration of σ
is executable, then the command ‘do all finite ζ-iterations of σ!’ is executable
too. More generally, we can consider the family of principles:
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Definition 5.4 (Restricted Universal Upwards Transmission). For a given
property P , let P-UUT be the principle:

∀x(Px ⊃ 〈Ix〉>) ≡ 〈∀x(Px → Ix)〉>

In case x ranges over imperatives, we may set I := λi.i, attaining

∀i(Pi ⊃ 〈i〉>) ≡ 〈∀i(Pi → i)〉>

and where P expresses the property of being a finite ζ-iteration of σ, this will
have the desired effect for Num.

One could also hope to provide restricted forms of UUT that would enable
the inductive proofs of executability to go through for fragments of set theory.
But we think there are reasons not to be so excited about this project when it
comes to advancing issues with respect the epistemology of consistency. Given
that the restricted versions of UUT are partial approximations to the incon-
sistent UUT, we surely need special reasons to believe that the fragmentary
versions are themselves consistent. And it is hard to see what independent
evidence we could have for this.

It thus seems that the prospects for finding evidence for consistency of stan-
dard theories in the form of an inductive consistency proof look dim. This is
not to say, though, that there is nothing of value here in the project presented.
What we have shown is that the consistency of the theories can be reduced to
the executability of these commands, which in turn can be intuitively supported
by appeal to executability of the basic commands together with the executabil-
ity of sufficiently long iterations. We thus have a kind of ontological analogue of
the Gentzen style consistency proofs for arithmetic. Even if it does not hugely
increase our confidence in consistency, it does provide a new angle on it, and
hopefully contributes in some small way to our reasons for belief.

5.3 Paradox and Potentialism
Another potential point of value in considering imperatival foundations for
mathematics concerns the set-theoretic paradoxes. In particular, there is a
prima facie case to be made that the imperativalist framework may yield a new
kind of ‘potentialist’ solution to them.21 The purpose of this section is to discuss
the extent to which this is the case. We focus here on Russell’s paradox, though
analogous points stand to be made about the other set-theoretic paradoxes as
well.

Russell’s paradox arises from the simple result that there is no set of all
non-self-membered sets, on pain of contradiction. When coupled with the view
that there is a definite totality of all possible sets, the simple point of logic
implies that there is an absolute dichotomy between those pluralities that are
the elements of sets and those that aren’t; but the dividing line between these
pluralities is apt to seem arbitrary.

21(Fine 2005, p101ff) suggests something of this kind.
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A key idea behind ‘potentialist’ solutions to this problem is to reject the
idea that there is a definite totality of all possible sets in favor of a view on
which any things can form a set, and on which any possible sets are therefore
not necessarily all the sets.

There is a natural sense in which the procedural postulationist framework as
we have developed it manifests a version of a potentialist solution to the Russell
paradox, and one with an interestingly different profile to most extant proposals
– but of course, on that has considerable overlap with that of Fine (2005), and
to a lesser extent also that of Hellman Hellman (1989b).

In particular, on the assumption that ρ is necessarily executable, an as-
sumption we have largely taken up throughout this paper, it will be true that
necessarily there can always be more sets. Indeed, if we make the stronger
assumption that Seth and ρ are necessarily executable, we attain a picture
on which a never ending series of universes of sets can be produced, each of
height some inaccessible cardinal; a picture with some motivation in the extant
set-theoretic literature (see here especially Zermelo (1930b)). For, on the as-
sumptions mentioned, execution of Seth would produce a universe of height κ,
where κ is the least inaccessible; but it is not hard to see also that execution of
Seth; ρ;Seth will yield a universe of height κ1, where κ1 is the second inaccessi-
ble, and so on. There will clearly be no largest universe that can be generated
in this way, and the engendered picture is a form of potentialism with striking
similarities to Zermelo’s. (The question: what is the least cardinal one cannot
get by chaining together iterations of Seth and ρ in this way? strikes us as
interesting, but we have not been able to resolve it.)

One of the distinctive features of the resolution to the paradoxes embod-
ied here is in its requirement of a stopping point, set in advance, for any set
construction process that can be deemed as legitimate. In Øystein Linnebo’s
and James Studd’s modal systems for set theory ((?), (Linnebo 2010), (Linnebo
2018)), axioms for set theory are interpreted in modal terms, and the modals
are given a procedural gloss (albeit a metaphorically intended one) in terms of
steps of individuation of objects / reinterpretations of language. But in both
cases, domains for set theory are taken to emerge when such acts are iterated
indefinitely, as it were, with no specified stopping point. On the other hand, for
reasons already covered here, any instructions for the construction of a domain
of sets in our logic will have to contain within them an implicit stopping point,
in the form of a hedge, in order to be executable.

This makes some difference to the conceptual lay of the land here. One
natural ‘revenge’ worry for potentialists is: why can’t we just bring together all
the sets you can ever possibly get by individuating or reinterpreting, and make
them into a new set? In reply to this, potentialists of the Linnebo/Studd variety
must appeal either simply to the ‘big stick’ of contradiction, holding that the
contradiction that arises from this is sufficient reason to believe it can’t happen,
or else to indefinite extendibility of the modal notions themselves, allowing
that we can possibly∗ bring together all possible sets in this way only in some
expanded sense of possibility. But our procedural potentialist offers a third way
out: we can simply point to the fact that there is necessarily no hedge that can
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lead to the production of all possible sets, since (under the assumption of the
necessary exectuability of ρ) any hedge that leads to an executable iteration
will fall short of producing every set. In contrast, e.g., to Linnebo’s program,
the need for hedging conditions was something we were assured of from the get-
go in procedural postulationism, rather than an afterthought needed to avoid
revenge; prima facie at least, the procedural postulationist may therefore have
an advantage here.

It is worth mentioning though that the framework here has considerable
flexibility, and is not even thoroughly tied to potentialism. The versions of
potentialism we have just discussed were all premised on the necessary exe-
cutability of ρ, something which leads to a form of potentialism insofar as it
implies there could always be more sets. But we could also work in a procedu-
ral postulationist framework that denied this. Indeed, to return to issues raised
in the last section, denying the necessary executability of ρ will in fact allow
us to keep UUT in its full generality: whenever some iterations of ρ are in fact
executable, the command to do all of them will be too. Indeed, there will be a
command that will produce all the sets there could ever be, namely the hedged
command to do all the executable iterations of ρ. The output of this command
would be the universe of sets, as envisaged by non-potentialists in set theory.

This situation is reminiscent of the one in declarative mathematics. Two
popular responses to Russell’s Paradox available in that context are (a) to admit
that there are some extensionally determinate collections (e.g. the universe of
all sets) that cannot form sets, or (b) to hold that any extensionally determinate
collection can be formed into a set (in a larger domain). The former approach
leads to so called (height) actualist pictures of sets, and the latter leads to
(height) potentialism.22

We are faced with an analogous choice here. We can accept the necessary
executability of ρ, something which leads naturally to an imperatival potential-
ism about sets, one that requires us to give up UUT. But we could also deny
that ρ (and any other essentially creative necessary difference maker) is neces-
sarily executable, and hold fast to the idea that there is a single, fixed, maximal
universe of all sets. Where the declarative mathematician faces the choice of
which conditions do or do not form sets, the imperativalist must answer the
question of which (pluralities of) imperatives are executable.

Of course, it may be that imperatival foundations are more suggestive of
potentialism. Perhaps the nature of ρ just convinces the imperativalist that it
is always doable. If this route is taken, then we are owed an explanation of the
intuitive pull of UUT, but this isn’t forced on you. And vice versa, if you decide
to reject the necessary executability of ρ. Just as in declarative mathematics,
we have to make an choice about how you want to resolve the paradoxes, and
the choice does not seem obvious to us.

22Of course for each picture there’s many more questions to ask about the nature of classes
and/or potentialism. One popular answer for the actualist (e.g. Kanamori (2009)) is to treat
class talk as shorthand for first-order formulas, but others treat them as plurals (e.g. Uzquiano
(2003)) or mereological sums (e.g. ). And there’s a wide variety of potentialist approaches
(e.g. Zermelo (1930a), Hellman (1989a), Linnebo (2010)).
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