Skip to main content
Log in

Optimisation and mathematical explanation: doing the Lévy Walk

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The indispensability argument seeks to establish the existence of mathematical objects. The success of the indispensability argument turns on finding cases of genuine extra-mathematical explanation (the explanation of physical facts by mathematical facts). In this paper, I identify a new case of extra-mathematical explanation, involving the search patterns of fully-aquatic marine predators. I go on to use this case to predict the prevalence of extra-mathematical explanation in science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is the version offered by Quine (1948, 1951, 1960) and Putnam (1979a, b).

  2. Following Colyvan (2001, p. 77) an entity \(E\) is dispensable to a scientific theory \(T\) iff:

    1. (1)

      There exists a modification of \(T\) resulting in a second theory \(T^{*}\) with exactly the same observational consequences as \(T\) in which \(E\) is neither mentioned nor predicted.

    2. (2)

      \(T^{*}\) is preferable to \(T\).

    And thus \(E\) is indispensable to \(T\) when either condition (1) or (2) fails to hold.

  3. For further discussion of this argument see Colyvan (2001), Field (1989), Maddy (1992), Sober (1993) and Melia (2000).

  4. I.e. the strategy Field (1980) pursues.

  5. See e.g. Azzouni (2004), Melia (2000, 2002), Leng (2010) and Yablo (2009).

  6. Following Baker (2012, p. 9) the Honeycomb Theorem can be stated as follows:

    • (Honeycomb Theorem) Any Partition of the plane into regions of equal area has perimeter at least that of the regular hexagonal honeycomb tiling.

    The honeycomb theorem was proved by Hales (2001).

  7. See e.g. Daly and Langford (2009), Bangu (2008) and Rizza (2011). For responses, see Baker (2009).

  8. Named for the mathematician Paul Lévy (Mandelbrot 1983).

  9. I am grateful to an anonymous referee for raising this issue.

  10. My thanks go to an anonymous referee for pressing me on this point.

  11. I am grateful to an anonymous referee for this suggestion.

  12. On Baker’s (Baker 2009) view, E3 is treated as a tentative hypothesis. As a tentative hypothesis, E3 is not assumed to be true but, rather, is confirmed by the number-theoretic explanation that explains E4. The charge of question-begging is thus avoided because (i) E4 is nominalistically acceptable and (ii) although E3 is not, the truth of that claim is never assumed. In offering this response to Bangu, however, Baker claims that E3 is part of the explanandum in the cicada case, even though that claim is a tentative hypothesis. This is troubling: a hypothesis is usually an explanation for some physical phenomenon. It is not typically an explanandum. So if E3 is part of the explanandum, it’s not clearly a hypothesis. Because E3’s status as a hypothesis is crucial to Baker’s response, it would be better if E3 were absorbed into the explanans. Perhaps this is what Baker had in mind. If so, then the response to Bangu tabled here is a version of Baker’s.

References

  • Atkinson, R. P. D., Rhodes, C. J., Mcdonald, D. W., & Anderson, R. M. (2002). Scale-free dynamics in the movement patterns of jackals. OIKOS, 98, 134–140.

    Article  Google Scholar 

  • Azzouni, J. (2004). Deflating existential consequence: A case for nominalism. Oxford: Oxford University Press.

  • Baker, A. (2005). Are there genuine mathematical explanations of physical phenomena? Mind, 114(454), 223–238.

    Article  Google Scholar 

  • Baker, A. (2009). Mathematical explanation in science. British Journal for the Philosophy of science, 60, 611–633.

    Article  Google Scholar 

  • Baker, A. (2012). Science-driven mathematical explanation. Mind. doi:10.1093/mind/fzs053.

  • Baker, A., & Colyvan, M. (2011). Indexing and mathematical explanation. Philosophia Mathematica, 19(3), 323–334.

    Article  Google Scholar 

  • Bangu, S. (2008). Inference to the best explanation and mathematical realism. Synthese, 160(1), 13–20.

    Article  Google Scholar 

  • Bartumeus, F. (2007). Lévy processes in animal movement an evolutionary hypothesis. Fractals, 15(2), 1–12.

    Article  Google Scholar 

  • Bartumeus, F., Catalan, J., Fulco, U. L., Lyra, M. L., & Viswanathan, G. M. (2002). Optimizing the encounter rate in biological interactions: Lévy versus brownian strategies. Physical Review Letters, 88(9), 097901–097904.

    Article  Google Scholar 

  • Bartumeus, F., Peters, F., Pueyo, S., Marrasé, C., & Catalan, J. (2003). Helical lévy walks: Adjusting searching statistics to resource availability in microzooplankton. Proceedings of the National Academy of Sciences of the USA, 100, 12771–12775.

    Article  Google Scholar 

  • Berkolaiko, G., & Havlin, S. (1997). Territory covered by N Lévy flights on D-dimensional lattices. Physics Review E, 55, 1395–1400.

    Article  Google Scholar 

  • Cole, B. J. (1995). Fractal time in animal behaviour: The movement activity of drosophila. Animal Behaviour, 50, 1317–1324.

    Article  Google Scholar 

  • Colyvan, M. (2001). The indispensability of mathematics. New York: Oxford University Press.

    Book  Google Scholar 

  • Colyvan, M. (2002). Mathematics and aesthetic considerations in science. Mind, 111(441), 69–74.

    Article  Google Scholar 

  • Colyvan, M. (2006). Scientific realism and mathematical nominalism: A marriage made in hell. In C. Cheyne & J. Worrall (Eds.), Rationality and reality (pp. 225–237). Dordrecht: Springer.

  • Colyvan, M. (2010). There is no easy road to nominalism. Mind, 119(474), 285–306.

    Article  Google Scholar 

  • Daly, C., & Langford, S. (2009). Mathematical explanation and indispensability arguments. The Philosophical Quarterly, 59(237), 641–658.

    Article  Google Scholar 

  • Faustino, C. L., da Silva, L. R., da Luz, M. G. E., Raposo, E. P., & Viswanathan, G. M. (2007). Search dynamics at the edge of extinction: Anomolous diffusion as a critical survival state. EPL, 77, 30002.

    Article  Google Scholar 

  • Field, H. (1980). Science without numbers. Oxford: Blackwell.

    Google Scholar 

  • Field, H. (1989). Realism, mathematics and modality. Oxford: Blackwell.

    Google Scholar 

  • Hales, T. C. (2001). The honeycomb conjecture. Discrete Computational Geometry, 25, 1–22.

    Article  Google Scholar 

  • Jackson, F., & Philip, P. (1988). Functionalism and broad content. Mind, 97(387), 381–400.

    Article  Google Scholar 

  • James, A., Plank, M. J., & Brown, R. (2008). Optimizing the encounter rate in biological interactions: Ballistic versus Lévy versus brownian strategies. Physical Review E, 78, 051128.

    Article  Google Scholar 

  • James, A., Plank, M. J., & Edwards, A. M. (2011). Assessing Lévy walks as models of animal foraging. Jorunal of the Royal Society Interface, 8(62), 1233–1247.

    Article  Google Scholar 

  • Lamine, K., Lambin, M., & Alauzet, C. (2005). Effect of starvation on the searching path of the predatory bug deraecoris lutescens. BioControl, 50, 717–727.

    Article  Google Scholar 

  • Larralde, H., Trunfio, P., Havlin, S., Stanley, H. E., & Weiss, G. H. (1992). Number of distinct sites visited by N Random Walkers. Physics Review A, 4, 7128–7138.

    Article  Google Scholar 

  • Leng, M. (2010). Mathematics and reality. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Lyon, A. (2012). Mathematical explanations of empirical facts and mathematical realism. Australasian Journal of Philosophy, 90(3), 559–578.

    Article  Google Scholar 

  • Lyon, A., & Colyvan, M. (2008). The explanatory power of phase spaces. Philosophia Mathematica, 16(2), 227–243.

    Article  Google Scholar 

  • Maddy, P. (1992). Indispensability and practice. The Journal of Philosophy, 89(6), 275–289.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. W. H Freeman.

  • Mårell, A., Ball, J. P., & Hofgaard, A. (2002). Foraging and movement paths of female reindeer: Insights from fractal analysis, correlated random walks, and lévy flights. Canadian Journal of Zoology, 80, 854–865.

    Article  Google Scholar 

  • Melia, J. (2002). Response to Colyvan. Mind, 111(441), 75–79.

    Article  Google Scholar 

  • Melia, J. (2000). Weaseling away the indispensability argument. Mind, 109(435), 455–480.

    Article  Google Scholar 

  • Potochnik, A. (2007). Optimality modeling and explanatory generality. Philosophy of Science, 74(5), 680–691.

    Google Scholar 

  • Putnam, H. (1979a). Philosophy of logic. In Mathematics matter and method: Philosophical papers (pp. 323–357). Cambridge: Cambridge University Press.

  • Putnam, H. (1979b). What is mathematical truth? In H. Putnam (Ed.), In Mathematics matter and method: Philosophical papers (pp. 60–78). Cambridge: Cambridge University Press.

  • Quine, W. V. O. (1951). Two dogmas of empiricism. Philosophical Review, 60(1), 20–43.

    Article  Google Scholar 

  • Quine, W. V. O. (1948). On what there is. The Review of Metaphysics, 2(5), 21–38.

    Google Scholar 

  • Quine, W. V. O. (1960). Word and object. Cambridge: MIT Press.

    Google Scholar 

  • Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Larralde, H., & Ayala-Orozco, B. (2004). Lévy walk patterns in the foraging movements of spider monkeys ( Ateles Geoffroyi). Behavioral Ecology and Sociobiology, 55(3), 223–230.

    Article  Google Scholar 

  • Reynolds, A. M., Smith, A. D., Menzel, R., Greggers, U., Reynolds, D. R., & Riley, J. R. (2007). Displaced honey bees perform optimal scale-free search flights. Ecology, 88(8), 1955–1961.

    Article  Google Scholar 

  • Rice, C. (2012). Optimality explanations: A plea for an alternative approach. Biology and Philosophy. doi:10.1007/s10539-012-9322-6.

  • Rizza, D. (2011). Magicicada, mathematical explanation and mathematical realism. Erkenntnis, 74(1), 101–114.

    Article  Google Scholar 

  • Saatsi, J. (2011). The enhanced indispensability argument: Representational versus explanatory role of mathematics in science. British Journal for the Philosophy of Science, 62(1), 143–154.

    Article  Google Scholar 

  • Saatsi, J. (2012). Mathematics and program explanations. Australasian Journal of Philosophy, 90(3), 579–584.

    Google Scholar 

  • Shlesinger, M. F., & Klafter, J. (1986). Lévy walks versus lévy flights. In H. E. Stanley & N. Ostrowsky (Eds.), On growth and form: Fractal and non-fractal patterns in physics (pp. 279–283). Dordrecht: Nijhoff.

  • Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W., et al. (2008). Scaling laws of marine predator search behaviour. Nature, 451, 1098–1103.

    Article  Google Scholar 

  • Skoglund, H., & Barlaup, B. T. (2006). Feeding pattern and diet of first feeding brown trout fry under normal conditions. Journal of Fish Biology, 68, 507–521.

    Article  Google Scholar 

  • Sober, E. (1993). Mathematics and indispensability. Philosophical Review, 102(1), 35–57.

    Article  Google Scholar 

  • Steiner, M. (1978). Mathematics, explanation, and scientific knowledge. Noûs, 12, 17–28.

    Article  Google Scholar 

  • Sterelny, K. (1996). Explanatory pluralism in evolutionary biology. Biology and Philosophy, 11, 193–214.

    Article  Google Scholar 

  • Sutherland, W. J. (2005). The best solution. Nature, 435, 569.

    Article  Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H. E. (1996). Lévy flight search patterns of wandering albatrosses. Nature, 381, 413–415.

    Article  Google Scholar 

  • Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (1999). Optimising the success of random searches. Nature, 401, 911–914.

    Article  Google Scholar 

  • Viswanathan, G. M., Raposo, E. P., & da Luz, M. G. E. (2008). Lévy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Reviews, 5, 133–150.

    Article  Google Scholar 

  • Yablo, S. (2009). Must existence-questions have answers? In D. Chalmers, D. Manley, & R. Wasserman (Eds.), Metametaphysics: New essays on the foundations of ontology (pp. 297–314). Oxford: Oxford University Press.

Download references

Acknowledgments

The author gratefully acknowledges the assistance of David Braddon-Mitchell, Mark Colyvan, Arnon Levy, Maureen O’Malley and three anonymous referees of this journal. The author is also indebted to audiences at the 2012 Australasian Association of Philosophy Conference where he received many constructive comments on an earlier draft of this paper. This research was supported under the Australian Research Council’s Discovery Projects funding scheme (project number DP120102871) and by a John Templeton Foundation grant held by Huw Price, Alex Holcombe, Kristie Miller, and Dean Rickles, entitled: New Agendas for the Study of Time: Connecting the Disciplines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Baron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, S. Optimisation and mathematical explanation: doing the Lévy Walk. Synthese 191, 459–479 (2014). https://doi.org/10.1007/s11229-013-0284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-013-0284-2

Keywords

Navigation