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Abstract

In the contemporary philosophy of set theory, discussion of new axioms that
purport to resolve independence necessitates an explanation of how they come to
be justified. Ordinarily, justification is divided into two broad kinds: intrinsic jus-
tification relates to how ‘intuitively plausible’ an axiom is, whereas extrinsic justi-
fication supports an axiom by identifying certain ‘desirable’ consequences. This
paper puts pressure on how this distinction is formulated and construed. In par-
ticular, we argue that the distinction as often presented is neither well-demarcated
nor sufficiently precise. Instead, we suggest that the process of justification in set
theory should not be thought of as neatly divisible in this way, but should rather
be understood as a conceptually indivisible notion linked to the goal of explana-
tion.

Introduction

In what sense are mathematical claims justified and what, if any, processes constitute
relevant and legitimate justificatory processes?

These are crucial issues for the philosophy of mathematics (and for philosophy,
in general), as the answers to the questions above clearly bear on the acceptance or
rejection of fundamental pieces of mathematical knowledge. Notable historical ex-
amples relating to the problem of justification in mathematics include the axioms of
geometry, such as Euclid’s Fifth Postulate and, more recently, set-theoretic propo-
sitions such as the Axiom of Choice and the Continuum Hypothesis. As is clear, a
decision in favour or against the acceptance of each of these axioms or statements
has strong consequences for the practice of several mathematical disciplines.

Justification has become even more pressing within contemporary set theory as
a consequence of the independence phenomenon. As is known, there are important
set-theoretic statements that cannot be decided by ZFC (our current most widely
accepted theory of sets). A central question in the philosophy of set theory has thus
concerned how we might settle these statements (and, indeed, if we should).
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The project to settle independence through selecting and adopting new axioms
was famously championed by Gödel in an influential paper on the Continuum Hy-
pothesis and has since been known as Gödel’s Programme.1 Since its formulation,
it has become increasingly clear that the fulfilment of Gödel’s Programme also re-
quires examining (and making full sense of) the notion of mathematical justification.
In this paper, we shall concern ourselves with examining the two most widely dis-
cussed forms of justification, both of which appear in Gödel’s writings, and which
have gradually come to be viewed as ‘standard’ in set theory, namely intrinsic and
extrinsic justification. In particular, we shall focus on the way the distinction has
been characterised and its relevance construed in recent work by Penelope Maddy,
in particular her Defending the Axioms ([Maddy, 2011]).

Our goal is twofold:

(1.) To show that the distinction between intrinsic and extrinsic justification, and the
notion that there might be a preferable kind, is fraught with problems.

(2.) To propose arguments in favour of a conception of justification as multi-faceted
but fundamentally indivisible and linked to the notion of explanation. ‘Intrinsic’
and ‘extrinsic’ justifications should (on our view) be understood as manifesta-
tions of explanatory considerations.

The structure of the paper is as follows. First (§1), we provide an account of
intrinsic and extrinsic justification as it appears in Maddy’s aforementioned work.
Next (§2), through analysing various case studies, we develop two problems for the
account, one concerning the tractability of the distinction, and the other concerning
the demarcation between the two kinds of justification. With these problems in view,
we then (§3) argue that an understanding of justification as a process of determining
which principles are explanatory yields a more satisfactory account of justification
in set theory. Moreover, we shall also argue that our account is able to successfully
respond to the issues of tractability and demarcation, by partly dissolving and partly
re-considering the relevance of both issues. We then (§4) consider some objections
to the account proposed in §4. Finally (§5) we conclude with some philosophical
upshots and directions for future research.

1 Intrinsic and Extrinsic Justification

The distinction between intrinsic and extrinsic justification goes back plausibly as far
as [Russell, 1907], but is most famously introduced and discussed in [Gödel, 1947]
(with subsequent revisions in [Gödel, 1964]). Gödel’s ideas have been widely de-
bated in the literature. In particular, they have been extensively scrutinised by Pene-
lope Maddy in a series of influential papers and monographs,2 and more recently
additional exploration has been provided by Peter Koellner3. For the purposes of
this article, we will be primarily focussed on the origins of the distinction in Gödel,
and the subsequent developments in Maddy, although we will relate back to the
broader literature where possible.

We start with a couple of quotations from Gödel’s 1947 paper. Concerning intrin-
sic justification, Gödel writes:

1See [Gödel, 1947] and the re-write in [Gödel, 1964].
2See [Maddy, 1988a], [Maddy, 1988b], [Maddy, 1990], [Maddy, 1997], [Maddy, 2007], and

[Maddy, 2011].
3See [Koellner, 2006] and [Koellner, 2009].
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“For first of all the axioms of set theory by no means form a system closed
in itself, but, quite on the contrary, the very concept of set on which they
are based suggests their extension by new axioms which assert the ex-
istence of still further iterations of the operation “set of”. [...] Proba-
bly there exist others based on hitherto unknown principles; also there
may exist, besides the ordinary axioms, the axioms of infinity and the ax-
ioms mentioned in footnote 17 [here Gödel means large cardinal axioms]
other (hitherto unknown) axioms of set theory which a more profound
understanding of the concepts underlying logic and mathematics would en-
able us to recognize as implied by these concepts.” [italics are all ours]
([Gödel, 1947], p. 181)

Immediately thereafter, Gödel also explains that there might be further criteria
for the acceptance of an axiom:

“Furthermore, however, even disregarding the intrinsic necessity of some
new axiom, and even in case it had no intrinsic necessity at all, a deci-
sion about its truth is possible also in another way, namely, inductively by
studying its “success”, that is, its fruitfulness in consequences and in partic-
ular in “verifiable” consequences, i.e., consequences demonstrable with-
out the new axiom, whose proofs by means of the new axiom, however,
are considerably simpler and easier to discover, and make it possible to
condense into one proof many different proofs.” [italics are all ours] (ibid.,
p. 182)

The quotations above provide us with the bones of an account of what one should
take the two forms of justification to consist in: Intrinsically justified new axioms are
those that follow from the concept of set, or, more generally, ‘concepts’ underlying
logic and mathematics, whereas extrinsically justified new axioms are those which are
justified through studying their success, fruitfulness and consequences.

In more recent times Gödel’s distinction between intrinsic and extrinsic justifica-
tions has been taken up and further developed. For example, Maddy writes:

“When a principle is defended in terms customarily classified as intrin-
sic, various descriptors typically appear: the principle is intuitive, self-
evident, obvious; it’s part of the meaning of the word ‘set’; it’s implicit
in the very concept of set; and so on. Of course, each of these glosses
raises its own suite of questions. These days, I think that the most com-
mon idea is the last-mentioned—implicit in the concept of set—and that
the concept of set intended is the iterative conception.” ([Maddy, 2011],
p. 124)

Intrinsic justification thus includes a cluster of ways in which we might justify
a particular principle. However, Maddy’s focus is what we take to be ‘implicit’
in the relevant concept. Extrinsic justification, on the other hand, is not concerned
with whether or not a principle results from a successful conceptual ‘unfolding’, but
rather concerns the consequences that it has. For our purposes, this is the key aspect
of the distinction. For example, again, Maddy re-phrases Gödel’s description of the
two kinds of justification as follows:

“It has become customary to describe these two rough categories of jus-
tification as ‘intrinsic’—self-evident, intuitive, part of the ‘concept of set’,
and such like—and ‘extrinsic’—effective, fruitful, productive.” ([Maddy, 2011],
p. 47)
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Thus, extrinsic justification consists in justifying a principle through identifying
its consequences. In particular, if a particular proposed principle (axiom) has ‘ef-
fective’, ‘fruitful’, or ‘productive’ consequences, then we can count it as receiving
extrinsic justification.

Now, for our purposes, it is important to emphasise the following fact (that we
shall question later): extrinsic and intrinsic justifications are often seen as orthogonal
and competing. For instance, Maddy is circumspect about the usefulness of intrin-
sic justifications for anything stronger than the most basic set-theoretic axioms, and
believes that extrinsic justifications are to be preferred:

“Ultimately we aim for consistent theories, for effective ways of organiz-
ing and extending our mathematical thinking, for useful heuristics for
generating productive new hypotheses, and so on; intrinsic considera-
tions are valuable, but only insofar as they correlate with these extrinsic
payoffs. This suggests that the importance of intrinsic considerations is
merely instrumental, that the fundamental justificatory force is all extrin-
sic. This casts serious doubt on the common opinion that intrinsic jus-
tifications are the grand aristocracy and extrinsic justifications the poor
cousins. The truth may well be the reverse!” ([Maddy, 2011], p. 136)

For Maddy then, the important facts are the consequences a principle has.4 Her
view is supported by the fact that mathematical practice is usually dictated by the
relative fruits of a body of mathematics at any particular time. Many mathemati-
cians care mainly about proving theorems, and will (for the most part) use whatever
available tools seem most appropriate to them, no matter whether or not they have
intuitive arguments.

A view opposite to Maddy’s is that (set-theoretic) mathematics should be derived
from intuitively supported principles. For instance, Mary Tiles counts as a supporter
of such a view in the following quote:5

“To claim this [i.e. foundational] status for set theory it is necessary
to claim an independent and intrinsic justification for the assertion of
set-theoretic axioms. It would be circular indeed to justify the logical
foundations by appeal to their logical consequences, i.e., by appeal to
the propositions for which they are going to provide the foundations.”
([Tiles, 1989], p. 208)

Tiles’ point is that set theory is precisely meant to be providing the foundations
for mathematical reasoning. To have foundations for our mathematical reasoning,
we need then to be based on intuitively evident principles. To appeal to the conse-
quences of a principle is, for Tiles, to presuppose the very thing for which we are
trying to provide foundations.

4At least the Maddy of [Maddy, 2011]. Her views change quite substantially from the account provided
in [Maddy, 1990]. It is with this more recent version of Maddy’s conception that we are concerned in this
paper.

5William Tait is another example here, as in the following quotation:

“To introduce a new axiom as “true” on this [i.e. iterative] conception because of its “suc-
cess” would have no more justification than introducing in the study of Euclidean space
points and lines at infinity because of their success. ... A “probable decision” about the
truth of a proposition from the point of view of the iterative conception can only be a prob-
able decision about its derivability from that conception. Otherwise, how can we know that
a probable decision on the basis of success might not lead us to negate what we otherwise
take to be an intrinsically necessary truth?” ([Tait, 2001], reprinted in [Tait, 2005], p. 284)
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In sum, we have a distinction between intrinsic and extrinsic justification by
which the former takes axioms to be following from and being justified in view of
the concept of set, whereas the latter views justification as resulting from having de-
sirable consequences. Many authors have seen this taxonomy as providing distinct
and possibly competing kinds of justification.

In the next section, we will raise two problems for the distinction (tractability and
demarcation), before providing what we take to be the beginnings of a solution.

2 Difficulties with the distinction: Epistemic Useful-
ness, Tractability, and Demarcation

In this section, we want to address two main problems with the distinction between
intrinsic and extrinsic justification. Although these can be described separately, one
could, in fact, view them as originating from a single incorrect attitude, namely that of
taking ‘intrinsic’ and ‘extrinsic’ to be fundamental and distinct kinds of justification.

2.1 Epistemic usefulness

First, however, we need to set up the driving force behind our objections. The key
problem concerns what we should expect from a theory of mathematical justifica-
tion.

On the one hand, we expect such a theory to fulfil certain descriptive tasks, for
example we would ideally like it to provide us with a general conception of what it
means to have justified knowledge of a statement. On the other hand, in a scientific
context in which we look to select from many distinct available hypotheses (some of
which may be in conflict with one another) we expect a little more. In particular, we
expect our account of justification to have normative force, and to be of use in decid-
ing between various possible axioms. We therefore put the following desideratum
on accounts of justification:

Epistemic Usefulness. We would like our account to be epistemically use-
ful in that it should be usable in either justifying new principles, or ex-
plaining why justification is not possible. A theory of justification that
can be put to use in actually analysing the justification of scientific claims
is preferable to one that cannot be so used.

This simple requirement concerning justification will form the basis of our criti-
cisms of the intrinsic/extrinsic distinction.

2.2 Tractability

With the idea of Epistemic Usefulness in play, we first consider a problem of tractabil-
ity. Simply put, the accounts of intrinsic and extrinsic justification are not sufficiently
tractable so as to be epistemically useful. In particular, it is very hard to tell when
a principle is or is not intrinsically/extrinsically justified. We examine each kind of
justification with respect to tractability in turn.

2.2.1 The intractability of ‘intrinsic justification’

We begin with intrinsic justification. There appears to be no systematic way to ascer-
tain whether an axiom conforms to the concept of set, as would seem to be implied by
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the notion of ‘intrinsic’. One construal of ‘conformity’ evokes the idea that new ax-
ioms could be literally derived from the concept of set analytically.6But the concept of
analyticity is clearly a difficult one to work with. This can be brought into sharper fo-
cus by considering justification under the iterative conception7. There is a good deal
of agreement on the fact that the ZFC axioms are true of such concept (or at least
heuristically justifiable on the basis of it). Certainly this has been suggested by the
classical [Boolos, 1971]8, [Parsons, 1983], and [Wang, 1974]. However, in spite of the
general agreement that the ZFC axioms are all true under the iterative conception,
some authors have shown scepticism. Potter, for one, has presented arguments that
Replacement enjoys a special status, which requires alternative justificatory strate-
gies.9 Elsewhere, Feferman has expressed worries about the power-set operation
underlying the iterative conception.10

As it stands, when considering what ‘follows from’ a concept, we appear to have
a stalemate: it is not clear what criteria one could appeal to in trying to convince a
different party who bluntly disagrees with what follows from their concept of set.
Without some methodology for making progress on these debates, it is hard to see
how intrinsic justification can gain traction and be epistemically useful.

There is a more general difficulty concerning what our concept is like at a given
point in time. It is common in the literature (or, at least, this is the impression one
might get from some set theory textbooks) to introduce the axioms in close connec-
tion to, sometimes even motivated by, the iterative concept of set.11 But this should
not be taken to be inevitable. As we know, the iterative concept fully emerged only
after the set-theoretic axioms were formulated by Zermelo and Fraenkel (with the
significant contribution of Skolem).12 Of course, many authors have retrospectively
tried to reconstruct set theory in light of the emergence of the iterative conception,
but this is both historically and conceptually inaccurate. As Potter remarks:

“In contrast with the limitation of size conception, [the iterative concep-
tion] took a long time to emerge [...] However, in an attempt to make
the history of the subject read more like an inevitable convergence on the
one true religion, some authors have tried to find evidence of the iterative
conception quite far back in the history of the subject.” ([Potter, 2004], p.
36)

It is perhaps useful to briefly contrast the various routes that our conception of
sets might have taken before the iterative conception was settled upon. The details
will be familiar to specialists, but some remarks help to illustrate the difficulty.

The limitation of size conception, under which sets are all those collections which
are not ‘too big’ (in a sense that can be made precise in close but inequivalent ways)
was, as pointed out by Potter, a lot closer to the early set-theorists’ intents and
ideas.13 This may partly be an element of sociological luck, but may also be mo-

6For example, in the Gibbs lecture (1951), Gödel says: ”I wish to repeat that ‘analytic’ here does not
mean ”true owing to our definitions”, but rather ”true owing to the nature of the concepts occurring
[therein]”, in contradistinction to ”true owing to the properties and the behavior of things” ([Gödel, 1990],
p. 321).

7Under the iterative conception (very much the ‘standard’ choice of conception of set), sets are formed
in stages by iterating some well-defined operation (usually power-set) along the ordinals.

8Though it is possible that Boolos later changed his mind, see [Boolos, 1989] and [Boolos, 2000].
9See, in particular, [Potter, 2004], p. 211-237.

10See [Feferman et al., 2000], pp. 405-6.
11See, for example, [Drake, 1974], or [Enderton, 1977]. These examples can be multiplied.
12For a careful reconstruction of the emergence of the ZFC axioms, see [Ferreirós, 1999], in particular,

Ch. 9 and 11.
13See here [Potter, 2004], §13.5.
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tivated by the fact that early set-theorists had no developed conception of the well-
founded hierarchy. Detailed discussion of well-founded sets appear for the first time
in [Mirimanoff, 1917], there are shades of the iterative conception in [Zermelo, 1930]
and Gödel’s presentation of L, but a full and precise account of the iterative con-
ception was not isolated until [Shoenfield, 1967] and [Boolos, 1971]. This contrasts
sharply with the limitation of size conception, which had already appeared in the
work of Cantor.14

Moreover, these are not the only conceptions of sets, historically. Gödel is also
credited to have occasionally expressed the view that all axioms of sets should re-
duce to just one, Ackermann’s Axiom, that the ‘Absolute is unknowable’.15 If this
represents Gödel’s thought correctly, then it would seem that Gödel’s views further
evolved to include mentioning of the absolute infinite as part of the concept of set
(something which is not directly implied by the iterative conception). It is, also,
plausible, then, to conjecture that Gödel saw Reflection Principles, which can be ac-
counted for very easily using such a conception, as the most general axioms of set
theory.16 A fourth salient alternative is the conception of sets as given by the exten-
sions of definite concepts (the so-called logical conception), which again appears in
the work of Cantor17 and Frege, whose conception, in turn, has been recently taken
up and further investigated by other authors (who have tried to isolate its consistent
fragments and base several theories upon it).18

So we have four main specifications of the concept of set at hand here: one is
based on the ‘construction’ of all sets iteratively, one on the idea that sets are enti-
ties that are not ‘too big’, another one takes sets to be the knowable portions of an
unknowable ‘absolute’, and one views sets as given by extensions of definitions or
properties.

Of course, alternative conceptions may motivate alternative axioms. For exam-
ple, Reflection Principles appear naturally suggested by the absolutist conception,
whereas it is not clear that other conceptions, such as the ‘logical conception’, sanc-
tion their introduction, and the ‘limitation of size conception’ seems to altogether
discourage their use (since they imply that there are ‘V -like’ sets in a certain precise
sense). Similar remarks can be made about other axioms.19 Looking forward, there
are competing ideas we might use in sharpening the iterative concept of set: for in-
stance, our conception might develop in such a way as to include some idea of the
universe as being ‘orderly’ and ‘L-like’ (as in Woodin’s Ultimate-L programme),20

or, alternatively, as being ‘forcing-saturated’21, or, finally, it might incorporate stabil-

14See, in particular, Cantor’s famous 1899 letter to Dedekind, [Cantor, 1899].
15See [Wang, 1996], p. 283.
16Gödel’s intentions seem to be oscillating on this point: it seems that, earlier, he had claimed that

the iterative conception alone could already justify Reflection Principles and thus the existence of several
‘small’ large cardinals including inaccessibles, Mahlos, etc. However, the later Gödel, on the contrary, may
have held that the existence of an absolute infinite represented the most genuine justification of Reflection
Principles.

17Cf. Cantor’s remark that a set is a “many, which can be thought of as one, i.e., a totality of definite
elements that can be combined into a whole by a law” in [Cantor, 1883], p. 916.

18See [Incurvati and Murzi, 2017] (though the authors also present difficulties for the ‘logical concep-
tion’) as well as the NF(U)-based theories in [Holmes, 1998] and [Forster, 1995].

19We lack the space to give a full survey of case studies here, but note, by way of example, that: (1)
the Power-Set Axiom seems problematic from a ‘limitation of size’ perspective, follows immediately from
the iterative conception, and it is unclear whether it could be justified by the ‘absolutist’ and ‘logical’
conceptions; (2) Replacement seems more dubious from the iterative conception, positively implied by
the limitation of size conception, and unclear on the absolutist/logical conceptions. See [Hallett, 1984]
and [Potter, 2004] for discussion of some of these issues.

20See [Woodin, 2017] for the state of the art.
21See [Magidor, U] for exposition of this conception.
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ity of structure existence under extension22. It is unclear how we could select one of
these sharpenings on the basis of our current concept of set; all seem like natural and
legitimate possible future trajectories for our set-theoretic practice.

So we have two main issues making the notion of ‘intrinsic’ intractable: one is the
absence of a clear methodology through which one can ascertain that a statement is
‘derived’ from the concept of set; the second one is the fact that there are many
conceptions of set, all of which may give rise to different versions of ‘intrinsicness’,
and, thus justify some axioms rather than others on intrinsic grounds.

2.2.2 The intractability of ‘extrinsicness’

The problem with extrinsic justifications is that practically all new axioms are ‘suc-
cessful’ somehow. As it turns out, ‘success’ may be a very volatile criterion. For
example, consider:

Axiom of Constructibility. V = L.23

As is well-known, the power of V = L is stunning. Under V = L, the Gener-
alised Continuum Hypothesis (and, thus, the Continuum Hypothesis) are decided,
Suslin’s Hypothesis is decided, important combinatorial principles (such as ♦) hold,
and V = L also implies that there are no measurable cardinals. V = L has far-reaching
consequences, and imposes a clear structure and conception of V as given by iterated
definability.

However, V = L is not regarded as correct by many set theorists. One reason is
that it is incompatible with certain large cardinal hypotheses, and the latter are also
supposed to be very successful and fruitful axioms.

Another more controversial example is the:

Axiom of Determinacy (AD). Every two-player game GA on A ⊆ ωω is deter-
mined.24

AD once again might be viewed as very fruitful. In particular, under AD, sets of reals
are all well-behaved, that is, they are Lebesgue measurable, have the Baire property
and all have an uncountable perfect subset, that is, under AD we have an optimally
informative picture of the real continuum. However, as is known, AD is incompatible
with the Axiom of Choice, so ZF+AD is highly non-conservative over ZFC (in fact,
inconsistent with it!). Now, AC also seems to have fruitful consequences, so how
should one, in practice, make a choice between these two, based on purely ‘extrinsic’
considerations?

There are thus different incompatible candidates for axioms, all of which can
be viewed as fruitful from some perspective. This calls into question the epistemic

22See [Arrigoni and Friedman, 2013] for a survey of this idea.
23L is the constructible universe, which has the same ordinals as V , but wherein, at successor levels,

only definable (in a technical sense) subsets of the previous level are formed (contrary to what happens in
V , where, at successor levels, all subsets of the previous level are formed) and, at limit levels, unions of
all previous levels are formed.

24For details here, see [Jech, 2002] Ch. 33. A quick recap of the relevant definitions: let GA be the
following game on A ⊂ ωω : two players, I and II, play, in turn, natural numbers. The resulting sequence
of the choices of I and II may or may not be in A. If the former is the case, then I wins, otherwise II wins.
A winning strategy is a strategy which makes one of the two players win. A game is determined if there
is a always a winning strategy. AD is the statement that every game GA is determined. The Axiom of
Projective Determinacy is AD restricted to projective sets of reals (for a definition of a projective set, see
Jech, [Jech, 2002], p. 144), ADL(R) is AD restricted to L(R), the smallest inner model of V containing all
reals.
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usefulness of solely extrinsic justification, as we can nearly always find a way for
a particular axiom to be successful. We therefore need to provide a more detailed
philosophical account of how and why these notions should provide justification.

One attempt to deal with this problem, probably one of the most concerted at-
tempts to build a clear philosophical underpinning for extrinsic justification, comes
from [Maddy, 2011], who remarks that, as it stands, extrinsic justification is often
applied “willy-nilly” to any justification that is not clearly intrinsic, and thus more
precision is required.25 Recalling an earlier quotation, Maddy describes extrinsic jus-
tifications precisely as those which identify that mathematics is effective, fruitful, and
productive.26 These are then taken to track facts concerning mathematical depth, which
are, in turn, supposedly not subjective:27

“It also bears repeating that judgments of mathematical depth are not
subjective: I might be fond of a certain sort of mathematical theorem, but
my idiosyncratic preference doesn’t make some conceptual or axiomatic
means toward that goal into deep or fruitful or effective mathematics”
([Maddy, 2011], p. 81)

Perhaps, then, the non-subjectivity of these depth-facts can rescue the friend of
extrinsic justification from the charge of intractability?

We find Maddy’s appeal to mathematical depth to be at least as problematic as
the notion of merely ‘fruitful’ or ‘successful’ mathematics was in the first place. What
appears deep seems, to us, to be a highly agent-sensitive matter.28 While it might be
the case that this is simply a situation in which our intuitions and Maddy’s clash,
there is some evidence from the cognitive sciences that seems to indicate that the
difficulty might run deeper.

For instance, Inglis and Aberdein have found that, when presented with a proof,
mathematicians’ ascriptions of evaluative terms for proofs vary along four main di-
mensions in a similar way to judgements of personal character vary across five di-
mensions.29 They term these dimensions ‘aesthetic’, ‘utility’, ‘intricacy’, and ‘preci-
sion’. These terms were chosen by the authors, but are fairly illustrative of the kinds
of terms included in each (for example ‘beautiful’ was an aesthetic term). ‘Deep’ cor-
related strongly with the aesthetic dimension, and ‘effective’ and ‘fruitful’ strongly
with the utility dimension.

On these grounds, we can raise two problems for Maddy’s conception of extrin-
sic justification as fruitful mathematics. First, the empirical evidence may suggest
that ‘fruitfulness’ and ‘depth’ are not even measuring the same dimension of human
thinking (at least as far as research-level mathematicians’ use of language is con-
cerned). Second, further work indicates that mathematicians strongly disagree with
one another on whether particular instances of proofs are fruitful. When presented

25See [Maddy, 2011], p. 130.
26For the sake of the reader we repeat it in this footnote:

“It has become customary to describe these two rough categories of justification as
‘intrinsic’—self-evident, intuitive, part of the ‘concept of set’, and such like—and
‘extrinsic’—effective, fruitful, productive.” ([Maddy, 2011], p. 47)

27In fact, for Maddy, intrinsic justifications also track facts about mathematical depth: sets are under-
stood as tracking the ‘topography’ and ‘contours’ of mathematical depth. However, as we’ve noted,
Maddy is circumspect about the extent to which the intrinsic justifications can take us beyond the most
basic of axioms, so we focus on mathematical depth as a possible source of support for the use of ‘extrinsic’
justifications.

28We thank John Hamish-Heron for discussions concerning the possible agent-sensitivity of mathemat-
ical depth.

29See [Inglis and Aberdein, 2015]. For the literature on personal character, see [Donellan et al., 2006].
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with an (anonymised) proof from Proofs from THE BOOK, mathematicians appraisal
of the proof varied wildly.30 In Inglis’s and Aberdein’s words:

“We found a remarkable level of disagreement between our participants’
ratings of the proof. For each of the four dimensions of proof appraisal
there were participants who thought the proof should score high on that
dimension, and there were participants who thought the proof should
score low on that dimension. Furthermore, neither research area nor ca-
reer stage seemed to be predictive of mathematicians’ appraisals on any
of the four dimensions.” ([Inglis and Aberdein, 2016], p. 10)

Thus, even if we could settle on a particular phenomenon that is being picked out
by the term ‘fruitfulness’ in Maddy’s characterisation of extrinsic justification, it is
highly unclear that there is a non-subjective sense to the term ‘mathematical depth’,
or ‘fruitfulness’. At the very least, current research-level mathematicians’ usage of
the terms is not close to being coextensive, at least insofar as proofs are concerned.

Of course, we should be careful as to what we take the above observations to
have established. Any strong philosophical conclusion extracted from empirical data
needs to be treated with scrutiny, both with respect to the experimental methodolo-
gies employed, and to how these might be taken to connect with the philosophical
phenomena. It may be that the tension in Maddy’s account can be resolved, or that
more work would result in a satisfactory sharpening. However, as it stands, it is
hard to see how we can use claims of mathematical depth to move forward on the
‘extrinsic’ justification of new axioms if there is (as a matter of empirical fact) little
agreement on whether particular proofs are deep or not.

To sum up, intractability seems to affect both intrinsic and extrinsic justification,
when conceived of as fundamentally distinct and competing kinds. We now turn to
the problem of demarcation.

2.3 Demarcation

An other problematic aspect of the standard view on justification is that the force
of an intrinsic justification cannot be neatly separated from that of an extrinsic one.
In the set-theoretic context even in cases where one might have the impression that
such a demarcation has been clearly drawn are, on closer inspection, difficult to de-
marcate. Whilst there is a sharp distinction between a principle itself and its con-
sequences, this is not so for the justificatory force attaching to intrinsic and extrinsic
justifications.

We could summarise the situation in the following way:

Demarcation Problem in Set Theory. Is there a sharp boundary between
the justificatory force associated to intrinsic, on the one hand, and ex-
trinsic, on the other, justification? If so, how should this boundary be
characterised?

Now, as we’ll outline in more detail below, we believe that the answer to the
first question is negative. The key issue is that the justificatory force of intrinsic
and extrinsic justifications seems, to our minds, not to be sufficiently well-separated.
Thus an account of justification that sees one kind as privileged fails to be transparent

30See [Aigner and Ziegler, 2009]. Proofs from THE BOOK is a volume of the supposedly most ‘beautiful’
proofs of various theorems. Interestingly, if participants were informed of where the proofs came from,
their appraisals were modified (as one might predict).
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with respect to the grounds of asserting the ‘axiom’. In this way, such accounts fail
to be epistemically useful. In this section, we’ll make a case for this in more detail,
presenting historical case studies in which extrinsic claims seem to be intimately
related to intrinsic considerations.

2.3.1 Zermelo on the Axiom of Choice

Even if Zermelo did not go as far as Cantor in asserting that the well-ordering theorem
was a law of thought31, he did find the success of AC to be linked to its intrinsic justi-
fication. In the 1908 paper, where he discusses the objections that his explicit use of
AC raised, Zermelo says that:

“..this axiom, even though it was never formulated in textbook style, has
frequently been used, and successfully at that, in the most diverse fields
of mathematics, especially in set theory, [...]. Such an extensive use of a
principle can be explained only by its self-evidence, which, of course, must
not be confused with its provability. No matter if this self-evidence is to a
certain degree subjective – it is surely a necessary source of mathematical
principles.” 32

Zermelo thus seems to surmise that the success of the Axiom of Choice is pre-
cisely the indication that the axiom is self-evident. Therefore, one could indirectly
reconstruct Zermelo’s ideas on justification in the following way: one starts with
conjecturing the self-evidence of some principle, and then verifies that the principle
is successful, something which is, ultimately, taken as an indicator that the principle
is really self-evident (which was precisely what we were trying to establish). Here
we have a lucid case where there is no obvious distinction between the justificatory
force of intrinsic and extrinsic justifications: because of this symbiotic back and forth
between success and self-evidence, the two seem inextricably linked, and so it is
impossible to demarcate the justificatory force of each from the other.33

2.3.2 Measurable cardinals and V = L

As seen in the previous subsection, V = L can be understood (roughly put) as the
claim that every set can be constructed via iterated definability (incorporating a re-
striction on the parameters used).34 Now, whilst Gödel did consider the suggestion
that V = L should be added as an axiom (referring to it as “natural”), he ultimately
felt that it was not justified, and in fact should be regarded as false for intrinsic rea-
sons.35

31Cf. Cantor, [Cantor, 1883], in Ewald, [Ewald, 1996], p. 886: “In a later article I shall discuss the law of
thought that says that it is always possible to bring any well-defined set into the form of a well-ordered
set—a law which seems to me fundamental and momentous and quite astonishing by reason of its general
validity.”

32[Zermelo, 1908], p. 187. Maddy also quotes this reference, but holds that it is indicative of Zermelo’s
despairing of giving a precise content to intuitive justification (see [Maddy, 2011], p.46 and an earlier
(if more neutral) use in [Maddy, 1988a], p.487). Interestingly, in [Maddy, 1988a], Maddy regards this as
providing only intrinsic considerations, despite the mention of ‘success’.

33One objection might be that to argue that Zermelo meant to assert that the fact the Axiom of Choice
is widely used rather than successfully widely used is indicative of its self-evidence. On this objection, it is
simply the breadth of the use, rather than the successfulness, that indicates self-evidence. (We thank Peter
Koellner for pressing us on this point.) We find this elimination of any notion of success problematic since
it fails to exclude intuitively attractive but false principles like Naive Comprehension.

34See footnote 23.
35Cf. here [Gödel, 1938], p. 557: “The proposition [V = L]. . . added as a new axiom, seems to

give a natural completion of the axioms of set theory, in so far as it determines the vague notion of an
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Gödel’s sentiment is one shared by many set-theorists. L is the ‘smallest’ possible
inner model (i.e. model containing all ordinals) and in this sense, does not seem
to mesh with the idea that the power-set operation should be as ‘rich’ as possible.
Moreover, the restriction on bounded parameters in the definition of the hierarchy
seems at odds with the impredicative intuitions underlying higher set theory. In
this sense, V = L seemed intuitively restrictive, and should be rejected on intrinsic
grounds.

In Gödel’s own words:

“..from an axiom in some sense opposite to this one [i.e. V = L], the
negation of Cantor’s conjecture could perhaps be derived. I am thinking
of an axiom which (similar to Hilbert’s completeness axiom in geometry)
would state some maximum property of the system of all sets, whereas
the axiom A [i.e. V = L] states a minimum property. Note that only
a maximum property would seem to harmonize with the concept of set
explained in footnote 14. [i.e. the iterative conception]” ([Gödel, 1964]
pp.262–263)

Shortly afterwards, consequences of V = L were discovered, that seemed to reinforce
the idea that it represented a restrictive principle. Consider:

Theorem 1. [Scott, 1961] Assume there is a measurable cardinal. Then V 6= L.

Thus the intrinsic idea that V = L should be rejected as it is restrictive could now
be made fully persuasive by using extrinsic considerations, since V = L prevents
the existence of certain large cardinals. But intrinsic considerations (such as those
appearing in Gödel’s quote) already suggested that V = L would naturally clash
with ‘maximum’ principles (such as the existence of a measurable cardinal). Intrinsic
and extrinsic considerations are thus interacting and reinforcing one another here,
and cannot be neatly demarcated.36

2.3.3 Large cardinals and the case for axioms of definable determinacy

More recent work on axioms of definable determinacy yields further examples. As
we shall argue below, here we have a case where after one has found good extrinsic
grounds for the justification of a set-theoretic principle/axiom, then one finds that
there may have been an intuitive conception underwriting the relevant set-theoretic
principle/axiom from the beginning.

Axioms of definable determinacy and their connections with large cardinals con-
stitute one of the most thriving areas of research in set theory.37 As seen, these ax-

arbitrary infinite set in a definite way.”. For more on the notion of ‘naturalness’ in set theory, also see
[Venturi, 2018]. For his change of mind, see [Gödel, 1964] (pp.262–263), quoted below, where he suggests
that V = L is minimising and only a maximising principle would harmonise with our concept of set.

36There may even be a case to be made that Gödel’s views on V = L and its intrinsic plausibility were
directly influenced by the Scott result. In particular, if one looks at sections 3 and 4 of the [Gödel, 1947]
(see pp. 179–186 of [Gödel, 1990]), we find a mention that perhaps an axiom opposite to V = L would
result in a proof of ¬CH. However, in the same part of [Gödel, 1964] (pp. 257–264 of [Gödel, 1990] esp.
footnotes 20 and 23), he mentions the Scott result, and then goes on to claim that only an axiom opposite
to V = L would harmonise with the concept of set (a stronger claim than in 1947). Without further
textual evidence, we relegate this point to a footnote. Nonetheless, future developments (such as a greater
availability of Gödel’s unpublished papers) may deliver additional evidence for this claim, which would
greatly strengthen our case.

37For an overview of the main mathematical results and concepts, see [Koellner, 2006] and
[Koellner and Woodin, 2010].
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ioms, such as Projective Determinacy and ADL(R), prescribe that there are winning
strategies for two-player games of perfect information.38

The pioneering work of set-theorists in the 1980s showed that ADL(R) is implied
by strong large cardinal hypotheses at the level of many Woodin cardinals. The di-
rect converse does not hold, yet definable determinacy axioms imply the existence of
inner models with comparable large cardinals. These facts have been interpreted in
many ways. No one has questioned the fertility of the hypotheses under considera-
tion, but as to their intrinsic justification, opinions have been somewhat pessimistic:

“Is PD true? It is certainly not self-evident.” ([Martin, 1977], p813)39

However, ways to provide intrinsic support for those axioms have been hinted
at by some authors. For example, [Koellner, 2014] points out that there are close
relationships between determinacy axioms and large cardinals (since one can prove
determinacy axioms from large cardinals, and reverse from determinacy axioms to
inner models with large cardinals). This idea has also occurred in [Hauser, 2001],
which, in addition, argues that the fact that two different and powerful strands of set-
theoretic research ultimately converged in a unified structure theory is an illustration
of a criterion he advocates as a fundamental source of ‘internal’ evidence in favour
of a set-theoretic axiom, identity through differences. He says:

“A particularly striking example in set theory is the aforementioned sub-
tle relationship between large cardinal axioms (global existence postu-
lates motivated in part by a priori considerations about the inexhaustibil-
ity of the universe of all sets) and axioms of determinacy (local princi-
ples justified by their fruitful consequences in second-order arithmetic).
[...] Whether this coherence necessarily reflects the existence of a mind-
independent realm of sets cannot be analyzed any further here. Its main
significance from the viewpoint of methodology (our primary concern) is
that it confers objective validity to both kinds of axioms, [...].” ([Hauser, 2001],
p. 257)

Thus on Hauser’s conception of justification, the fact that determinacy and large
cardinal axioms represent a somehow unified phenomenon confers to such axioms
also an intuitive appeal, which is, ultimately, linked to their expressing features of
the ‘structure’ of V . One could push the point even further and imagine that, as in
the previous example of Zermelo’s AC, the intrinsicness of determinacy axioms/large
cardinals has, in a sense, been confirmed by the progressive unfolding of their fruit-
fulness.

2.3.4 Summary

In the above examples there appear to be difficulties in demarcating intrinsic and
extrinsic justificatory force. In our view, this amounts to the following preliminary
conclusion: looking at the historical concrete cases of the justification of new set-
theoretic principles we cannot draw a clear boundary between the force of intrinsic
considerations and that of extrinsic considerations. Combined with our observations
concerning the tractability of the distinction, this questions the epistemic usefulness
of regarding the two kinds justification as neatly separable and competing.

38See footnote 24.
39Similar comments by Martin (and others) can be found, for example in [Martin, 1976] (p. 90) and

[Moschovakis, 1980] (p. 610). See [Maddy, 1988a] and [Maddy, 1988b] for discussion.
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3 Justification and explanation

We now find ourselves in something of a predicament. On the one hand, set-theorists
and philosophers of set theory seem to use something like intrinsic and extrinsic rea-
sons in providing justification for the use of different axiom systems, but on the other
hand the distinction between the two kinds of justification suffers from problems,
both at practical and theoretical levels.

Our solution will be to provide an account of justification in set theory that recog-
nises the presence of different sources for the force of an argument, but that does not
regard the intrinsic or extrinsic as fundamental regarding justification. The problem
of demarcation, thus, will become feature (rather than weakness) of this account, and
a response to the problem of tractability will be facilitated, offering some conditions
for the selection of new axioms, that in our view perform better then the competing
accounts.

Our position can be summarised in the following way:

The Explanatory Account of Justification. Justification of axioms in set
theory consists of finding the best explanations for relevant mathematical
data.

Of course, this needs to be made far more precise to not suffer from similar prob-
lems as we identified for the standard accounts of intrinsic and extrinsic justification.
It is to this task that we now turn. First, we will explain the details of the view, and
why set-theoretic justification has this nature. Then we will explain how it can be
used to address the problems of demarcation and tractability, providing case studies
for the latter.

3.1 Beginnings of the explanatory account of justification

In this subsection we describe what a theory of explanatory justification in set theory
amounts to and how it produces a cogent picture of set-theoretic justification. Our
basic contention is that we can make sense of axioms as the best explanations of
particular mathematical data, and thus that the best-justified axioms are the most
explanatory ones. We thus have two tasks before us:

(1.) Outline and articulate a conception of mathematical data.

(2.) Provide an account of explanation in relation to this data, how it is related to
justification, and how it avoids the problems of tractability and demarcation.

We tackle these problems in order.

3.1.1 Mathematical data

An essential component of our view is a notion of mathematical data. Accounts of
data in the philosophy of science often presuppose that data are ‘made’. For exam-
ple, Hacking argues that data are made with recording marks that are obtained by
human interactions with various kinds of devices.40 Rheinberger takes data to be
the result of subsequent manipulations of Hacking’s ‘marks’, rather than the marks
themselves.41

40See, for example [Hacking, 1992].
41See here [Rheinberger, 2011].
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All this raises a challenge for the philosophy of mathematics, since there are not
clearly any ‘marks’ that are obtained by recording devices in the mathematical con-
text. However, a wider view of data (one that leaves it open whether or not the data
are obtained via marks) is available in the work of Sabina Leonelli, who defines data
as follows:

“I propose to view data as any product of research activities, ranging
from artifacts such as photographs to symbols such as letters or num-
bers, which is collected, stored, and disseminated in order to be used as
evidence for knowledge claims...Hence, any object can be considered as
a datum as long as (1) it is treated as potential evidence for one or more
claims about phenomena and (2) it is possible to circulate it among indi-
viduals.” ([Leonelli, 2015], p. 817)

Leonelli’s view is designed to account for the mobility of data, in that some data
may be processed, modified, and manipulated into different formats, and then shared
and used across multiple communities. Further, she argues, there is no clear differ-
ence between ‘data’ and the traces from which they are obtained.

Her loosening of the definition of data though also permits application to a math-
ematical context. For, in mathematics and its philosophy we also have products of
research activities that may be used in evidence of knowledge claims; namely the
theorems we have derived so far from our currently accepted axioms. Thus we pro-
pose that the mathematical data available to an agent or community comprises at
least the following:

Mathematical Data. The mathematical data available to a community or
agent at a time consists of (at least42) the body of axioms and theorems
accepted by that community at that time.

Several remarks are in order concerning this account of mathematical data:
First, the mathematical data may differ between agents and communities, and

indeed across time. This is a good thing, we should not expect the justificatory chal-
lenges and relevant evidential base to be invariant across diverse contexts. The ques-
tions of justification are very different for those studying subsystems of second-order
arithmetic as compared to those working on resolutions of the Continuum Hypoth-
esis. Similarly questions of justification were very different for the early set theorists
as compared to our current set-theoretic epistemological state.43

Second, we note that an individual datum is defeasible. We may take something
to be a datum at one particular time that is subsequently removed since it is shown to
be false given our other more entrenched theoretical commitments. This can happen,
for example, when a theorem (or indeed axiom) is shown to be false, or the proof
flawed. A good example of the former is the rejection of Naive Comprehension. The
latter phenomenon is common in mathematics, but a good example from set theory is
[Džamonja and Shelah, 1999] which claimed to have shown that there are models of

42We leave it open that there may be more data. For example, in particularly applied areas of mathe-
matics, non-theorem-like observations may play a role.

43A possible objection here is that it is unclear how mathematics got going given this account of mathe-
matical data. What about the earliest mathematicians, who had no clear body of theorems that were taken
as accepted by any particular community? We set this aside for two reasons: (1.) We think that even for
these mathematicians it is likely that they possessed a body of mathematical or quasi-mathematical data,
even if it was relatively primitive. These might include components of basic computations in arithmetic
(e.g. “one object taken together with a different object always yields two objects”), and (2.) Even if our
account does not apply to those mathematicians, the fact still remains that agents and communities since
at least the scientific revolution do have a core bank of accepted mathematical premises to work from.
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set theory in which both♣ (a particular combinatorial principle) is true but there are
no Suslin trees. Their methods, however, contradicted a well-established theorem
(namely Miyamoto’s Theorem) and so the proof was recognised to be flawed44, and
the (now open) question removed from the established mathematical data.45

Third, it is important that the data need not be interpreted (or indeed even truth-
evaluable). There is not (without further argument) any a priori reason why the
acceptance of a particular mathematical datum (say that the power set of the natural
numbers has a greater cardinality than the natural numbers) implies the truth of
any claim or that the datum expresses a particular fact. Rather, data encapsulates
what is accepted as requiring systematisation by a foundational framework. So, for
example, a Platonist (who actually believes there are sets) and a fictionalist (who
believes that strictly speaking our mathematical claims are all false, but accepts set
theory as a correct fiction) can coherently have a conversation about mathematical
justification on the basis of a shared data set, even if they vehemently disagree on
the interpretation of that data. Again, we regard it as a desirable feature of our view
that it is not beholden to a particular account of mathematical truth and ontology.

For now, we will assume that the data pertaining to set-theoretic mathematics
and justification constitutes at least ZFC and the currently accepted theorems (we
will discuss some extensions shortly). Explanation can then be understood as an
epistemic virtue attaching to particular coherent pictures systematising our data.
Thus justification is a particular kind of process on which certain statements are
taken as basic, and explanations thereby sought.

3.1.2 Explaining the data

With an account of mathematical data in hand, we turn to the notion of explanation.
There is already a substantial literature on mathematical explanation in the philos-
ophy of mathematical practice46, largely centring on the explanatoriness (or other-
wise) of particular proofs. From the outset, we should emphasise that the kind of ex-
planation we will be considering is rather different. Instead of concerning particular
proofs, it will rather be similar to the notion of explanation found in the philosophy
of science, where there is a rich literature on what the explanation of data might be
(such as in the discussion of laws of nature).47

We can begin to flesh out our account by defanging a natural immediate ob-
jection, given the initial bare-bones statement of our account. It goes as follows:
If axioms are to be inferred by inference to the best explanation, then we might
be subject to a tu quoque, namely that explanation is just a problematic notion as
depth (let alone ‘best’ explanation). This is especially so when we bear in mind that
[Inglis and Aberdein, 2016] showed that the notion of a proof being explanatory ex-
hibited a similar level of diversity in appraisal by research-level mathematicians as
that of depth. So, in what sense is incorporating explanation into our account better
than depth?

Two points should be made immediately: First (as noted above) we are aim-
ing at a notion of explanatoriness independent of particular proofs (in this sense

44It bears mentioning that [Džamonja and Shelah, 1999] contains much useful material, even if one re-
sult fails to go through.

45See [Brendle, 2006], p. 45, footnote 1 for some discussion and further references. We thank Daniel
Soukup for bringing this example to our attention.

46See, [Mancosu, 2008], for a general presentation.
47There is, however, a deep question of how a notion of explanation independent of proof might be

related to the idea that certain proofs merely prove, whereas others also explain. [Lange, 2017] represents
an in depth study of some of these ideas.
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[Inglis and Aberdein, 2016] figures more into questions concerning proofs). It is thus
open whether or not our account of explanatoriness is open to the same kinds of
issues in appraisal as proofs, given that it is of a different kind.

If we can provide such an account of explanation, it might have certain advan-
tages over a theory of axioms based on depth. First, one might think that mathe-
matical explanation is epistemically useful for the selection of new axioms, whereas
depth might not be. This goes for many ways of interpreting explanation: Philoso-
phers often distinguish (in the broader context of scientific explanation) between
ontological explanation (features of the world that explain each other) and epistemic
explanation (how our mathematical experiences can be organised in terms of ex-
planation).48 Given either kind of explanation we can see that either interpretation
of explanation is epistemically relevant for the choice of axioms; the first identifies
the most fundamental features of mathematical reality and the second ascertains the
key features of our practice that helps us to organise our experience of mathematics.
Either way, and whether or not one leans more towards one of the two kind expla-
nation (or a mixture of both), we have salient features of mathematics that are useful
for the selection of axioms. It is comparatively unclear how depth is meant to figure
into an epistemic story. The same is not so clear in the case of mathematical depth
where it is at least possible (without further argument) that a piece of mathematics
be deep without being particularly epistemically significant. 49 So, in this sense even
if explanation is a slightly problematic notion, if we can address these philosophical
problems and provide a sharper characterisation, we will automatically have some-
thing epistemically useful.

This of course is only to offer the possibility of a way out, rather than actually
providing one. Whilst we acknowledge that explanation is a difficult notion to pin
down, we have far more tractability on the notion than that of depth, and can sharpen
it into something epistemically useful. Whilst we do not have necessary and suffi-
cient criteria for when a statement is the best explanation (and indeed these might
not exist), we can at least point to precise features that increase our confidence that it
has the character of a good explanation. Two obvious examples, which will serve to
illustrate the general strategy, are:

(1.) The sentence (or scheme) should obviously be consistent in the background
logic.

(2.) Given some especially entrenched mathematical data, the principle should not
contradict these. For example, basic number-theoretic facts or simple (and now
known) propositions of analysis should not be contradicted.

Whilst these two examples of criteria do not get us very far (they are in some
sense the minimal requirements on a sentence providing an explanation of some ac-
cepted mathematical data), they serve to outline the broad strategy, namely: There is
no problem of tractability with constraints of the above kind. Consistency is a techni-
cal notion that can be unambiguously defined. Of course it may be that we can never
be certain that a theory is consistent (given Gödelian considerations), but nonetheless
there is no ambiguity as to whether a theory is consistent, and often we have various
reasons for accepting the consistency of theories. For example, the existence of a rich
structure theory (in the case of ZFC and its extensions, the ones provided by L and

48See, for example, [Salmon, 1984].
49Of course if one is already on board with [Maddy, 2011] that sets just are the markers of mathematical

depth, then of course depth is epistemically relevant. We see no clear reasons to accept this claim.

17



other fine-structural inner models50) and intuitive motivating picture (such as stage
theory for ZFC) give us confidence that a theory is consistent. Concerning the sec-
ond constraint, once we have settled on what the more basic mathematical data are,
consistency with these data can also be assessed on similar grounds. Of course, there
may be some debate as to what are to count as the basic data around the peripheries
(or across research communities and time), but for the purposes of mainstream clas-
sical mathematics and set theory we can settle on a core of widely accepted axioms
and theorems. This is quite similar to theoretical physics, where the interpretation
of experimental data can be challenged around the peripheries, such as in the recent
debate (and subsequent identification of experimental error) with respect to faster
than light neutrinos, but there is nonetheless a core of accepted physical data. Sim-
ilarly we may remain circumspect as to whether a purported proof in mathematics
contains a subtle flaw. Despite these wrinkles we can take some data to be basic (cur-
rently this probably comprises at least ZFC) that can only be challenged in extreme
circumstances.

Certainly, however, these criteria only serve to weed out the really bad putative
explanations. Can we go further?

3.2 Prediction and explanation

The core claim we shall argue for is that there is a precise sense of prediction and ver-
ification in set theory that counts in favour of principles and is related to explanatory
considerations. Shades of this idea in fact already appear in [Maddy, 1988a] regard-
ing reflection (p.503), in [Maddy, 1988b] in a summary of different kinds of evidential
support (p. 758–759), in [Maddy, 2011] (Ch. V, esp p. 127) discussing some remarks
of [Martin, 1998] (p. 224) concerning the Cone Lemma, and in [Koellner, 2010] (§1.5
and p. 204) for the justification of determinacy axioms. We will develop these ideas,
in particular providing the following additional contributions: (1.) We identify an
additional case in which a notion of prediction and confirmation occurs, strength-
ening the case that this is an integral part of set-theoretic justification, and (2.) We
will argue that, contrary to previous accounts, prediction and confirmation are not
solely ‘extrinsic’, but mainly explanatory, integrating our justificatory enterprise with
the account of mathematical data provided above.

We can simply state our third condition thus:

(3.) A principle has a better claim to being an axiom (i.e. good or best explanation)
if it predicts (new) mathematical data.

Again, what ‘predicts’ comes down to here is a difficult question. However, we
can provide a fully technically precise account of it by revisiting Gödel talking about
the consequences of a new axiom:

“...in particular in “verifiable” consequences, i.e., consequences demon-
strable without the new axiom, whose proofs by means of the new axiom,
however, are considerably simpler and easier to discover, and make it
possible to condense into one proof many different proofs.” ([Gödel, 1947],
p. 182)

50These models provide contexts of study for large cardinal principles which yield a vast amount of
information, for example, most fine-structural inner models satisfy principles such as GCH as well as
combinatorial principles like ♦ and �. This is argued (e.g. by [Steel, 2014]) to constitute evidence in
favour of the consistency of the relevant principle, since we have a detailed picture of a structure in which
it holds. In the words of Steel “a voluble witness with an inconsistent story is more likely to contradict
himself than a reticent one.” ([Steel, 2014], p. 156).
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Though Maddy and others do mention prediction, they often take the conse-
quences Gödel is interested in to be “nice” in some appropriate sense, constitutive of
a notion of extrinsic justification which we argued earlier to be problematic. How-
ever, notice that Gödel here talks about consequences “demonstrable without the new
axiom”. We can then come to a precise account of prediction and confirmation; the
prediction of a stronger and more controversial theory should be verified by an ac-
cepted and weaker one. For example, we might confirm some axiom Ψ by proving
some unknown statement φ from ZFC + Ψ, and then subsequently verifying φ in
ZFC. This would yield confirmation of Ψ, and is a fully technically precise notion.

Does such prediction occur in mathematics? We will now argue that it does using
two case-studies.

Our first example concerns the Cone Lemma and is in fact discussed in [Maddy, 2011],
but fits especially well with our current purposes. The Cone Lemma states that from
AD one can prove that for any set A of Turing degrees either A or its complement
contains a cone. This holds, mutatis mutandis, for Projective, Open, and Borel deter-
minacy. In the case of PD, we have that PD implies that every projective set of Turing
degrees either contains a cone or its complement contains a cone. Now, during the
study of determinacy axioms, Martin in fact tried to show that a contradiction with
ZFC resulted from projective determinacy, as he discusses:

“When I discovered the Cone Lemma, I became very excited. I was cer-
tain that I was about to achieve some notoriety within set theory by de-
ducing a contradiction... In fact I was pretty sure of refuting Borel Deter-
minacy. I had spent the preceding five years as a recursion theorist, and
I knew many sets of degrees. I started checking them out, confident that
one of them would give me my contradiction. But this did not happen.
For each set I considered, it was not hard to prove, from the standard
ZFC axioms, that it or its complement contained a cone...

...I take it to be intuitively clear that we have here an example of pre-
diction and confirmation. What was predicted, moreover, was not just
individual assertions. Though there had been much work on the struc-
ture of the degrees, no attention at all had been paid to the notion of a
cone. There was one known theorem (Richard Friedberg’s ’criterion of
completeness’), which we would now describe as showing that a cer-
tain set contains a cone. Afterwards cones and calculations of ’vertices’
of cones became significant in degree theory. In determinacy theory, the
Cone Lemma became an important tool. What was predicted by the Cone
Lemma was thus a whole phenomenon, not merely isolated facts. The
example seems fully analogous to striking instances of prediction and
confirmation in empirical sciences.” ([Martin, 1998], pp. 224–225)

Martin’s point is that in these contexts PD actually predicted phenomena (the ex-
istence of certain cones on Turing degrees) that were subsequently verified in ZFC.
This then increases our confidence (ceteris paribus) that PD should be added to our
axiomatic framework. Moreover, it does so completely precisely in terms of predic-
tion of phenomena (namely the existence of cones) by a stronger, more controversial
theory (namely ZFC + PD, and susequent verification by a weaker one (namely
ZFC).

Our second and perhaps less well-known example is represented by Dehornoy’s
work on braids (expanding on previous work by Laver, Martin and others). Braids
can be defined as collections of disjoint polygonal arcs γ1, . . . , γi in R2 × [0, 1].
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As it turns out, the study of these simple, finitary objects can be more easily
carried out using methods involving large cardinals, in particular elementary embed-
dings.51 Many kinds of large cardinals are most naturally defined in terms of elemen-
tary embeddings.

Now, earlier work on a very strong large cardinal hypothesis made it possible to
study algebraic operations associated to collections of elementary embeddings, such
as composition and product.52 Let Eδ = {j : Vδ ≺ Vδ} be a collection of such embed-
dings: one can define operations on elements of Eδ , in a way which is fully analogous
to how one defines operations on elements of the braid group Bn.53 Dehornoy, then,
puts the analogy to work by managing to prove further crucial theorems on braids
in an extension of the infinite braid groupB∞ using ZFC alone, thus eliminating the
need for large cardinals.

In his comprehensive monograph on braids ([Dehornoy, 2000]), Dehornoy ac-
knowledges and emphasises the connection between large cardinals and braids, as
well as the crucial role this connection played for his work, using the following un-
equivocal terms:

“It seems to us that the role of set theory in such cases is quite similar to
the role of physics when the latter gives heuristic evidence for some state-
ments that mathematicians are to prove subsequently. In both cases, the
statements are first established rapidly but at the expense of admitting
some additional hypotheses or approximative proof methods — observe
that adding a set theoretical axiom is nothing but adding a new proof
method — and the subsequent task is to give a proof that does not use
the additional hypotheses any longer.” ([Dehornoy, 2000], p. 600)

Thus, it really seems that we have another example of the notions of prediction and
confirmation at hand. Results on braids, predicted using a stronger theory (ZFC+large
cardinals) are then verified in ZFC, increasing our confidence that large cardinal
axioms are well-justified.

One might think that considerations of parsimony could then be brought against
such a picture. For, our account of prediction depends upon a particular prediction
being subsequently confirmed through proof in a weaker already accepted theory.
But if the prediction can be proved in the weaker theory, shouldn’t we simply plump
for the weaker theory over the stronger one on the basis of explanatory parsimony?

We think that the correct response to this claim is to point out that there are differ-
ent kinds of parsimony. We acknowledge that in terms of logical parsimony, it is the
weaker theory that receives the highest praise. However, the ability to systematise
wide ranging data, an ability manifested through prediction, tells strongly in favour
of the predicting principle in terms of conceptual parsimony.54 This is evidenced by

51It is useful to recall some foundamental notions here. Given two structures A and B, an elementary
embedding of B into A (denoted A ≺ B) is the isomporphism of B into a submodel B′ ⊂ A. Large
cardinals of the same strength as, at least, measurables may be defined in terms of elementary embed-
dings. In particular, the existence of a measurable cardinal is equivalent to the existence of an elementary
embedding j : V → M , where the least κ such that j(κ) 6= κ, called the critical point of j, is a measur-
able cardinal. The embedding notions related to braids are stronger refinements of the definition above.
Recent work has looked at embedding characterisations of smaller large cardinals, see [Holy et al., S].

52The strong large cardinal hypothesis mentioned is I3: ‘For some δ there is a j : Vδ ≺ Vδ ’. I3 is
currently not known to be inconsistent with ZFC. See also [Kanamori, 2009], p. 325.

53Full details may be found in [Kanamori, 2009], pp. 329-331.
54Ideas similar to this appear in [Cartwright, 1980] and Essay 8 of [Cartwright, 1983]. There Cartwright

argues that the truth (which may be messy) does not explain in science, rather we need conceptually
simple simulacra that help us to systematise the phenomena. The application there is somewhat different,
since this idea of explanation is elucidated in terms of the number of bridge principles employed and we
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Dehornoy’s remarks above where it is the large cardinals that show the conceptual
route to the proofs, even if it is subsequently eliminable in ZFC.

In other terms, the examples above not only offer a more precise account of pre-
diction and confirmation, but they also show the unificatory power of this perspec-
tive on explanation; again along the line suggested by Gödel in [Gödel, 1947]55.

We thus have a further precise criterion on when we might take a principle to be
explanatory; namely prediction and confirmation. However, we also need to make
convincing the claim that such prediction and confirmation should figure into an
account of explanation driving justification. We will argue that there are at least two
senses in which this is so.

(1.) Prediction and confirmation shows how a principle can systematise a wide va-
riety of data, and thus increase the chance that the principle itself forms a part
of explanations.

(2.) A natural explanation of the fact that the principle makes verifiable predictions
is that it is correct.

We start again by considering Gödel, who was sensitive to the explanatory role
axioms have through systematisation. For example, Mehlberg writes the following
reporting on Gödel:

“According to Gödel, an axiomatization of classical mathematics on a
logical basis or in terms of set theory is not literally a foundation of the
relevant mathematics, i.e., a procedure aiming at establishing the truth
of the relevant mathematical statements and at clarifying the meaning of
the mathematical concepts involved in these theories. In Gödel’s view,
the role of these alleged ‘foundations’ is rather comparable to the func-
tion discharged, in physical theory, by explanatory hypotheses. Thus, in
the physical theory of electromagnetic phenomena, we can explain why
the sky looks blue to us under normal circumstances, and we are even
able to produce the same phenomenon in the laboratory. Both the expla-
nation of the physical phenomenon under consideration and its produc-
tion under laboratory conditions are due to the logical fact that the state-
ments describing the blue of the sky or that of an artificially produced
area in the laboratory are theorems provable within an axiomatic system
the postulates of which are concerned with hypothetical laws governing
electro-magnetic phenomena, the composition of the atmosphere, etc. It
would not occur to a physicist that these electro-magnetic assumptions
which enjoy the role of postulates in an axiomatized, or axiomatizable
physical theory, are more dependably known to be true than the pre-
scientific phenomena (like the blue of the sky) which are being explained
by being shown to be provable theorems in the aforementioned physical
theory. Thus, the actual function of postulates or axioms occurring in a physi-
cal theory is to explain the phenomena described by the theorems of this system
rather than to provide a genuine ‘foundation’ for such theorems. Profes-
sor Gödel suggests that so-called logical or set-theoretical ‘foundations’

do not have an obvious division between the theoretical and concrete. However, we do hold that the
brute provable facts of ZFC might not be what provide the best explanations, rather we need the more
theoretically elegant theories that incorporate principles of greater consistency strength.

55On the unificatory power of explanation in science there is a vast literature. We would like to recall
here the contribution of Philip Kitcher [Kitcher, 1981] who also believed in a methodological uniformity
between pure and applied science and thus suggested that his view on explanation extended easily to
mathematics.
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for number-theory, or any other well established mathematical theory, is
explanatory, rather than really foundational, exactly as in physics.” (Emphasis
ours, [Mehlberg, 1960], p. 397)

While we might diverge slightly from the author on the use of the term ‘founda-
tion’, we see clearly here that if we are to systematise data, the fact that the known
(and previously unknown) data can be derived from the axioms is important for
showing that the axioms are good explanations in themselves, providing a wide sys-
tematisation of diverse data. Thus prediction shows how diverse data are impor-
tantly similar in being traceable to a common root.

This has implications for explanation in mathematics. [Lange, 2017], for example,
argues that explanation occurs when a proof exhibits an explanatory and striking
similarity between two domains.56 In particular, proofs are understood as explana-
tory when they exhibit ‘symmetries’ of natural properties between different objects
or structures.57 In the case of prediction, we have multiple similar facts traceable
to a common root. This results in an increased likelihood that such similarities will
be found, as the Dehornoy already showed. Therefore, systematising vast swathes
of knowledge under a single assumption (as is the case with prediction) increases
the confidence that such an explanatory symmetry may be found, even if it does not
guarantee it. Thus, prediction increases the likelihood that an axiom forms part of
an explanation.58

Turning to (2.), we might also think that explanatory considerations independent
of the proposed axiom should lead us to the acceptance of axioms that predict. The
debate over whether principles that predict (i.e. prove some data without that data
in mind) as opposed to accommodate (i.e. prove some data with that data in mind)
is well-trodden in the philosophy of science.59 The key thought is that prediction
increases the chance that an axiom is, in some sense, ‘correct’. Since we appeal here
to a notion of correctness the exact form of this relationship will depend somewhat
upon the underlying ontology.

For the realist about mathematical objects, we can take standard realist argu-
ments for the correctness of predictivism for the philosophy of science. For example,
one might argue (in line with [White, 2003]) that a good explanation for why predic-
tive theories predict is simply that they are more reliably aimed at truth than those
that accommodate (the so called ‘Archer analogy’). Similarly, we can say for the
realist that the reason that their principles predict (possibly surprising) results that
can be subsequently verified in the weaker theory is that they aim more generally
towards truth. In this case, the correctness (i.e. truth) of an axiom can simply be
inferred abductively. 60

The situation is slightly more complex for anti-realists. However, any anti-realist
who hold that there is a project for justification of independent sentences requires

56See here [Lange, 2017], Ch. 7.
57Note here that while we do talk about explanatory proofs, in the context of Lange’s account of ex-

planation such proofs are explanatory in virtue of being related to certain explanatory properties in the
world. Thus we are not depending here irreducibly on an account of explanatory proof.

58One could also consider [Steiner, 1978]’s account of mathematical explanation in terms of character-
izing properties, where a property is characterizing if it is “unique to a given entity or structure within
a family or domain of such entities or structures” ([Steiner, 1978], p. 151). Since there are several objec-
tions to Steiner’s account (for a summary, see [Pease et al., 2018], p.4), and we a somewhat constrained by
space, we will not consider Steiner’s account.

59See [Barnes, 2018] for a recent survey.
60The idea that axioms should be inferred abductively is suggested by [Williamson, ], though not in as

much as we do here. For other arguments concerning prediction and abduction, see [Lipton, 2003].
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that there is some notion of ‘correctness’ in foundations, even if it is not truth.61 For
example, we might think of predicting principles for a fictionalist as aiming at truth
within the set-theoretic story, and a good explanation for this being that they are good
candidates for continuation of that story (much as in the Archer analogy).62 Given
then, any such notion of correctness, we can still incorporate axioms as likely correct
in virtue of making correct predictions.

To summarise, we have now argued for the following claims:

(A) There is a sense in which set theory has a technically precise notion of prediction
and verification.

(B) This notion of prediction and verification can be linked to explanation, support-
ing our account of the justification of new axioms as an explanatory enterprise.

In the rest of the paper we accomplish the following three tasks:

(1.) We’ll explain how our account resolves the problems of tractability and demar-
cation.

(2.) We’ll deal with some natural objections.

(3.) We’ll propose some open questions.

3.3 Tractability and Demarcation: Redux

We are thus in a position in which we regard justification in set theory as essentially a
matter of assessing explanatory claims given some mathematical data. Before mov-
ing on to an analysis of objections, it will be helpful to pause and discuss how our
problems of tractability and demarcation are resolved.

We have just finished explaining our response to the problem of tractability. Whether
or not a principle figures in a good explanatory story may be difficult to assess, but
there are precise criteria that we can point to that increase our confidence that a prin-
ciple figures in mathematical explanations. While we have canvassed several op-
tions, there may well be (indeed we expect there to be) many other precise criteria
for when we should regard putative axioms linked to explanations. We leave a full
analysis to other work, but some possibilities have already been suggested in the
literature, without tying their epistemic reliability to explanation. For example, not
considered here were convergence by a sufficiently strong theory ([Koellner, 2006])
and maximising interpretative strength ([Maddy, 2011], [Steel, 2014]). Each requires
study and a story of why we think criteria should track explanation in mathematics.
For instance, Maddy considers the maximising of interpretive strength to be justified
by her conception of the foundational goals of set theory and the axiom MAXIMIZE.
Since that literature is already well-studied, we do not provide detailed examination
here. We do wish to note, however, that Maddy often comes close to advocating

61We acknowledge that for those who do not think that there is any notion of ‘correctness’ in set the-
ory, such as the pure formalist (who holds that mathematics is simply a meaningless game played with
symbols), the only notion of ‘justification’ is one based on making choices of formal expedience, and so
set these views aside.

62Another possible candidate would be Cartwright’s ‘simulacrum’ account of explanation, that is anti-
realist in that she thinks that explanations need not even get the phenomena right (see Essay 8 of
[Cartwright, 1983]). However, her account depends upon a clear partition of the world into the math-
ematical and physical, with mathematical simulacra roughly resembling physical concreta. In this way,
it is not clearly applicable to the purely mathematical context, and so we set it aside. For the anti-realist,
we should also discuss [Fraassen, 1980]’s suggestion that explanations are context-sensitive answers to
why-questions, we will consider this in the section on objections below.
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something like the conditions we advocate here (for example using her notion of re-
strictiveness), it is specifically her tying of justification to mathematical depth that we
take issue with.

Indeed much of Maddy’s work could be naturally utilised by the current project.
For example, we might consider ideas such as Maddy’s MAXIMIZE, which is also a
precise criterion, as would notions of theoretical completeness.63 Detailed examina-
tion of these technically precise features and how they relate to explanation would
be required for a full answer to the tractability problem, but we hope to have con-
vinced the reader that this is at least a promising line of inquiry where depth seems
to be more problematic (we discuss this further in the objections).

The demarcation problem is, however, fully resolved. This is because there is no
pressure, on our account, to regard justificatory force as entirely intrinsic or extrinsic,
or that the two can be separated in any meaningful way. Rather, we take it that
there are various hallmarks of a theory receiving some justification either by being
explanatory or correct through explanation. It might be appropriate to call some
of these features more ‘intrinsic’ or ‘extrinsic’, and we do not want criticise the use
of these terms as rough heuristics, but simply to argue that the justificatory force is
stemming from the explanatory role of the axioms rather than anything else.

4 Objections

In this section we briefly consider some objections to our account.

Against mathematical explanation. One rejoinder to our account is to argue that
there is in fact no good account of mathematical explanation. This has been pressed
by Mark Zelcer who summarises his arguments as follows:

“My claim amounts to the following: philosophical accounts of expla-
nation for mathematics will not satisfy desiderata established for expla-
nation in other domains, like science. Among other things, an account
of mathematical explanation would have to, but cannot, show (1) either
that there is a solid history of mathematics as a discipline with explana-
tory concerns (or there is a good reason why these concerns went largely
unnoticed), (2) there is a good account of predictions in mathematics (or
that prediction is not important for science) that are symmetrical to ex-
planations, (3) the methodological differences between mathematics and
science—that mandates that in science and not mathematics we expect
everything (beside perhaps certain fundamental facts) to fall under an
explanatory schema—can be explained away, (4) reducing surprise (in an
objective way) is not a desideratum in mathematics, and (5) that mathe-
matical explanation, despite appearances, does play a significant role in
mathematics.” ([Zelcer, 2013], p. 3)

Considerations of space prevent a full and detailed rebuttal of Zelcer’s argu-
ments. However, we can make a few remarks here. Regarding (1), Zelcer argues that
there are not good examples of mathematical explanation either in the historical or
contemporary literature, and those that there are (such as in [Hafner and Mancosu, 2005])

63A theory T1 is more theoretically complete than another T2 iff there is a sentence implied by T1 that is
not implied by T2 and not vice versa.
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tend to be rather “exotic”. Whether or not one finds the examples “exotic” is some-
thing of a matter of taste, but in any case there are studies that suggest that mathe-
maticians as a matter of empirical fact do use explanatory terms in their reasoning.
[Pease et al., 2018] found that, in a study of the Mini-Polymath projects, mathemati-
cians do regularly use language normally associated with explanation (e.g. “expla∗”,
“underst∗”, “because”, “as”). So, even if it is at the ‘back’ of mathematics64, explana-
tion seems to be an important part of mathematical discourse. (2) we take ourselves
to already have responded to with our account of prediction. In favour of (3), Zelcer
argues that there are some portions of mathematics that do not require explanations,
whereas in science even so called ‘brute’ fact do have explanations. We have argued,
however, that foundational axioms can be viewed as explanations of the mathemati-
cal data as a whole, and so for us every mathematical fact is an explanandum in virtue
of being part of this data set. For (4) Zelcer argues that surprise is a result of realising
that out of many possible worlds, the actual world is the way it is (or narrow down
the space of possible worlds to a smaller set of more probable ones). Since the truths
of mathematics are necessary, no such surprise is possible. However, aside from the
data point that surprise just is a natural part of mathematical practice (the history of
mathematics is littered with surprises, but the Martin quotation above is fairly rep-
resentative), the appropriate notion of possibility for mathematical surprise is epis-
temic, not metaphysical, possibility. Thus we can perfectly well have Zelcer’s notion
of surprise in mathematics, if only with merely epistemically possible worlds that
tolerate metaphysical impossibilities. Regarding (5) Zelcer argues that mathematical
explanations are not employed, and thus considerations of parsimony dictate that
we expunge them. Again, we hold ourselves to have flat out argued against this,
and in any case the results of [Pease et al., 2018] tell in our favour.

Justification can be wrong. Another objection is the following: Under our concep-
tion, justification does not aim at truth. Rather, since it relates to what we view as
explanatory, what we are justified in asserting might depart radically from the truth.

Before we respond, we should remark that the objection presupposes a very
strong version of set-theoretic realism on which all (or at least many/most) set-
theoretic sentences are either true or false. On the contrary, we see it as an advantage
of our position that it is compatible with many different conceptions of the nature
of set-theoretic discourse. We might, for example, have concepts of set that agree on
ZFC with large cardinal axioms added, but disagree on CH (something like this idea
is advocated in [Steel, 2014]). We see it as an advantage of our view that it can be in-
tegrated into many different positions, and can serve as a point of common ground
between dissenting parties.

Our response to this general question is just to acknowledge that what is regarded
as best justified on our framework may be false for a very strong realist. What is
regarded as explanatory or inferred abductively may turn out to be false. But this is
simply an epistemic fact of life, and is not a problem limited to mathematics. We are
open, in principle, to our justifications failing. But failure does not undermine the
theoretical value of the guiding principles that lead our research and justification.

Second, we should emphasise that justification is a fundamentally dynamic pro-
cess. The account depends on a basis of mathematical data that requires systematisa-
tion. In this way, we are not providing a static account of justification (on which we

64See [Hersh, 1991] for an explanation of the difference between the ‘front’ and the ‘back’ of mathemat-
ics. Roughly speaking, the ‘front’ is the part of mathematics that is presented to the public (e.g. in journals,
conference presentations etc.) whereas the ‘back’ is reserved for professionals (e.g. when collaborating on
a proof using a blackboard, or on MathOverflow or MathStackexchange).
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take ourselves to be supplying an account of how mathematical statements in gen-
eral are justified), but rather how, given some accepted mathematical facts at a point
in time, we can come to justify new principles.65 Justification should thus be un-
derstood as a stepwise process of increasing credences, rather than an all-or-nothing
matter, fixed eternally.

Is what we have suggested extrinsic? A second line of objection would be to argue
that the kinds of criteria we appeal to are actually simply extrinsic. Thus we would
not have actually shown a problem with the intrinsic/extrinsic distinction, but have
rather advocated a new account of extrinsic justification. To support this, one might
point to the fact that one of our examples (the Cone Lemma) is taken up by Maddy66

as evidence of the priority of extrinsic justifications. Clearly the notion of prediction
and verification we have appealed to is tightly linked to the notion of consequence,
and hence should be viewed as extrinsic. This is not a criticism of our view per se,
but rather a dialectic point about how it sits in the wider context of our criticisms
and rebuttals.

The point we wish to emphasise is that while prediction of a datum and subse-
quent verification is conducted using a notion of consequence, the overall package
of prediction and verification involves more. In particular, verification is only pos-
sible once a set of auxiliary assumptions has already been fixed (in the case of the
Cone Lemma and braids ZFC). But holding these auxiliary assumptions fixed oc-
curs within a wider justificatory framework, and parts of that involve what we might
call ‘intrinsic’ considerations.

For example, it is partly because of the way that ZFC interacts with a wider ‘intu-
itive’ picture that we take it to be a good theory for assessing verification and fixing
auxiliary assumptions, since this intuitive picture increases the confidence that ex-
planation is being conferred. We do not wish to bar the set theorist or philosopher
from the use of the terms ‘intrinsic’ and ‘extrinsic’ justification, just to insist that the
fundamental feature of the world they latch on to is explanation, and there are no
solely ‘intrinsic’ or ‘extrinsic’ justifications. For example, the existence of a roughly
‘intuitive’ picture such as the iterative conception, while normally regarded as an
‘intrinsic’ justification, has also facilitated a particularly ‘fruitful’ way of thinking
about set theory, and so is also ‘extrinsic’ in some sense. Our point here is just that
the existence of an intuitive picture should increase confidence that explanation is
being provided.

Fixing the axioms of ZFC as auxiliary assumptions is part of the examples of
prediction and confirmation we have provided, since it provides the metatheory for
the study of braids. However, many of these are naturally linked to more ‘intuitive’
considerations. For example, concerning the Axiom of Foundation Potter remarks
that:

“Because the axiom of foundation did not have mathematical consequences,
mathematicians showed no inclination to adopt it: interest in it was lim-
ited to specialists concerned with its metatheoretic consequences.

Matters began to change only when Gödel ([Gödel, 1947], p. 519) pre-
sented the grounded collections not merely, as Mirimanoff had done, as
a sub-universe of the universe of collections but rather as an indepen-
dently motivated hierarchy which, as he pointed out, ‘has never led to
any antinomy whatsoever’. Since the 1960s the assumption that every

65We thank Tomi Francis for pointing out this feature of our account, and subsequent discussion.
66See [Maddy, 2011], p. 127.
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collection is grounded has been adopted enthusiastically by set theorists,
and the idea that the only coherent conception is the iterative one has
become widespread.” ([Potter, 2004], p. 52)

However, of course the Axiom of Foundation has ‘extrinsic’ support in terms
of the systematisation into the iterative picture it provides. Our point is not that
the Axiom of Foundation is either clearly intrinsically or extrinsically justified, but
rather that it is not clearly either, and that this axiom is needed to fix the background
in which we conduct our predictions and verifications. It therefore can’t be argued
that the notion of prediction and verification we have explored is solely intrinsic or
extrinsic.

No best explanation. The next objection is that perhaps there is no best explana-
tion, or that explanatory considerations do not tell firmly in favour of competing
axiom systems. Would we not then be stuck in a non-epistemically-useful deadlock?

Our response is that while we may indeed end up in a deadlock this would not
be epistemically useless. First, given the emphasis on explanation, we may have al-
ready ruled out several putative axioms, and this would at least be somewhat useful.
Second, at least we will have outlined in precise terms the considerations underlying
each axiomatisation and why we take them to be justified. Third, an account of truly
distinct competing explanatory frameworks might well provide a justification for
genuine pluralism about set theory, and be epistemically useful in telling us why no
resolution of certain independent questions is possible. In short, epistemic useful-
ness need not mandate the provision of definitive yes/no answers, but does require
a sufficiently tractable notion to explain why answers to questions are or are not
possible.

This relates to a similar criticism from a different angle: Might mathematical ex-
planation be context-sensitive? This question is naturally motivated by viewing ex-
planations as answers to why-questions (as proposed by [Fraassen, 1980], taken up
by [Lange, 2017], and empirically confirmed by [Pease et al., 2018]) since the why
question can vary and hence so can the explanation. But then we would have the
criticism that our view might result in the context-sensitivity of axioms.

Two responses are relevant here: First, in the context of the justification of set-
theoretic foundations we have quite a restricted class of contexts, namely those in
which we look at the entire mathematical data set and ask what axioms concern-
ing sets might systematise that. In this sense, we have a kind of holism at play; we
should not be cherry-picking individual data-points in looking for foundational ax-
ioms. These restrictions increase the likelihood that there will be agreement in ex-
planations. Second, if there truly is disagreement in explanation between differing
contexts, then this will provide an epistemically useful underpinning of why there
is genuine pluralism in set theory; there are legitimately different mathematical con-
texts requiring different axiomatisations.

5 Conclusions

In this paper, we’ve argued for two main claims: First that the appeal to intrinsic
and extrinsic justifications as fundamental and competing is problematic, and sec-
ond that explanatory considerations are the fundamental driver in set-theoretic jus-
tifications. Whilst we take ourselves to have taken a first step in this direction, the
piece is somewhat exploratory, and there are many open questions to be resolved.
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One obvious and key issue is that the notion of explanation in mathematics needs
a good deal of further work for a full account to be provided. We canvassed only a
few possible constraints on good explanations in this essay, however there is space
for an entire literature here. We therefore open with the following question:

Question 2. Can a complete list of precise justification-conferring features be com-
piled?

In particular, while we have focussed on prediction, it is presumably only one
explanatory good among many. In discussing justification more generally, there has
been much good work done by Maddy, Koellner, Martin, and others in providing
a taxonomy and analysis of different kinds of justification, and we do not wish to
discredit their work. From our perspective there is much to be done in explaining
how the criteria they provide, many of which can be given precise characterisations
(e.g. restrictiveness of theories67, level of theoretical completeness68, convergence69),
can be integrated into our own explanatory account.

Further, while we have provided explanation of how our view responds to the
demarcation and tractability problems, our response to the latter is only partial. We
have shown how certain theories can receive more confirmation than others on the
basis of prediction and verification. We have not, however, shown how we can (if at
all) choose between the well-confirmed theories. To a degree this is to be expected, and
reflects a usual problem at the cutting edge of any foundational research (it would
be unfair to force physicists to choose between relativity theory and quantum theory
because of their incompatability). However, some way of comparing the theories
(possibly with a calculus of confirmation analogous to those used in the philosophy
of science) is desirable. The following question is thus of interest:

Question 3. Is it possible to come up with a way of assigning different theories
weights and comparing them satisfactorily?

One final point of contact is with notions of grounding. Often explanation is re-
garded as a species of this wider dependence relation, and there are several distinc-
tions we have not examined here (e.g. the difference between ontic and explanatory
grounding, and the different grounding axioms that might thereby be argued to ap-
ply). We therefore ask:

Question 4. Can we make progress on mathematical explanation and the justifica-
tion of axioms on the basis of the study of grounding?70

In sum, we have seen that the distinction between intrinsic and extrinsic justifica-
tion, when regarded as fundamental and indicative of a conflict in justificatory force,
is beset by the difficult problems of demarcation and tractability. A better response
is to regard justification as as linked to explanation, with possible precise hallmarks
of explanation. We have proposed an initial step in this direction, but much more is
still to be done.
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[Hersh, 1991] Hersh, R. (1991). Mathematics has a front and a back. Synthese,
88(2):127–133.

[Holmes, 1998] Holmes, R. (1998). Elementary Set Theory with a Universal Set.
Bruylant-Academia.
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Centennial, pages 189–222. Association for Symbolic Logic.

[Koellner, 2014] Koellner, P. (2014). Large cardinals and determinacy. In Zalta, E. N.,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, spring 2014 edition.

[Koellner and Woodin, 2010] Koellner, P. and Woodin, H. (2010). Large cardinals
from determinacy. In Handbook of Set Theory, pages 1951–2119. Springer.

[Lange, 2017] Lange, M. (2017). Because Without Cause: Non-Causal Explanations in
Science and Mathematics. Oxford University Press USA.

[Leonelli, 2015] Leonelli, S. (2015). What counts as scientific data? a relational frame-
work. Philosophy of Science, 82(5):810–821. PMID: 26869734.

[Lipton, 2003] Lipton, P. (2003). Inference to the Best Explanation. Routledge.

[Maddy, 1988a] Maddy, P. (1988a). Believing the axioms. I. The Journal of Symbolic
Logic, 53(2):481–511.

[Maddy, 1988b] Maddy, P. (1988b). Believing the axioms II. The Journal of Symbolic
Logic, 53(3):736–764.

[Maddy, 1990] Maddy, P. (1990). Realism in Mathematics. Clarendon Press.

[Maddy, 1997] Maddy, P. (1997). Naturalism in Mathematics. Oxford University Press.

[Maddy, 1998] Maddy, P. (1998). v = l and maximize. In Makowsky, J. A. and Ravve,
E. V., editors, Proceedings of the Annual European Summer Meeting of the Association
of Symbolic Logic, pages 134–152. Springer.

[Maddy, 2007] Maddy, P. (2007). Second Philosophy. Oxford University Press.

[Maddy, 2011] Maddy, P. (2011). Defending the Axioms. Oxford University Press.

[Magidor, U] Magidor, M. (U). Some set theories are more equal. Unpublished.

[Mancosu, 2008] Mancosu, P. (2008). The Philosophy of Mathematical Practice. Oxford
University Press.

[Martin, 1998] Martin, D. (1998). Mathematical evidence. In [Dales and Oliveri, 1998],
pages 215–231. Clarendon Press.

[Martin, 1976] Martin, D. A. (1976). Hilbert’s first problem: the continuum hypoth-
esis. Proceedings of Symposia in Pure Mathematics, 28:81–92.

31



[Martin, 1977] Martin, D. A. (1977). Descriptive set theory: Projective sets. In Bar-
wise, J., editor, Handbook of Mathematical Logic, pages 783–815. North Holland Pub-
lishing Co.

[Mehlberg, 1960] Mehlberg, H. (1960). The present situation in the philosophy of
mathematics. Synthese, 12(4):380–414.

[Mirimanoff, 1917] Mirimanoff, D. (1917). Les antinomies de russell et de burali-
forti et le probleme fondamental de la theorie des ensembles. L’Enseignement
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