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Abstract

Often philosophers, logicians, and mathematicians employ a
notion of intended structure when talking about a branch of math-
ematics. In addition, we know that there are foundational math-
ematical theories that can find representatives for the objects of
informal mathematics. In this paper, we examine how faithfully
foundational theories can represent intended structures, and show
that this question is closely linked to the decidability of the the-
ory of the intended structure. We argue that this sheds light on
the trade-off between expressive power and meta-theoretic prop-
erties when comparing first-order and second-order logic.
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Introduction

This paper addresses the philosophical question of how well founda-
tional mathematical theories are able to represent mathematical struc-
tures. Much of mathematical practice concerns the study of partic-
ular structures. Famous examples are the arithmetical structure of
the natural numbers (N, +,×, 0, 1,<), the ordered field of the reals
(R, +,×, 0, 1,<), or the field of complex numbers (C, +,×, 0, 1). The
study of these structures is conducted mainly informally, such as the
manner of reasoning we see in mathematical journals.

This fact concerning mathematical practice is coupled with the ex-
istence of foundational theories. There are various such theories, first
and foremost set theory ZFC, but also category theory, and more re-
cently homotopy type theory. There are many features we might want
a foundational theory to have, but two (interlinked) desiderata that
have emerged are: (1.) to provide a generous arena for mathematical
discourse—we want to provide proxies for all the objects of informal
mathematics, and (2.) to yield a shared standard—we want to be able
to codify informal proofs in the theory in order to compare them and
say when a construction or proof counts as legitimate.1 Roughly, this
means that the foundational theory can encode or formalise all our in-
formal mathematical discourse about the ‘usual’ objects of mathemat-
ics. In this way, if one had sufficient patience and time, once could for-
malise all theorems of informal mathematics as theorems within one’s
favourite foundational theory. The starting question of this short paper
is: What is the desired relationship between informal and formalised
mathematics?

Being a very general question we restrict attention to the informal
study of concrete structures, like the natural, real or complex numbers
mentioned above; in a philosophical context these are often referred
to as intended structures. Now, it is one thing to be able to formalise
some piece of informal mathematics any-old-how, and quite another
to do so faithfully. We would like the intuitive meaning of the for-
mal statements to be similar to the intuitive meaning of the informal
statements.

For motivational purposes let us roughly distinguish two approa-
ches to the foundations of mathematics: the axiomatic and the genetic
method (see [Rav, 2008]).2 The first, chiefly embodied by Hilbert, re-
places the intended structure by a set of axioms we argue are (or take

1We refer to Maddy [Maddy, 2019] for an assessment of what we want a founda-
tional theory to do for us. The terms ‘generous arena’ and ‘shared standard’ are her
terms.

2A similar distinction is often referred to in mathematics texts as the difference
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to be) true. When done in first-order logic this approach is often in-
complete (by Gödel’s results). When done in higher-order logics, we
lose various pleasant meta-theoretic properties, and so whilst of philo-
sophical interest it has less practical value.

The genetic approach is via construction. Instead of asserting ax-
ioms for the intended structure, one first constructs the structure in
question by finding an object coding it in one’s foundational theory,
and then one asks about its properties. Theories with a high degree of
interpretive power are able to translate some mathematical construc-
tions into first-order definitions inside the theory. For example, ZFC
can mimic the classical constructions of the natural, real or complex
numbers by defining formulas. In a little more detail (we provide a full
outline in §2) formalisation of the mathematical study of an intended
structure S typically proceeds in two steps. First, S is represented by
a sequence of formulas R that identifies an object within the founda-
tional theory (in the case of ZFC, a set or a class). Second, the informal
talk about S is translated to formal talk about R. Thus, in every model
of ZFC we will find an avatar of the natural, real or complex numbers.

Here, we are concerned with the first step; the choice ofR.3 We will
focus mainly on this style of doing mathematics: by first constructing
the structures and then examining their properties, and especially their
first-order theory. We also restrict attention to first-order theories F to
be our foundational theories (such as ZFC). Our proposal is to analyse
one dimension of the faithfulness or similarity of meaning of a formalisa-
tion as dependent upon the similarity of S and what we define by R.
We thus arrive at a more specific formulation of our question: what
kind of similarity of S and R should we aim for, or at least hope for?
A notion of similarity of obvious interest in this context is elementary
equivalence. Our main claim then reads as follows (see Theorem 14
for a precise statement):

Main Claim. Let F be suitable first-order foundational theory. Given a
particular analysis of faithfulness in terms of elementary equivalence,
an intended structure can be faithfully represented in F if and only if its
(first-order) theory is decidable and F knows some decision procedure
for it.

For our example structures, this implies that (R, +,×, 0, 1,<) and
(C, +,×, 0, 1) are faithfully representable, but (N, +,×, 0, 1,<) is not.

between analytic versus synthetic approaches (see, for example, [The Univalent Foun-
dations Program, 2013], pp. 56–57, 245–246).

3In particular, we are not concerned with the relationship between informal
proofs and formal derivations.
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On the positive side this shows that foundational theories have an es-
pecially good grip on decidable parts of informal mathematics. Our
main interest in the claim is, however, on the negative side. Many
intended structures have undecidable theories, and so their study can-
not be faithfully formalised in our sense. Moreover, the underlying
assessment of faithfulness via elementary equivalence seems to be a
fairly modest requirement on the representation of a structure, philo-
sophically speaking.

Outline: In (§1) we recall some basics about translations between
first-order theories; in particular formalising the study of some in-
tended structure in a foundational theory. We then motivate one way
of understanding the idea of a faithful such formalisation that we shall
call absolute representability; an intended structure is absolutely rep-
resentable when its representatives in models of F are elementarily
equivalent to it. In (§2) we establish our main claim by proving The-
orem 14. We then (§3) outline applications of our results to debates
concerning first-order and higher-order resources. Finally (§4) we con-
clude and present some open questions.

1 Absolute representability

In this section we set up some key notions and motivate the formal
definition we shall use, namely absolute representability.

Recall, a first-order language consists of a set of relation sym-
bols and function symbols, each having an associated natural number
called its arity; we view constant symbols as nullary function sym-
bols. First, we fix a finite language L and a first-order L -structure
SL : this is our informal intended structure.4 We also fix a consistent
computably enumerable first-order theory F: this is our foundational
theory. We shall add another assumption on F later when needed. Ex-
amples for SL to keep in mind are (N, +,×, 0, 1,<), (R, +,×, 0, 1,<) or
(C, +,×, 0, 1), the example to keep in mind for F is ZFC; we assume ZFC
is consistent.

We employ a standard definition (see e.g. [Ebbinghaus et al., 1996,
Chapter VIII]) of how our intended structure SL is represented in F:5

4Here, we sidestep the discussion as to whether informal mathematics is first-
order or higher-order and content ourselves with the claim that its first-order part is
a substantial one. Note any restriction of attention can only strengthen the negative
interpretation of our main claim.

5There are more general versions that allow ψU (x̄) to have a tuple of free variables
and/or add a formula ψ= interpreting the equality relation; the choice is a matter of
no consequence for us, our choice is for the sake of simplicity and because in many
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Definition 1. A representation R of an L -structure in F is a finite se-
quence of formulas in the language of F, namely a formula ψU(x) such
that F proves ∃xψU(x), and for every r-ary relation symbol S ∈ L a
formula ψS(x1, . . . ,xr) and for every r-ary function symbol f ∈ L a
formula ψf (x1, . . . ,xr, y) such that F proves:

∀x1 · · · ∀xr∀y∀y′(ψf (x1, . . . ,xr, y) ∧ ψf (x1, . . . ,xr, y
′)→ y = y′) ∧

∀x1 · · · ∀xr(ψU(x1) ∧ . . . ∧ ψU(xr)→ ∃y(ψU(y) ∧ ψf (x1, . . . ,xr, y)))

Such a representation definably singles out an L -structure in every
model of the foundational theory F as follows.

Definition 2. LetM be a model of F (with universe denoted M ). The
L -structure R(M) has universe

U := {a ∈M | M |= ψU(a)}

and interprets an r-ary relation symbol S ∈ L by

{(a1, . . . , ar) ∈ U r | M |= ψS(a1, . . . , ar)},

and an r-ary function symbol f ∈ L by the function with the graph

{((a1, . . . , ar), b) ∈ U r × U | M |= ψf (a1, . . . , ar, b)}.

ThatR(M) is a well-defined L -structure follows from the assump-
tions on what F proves about R in Definition 1, namely, the universe U
is non-empty and ψf really defines the graph of some function on U .

Example 3. The usual representation RZFC
N of (N, +,×, 0, 1,<) in ZFC is

given taking for ψU(x) the formula x ∈ ω (understood as a formula in
the language {∈} of ZFC) that defines the finite von Neumann ordinals;
the formula ψ<(x1,x2) is x1∈x2, the formulas ψ+(x1,x2, y),ψ×(x1,x2, y)
state the recursive definitions of addition and multiplication, and the
formulas ψ0(y) and ψ1(y) are y=∅ and y={∅}, respectively. The models
RZFC

N (M), for M |= ZFC, are called ZFC-standard models of arithmetic
in [Hamkins and Yang, 2013]. We refer to this paper and the references
therein for some information about these structures.

Given a representation R of our intended structure SL in our foun-
dational theory F, it is straightforward to translate first-order talk
about SL into F. The following is folklore (see e.g. [Ebbinghaus et al.,
1996, Section VIII.2.E, Satz 2.2]):

foundational theories it does not matter. For example ZFC can represent all tuples by
sets and quotients can be represented by sets using equivalence classes and Scott’s
trick.
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Lemma 4. Let R be a representation of an L -structure in F. For every L -
sentence ϕ there is a sentence R(ϕ) in the language of F such that for all
modelsM of F:

R(M) |= ϕ⇐⇒M |= R(ϕ). (1)

Moreover, the map ϕ 7→ R(ϕ) is computable.

Proof. (Sketch) It is straightforward to compute, given a formula ϕ, a
logically equivalent term-reduced formula, i.e., a formula whose atomic
subformulas are of the form x=y,S(x̄) or f(x̄)=y for variables x, y, x̄,
relation symbols S ∈ L , and function symbols f ∈ L . It thus
suffices to define R for term-reduced formulas. For atoms define:
R(x=y) := x=y and R(S(x̄)) := ψS(x̄) and R(f(x̄)=y) := ψf (x̄, y).
Then proceed recursively, R(¬ϕ) := ¬R(ϕ), R(ϕ ∧ ψ) := R(ϕ) ∧ R(ψ)
and R(∀xϕ) := ∀x(ψU(x)→ R(ϕ)).

Remark 5. The proof sketch defines R(¬ϕ) = ¬R(ϕ), a property of
the map ϕ 7→ R(ϕ) that we are going to use. Slightly more generally
we could use only that F proves (R(¬ϕ) ↔ ¬R(ϕ)) for every ϕ. This
follows from (1) alone: let M be a model of F; then M |= R(¬ϕ) if
and only if R(M) 6|= ϕ by (1), if and only ifM |= ¬R(ϕ) by (1) again.
Similarly, we have the equality R(ϕ ∧ ψ) = R(ϕ) ∧ R(ψ) by the proof
sketch and F-provable equivalence by (1) alone.

The properties of the structureR(M) can vary significantly accord-
ing to the model M of F. This provides a situation in which R iden-
tifies very different structures according to the first-order model we
live in. For example, what is identified by RZFC

N (M) can differ sub-
stantially depending on whether or notM is transitive. In a transitive
modelM |= ZFC, RZFC

N identifies our usual ω with the attendant oper-
ations, but ifM is not transitive RZFC

N may identify a structure whose
domain contains non-standard natural numbers. The following ques-
tion is then salient:

Question. How similar can we make our foundational representative
to the intended structure? More precisely, for a given notion of simi-
larity ∼, does there exist a representation R of L -structures in F such
that SL ∼ R(M) for all modelsM of F?

Here, by a notion of similarity we mean an equivalence relation on
L -structures. The finer this equivalence relation, the stronger the cor-
responding notion of representability. Obviously, taking the identity
for ∼ results in an empty concept: no structure is identically repre-
sentable in F. Taking isomorphism for ∼ means asking whether our
intended structure SL is isomorphically representable in F, i.e., whether

6



there exists a representation R such that R(M) ∼= SL for allM |= F.
This suggestion for ∼ is naive because it is a quick consequence of the
Compactness Theorem that:6

Proposition 6. Only finite L -structures are isomorphically representable
in F.

Hence isomorphic representability is a far too strong notion (at
least as far as first-order logic is concerned). Philosophers and logi-
cians often analyse a spectrum of similarity notions far coarser than
isomorphism.7 We examine the prospects of choosing elementary
equivalence: recall, two L -structures A,B are elementarily equivalent
if they satisfy the same first-order L -sentences, i.e., Th(A) = Th(B),
or equivalently, Th(A) ⊆ Th(B). Here, Th(A) denotes the first-order
theory of A, i.e., the set of first-order sentences true in A.

The corresponding notion of representability reads as follows:

Definition 7. SL is absolutely representable in F if there exists a repre-
sentation R of an L -structure in F such that Th(SL ) = Th(R(M)) for
all modelsM of F; in this case, we say R absolutely represents SL in F.

Example 8. RZFC
N from Example 3 does not absolutely represent

(N, +,×, 0, 1,<) in ZFC. Indeed, let Con(ZFC) be an arithmetical sen-
tence expressing the consistency of ZFC. Then Con(ZFC) is true in
(N, +,×, 0, 1,<) but fails in some ZFC-standard models of arithmetic
by Gödel’s Second Incompleteness Theorem.

Given the naturality of elementary equivalence, the question which
structures are absolutely representable in F deserves our mathematical
curiosity. The above example hints at serious limitations, and we shall
exactly delineate them in the next section where we establish our main
claim from the Introduction. For now, we mention some reasons to
find the notion philosophically interesting.

First: Clearly one goal of the informal mathematical investigation
of the intended structure SL is to find out what is true in SL , and first-
order truth is undoubtedly an important part of it. It thus seems that
an absolute representation is a clear desideratum for the foundational
theory. It states that first-order truth in the intended structure does

6This has been noted across the structuralist literature, but is pressed particu-
larly strongly throughout Stewart Shapiro’s seminal defence of second-order logic
in [Shapiro, 1991].

7For example, partial isomorphisms, partial isomorphism calibrated by ordinals,
elementary equivalence for various logics and fragments thereof, bisimilarity, homo-
morphic equivalence. . . the list is long. What is the right similarity notion depends
on the topic under consideration.
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not vary with different assumptions on the model of the foundational
theory we are living in.

Second: Absolute representation ensures a certain level of stabil-
ity in the informal mathematical investigation of SL with respect to
changes in the foundational theory. Thereby it provides comfort to the
working mathematician who is not willing to restrict their investiga-
tions to F alone. For example, if we (consistently) expand F by adding
more axioms, absolute representability of a structure in SL ensures
that we do not change F’s beliefs about what holds in SL by doing so.8

Third: Absolute representability provides a reasonable way of bal-
ancing two applications of logic—what has been called the descriptive
and deductive role of logic in the foundations of mathematics (see [Hin-
tikka, 1989]). In the descriptive mode, we try to describe structures
up to some level of equivalence (often isomorphism) using a logical
theory. In the deductive mode, we use logic to analyse the particular
kinds of inference patterns that appear in the relevant part of mathemat-
ics. Often these two applications of logic are argued to be in tension
since there is a trade off between descriptive power and and deduc-
tive completeness. Specifically, all of finiteness, natural number, real
number, and various infinite well-orderings evade characterisation in
first-order logic. On the other hand, logics with greater than first-
order resources at their disposal are able to characterise some of these
notions at the expense of pleasing meta-theoretic properties, namely
compactness and Löwenheim-Skolem by Lindström’s theorem [Lind-
ström, 1969] and specifically completeness with respect to a finitary
proof system. There is thus a trade-off between descriptive power and
the smoothness of transition between validity and proof (we will dis-
cuss this further in §3). This tension has been formulated, for example,
in [Tennant, 2000] who shows that the ability to determine models cat-
egorically is incompatible with a weak completeness requirement.9

One response to this predicament has been the pursuit of ‘opti-
mization projects’ (cf. [Hintikka, 1989], [Read, 1997], [Dutilh Novaes,
2019])—programmes that seek to include the least amount of higher-
order vocabulary in a theory necessary to ensure categoricity whilst
keeping things relatively deductively well-behaved. The study of ab-

8It is important that we compare first-order truth of the intended structure SL

and its formal counterparts R(M) in the informal meta-language. An analogous no-
tion inside F = ZFC would state that Th(R(M)) as defined inM (which, assuming
the universe of R(M) is a set, can be done) does not vary with M. This now in-
cludes non-standard sentences and ceases to be a property of R: this theory can vary
withM even when keeping R(M) fixed; we refer to [Hamkins and Yang, 2013] for
precise statements.

9See [Tennant, 2000], p. 267.
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solute representability presents an alternative approach to optimisa-
tion along a different dimension—rather than trying small increases of
higher-order resources to get categoricity whilst retaining some pleas-
ant metatheoretic properties, we stay in first-order logic (and thereby
automatically obtain these properties) and weaken the categoricity re-
quirement to soundness and completeness regarding first-order truth.

2 Absolute representability and decidability

In this section we establish our main claim from the Introduction. We
need the following lemma:

Lemma 9. Let R be a representation of an L -structure in F. Then R abso-
lutely represents SL in F if and only if

Th(SL ) =
{
ϕ | F ` R(ϕ)

}
. (2)

Proof. Assume R absolutely represents SL in F. To show ⊆ in (2), let
ϕ ∈ Th(SL ). We have to show that F proves R(ϕ): letM be a model
of F, so ϕ ∈ Th(R(M)) = Th(SL ) by absolute representation, that
is, R(M) |= ϕ, so M |= R(ϕ) by Lemma 4. To show ⊇ in (2) let
ϕ /∈ Th(SL ). Then ¬ϕ ∈ Th(SL ), so F proves R(¬ϕ) = ¬R(ϕ) by
the inclusion just proved. Hence F 6` R(ϕ) because F is consistent.

Conversely, assume (2) and let M |= F. We have to show that
R(M) |= Th(SL ). But, by Lemma 4, R(M) models the right-hand-side
of (2).

Proposition 10. If SL is absolutely representable in F, then Th(SL ) is de-
cidable.

Proof. Given as input an L -sentence ϕ compute R(ϕ) and
¬R(ϕ) = R(¬ϕ) and enumerate all consequences of F (which we
assumed to be computably enumerable). By Lemma 9, exactly one of
R(ϕ) and ¬R(ϕ) is eventually enumerated, and we accept or reject our
input accordingly.

In Example 8 we saw that a particular representation RZFC
N is not an

absolute representation. We can now say more:

Example 11. The structures (N, +,×, 0, 1,<) and (N, +,×), being un-
decidable (see [Tarski, 1968]), are not absolutely representable in F.

We now prove a partial converse to the above under an addi-
tional assumption on F: Assume there is a representation RF

N of
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(N, +,×, 0, 1,<) in F such that F proves RF
N(Q) where Q is the conjunc-

tion of the finitely many axioms of Robinson arithmetic. For any F
worth calling a foundational theory, this surely is less than a minimal
requirement (and clearly met by ZFC).

Given this assumption, we note the following direct consequence
of Lemma 4.

Lemma 12. Let ϕ be an arithmetical sentence such that Q proves ϕ. Then F
proves RF

N(ϕ).

Proof. LetM |= F. ThenM |= RF
N(Q), so RF

N(M) |= Q by Lemma 4, so
RF

N(M) |= ϕ as Q ` ϕ, soM |= RF
N(ϕ) by Lemma 4.

Let A be a Turing machine. It is well-known that there is an
arithmetical formula αA(x, y) with free variables x, y such that for all
n,m ∈ N

A(n) = m =⇒ Q ` αA(ṅ, ṁ),

A(n) 6= m =⇒ Q ` ¬αA(ṅ, ṁ),
(3)

where ṅ denotes a canonical term for n (say, 0̇ := 0, 1̇ := 1, 2̇ := 1̇ + 1,
3̇ := 2̇ + 1, . . .).

We now present our notion of what it means for F to “know” a
Turing machine deciding Th(Sϕ). Let pϕq denote the Gödel number of
an L -sentence ϕ.

Definition 13. Let R be a representation of an L -structure in F and
let A be a Turing machine. F pointwise verifies A with respect to R if for
every L -sentence ϕ:

F `
(
R(ϕ)↔ RF

N

(
αA( ˙pϕq, 1̇)

))
. (4)

We should remark here that this definition is rather weak among
various reasonable notions for what it means that F “knows” some
Turing machine. Note that A and the inputs ϕ are standard (given in
the meta-language), and F is asked to provide a proof of correctness
“pointwise”, i.e., separately for every standard ϕ. Alternative notions
could quantify A and/or ϕ inside F. For example, we might require
that F proves some sentence expressing “there exists a Turing machine
such that for all L -sentences. . . ” where the witnessing machine might
be non-standard but has to work also for nonstandard sentences.

We view Theorem 14 below as evidence that our notion of knowing
a Turing machine is the right one in our context. As its proof shows,
F knows in our sense any Turing machine deciding the theory of an
absolutely representable structure, see Corollary 15.
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Philosophically speaking, we might view this knowability condi-
tion as a mere technicality, and regard our result as showing that for
all practical purposes absolute representability and decidability are
equivalent.

The following establishes our main claim from the Introduction.

Theorem 14. Let R be a representation of an L -structure in F. Then R
absolutely represents SL in F if and only if there exists a Turing machine A
deciding Th(SL ) and F pointwise verifies A wrt R.

Proof. For the forward direction, assume R absolutely represents SL

in F. By Proposition 10, there is a Turing machine A deciding Th(SL ).
We claim that F pointwise verifies A wrt R. Let ϕ be an L -sentence.
We show (4) by distinguishing cases.

– Case ϕ ∈ Th(SL ). Then A(pϕq) = 1 as A decides Th(SL ), so
Q ` αA( ˙pϕq, 1̇) by (3), so F ` RF

N(αA( ˙pϕq, 1̇)) by Lemma 12. But
F ` R(ϕ) by (2) of Lemma 9. Hence F proves both sides of the
equivalence in (4).

– Case ϕ /∈ Th(SL ). Then A(pϕq) 6= 1 as A decides Th(SL ),
so Q ` ¬αA( ˙pϕq, 1̇) by (3), so F proves RF

N(¬αA( ˙pϕq, 1̇))
by Lemma 12. This sentence equals ¬RF

N(αA( ˙pϕq, 1̇)). But
¬ϕ ∈ Th(SL ), so F ` ¬R(ϕ) using (2) and R(¬ϕ) = ¬R(ϕ).
Hence F refutes both sides of the equivalence in (4).

For the converse direction, assume A decides Th(SL ) and F point-
wise verifies A wrt R. We verify (2) of Lemma 9.

For ⊆, let ϕ ∈ Th(SL ). As A decides Th(SL ), we have A(pϕq) = 1,
so Q ` αA( ˙pϕq, 1̇) by (3), so F ` RF

N

(
αA( ˙pϕq, 1̇)

)
by Lemma 12, so

F ` R(ϕ) by (4).
For ⊇, let ϕ /∈ Th(SL ). Then ¬ϕ ∈ Th(SL ), so F proves

R(¬ϕ) = ¬R(ϕ) by the above. Then F 6` R(ϕ) as F is consistent.

The proof shows:

Corollary 15. Let R be a representation of an L -structure in F and let A be
a Turing machine. If R absolutely represents SL in F and A decides Th(SL ),
then F pointwise verifies A wrt R.

Concerning our example structures we get:

Example 16. The structures (N, +), (N,×), (R, +,×, 0, 1,<) and
(C, +,×, 0, 1) have decidable theories [Presburger and Jabcquette,
1991, Mostowski, 1952, Tarski, 1998], and ZFC pointwise verifies their
decision machines with respect to their standard representations.
Hence, these structures are absolutely representable in ZFC.
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3 Applications to foundational debates

We have seen thus far that an intended structure is absolutely repre-
sentable in a first-order foundational theory F if and only if its (first-
order) theory is decidable and F knows some decision procedure for
it. In this section we’ll discuss applications of this observation to the
debate between proponents of first-order versus higher-order founda-
tions.

Delineating trade-offs. An important debate in the philosophy of
logic and mathematics is whether foundations should be conducted
in first-order or higher-order logic (or, if one is more tolerant in out-
look, which logic is suited for what purposes). Throughout this paper,
we have explicitly restricted our attention to first-order theories—both
with respect to the foundational theory F under consideration and the
theory of informal mathematics that we are trying to formalise in F.
Many authors argue that our foundational theory should contain ex-
pressive resources greater than first-order, since many notions cannot
be characterised up to isomorphism in first-order logic.10 As noted in
§1, all of finiteness, natural number, real number, and various infinite
well-orderings evade characterisation in first-order logic whilst logics
with greater than first-order resources are able to characterise more at
the expense of pleasing meta-theoretic properties, especially compact-
ness, Löwenheim-Skolem, and completeness with respect to a finitary
proof system. Our results inform this trade-off by providing bounds
on when a first-order foundational theory can capture truth in an in-
tended structure. Whilst it is clearly true that for an infinite structure
SL , asking for isomorphic representation of SL is too much, nonethe-
less our results show that there are precise conditions on which a first-
order theory can be omniscient concerning truth in SL . This shows
that for a certain class of infinite structures, even first-order logic can
have a good deal of traction (structurally speaking), in contrast to the
view that only finite structures can be well-treated in first-order logic.
Moreover, we obtain this traction precisely when the theory is decid-
able and F knows some decision procedure for it. We now discuss
some payoffs of these observations for debates concerning the roles of
first-order and higher-order logics.

Technical correlates of epistemic arguments. Our main result pro-
vides a technical correlate of a kind of epistemic argument one can

10This is argued in various places, but [Shapiro, 1991] is one of the strongest advo-
cates of the use of higher-order resources for certain purposes in foundations.
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find in the literature. [Read, 1997] puts forward the following epis-
temic objection to the use of higher-order logic (albeit in order to reject
it later):

Without deductive completeness, knowledge of any math-
ematical treatment—indeed of any theory—would be im-
possible. Only through completeness can claims be tested
and verified. If someone is challenged concerning a claim
made as part of a complete theory, production of a proof
can settle the matter – where ‘proof’ is understood as in
first-order logic, as a decidable property, so that any puta-
tive proof can be checked for correctness. If the theory was
not complete, one might claim that a thesis of it was true
but not provable. How could such a claim be checked and
supported or refuted? ([Read, 1997], p. 88)

Of course, as Read notes, the objection is not sound since it ap-
pears to motivate decidability as the operative property rather than
completeness:

Even in pure first-order logic, completeness guarantees
only semi-decidability—that we can find a proof if there
is one. It does not yield a corresponding effective method
of refutation. The argument for the epistemological need
for completeness in fact suggests that decidability is really
the desired property; but that feature, though dreamed of,
perhaps, by Leibniz and Wittgenstein, was denied us even
for first-order consequence in the aftermath of Gödel’s in-
completeness theorem. ([Read, 1997], p. 88)

Our results show that, from the point of view of an appropriate F
there is a technical manifestation of this argument put forward for con-
sideration in [Read, 1997]. As it turns out (from the point of view of
F) we have traction on truth in a structure SL exactly when F knows a
Turing machine witnessing the decidability of the theory of SL . Thus,
if one (controversially) wishes to maintain that the decidability crite-
rion is the important one for epistemic tractability, one obtains a good
match between truth in a structure and satisfaction of this epistemic
criterion for those structures with decidable theories, and poor epis-
temic traction on truth when the theory of SL is undecidable.

Limitations of first-order foundations. On the other side of the coin,
we have shown that a foundation which is both first-order and com-
putably enumerable has limits in absolutely representing theories.
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The meta-theoretic advantages given by compactness, Löwenheim-
Skolem, and completeness have their price. Not only will any first-
order foundational theory F fail to determine the cardinality of an in-
tended infinite structure SL , but if the theory of SL is undecidable
F loses traction on truth in SL too. Authors such as [Tennant, 2000]
show that weak completeness requirements on a theory are incompati-
ble with the categorial representability of a structure in that theory. We
have shown further that if we want traction on truth in intended struc-
tures with undecidable theories, we will need higher-order resources.11

This in turn shows that if we want to use some foundational theory to
provide a generous arena and shared standard (in [Maddy, 2019]’s sense)
accuracy concerning truth for structures with undecidable theories re-
quires non-first-order resources.

Implications for optimization projects. The previous observations
have implications for so-called ‘optimization projects’. In §1 we noted
that various authors (e.g. [Hintikka, 1989], [Read, 1997], [Dutilh No-
vaes, 2019]) consider the idea of trying to find the ‘mildest’ strengthen-
ings of first-order logic in order to be able to capture certain structures
up to isomorphism whilst retaining many desirable meta-theoretic
properties. We suggested absolute representability as a different ap-
proach to optimisation, instead of increasing the strength of the logic
to obtain categoricity, we weaken the level of accuracy concerning
structural description required and coarsen the similarity relation to
elementary equivalence. Our results indicate that this optimisation
project can be successful for precisely those structures which have de-
cidable theories, but a different approach is needed for structures with
undecidable ones.

4 Conclusion

Recall, we asked for a representation R such that SL and R(M) are
similar for all modelsM of F. Taking similarity as elementary equiv-
alence, we saw that this requires that Th(SL ) be decidable. We have
analysed some implications for studying intended structures via abso-
lute representability. If Th(SL ) is not decidable, however, it is natural
to ask for weaker notions of representability.

There are many possibilities and we briefly discuss one of them,
namely the one obtained by weakening the equality in (2) of Lemma 9

11This observation coheres well with suggestions of [Shapiro, 1991] and
[Väänänen, 2001].

14



to an inclusion: call R a sound representation of SL in F if{
ϕ | F ` R(ϕ)

}
⊆ Th(SL ). (5)

Roughly said, F proves only true first-order sentences about SL .
Clearly, the working mathematician studying SL would reject any
foundational theory not providing such a representation.

Proposition 17. Let R be a representation of L -structures in F. Then R is
a sound representation of SL in F if and only if there exists a modelM of F
such that R(M) is elementarily equivalent to SL .

Proof. Assume (5) holds. It suffices to show that the theory

F ∪
{
R(ϕ) | ϕ ∈ Th(SL )

}
is consistent. Indeed, a modelM of this theory has the property that
R(M) |= ϕ for all ϕ ∈ Th(SL ) by Lemma 4, so R(M) and SL are ele-
mentarily equivalent. The claimed consistency follows from compact-
ness: if the theory above is inconsistent, then there are finitely many
ϕ1, . . . ,ϕk ∈ Th(SL ) such that F refutes R(ϕ1)∧ . . .∧R(ϕk) = R(ψ) for
ψ := ϕ1 ∧ . . . ∧ ϕk (see Remark 5); as F proves ¬R(ψ) = R(¬ψ) and
¬ψ /∈ Th(SL ), this contradicts (5).

Conversely, if (5) fails, then there exists ϕ /∈ Th(SL ) such that F
proves R(ϕ). By Lemma 4, R(M) |= ϕ for every modelM of F while
SL 6|= ϕ, so R(M) and SL are not elementarily equivalent.

Thus, asking for a sound representation is asking for a special
model M of F, namely one such that R(M) and SL are elementar-
ily equivalent. This makes sense also for other notions of similar-
ity, and in particular for isomorphism. For example, in the case of
(N, +,×, 0, 1,<) the latter asks F to have an ω-model. It is thus philo-
sophically justified to ask F to be more than just consistent, namely to
ask for the existence of some model M of F such that R(M) and SL

are similar in some or anoher sense for various intended structures SL .
But it is unclear how much one should or can ask for.

Another way to weaken the notion of representability, in order to
make it apply to structures with undecidable theories, is to consider
only “intended” modelsM of F, or an expansion thereof formulated
using greater than first-order resources.12 For example, restrictingM
to transitive standard models of F = ZFC makes RZFC

N an isomorphic

12A strategy along these lines is considered by [Väänänen, 2001] who suggests that
we work with urlogic—our underlying logic that, in a manner somewhat reminiscent
of Frege, carries its intended meaning with it.
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representation of (N, +,×, 0, 1,<); on the other hand, (R, +,×, 0, 1,<)
is absolutely but not isomorphically representable. By contrast, if
we instead formulate ZFC in quasi-weak second-order logic (where
second-order variables are stipulated to range over countable relations),
(R, +,×, 0, 1,<) becomes isomorphically representable. We suggest that
various “semantic” extensions of F can, in principle, be philosophi-
cally assessed by their capability to represent intended structures with
respect to one or another notion of similarity.13 This project, while
worthwhile, is very broad, and so we leave the study of such similar-
ity relations in semantic extensions as an open problem.
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