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In this paper it is shown a circuit-theory approach for the
integral equation for thin wire antennas, from which
Pocklington’s equation can be deduced as a special case. In
this way, when solving it via method of moments, impedance,
current and voltage matrix acquire meaning [1]. It is shown
that a thin wire can be considered as an infinite-port electric
network, in which the goa consists in finding out the current
in each port. The following approach is based on Aharoni’s
theory [2].
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Introduction

Circuit Theory is a fundamental area in Electrical Engineering, since
lets determine currents as well as voltages in electrica networks,
diginguished by their concentrated parameters. resistances,
inductances and capacitances. However, just as it is, theory is just a
correct gpproximation under certain conditions[3].

Circuit Theory can provide severa analyses in which networks are
represented by black-boxes, characterized by their transfer functions,
such that for a given excitation a response is gotten. Generally,
transfer function is secured by Laplace Transform, presenting a

complex function H (s) of one complex variable s=o + jw, where

o is the attenuation coefficient (it is due because o <0 generaly)
and o isthesigna’sangular frequency [4].

Another representation is secured by Fourier Transform, obtaining
acomplex function H (@), which provides information for harmonic

excitations. Since an input signal can be modeled with harmonic ones,
in agreement with Fourier's theorem, H (@) can be used for getting

the output for any harmonic input [5]. Hence, harmonic case is
important in Electrical Engineering not only for its simplicity and
ease of use, but because almog signals, fields, sources and charges
vary harmonically intime.

Circuit Theory's exactness is edablished upon network’s
dimensions regarding the wavelength. If it is large enough, current
and voltage in any network branch could be assumed changeless
along it. For ingtance, an electronic circuit working at 10 KHz, hasa

wavelength of 30 Km gpproximately, which is much larger than any
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electronic device' sdimensions. The set of equations which represents
anetwork in the harmonic caseis:

n

Z[ja)Lk,+jw1C +Rk,j|,=vk, k=12---,n, (1)

1=1 Kkl

where n is the number of meshes, L, C, and R, are the mutual

inductances, capacitances and resisances between k-th and |-th
meshes, respectively, V, is the voltage in k-th mesh and |,, the
unknown, isthe circulating current in 1-th mesh [6].

Network egs. (1) satisfy Kirchhoff’'s voltage and current laws in
each mesh and node, respectively:

2.Vi=0, 21 =0. @)
However, as the network dimensions are nearly comparable with

wavelength, electromagnetic induction occurs along the meshes and
nodes, transforming eg. (2) as.

DV =—joLl, Dl =-jeCV, 3
where L, is the inductance mesh and | its circulating current, and

C, the capacitance nodeand V its voltage.

As the network dimensions are equal or higher than wavelength,
electric parameters can not be considered concentrated in certain
points but distributed along the network. Therefore, for finding out
current and voltage distributions, Maxwell equations must be solved
for certain boundary conditions, which lead to an integral equation for
the current. As a special casg, this integral equation corresponds to
Pocklington's one for thin wires, used frequently in antennas.
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The Electromagnetic Field
Electromagnetic field obeys Maxwell equations, which in differential
form in the harmonic case are:
VxE=-]jwB, VxH = joD+J,

_ _ (4)
VeD=p, VeB=0,
where sources p and J satisfy acontinuity equation:
Vel=—jap. ®

For solving egs. (4), apair of potential functions satisfying certain
wave eguations, are defined. They are referred as retarded potentials,
and are, drictly speaking, mathematical tools without physical
meaning, which let simplify the problem’s solution. The functions are
the magnetic vector potential A and the electric scalar potential @,
defined by:

uH=VxA, E=-VO- joA. (6)

Accordingly to Helmhdltz's theorem, not only V x A should be
defined, but also V e A should be established for settingup A ina
uniqueway [7]. Thisisreached by meansLorenz gauge:

VeA=—jousd, (1)

which also setsup @ in aunique way. Therefore, when substituting
potentials in Maxwell equations, a pair of relations represents the
electromagnetic field asawave:

VA + @’ usA = —uld ,
V2D + 0’ ued = - p/¢

whose solutions, gotten by Green's function technique, satisfy
radiation condition at infinitum:

(8)
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where r'’ isthe source point and r theﬂeld point, asshownin Fig. 1.

©)

Figure 1. Source of the electromagnetic field.

In wirdless communication systems, electromagnetic fields
trangport energy and information faraway the sources by means
waving processes. For supporting them, generators are used for
transferring energy between system’s ends. In practice, since it is
impossible to consider their detailed nature, generators are modeled
by afield of force F, whose dimensions are those of E, and whose
labor isimpressing an electric current J, = oF which must be added

to Ampere-Maxwell equation:
Vtza(E+F)+ja)€E, 0(E+F)=J. (20)
From Maxwell equations it is possible to obtain a relation which
establishes an energetic balance for the electromagnetic field in the

domain v. Such relation, conveniently called the complex energy
equation, is:
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q’;ﬁ( ExHj da+12wm( pH[ == |E|j
g = 2reran

When the electromagnetlc field performs forced oscillations, there
exists a continuous transformation between electric and magnetic
energy and vice versa, where their average values need not
necessarily be equal, sincethey are barely s0. Given that the field isin
an oxcillatory state, energy density should not remain stationary at any
time, implying the source absorbs and gives energy periodicaly;
magnetic energy excess over electric one has a throbbing behavior
between the source and the field. Such difference, twice multiplied by
@ 1s equa to the throbbing average power. Appearance of 2w in
(12) isrelated with the quadratic nature of power.

(11)

Equation for a Uniform Current

By substituting Faraday-Maxwell and Ampere-Maxwell equations
into (11), the next relation results:

JrEevov i La-frow. o

which shows that the work done by the FEM for supporting the
change in electromagnetic energy, is given by the volume integral of
—E e J*, which, in the harmonic case, is equivalent to the quantity of
radiation performed by the system. By expressing E in terms of the
retarded potentials, the following equation raises.
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g{gSScDJ;da— me Dp v+ Jmm AeJdv

Al e[ oo

Normal surface current component J, equals surface charge

dengity on the conductor. For smplicity, surface integral term is
omitted since p can represents volumetric charges as well as

superficial ones. Therefore:

(13)

—ij Op" dv+1a)jA oJ dv+jv| [ dv = jF oJ'dv. (14)

By expressing retarded potentials in terms of current and charge
dengties, it happensthat'

'[Ipp el avav’ + ja),u.“\] 0 JEN av'dv

47[5
(15)

9
+|—dv=|FeJ'dv.
Joa=lr
When conductor’s dimensions are less than wavelength, it can be

supposed that current is uniform across the conductor, as shown in
Fig. 2, such that:

|=|§=ﬂaJda=aJ, (16)

where a isthe transverse section area, S a unit vector in direction of
J, and | =|I| the total current which crosses the considered area

Therefore, we get:

© 2009 C. Roy Keys Inc. — http://redshift.vif.com



Apeiron, Vol. 16, No. 1, January 2009 52
pp e jcoyl I Sose’kr
el J]
(17)

+|*|ja‘i";=|*jF;de.

Figure 2. Oscillating charges due the field F .

A charge dengity p is located a conductor’s ends, cregting a
uniformly distributed superficial density ps which contributes in the
result by means a surface integral. In A end exigts a totd electric
charge Q,, whilein B one exists a total electric charge Q;, related

between them by:

Qx= ﬂ patda, =-Q = ” pPsdag =Q, (18)

where da, and da, aredifferential surface elementsat the A and B

ends, respectively. In this way, using the continuity equation
| =—jwQ, eq. (17) can be written as.
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e'“d d e da.d
” a,da, L[ aBaB

ja)47z5 {

_2”9 daAdaB} Jwﬂ|”5‘ ejkr (19)

a,agr

\

+Ij%=f|ﬁdl,

where dl is a differential length element. Eqg. (19) corresponds to
Kirchhoff’s voltage law for current in an RLC series circuit in steady-
sate[8]:

|[ja)L—j(a)c)*l+R}=|zzv, (20)
where Z s the circuit’s complex impedance. Eq. (19) expresses a

generalized complex form of Ohm's law for the harmonic case
Circuit’s parameters are secured by:

Djelkfda ' da,

cCt'= +

e daBdaB
=

4rs

jkr A ar jkr
) edﬂ} , L :ij’f&d\/d\,, (21)
AB a'AaBr \"AY

R:j%, V=[FRd.

From these equationsit is clear that inductance and capacitance are
now complex quantities instead of real ones, like occurs in ordinary

circuits. Such difference is due to the appearance of the €% factor
inside integrals, term provoked by the retard suffered by the field
while propagating through the space.
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This procedure can be extended for getting the n circulating
currents in their respective meshes. From eg. (1), circuit’s complex
parameter are now:

jkrg € M da, d
a1 1 '”e daAkdaA, +J'J' Qg 0ag,
Are aAk aAI r|(| a'Bk aBI rkl

~ ” €"da,day r €'%dayda,

(22)
AkaBI ki aBk aAI rkI
S e§€ i
L= Pt Ro= e

That circuit’'s parameters are now complex quantities, alows
consdering (20) as a genera theory for uniform currents where
classical theory (1) isa gpecial case.

Integral Equation for a Non-Uniform Current

When conductor’ s dimensions are smaller than wavelength, current is
digtributed approximately uniform aong conductors, from which
Circuit Theory equations are valid. However, the larger the
conductor’s dimensions are, the less the current is uniform along
them, from which an integral equation is necessary for describing it.
A tri-dimensional integral equation has the following general shape:

.m K(xy,zX,y,z)f(x,y,z)dxdy'dZ
+f(xy.2)=0(xVY.2),

where f(x,y,z) is an unknown function, while g(x,y,z) and the

kernel K (x,y,zx,y',z) ae known, the last sitisfying the

following symmetry property:
© 2009 C. Roy Keys Inc. — http://redshift.vif.com
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K(xy.zX,y,Z)=K(X,Y,Z;xY,2). (24)
Eq. (23) isan integral equation of the second kind, while in a one

of the firgt kind the unknown does not appear outside the integral:
m K(xy,zX,y,Z)f(X,y,Z)dxdydz =g(x,Y,2). (25)
Let us consider an one-dimensional integral equation of the second

kind possessing only x and x'. In certain sense, it should be regarded
asan infinite set of linear equations.

(1+Ky) f+ K, f, +...+ K, fo =0, ,

1n 'n

Kufi+(1+Ky,) f+. + K, fo=0,,

2n 'n

(26)

Kufi+Kpf+ +(1+K,) f. =9, ,

f(k)+IZZ;K(k,I) £(1)=g(k).

In similar way when a summation becomes an integral, provided
that indices become continuous, previous equation can be written as:

f(k)+[K (k) fF(1)d =g(k). 27

Any infinite set of linear equations is numerable, while an integral
equation suggedts an infinite set of non-numerable equations. With
this idea, equivalence between an integral equation and an infinite set
of linear equationsis useful. In such sets, it is not alowed referring of
superior dimensions, but eq. (27) can be generdized into a three-
dimensional integral equation:

J.K(|<1,k2,k3;|l,|2,|3) f (|l,|2,|3)d|ld|2d|3
+f (|<1,k2,k3) = g(kl’kZ’kS)'

© 2009 C. Roy Keys Inc. — http://redshift.vif.com

(28)



Apeiron, Vol. 16, No. 1, January 2009 56

Whenever indices in a set of linear equations have certain relation

with a set of discontinuous points in a n-dimensiona space, a the
limit, a n-dimensional integral equation is gotten.

Let us assume in a given conductor exists a current distributed in

gationary lines of flow, asin Fig. 3a, each one of them described by a

unit tangent vector §(x, y, z) which points out the direction of current

flow. All of the points in each current line keep the same intensity. In
genera, an gationary line of flow will be described by two linear
independent functions, g, and g, :

J(xy,zt)=[g,(x y.z)senat + g, (X v, z)cosat |3(x, Y, ) .(29)

In general, J vector draws an ellipse ingead a line. However, in
wires ellipses degenerate into their major axis, becoming in lines of
flow essentially parallel to wire'saxis.

Figure 3. Stationary lines of flow.

If we assume each line to be composed of a large number of
elements, asin Fig. 3b, along which current can be supposed uniform,
without mutual resistances, the following set is reached:

0, _ _ 1
DKl =Vi-Rl, Ky =jol,+- :
JaCy (30)
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In this way, circuit’s parameters must be calculated when current
elements become infinitessimal. Mutual inductance is then expressed

asfollows
jkrg
L, =lim— j S* 5€ ——dv,ady,
= 47 e 4G
ejkr X,¥,Z;X,Y', z (X y Z).S (X’,y’,Z’) dl dl
47z r(xy.zx,y,z) K
According to Fig. 4a, mutual capacitance is calculated as.
jkrg ejkrmd d
4zeCy =tim| [[ S 9 , (=
o Anp Ty 85 g My
— .[ I daAkdaBI J' J‘ e daBkdaAI }
AkaBI ki aBka'AI rkI

where the next identity, Fig. 4b, allows several smplifications:
f(r')- f=[3(A)s Vv, fm)d .

Then, the result follows from:
jkrg kR jkrg ke
v [e e Me e j

- " -
r rkI rkI

{ § e’kr v, [ejkr ﬂ.é(x, y,z)dl,

r

kr
’{V ej 5(x, Y, z)} S(x,y,z)dd, .
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Figure 4. Calculation of mutual capacitance.
The remaining circuit’ s parameters are calculated with:
I, =aJ 8, R =|nimj%=$,
e ogd O (35)
V, =lim|F ed, =F e&dl, ,

n—owo

where a , is the element’s cross section. Therefore the set of
equation becomes:

n . . J, eSadl
K,J, e%adl d, =F e&l, -~k %"k
; K~ k Sak kI k k Uak (36)
K, = K,dldl, .
Dividing by dl, and removing the dot product, we get:
D Kydad, =F, = (37)
I=1 o
In the limit, when n — oo, the set of equations is equivalent to an
integral equation, where a dl, = dv':
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M+IK(x,y,z; X,y,Z)J(X,y,Z)dv' =F(xy,z),
o \%
jou €88 1 er 9
K(xy.zX.,y.,z)= ad +— V’(V .§j.§'_
4 r |wlre r

Integral equation of the second kind (38) is a very generalization
of Circuit Theory, taking into account that current is not uniformly
digtributed in the conductor and that it has not restrictions regarding
its size. Such integral is an exact consequence of Maxwell equations
by considering stationary lines of flow. For thin wires, eg. (38) can be
reduced into an one-dimensional integral equation with certain
exactness. In several cases o is large enough that J/o term can be
neglected; mathematically it could be a disadvantage because an
integral equation of the second kind is easier to solve than one of the
firgt kind. However, provided that o — oo, current is confined in the
wire's surface, and lines of flow will be known with better degree of
precison. Findly, if F=0, integra equation becomes an
homogeneous one which will have complex solutions for certain
eigen-vaues of wave-number, whose real parts bring out free-
oscillation frequencies and whose imaginary parts bring out
attenuation constants due radiation.

Integral Equation for Thin Wires

It is common that almost antennas were made with thin cylindrical
conductors, which in practical are those whose diameters are less than
#/100 19]. For avoiding singularities, wire's radio @ should never be
considered infinitely thin; in thisway, errors of the order 2¥/L can be

committed by considering small radios but finites. For such
conductors, integral eg. (38) should be adjusted for finding out cross-
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section current digtribution aswell as longitudinal digtribution, the last
satisfying an one-dimensional integral equation.

In athin wire, current’s flow is mainly confined along it in such a
way that S and §' have practically the same direction, tangent to
curve r (s) expressing wire's axis. In fact, lines of flow are slightly
bent toward the wire's sides; it causes superficial charges appearing
on the wire. Thin wire’'s geometry is shown in Fig. 5. Wire€ s axis is
parameterized by itsarc length s [10]:

s(t) =] \/ T, Tl (39)

0

dé  dé

Figure 5. Wire vector representation.
At each point in curve there exigt three unit vectors which can be
used as an ortonormal vector base for defining a local cylindrical

system of coordinates[11]. They are the tangent unit vector 5(s), the

normal unit vector A(s) and the binormal unit vector 6(5), which
are expressed as.
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r(s)= x(s)f+ y(s)]+ y(s)lz :

052 1%
B(s)=3(s)xh(s), K =[S

where K is the wire's curvature. Vectors i and b form a normal
plane, laying in wir€'s cross section, whose points, with cylindrical
coordinates (p,¢,0), are determined by the next position vector,
referring to the local coordinate system:
a(p,p)=pcose f +psengb,
O<p<a, 0<¢p<2r.

The same points, referring to the rectangular coordinate system
XYZ , have the form:

P(s p,p)=1(s)+pcospi(s)+psengb(s). (42)

Then, the distance R between two of them in the wire is expressed by
the next equation:

R=[r(s,)-r(s)+a(ppe:)-a(puay)) (43)
Therefore, the integral equation for athin wireis.

(41)

© 2009 C. Roy Keys Inc. — http://redshift.vif.com



Apeiron, Vol. 16, No. 1, January 2009 62

e
o0l 47 R
1 v’ veJkR a2 AVJ / ’ Vd Vd Vd’ 44
v ( = 'SJ'S (s,p')p'dp'dp'ds’  (44)
J(s
360 ).

As can be seen, current is not longer a function of the azimuth
variable ¢ since athin wire does not allow circumferential variations
in its distribution. Also should be noticed that current is function of
the vector radio p which represents the degpness in wire's radio,
provided that o is large enough but finite, provoking concentric
current layers not flowing in phase. For a perfect conductor, current
will be confined in its surface and in almost cases circumferential
digtribution will be that of static chargesin an infinitely long wire.

General Pocklington Equation

Pocklington's integral equation fits a hypothetical model where

current density J is concentrated in a filament on wire’s surface. Such

equation, proposed by H. C. Pocklington in 1897 [12] and based on

Hertz theory [13], investigated current oscillations in straight thin

wires. Following integral equation is a natural generalization for any

wire's geometry, the straight form being a particular case. It is based
in the following hypotheses.

1. The wire's material can be considered a perfect conductor

snce o—-«, suich tha the Y9 tem in

Error! Reference source not found. must be neglected.

In practice, such hypothesis is a good approximation for
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materials from which antennas are made, such as
aluminum, cooper or dlver, where o is in the order of
1x10" §'m
. Wir€'s current is totaly confined on its surface, where
J(s;a)=J(s). It is a natural consequence of the former

hypothesis, since in perfect conductors electromagnetic
fields vanish inside them, such that E=H =0. In
practice, such hypothesis is a good gpproximation, since
due skin effect, current tends to pile up in conductor’'s
aurface, forming a thin current coat whose deepness ¢ is
equal to:

S =2/ wuc . (45)

. Circumferential current variations can be neglected, i.e
current dengity is not longer function of azimuth variable
¢ . Relatively dow variations of J with respect to ¢ and
p inadigance along s of the order of 2a, justify such
hypothesis.

. Current density can be represented by a current filament |
onwire’ ssurface

| = 7a%J. (46)

Since J forms a uniform current coat, we can suppose it

collgpsing in an infinitesimal line on wire's surface, which

is a parallel curve to the wire's axis. In this way, volume

occupied by the wire is considered part of propagation

medium.

. Electric field boundary condition needs to be forced just in
axia direction. Since wire is thin enough, electric field
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boundary condition needs not to be forced around its cross
section provided that current varies mainly along s.

By applying these hypotheses to eg. (44), it is possible to
transform it into an one-dimensional integral equation. First term,
corresponding to reactive capacitance, can be written as.

KR kR 2 kR
A ve oS |e8 =V o€ oS = o € ,  (47)
R 0os R 0s0s' R

where R isafunctionof s only. Then:

ja),u 3 ,
Sli(s
na’ 000{ ( )

1 o0 e
+
jwdre 0s0s' R

Since integrand is just a function of s, it is permitted to perform
integrations with respect to o and ¢, from which we get:

L[ kR 2 @R
jou €, 1 o0° € N
1{4_7:?8.8 " jwdre 00 R I(S)ds _F(S)' (49)

In this equation, F field corresponds to minus the scattered electric
field tangential component, in such away that:

1(s)=1(s)8, F(s)=-EJ(s)S, (50)
where s sub-index denotes the tangential component while S super-

index denotes the scattered field. By applying electric field boundary
condition on wire' s surface, we get:

-EZ(s,a)=E; (s a), (51)

(48)

}p'dp'dgp'ds' =F(s).
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where E! is the impressed electric field tangential component.
Therefore, the following equation can be conveniently called, genera
Pocklington’ s equation:

L 2 jkR kR
E () =+ { o © _k2§-§'e;} (s)ds. (52
joe 1| 0s0s’ 4xR 47R

Notice the minus sign in kernel, which in the dstraight case is
replaced by a plus sign [14]. The € /4zR term is the Green's
function for free space. Having R as denominator provokes a
singularity when the field point is that of the source point. For
avoiding it, field points are located conveniently on wire's axis while
source points are located conveniently on wire's surface. If r ()
represents wire’ s axis, then the parallel curve which represents current
filament is, Fig. 6:

r’(s):r(s)+an(s)=x’(s)f+ y’(s)]+ z’(s)lz, (53)
which is gotten from (42) by doing p=a and ¢ =0. Therefore,
distance between a source point and afield point is:

[ (5)-r(5)
\/[x X(s) +[y (s’)]2+[z(s)—z’(s’)]2.
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Fad

Figure 6. Wire's geometry and its associated curves.

The General Pocklington's equation can be written in a ssimpler
form by performing the iterated differentiation of Green’s function:
82 e—ij
0s0s 47R
2 (55
(R+ ijz)ﬁ+(k2R2 —2- 2ij)@@
_ 0s0s’ 0s 0s' @i

47R3
From (54) the partia derivatives can be developed like:
OR Res OR RS

s R & R
56
PR R3ed (ReF)(ReY) =9
0s0s R® ’
hence, the reactive capacitance term can be expressed as.
82 eij
0s3s 47R -
R®(1+ jkR)Se§ —[ 3+ 3jkR—Kk*R’ |(Re&)(R #3) -
ArR® ’
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and the general Pocklington equationis:
L
E! (5)=——— (KR - R — jkR®)3+ 8
Jwe ¥,
. (58)
jkR

lds'.

. . ~1 €
+ - k?’R? oS °
(3+3jkR—K’R?)(Re%)(R S)L;zRS
In the particular case for a straight wire laying centered in Z axis,
we have the following equation commonly found in specialized
literature:

E! (s):_iL[(:H kR)(2R? - 38°) + (kaR)’ | er | (2)dz , (59)
° joe 4R ’
where vector relaions are:
R=(z-Z)k-a, §=§8=K,
A( )A ) (60)
(ReS)(ReS)=(z-2) =R*-a°.

Conclusions

Kirchhoff’'s laws establish relations between current and voltage in
electric networks where electrical parameters are considered
concentrated in certain points in meshes. They lead to Circuit Theory,
which is an engineering area that models electric networks accurately
enough while the mesh dimensons are less than wavelength.
However, as the dimensions become greater than or equal to the
wavelength, the more electrical parameters are distributed through the
network. In this way, Circuit Theory should be modified in order to
model accurately distributed phenomena and current-voltage
relations.
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Integral equations model current distribution in distributed electric
networks, for given electric field distribution. I1n the particular case of
thin wires, integral equation corresponds to Pocklington’'s equation.
By knowing wire's current digtribution, its electrical behavior can be
predicted in the same way when circulating currents are determined in
meshes of classical electric circuits.

Digtributed phenomena are commonly found in transmission lines,
wave cavities and antennas, where their current digtributions are
frequently guessed. Integral equations provide a secure way for
finding out their real current distribution and therefore their correct
electric behavior.
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