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Abstract

In this paper we settle a conjecture suggested by Quine (1937, 1938,
1951, 1956, 1960, 1963). Our theorem makes precise the relationship be-
tween many-sorted logic and single-sorted logic and yields a remark about
a criterion for theoretical equivalence proposed by Glymour (1970, 1977,
1980).

Introduction

Quine expressed the following thought about the relationship between many-
sorted logic and single-sorted logic:

Every many-sorted theory “is equivalent to” a single-sorted theory.

We will call this claim Quine’s conjecture.1

In this paper we aim to capture the sense in which Quine’s conjecture is
true. Although the basic idea behind the conjecture is clear, before proving it
one needs to make precise what it means for two theories to be “equivalent.”
We consider three ways to make Quine’s conjecture precise. We show that the
first two versions of the conjecture are false, but we conclude by proving the
third.

Preliminaries

We begin with some preliminaries about many-sorted logic.2 A signature Σ
is a set of sort symbols, predicate symbols, function symbols, and constant

∗thomaswb@princeton.edu
†hhalvors@princeton.edu
1For example, see Quine (1951, 69–71), Quine (1960, 209–10), and Quine (1963, 267–8).

He explains the conjecture as follows: “[. . . ] we can always reduce multiple sorts of variables
to one sort if we adopt appropriate predicates. Wherever we might have used a special sort
of variable we may use instead a general variable and restrict it to the appropriate predicate”
(Quine, 1963, 268). Quine (1937, 1938, 1956) provides support for the conjecture by describing
a method of “translating” between many-sorted and single-sorted logic and applying it to von
Neumann-Bernays set theory and Russell’s theory of types.

2The reader is encouraged to consult Hodges (2008) and Barrett and Halvorson (2015b)
for details.
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symbols. Every signature is required to contain at least one sort symbol. The
predicate, function, and constant symbols in Σ are assigned arities constructed
from sorts in Σ. The arity of a symbol specifies which sorts the symbol “applies
to.” The Σ-terms, Σ-formulas, and Σ-sentences are recursively defined in the
standard way. The only difference from the syntax of single-sorted logic is that
the quantifiers ∀σ and ∃σ that appear in Σ-formulas must be indexed by sorts
σ ∈ Σ. We will use the notation ∃σ=1xφ(x) to abbreviate the sentence “there
exists a unique x of sort σ such that φ(x).”

A Σ-structure A is a family of nonempty and pairwise disjoint sets Aσ, one
for each sort symbol σ ∈ Σ, in which the predicates, functions, and constant
symbols in Σ have been interpreted. One recursively defines when elements
a1, . . . , an ∈ A satisfy a Σ-formula φ(x1, . . . , xn) in the Σ-structure A, written
A � φ[a1, . . . , an].

A Σ-theory T is a set of Σ-sentences. The sentences φ ∈ T are called the
axioms of T . If the signature Σ has only one sort symbol, then the Σ-theory T
is called a single-sorted theory, while if Σ has more than one sort symbol,
then T is called a many-sorted theory. A Σ-structure M is a model of a
Σ-theory T if M � φ for all φ ∈ T . We will use the notation Mod(T ) to denote
the class of models of a theory T . A theory T entails a sentence φ, written
T � φ, if M � φ for every model M of T .

We begin with the following preliminary criterion for theoretical equivalence.

Definition. Theories T1 and T2 are logically equivalent if they have the same
class of models, i.e. if Mod(T1) = Mod(T2).

One can verify that theories T1 and T2 are logically equivalent if and only
if {φ : T1 � φ} = {ψ : T2 � ψ}. It is easy to see that logical equivalence is too
strict to capture the sense in which Quine’s conjecture is true. Theories can
only be logically equivalent if they are formulated in the same signature, so no
many-sorted theory is logically equivalent to a single-sorted theory.

Since logical equivalence is such a strict criterion for theoretical equivalence,
logicians and philosophers of science have proposed other criteria for theoretical
equivalence.3 We will begin by considering a criterion called definitional equiv-
alence that was introduced into philosophy of science by Glymour (1970, 1977,
1980).

The first version of Quine’s conjecture is the following.

3See Quine (1975), Sklar (1982), Halvorson (2012, 2013, 2015), Glymour (2013), van
Fraassen (2014), and Coffey (2014) for general discussion of theoretical equivalence in phi-
losophy of science. See Glymour (1977), North (2009), Swanson and Halvorson (2012), Curiel
(2014), Knox (2013), Barrett (2014), Weatherall (2015a,b,c), and Rosenstock et al. (2015)
for discussion of whether or not particular physical theories should be considered theoreti-
cally equivalent. Finally, see de Bouvére (1965), Kanger (1968), Pinter (1978), Pelletier and
Urquhart (2003), Andréka et al. (2005), Friedman and Visser (2014), and Barrett and Halvor-
son (2015a,b) for some results that have been proven about varieties of theoretical equivalence.
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Quine’s conjecture 1

Every theory is definitionally equivalent to a single-sorted theory. y

In order to understand Quine’s conjecture 1, we need to describe definitional
equivalence. We begin by formalizing the concept of a definition.

Let Σ ⊂ Σ+ be signatures and let p ∈ Σ+−Σ be a predicate symbol of arity
σ1 × . . .× σn. An explicit definition of p in terms of Σ is a Σ+-sentence of
the form

∀σ1x1 . . . ∀σnxn
(
p(x1, . . . , xn)↔ φ(x1, . . . , xn)

)
where φ(x1, . . . , xn) is a Σ-formula. Similarly, an explicit definition of a function
symbol f ∈ Σ+ − Σ of arity σ1 × . . .× σn → σ is a Σ+-sentence of the form

∀σ1
x1 . . . ∀σnxn∀σy

(
f(x1, . . . , xn) = y ↔ φ(x1, . . . , xn, y)

)
(1)

and an explicit definition of a constant symbol c ∈ Σ+ − Σ of sort σ is a Σ+-
sentence of the form

∀σx
(
x = c↔ ψ(x)

)
(2)

where φ(x1, . . . , xn, y) and ψ(x) are both Σ-formulas. Note that in all of these
cases it must be that the sorts σ1, . . . , σn, σ ∈ Σ.

Although they are Σ+-sentences, (1) and (2) have consequences in the sig-
nature Σ. In particular, (1) and (2) imply the following sentences, respectively:

∀σ1
x1 . . . ∀σnxn∃σ=1yφ(x1, . . . , xn, y)

∃σ=1xψ(x)

These two sentences are called the admissibility conditions for the explicit
definitions (1) and (2).

We now have the resources necessary to describe the concept of a definitional
extension. A definitional extension of a Σ-theory T to the signature Σ+ is a
theory

T+ = T ∪ {δs : s ∈ Σ+ − Σ}
that satisfies the following two conditions. First, for each symbol s ∈ Σ+ − Σ
the sentence δs is an explicit definition of s in terms of Σ, and second, if s is a
constant symbol or a function symbol and αs is the admissibility condition for
δs, then T � αs.

One can think of a definitional extension of a theory as “saying no more”
than the original theory (Barrett and Halvorson, 2015b). It simply allows one to
add “abbreviations” of old formulas to the theory. With this thought in mind,
we can describe definitional equivalence.

Definition. Let T1 be a Σ1-theory and T2 be a Σ2-theory. T1 and T2 are
definitionally equivalent if there are theories T+

1 and T+
2 that satisfy the

following three conditions:

• T+
1 is a definitional extension of T1,
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• T+
2 is a definitional extension of T2,

• T+
1 and T+

2 are logically equivalent Σ1 ∪ Σ2-theories.

One often says that T1 and T2 are definitionally equivalent if they have a
“common definitional extension.” Definitional equivalence captures a sense in
which two theories are “intertranslatable” (Barrett and Halvorson, 2015a).

One can easily verify that definitional equivalence is a strictly weaker cri-
terion than logical equivalence. Unlike logical equivalence, theories in different
signatures can be definitionally equivalent. But definitional equivalence is still
incapable of substantiating Quine’s conjecture. As we have described it, a def-
initional extension does not allow one to define new sorts. If T1 and T2 are
definitionally equivalent, therefore, they must be formulated in signatures with
the same sort symbols. So no many-sorted theory is definitionally equivalent to
a single-sorted theory. Quine’s conjecture 1 is therefore false.

Fortunately, there are criteria for theoretical equivalence that are more gen-
eral than definitional equivalence. The one that will be of particular interest
to us is called Morita equivalence.4 Morita equivalence is a natural generaliza-
tion of definitional equivalence. Indeed, it is essentially the same as definitional
equivalence, but it allows one to define new sort symbols in addition to new
predicate, function, and constant symbols.

Our second version of Quine’s conjecture is the following.

Quine’s conjecture 2

Every theory is Morita equivalent to a single-sorted theory. y

In order to understand Quine’s conjecture 2, we need to describe Morita equiv-
alence. We begin by discussing how to define new sort symbols. Let Σ ⊂ Σ+ be
signatures and consider a sort symbol σ ∈ Σ+−Σ. One can define the sort σ as
a product sort, a coproduct sort, a subsort, or a quotient sort. In each case one
defines σ using old sorts from Σ and new function symbols from Σ+−Σ. These
new function symbols specify how the new sort σ is related to the old sorts in
Σ. We describe in detail these four ways to define new sorts.

In order to define σ as a product sort, one needs two function symbols
π1, π2 ∈ Σ+ − Σ with π1 of arity σ → σ1, π2 of arity σ → σ2, and σ1, σ2 ∈ Σ.
The function symbols π1 and π2 serve as the “canonical projections” associated
with the product sort σ. An explicit definition of the symbols σ, π1, and π2 as
a product sort in terms of Σ is a Σ+-sentence of the form

∀σ1x∀σ2y∃σ=1z(π1(z) = x ∧ π2(z) = y)

One should think of a product sort σ as the sort whose elements are ordered
pairs, where the first element of each pair is of sort σ1 and the second is of sort
σ2.

4See Barrett and Halvorson (2015b) for an introduction to Morita equivalence and Andréka
et al. (2008) for a presentation of closely related ideas.

4



One can also define σ as a coproduct sort. In this case, one needs two
function symbols ρ1, ρ2 ∈ Σ+ − Σ with ρ1 of arity σ1 → σ, ρ2 of arity σ2 → σ,
and σ1, σ2 ∈ Σ. The function symbols ρ1 and ρ2 are the “canonical injections”
associated with the coproduct sort σ. An explicit definition of the symbols σ, ρ1,
and ρ2 as a coproduct sort in terms of Σ is a Σ+-sentence of the form

∀σz
(
∃σ1=1x(ρ1(x) = z) ∨ ∃σ2=1y(ρ2(y) = z)

)
∧ ∀σ1

x∀σ2
y¬
(
ρ1(x) = ρ2(y)

)
One should think of a coproduct sort σ as the disjoint union of the elements of
sorts σ1 and σ2.

When defining a new sort σ as a product sort or a coproduct sort, one uses
two sort symbols in Σ and two function symbols in Σ+−Σ. The next two ways
of defining a new sort σ only require one sort symbol in Σ and one function
symbol in Σ+ − Σ.

In order to define σ as a subsort, one needs a function symbol i ∈ Σ+−Σ of
arity σ → σ1 with σ1 ∈ Σ. The function symbol i is the “canonical inclusion”
associated with the subsort σ. An explicit definition of the symbols σ and i as
a subsort in terms of Σ is a Σ+-sentence of the form

∀σ1
x
(
φ(x)↔ ∃σz(i(z) = x)

)
∧ ∀σz1∀σz2

(
i(z1) = i(z2)→ z1 = z2

)
(3)

where φ(x) is a Σ-formula. One should think of σ as “the things of sort σ1 that
are φ.” The sentence (3) entails the following Σ-sentence:

∃σ1
xφ(x)

As above, we will call this Σ-sentence the admissibility condition for the
definition (3).

Lastly, in order to define σ as a quotient sort one needs a function symbol
ε ∈ Σ+ − Σ of arity σ1 → σ with σ1 ∈ Σ. An explicit definition of the symbols
σ and ε as a quotient sort in terms of Σ is a Σ+-sentence of the form

∀σ1
x1∀σ1

x2

(
ε(x1) = ε(x2)↔ φ(x1, x2)

)
∧ ∀σz∃σ1

x(ε(x) = z) (4)

where φ(x1, x2) is a Σ-formula. This sentence defines σ as a quotient sort
that is obtained by “quotienting out” the sort σ1 with respect to the formula
φ(x1, x2). The sort σ should be thought of as the set of “equivalence classes of
elements of σ1 with respect to the relation φ(x1, x2),” and the function symbol
ε is the “canonical projection” that maps an element to its equivalence class.
And indeed, one can verify that the sentence (4) implies that φ(x1, x2) is an
equivalence relation. In particular, (4) entails the following Σ-sentences:

∀σ1
x(φ(x, x))

∀σ1
x1∀σ1

x2(φ(x1, x2)→ φ(x2, x1))

∀σ1
x1∀σ1

x2∀σ1
x3

(
(φ(x1, x2) ∧ φ(x2, x3))→ φ(x1, x3)

)
These Σ-sentences are the admissibility conditions for the definition (4).
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Now that we have described the four ways of defining new sort symbols, we
can define the concept of a Morita extension. A Morita extension is a natural
generalization of a definitional extension. The only difference is that now one is
allowed to define new sort symbols. Let Σ ⊂ Σ+ be signatures and T a Σ-theory.
A Morita extension of T to the signature Σ+ is a Σ+-theory

T+ = T ∪ {δs : s ∈ Σ+ − Σ}

that satisfies the following three conditions. First, for each symbol s ∈ Σ+ − Σ
the sentence δs is an explicit definition of s in terms of Σ. Second, if σ ∈ Σ+−Σ
is a sort symbol and f ∈ Σ+−Σ is a function symbol that is used in the explicit
definition of σ, then δf = δσ. (For example, if σ is defined as a product sort with
projections π1 and π2, then δσ = δπ1

= δπ2
.) And third, if αs is an admissibility

condition for a definition δs, then T � αs.
A Morita extension of a theory again “says no more” than the original the-

ory (Barrett and Halvorson, 2015b). Our definition of Morita equivalence is
perfectly analogous to definitional equivalence.

Definition. Let T1 be a Σ1-theory and T2 a Σ2-theory. T1 and T2 are Morita
equivalent if there are theories T 1

1 , . . . , T
n
1 and T 1

2 , . . . , T
m
2 that satisfy the

following three conditions:

• Each theory T i+1
1 is a Morita extension of T i1,

• Each theory T i+1
2 is a Morita extension of T i2,

• Tn1 and Tm2 are logically equivalent Σ-theories with Σ1 ∪ Σ2 ⊂ Σ.

Two theories are Morita equivalent if they have a “common Morita exten-
sion.” One can easily verify that Morita equivalence is a strictly weaker criterion
than definitional equivalence. If two theories are definitionally equivalent, then
they are Morita equivalent. But in general the converse does not hold. Theories
can be Morita equivalent even if they are formulated in signatures with different
sort symbols.

We can now consider Quine’s conjecture 2. Although this version of the
conjecture is not trivially refuted like Quine’s conjecture 1, it too is false. The
following theorem provides an example of a theory that is not Morita equivalent
to any single-sorted theory.

Theorem 1. Let Σ1 = {σ1, σ2, . . .} be a signature containing a countable in-
finity of sort symbols. The Σ1-theory T1 = ∅ is not Morita equivalent to any
single-sorted theory.

The idea behind Theorem 1 is simple. One can think of the theory T1 as
saying the following: “Every element is either of kind1 or of kind2 or of kind3

or. . . , no element is of more than one kind, and there is at least one element of
every kind.” A single-sorted theory in first-order logic simply does not have the
expressive power to say this. In particular, it cannot express the first conjunct.
The theory T1 should therefore not be Morita equivalent to any single-sorted
theory. Before proving this we need a simple lemma.
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Lemma. Let Σ ⊂ Σ+ be signatures and T a Σ-theory. Suppose that A is a
model of T with Aσ a finite set for every sort σ ∈ Σ. Let T+ be a Morita
extension of T to a signature Σ+ and A+ a model of T+ such that A+|Σ = A.5

Then A+
σ is a finite set for every σ ∈ Σ+.

Proof. Let σ ∈ Σ+ − Σ be a sort symbol. We show that A+
σ is a finite set in

the cases where σ is defined as a product sort or a subsort. If T+ defines σ as a
product sort of σ1 and σ2, then A+

σ has exactly as many elements as Aσ1 ×Aσ2 ,
which is finite by assumption. If T+ defines σ as a subsort of σ1 ∈ Σ, then the
cardinality of A+

σ is less than or equal to the cardinality of Aσ1
, which is also

finite. The coproduct and quotient cases follow analogously.

We now turn to the proof of Theorem 1.6

Proof of Theorem 1. Suppose for contradiction that there is a single-sorted the-
ory T2 that is Morita equivalent to T1. This means that T2 is a Σ2-theory with
σ ∈ Σ2 the unique sort symbol. Let T be the “common Morita extension” of
T1 and T2 to a signature Σ ⊃ Σ1 ∪ Σ2. We consider the model A of T1 de-
fined by Aσi = {i, i′} for each i ∈ N. For every i ∈ N there is an isomorphism
fi : A → A that is the identity on Aσj for j 6= i, but on Aσi maps fi : i 7→ i′

and fi : i′ 7→ i. The fi : A → A are isomorphisms, and so are elementary
embeddings. This implies that there are infinitely many arrows f : A → A in
the category Mod(T1).

There is an equivalence of categories F : Mod(T1)→ Mod(T2) such that for
every model M of T1

F (M) = M+|Σ2

for some model M+ of T that is isomorphic to an expansion of M (Barrett and
Halvorson, 2015b, Theorem 5.1). We consider the model A+ of T . The Lemma
implies that A+

σ is a finite set. This implies that F (A)σ is a finite set. Since
Σ2 contains only the sort σ and F (A)σ is finite, there can be at most finitely
many arrows g : F (A) → F (A) in the category Mod(T2). But since F is an
equivalence (and therefore full and faithful), this cannot be the case.

Theorem 1 immediately implies that Quine’s conjecture 2 is false. It is not
the case that every many-sorted theory is Morita equivalent to a single-sorted
theory. This disproof of Quine’s conjecture 2, however, suggests the following
slight modification of the conjecture.

Quine’s conjecture 3

If Σ is a signature with finitely many sorts, then every Σ-theory is Morita equiv-
alent to a single-sorted theory. y

5One can show that such a model A+ exists and is unique up to isomorphism (Barrett and
Halvorson, 2015b, Theorem 4.1).

6The reader is encouraged to consult Barrett and Halvorson (2015b) for notation.
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This final version of Quine’s conjecture is true. One proves Quine’s conjecture
3 by explicitly constructing a “corresponding” single-sorted theory T̂ for every
many-sorted theory T . The basic idea behind the construction is intuitive. The
theory T̂ simply replaces the sort symbols that the theory T uses with predicate
symbols.7 It takes some work, however, to make this idea precise.

Let Σ be a signature with finitely many sort symbols σ1, . . . , σn. We begin
by constructing a corresponding signature Σ̂ that contains one sort symbol σ.
The symbols in Σ̂ are defined as follows. For every sort symbol σj ∈ Σ we let
qσj be a predicate symbol of sort σ. For every predicate symbol p ∈ Σ of arity
σj1×. . .×σjm we let qp be a predicate symbol of arity σm (the m-fold product of
σ). Likewise, for every function symbol f ∈ Σ of arity σj1×. . .×σjm → σj we let
qf be a predicate symbol of arity σm+1. And lastly, for every constant symbol

c ∈ Σ we let dc be a constant symbol of sort σ. The single-sorted signature Σ̂
corresponding to Σ is then defined to be

Σ̂ = {σ} ∪ {qσ1
, . . . , qσn} ∪ {qp : p ∈ Σ} ∪ {qf : f ∈ Σ} ∪ {dc : c ∈ Σ}

We can now describe a method of “translating” Σ-theories into Σ̂-theories.
Let T be an arbitrary Σ-theory. We define a corresponding Σ̂-theory T̂ , and
then show that T̂ is Morita equivalent to T .

We begin by translating the axioms of T into the signature Σ̂. This will take
two steps. First, we describe a way to translate the Σ-terms into Σ̂-formulas.
Given a Σ-term t(x1, . . . , xn), we define the Σ̂-formula ψ̂t(y1, . . . , yn, y) recur-
sively as follows.

• If t(x1, . . . , xn) is the variable xi, then ψ̂t is the Σ̂-formula yi = y.

• If t(x1, . . . , xn) is the constant c, then ψ̂t is the Σ̂-formula dc = y.

• Suppose that t(x1, . . . , xn) is the term f(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn))

and that each of the Σ̂-formulas ψ̂ti(y1, . . . , yn, y) have been defined. Then

ψ̂t(y1, . . . , yn, y) is the Σ̂-formula

∃σz1 . . . ∃σzk
(
ψ̂t1(y1, . . . , yn, z1)∧. . .∧ψ̂tk(y1, . . . , yn, zk)∧qf (z1, . . . , zk, y)

)
One can think of the formula ψt(y1, . . . , yn, y) as the translation of the expression

“t(x1, . . . , xn) = x” into the signature Σ̂.

Second, we use this map from Σ-terms to Σ̂-formulas to describe a map
from Σ-formulas to Σ̂-formulas. Given a Σ-formula ψ(x1, . . . , xn), we define the

Σ̂-formula ψ̂(y1, . . . , yn) recursively as follows.

7This construction recalls the proof that every theory is definitionally equivalent to a theory
that uses only predicate symbols (Barrett and Halvorson, 2015a, Prop. 2). Quine (1937, 1938,
1956, 1963) suggests the basic idea behind our proof, as does Burgess (2005, 12). The theorem
that we prove here is much more general than Quine’s results because we make no assumption
about what the theory T is.
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• If ψ(x1, . . . , xn) is t(x1, . . . , xn) = s(x1, . . . , xn), where s and t are Σ-terms

of sort σi, then ψ̂(y1, . . . , yn) is the Σ̂-formula

∃σz
(
ψ̂t(y1, . . . , yn, z) ∧ ψ̂s(y1, . . . , yn, z) ∧ qσi(z)

)
• If ψ(x1, . . . , xn) is p(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)), where p ∈ Σ is a

predicate symbol, then ψ̂(y1, . . . , yn) is the Σ̂-formula

∃σz1 . . . ∃σzk
(
ψ̂t1(y1, . . . , yn, z1)∧ . . .∧ ψ̂tk(y1, . . . , yn, zk)∧ qp(z1, . . . , zk)

)
• This definition extends to all Σ-formulas in the standard way. We define

the Σ̂-formulas ¬̂ψ := ¬ψ̂, ψ̂1 ∧ ψ2 := ψ̂1 ∧ ψ̂2, ψ̂1 ∨ ψ2 := ψ̂1 ∨ ψ̂2, and
̂ψ1 → ψ2 := ψ̂1 → ψ̂2. Furthermore, if ψ(x1, . . . , xn, x) is a Σ-formula,

then we define both of the following:

∀̂σixψ := ∀σy(qσi(y)→ ψ̂(y1, . . . , yn, y))

∃̂σixψ := ∃σy(qσi(y) ∧ ψ̂(y1, . . . , yn, y))

One should think of the formula ψ̂ as the translation of the Σ-formula ψ into
the signature Σ̂.

This allows us to consider the translations α̂ of the axioms α ∈ T . The
single-sorted theory T̂ will have the Σ̂-sentences α̂ as some of its axioms. But
T̂ will have more axioms than just the sentences α̂. It will also have some
auxiliary axioms. These auxiliary axioms will guarantee that the symbols in
Σ̂ “behave like” their counterparts in Σ. We define auxiliary axioms for the
predicate symbols qσ1

, . . . , qσn ∈ Σ̂, qp ∈ Σ̂, and qf ∈ Σ̂, and for the constant

symbols dc ∈ Σ̂. We discuss each of these four cases in detail.
We first define auxiliary axioms to guarantee that the symbols qσ1 , . . . , qσn

behave like sort symbols. The Σ̂-sentence φ is defined to be ∀σy(qσ1
(y) ∨ . . . ∨

qσn(y)).8 Furthermore, for each sort symbol σj ∈ Σ we define the Σ̂-sentence
φσj to be

∃σy(qσj (y)) ∧ ∀σy
(
qσj (y)→ (¬qσ1(y) ∧ . . . ∧ ¬qσj−1(y)

∧ ¬qσj+1(y) ∧ . . . ∧ ¬qσn(y))
)

One can think of the sentences φσ1
, . . . , φσn , and φ as saying that “everything

is of some sort, nothing is of more than one sort, and every sort is nonempty.”
Next we define auxiliary axioms to guarantee that the symbols qp, qf , and

dc behave like their counterparts p, f , and c in Σ. For each predicate symbol
p ∈ Σ of arity σj1 × . . .× σjm , we define the Σ̂-sentence φp to be

∀σy1 . . . ∀σym
(
qp(y1, . . . , ym)→

(
qσj1 (y1) ∧ . . . ∧ qσjm (ym)

))
8Note that if there were infinitely many sort symbols in Σ, then we could not define the

Σ̂-sentence φ in this way.
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This sentence guarantees that the predicate qp has “the appropriate arity.”
Likewise, for each function symbol f ∈ Σ of arity σj1× . . .×σjm → σj we define

the Σ̂-sentence φf to be the conjunction

∀σy1 . . . ∀σym∀σy
(
qf (y1, . . . , ym, y)→ (qσj1 (y1) ∧ . . . ∧ qσjm (ym) ∧ qσj (y))

)
∧ ∀σy1 . . . ∀σym

(
(qσj1 (y1) ∧ . . . ∧ qσjm (ym))→ ∃σ=1y(qf (y1, . . . , ym, y))

)
The first conjunct guarantees that the symbol qf has “the appropriate arity,”
and the second conjunct guarantees that qf behaves like a function. Lastly, if

c ∈ Σ is a constant symbol of arity σj , then we define the Σ̂-sentence φc to be
qσj (dc). This sentence guarantees that the constant symbol dc also has “the
appropriate arity.”

We now have the resources to define a Σ̂-theory T̂ that is Morita equivalent
to T .

T̂ = {α̂ : α ∈ T} ∪ {φ, φσ1 , . . . , φσn}
∪ {φp : p ∈ Σ}
∪ {φf : f ∈ Σ}
∪ {φc : c ∈ Σ}

The theory T̂ has two kinds of axioms, the translated axioms of T and the
auxiliary axioms. These axioms allow T̂ to imitate the theory T in the signature
Σ̂. Indeed, one can prove the following result.

Theorem 2. The theories T and T̂ are Morita equivalent.

The proof of Theorem 2 requires some work, and has therefore been placed
in an appendix. But the idea behind the proof is simple. The theory T needs
to define symbols in Σ̂. It defines the sort symbol σ as a “universal sort,” by
taking the coproduct of the sorts σ1, . . . , σn ∈ Σ. The theory T then defines the
symbols qp, qf , and dc in Σ̂ simply by using the corresponding symbols p, f ,

and c in Σ. Likewise, the theory T̂ needs to define the symbols in Σ. It defines
the sort symbol σj as the subsort of “things that are qσj” for each j = 1, . . . , n.

And T̂ defines the symbols p, f , and c again by using the corresponding symbols
qp, qf , and dc.

Since the theory T was arbitrary, Theorem 2 immediately implies that
Quine’s conjecture 3 is true.

Conclusion

Our proof of Quine’s conjecture 3 substantiates Quine’s original thought about
the relationship between many-sorted logic and single-sorted logic. It captures a
precise sense in which single-sorted logic has exactly the same expressive power
as (finitely) many-sorted logic. And in addition to making this relationship pre-
cise, our results provide a reason to prefer Morita equivalence over definitional
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equivalence. If one follows Glymour (1970, 1977, 1980) in taking definitional
equivalence as the standard for theoretical equivalence, then one cannot recover
any sense in which Quine’s conjecture is true. If one wants to substantiate
Quine’s conjecture, one needs to move to Morita equivalence.

One might be tempted to draw a further philosophical conclusion from our
proof of Quine’s conjecture 3. In several places, Quine himself concludes that
this fact implies that many-sorted logic is dispensable. In particular, he suggests
that explicitly naming sorts and specifying the sorts of the vocabulary in the
signature of a theory is an “artificial device” (Quine and Carnap, 1990, 409),
and that we are licensed to ignore it.9

We urge one to resist this temptation. Quine’s suggestion here is highly
misleading, and it is not supported by our result. We have shown that for
each theory T in a signature Σ with finitely many sorts, there is a Morita
equivalent single-sorted theory T̂ . This result does not show that we can ignore
sorts altogether. Indeed, two single-sorted theories might have different sorts,
in which case there is a non-trivial question about whether these sorts can
be defined from each other. One theory’s single sort might, for example, be
definable as a product of another theory’s single sort. In particular, this means
that two single-sorted theories can be Morita equivalent even if they are not
definitionally equivalent.10 We therefore ignore sorts at our own peril. By
doing so, we blind ourselves to the variety of ways in which theories in different
signatures can be equivalent.?
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Appendix

The objective of this appendix is to prove Theorem 2. For convenience we prove
a special case of the result. We will assume that Σ has only three sort symbols
σ1, σ2, σ3 and that Σ does not contain function or constant symbols. A perfectly
analogous (though more tedious) proof goes through in the general case.
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We prove the result by explicitly constructing a “common Morita extension”
T4
∼= T̂4 of T and T̂ to the following signature.

Σ+ = Σ ∪ Σ̂ ∪ {σ12} ∪ {ρ1, ρ2, ρ12, ρ3} ∪ {i1, i2, i3}

The symbol σ12 ∈ Σ+ is a sort symbol. The symbols denoted by subscripted ρ
are function symbols. Their arities are expressed in the following figure.

σ

σ3σ12

σ2σ1

ρ1

ρ12

ρ3

ρ2

The symbols i1, i2, and i3 are function symbols with arity σ1 → σ, σ2 → σ, and
σ3 → σ, respectively.

We now turn to the proof.

Proof of Theorem 2. The following figure illustrates how our proof will be or-
ganized.

T

T1

T Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

T2

T3

T4
∼= T4

T3

T2

T1

Steps 1–3 define the theories T̂1, . . . , T̂4, steps 4–6 define T1, . . . , T4, and step 7
shows that T4 and T̂4 are logically equivalent.

Step 1. We begin by defining the theory T̂1. For each sort σj ∈ Σ we
consider the following sentence.

∀σy
(
qσj (y)↔ ∃σjx(ij(x) = y)

)
∧ ∀σjx1∀σjx2(ij(x1) = ij(x2)→ x1 = x2)

(θσj )

The sentence θσj defines the symbols σj and ij as the subsort of “things that are

qσj .” The auxiliary axioms φσj of T̂ guarantee that the admissibility conditions

for these definitions are satisfied. The theory T̂1 = T̂ ∪{θσ1 , θσ2 , θσ3} is therefore

a Morita extension of T̂ to the signature Σ̂ ∪ {σ1, σ2, σ3, i1, i2, i3}.
Step 2. We now define the theories T̂2 and T̂3. Let θσ12 be a sentence that

defines the symbols σ12, ρ1, ρ2 as a coproduct sort. The theory T̂2 = T̂1 ∪{θσ12
}

14



is clearly a Morita extension of T̂1. We have yet to define the function symbols
ρ12 and ρ3. The following two sentences define these symbols.

∀σ3
x∀σy(ρ3(x) = y ↔ i3(x) = y) (θρ3)

∀σ12
x∀σy(ρ12(x) = y ↔ ψ(x, y)) (θρ12)

The sentence θρ3 simply defines ρ3 to be equal to the function i3. For the
sentence θρ12 , we define the formula ψ(x, y) to be

∃σ1
z1

(
ρ1(z1) = x ∧ i1(z1) = y

)
∨ ∃σ2

z2

(
ρ2(z2) = x ∧ i2(z2) = y

)
We should take a moment here to understand the definition θρ12 . We want to
define what the function ρ12 does to an element a of sort σ12. Since the sort
σ12 is the coproduct of the sorts σ1 and σ2, the element a must “actually be”
of one of the sorts σ1 or σ2. (The disjuncts in the formula ψ(x, y) correspond
to these possibilities.) The definition θρ12 stipulates that if a is “actually” of
sort σj , then the value of ρ12 at a is the same as the value of ij at a. One

can verify that T̂2 satisfies the admissibility conditions for θρ3 and θρ12 , so the

theory T̂3 = T̂2 ∪ {θρ3 , θρ12} is a Morita extension of T̂2 to the signature

Σ̂ ∪ {σ1, σ2, σ3, σ12, i1, i2, i3, ρ1, ρ2, ρ3, ρ12}

Step 3. We now describe the Σ+-theory T̂4. This theory defines the predi-
cates in the signature Σ. Let p ∈ Σ be a predicate symbol of arity σj1×. . .×σjm .
We consider the following sentence.

∀σj1x1 . . . ∀σjmxm (p(x1, . . . , xm)↔ qp(ij1(x1), . . . , ijm(xm))) (θp)

The theory T̂4 = T̂3 ∪ {θp : p ∈ Σ} is therefore a Morita extension of T̂3 to the
signature Σ+.

Step 4. We turn to the left-hand side of our organizational figure and define
the theories T1 and T2. We proceed in an analogous manner to the first part of
Step 2. The theory T1 = T ∪ {θσ12} is a Morita extension of T to the signature
Σ∪ {σ12, ρ1, ρ2}. Now let θσ be the sentence that defines the symbols σ, ρ12, ρ3

as a coproduct sort. The theory T2 = T1 ∪ {θσ} is a Morita extension of T1 to
the signature Σ ∪ {σ12, σ, ρ1, ρ2, ρ3, ρ12}.

Step 5. This step defines the function symbols i1, i2, and i3. We consider
the following sentences.

∀σ3x3∀σy(i3(x3) = y ↔ ρ3(x3) = y) (θi3)

∀σ2x2∀σy
(
i2(x2) = y ↔ ∃σ12z(ρ2(x2) = z ∧ ρ12(z) = y)

)
(θi2)

∀σ1x1∀σy
(
i1(x1) = y ↔ ∃σ12z(ρ1(x1) = z ∧ ρ12(z) = y)

)
(θi1)

The sentence θi3 defines the function symbol i3 to be equal to ρ3. The sentence
θi2 defines the function symbol i2 to be equal to the composition “ρ12 ◦ ρ2.”
Likewise, the sentence θi1 defines the function symbol i1 to be “ρ12 ◦ ρ1.” The
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theory T3 = T2 ∪ {θi1 , θi2 , θi3} is a Morita extension of T2 to the signature
Σ ∪ {σ12, σ, ρ1, ρ2, ρ3, ρ12, i1, i2, i3}.

Step 6. We still need to define the predicate symbols in Σ̂. Let σj ∈ Σ be a
sort symbol and p ∈ Σ a predicate symbol of arity σj1 × . . .× σjm . We consider
the following sentences.

∀σy(qσj (y)↔ ∃σjx(ij(x) = y)) (θqσj )

∀σy1 . . . ∀σym
(
qp(y1, . . . , ym)↔∃σj1x1 . . . ∃σjmxm(ij1(x1) = y1 ∧ . . .

∧ ijm(xm) = ym ∧ p(x1, . . . , xm))
) (θqp)

These sentences define the predicates qσj ∈ Σ̂ and qp ∈ Σ̂. One can verify that
T3 satisfies the admissibility conditions for the definitions θqσj . And therefore

the theory T4 = T3 ∪ {θqσ1 , θqσ2 , θqσ3} ∪ {θqp : p ∈ Σ} is a Morita extension of
T3 to the signature Σ+.

Step 7. It only remains to show that the Σ+-theories T4 and T̂4 are logically
equivalent. One can verify by induction on the complexity of ψ that

T4 � ψ ↔ ψ̂ and T̂4 � ψ ↔ ψ̂. (5)

for every Σ-sentence ψ. One then uses (5) to show that Mod(T4) = Mod(T̂4).
The argument involves a number of cases, but since each case is straightforward
we leave them to the reader to verify. The theories T4 and T̂4 are logically
equivalent, which implies that T and T̂ are Morita equivalent.
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