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Abstract

The first step in reasoning about actions and change
involves reasoning about how the world would
evolve if a certain action is executed in a certain
state. Most research on this assume the evolution
to be only a single step and focus on formulating
the transition function that defines changes between
states due to actions. In this paper we consider
cases where the evolution is more than just a single
change between one state and another. This is man-
ifested when the execution of an action may trigger
execution of other actions, or when multiple agents
act on the environment following certain strategies.

1 Introduction and Motivation
In the last one and half decade there has been tremen-
dous progress in representing and reasoning about actions
[Georgeff, 1994; Lifschitz, 1997; Sandewall, 1998] and its
application to planning, hypothetical reasoning, reasoning
about narratives, automatic control generation and verifica-
tion, explanation and diagnosis. At an abstract level there are
three main components of representing and reasoning about
actions (a) Specifying the various possible ways the world
could evolve, (b) Specifying a plan or execution program, and
(c) Specifying a property over trajectories. For example, let
us consider the simple languageA [Gelfond and Lifschitz,
1993]. In it the specification for how the world could evolve
includes statement of the forma causesf if p1, . . . , pn and
statements of the forminitially f . Together they define a
transition functionΦ : States × Actions → States, and
based on the transition function they define a set of possible
trajectories of the forms0, a1, s1 . . . such thats0 satisfies all
the statements of the forminitially f , andsi = Φ(si−1, ai),
for all i > 0. InA the language for plans – part (b) above, is a
simple one: plans are simply sequence of actions. InA, part
(c) is about goals that hold in the final state, and are repre-
sented by fluent literals. Altogether,A defines the entailment
relation|=, as inD |= f after P , whereD is a description
corresponding to (a),f is fluent literal corresponding to (c),
andP is of the forma1, . . . , an corresponding to (b). In later
languages more general (a), (b) and (c) are proposed. For
example, in[McCain and Turner, 1995] the transition func-
tion is also dictated by static causal laws; and in[Baral et

al., 1997] observations about different time points play a role
in defining valid trajectories. Similarly, in[Levesque, 1996;
Son and Baral, 2001] more general plans such as conditional
plans are considered and in[Baralet al., 2001] more general
languages for (c) are considered.
In this paper our goal is to consider some additional aspects
of specifying how the world could evolve, beyond what has
been considered so far.In this regard, most of the current
proposals focus on defining what valid states of the world are,
defining the transition between states of the world due to ac-
tions, and incorporating observations to determine valid tra-
jectories. The additional aspects that we are concerned about
in this paper involves the ability to express trigger conditions
such as: (i) whenever a fluentf (or a fluent formula) is true
in a state then a certain actionmusthappen in that state; and
(ii) a particular actionmustbe followed by another particular
action. Triggers of type (i) are often encountered in active
databases[Widom and Ceri, 1996]. One also encounters trig-
gers of types (i) and (ii) when modeling cell-signaling[Han-
cock, 1997], when a particular set of conditions trigger a par-
ticular event inside the cell, or one event in the cell triggers
another event. We are also interested in multi-agent environ-
ments when each agent is following a particular policy and a
particular agent would like to figure out how the world will
evolve in response to its actions. For example consider an en-
vironment which has two agentsA andB. AgentA is aware
of how agentB would react to any action that agentA does.
Now agentA would like to reason about the effect of its own
action on how the world will evolve. In that case the evolution
of the world not only depends on the action thatA executes
and the state transition due to that but also the action ofB
that is triggered byA’s action.
To make our motivation more explicit let us go back to the
languageA. In A a query is of the formf after a1, . . . an,
where the agent wants to find out iff is true in the
state (corresponding to the situation) reached after execut-
ing the sequence of actionsa1, . . . , an in the initial situa-
tion. If the state corresponding to the initial situation is
s0 and Φ is the transition function that specifies the tran-
sition between states due to an action then finding out if
f after a1, . . . an is true involves computing the state
Φ(Φ(. . . Φ(s0, a1) . . . an−1), an) and evaluating iff is true
in it. Now suppose the actionsa1, . . . , an are the actions
that agentA is planning to take. But it knows that in re-



sponse to its actions another agent (or several other agents)
will take some action, or a particular series of actions. In that
case just computingΦ(Φ(. . . Φ(s0, a1) . . . an−1), an) is not
enough. AgentA needs to reason about the evolution of the
world more thoroughly. Similarly, ifa1, . . . , an are each indi-
vidual database transactions then reasoning about the impact
of executing this series of transactions on an initial database
also involves reasoning about what actions are triggered by
these transactions and their impact. In the following section
we describe a way to constrain the evolution of the world so
as to take into account triggers, and reactions of other agents
in a multi-agent world.

2 Constraining the evolution of the world:
additional specifications

As mentioned in the previous section, our goal in this paper
is to be able to specify or constrain the evolution of the world
beyond just specifying what valid states are and how states
transition due to actions. In this we propose to use linear
temporal logic with future operators and operators denoting
action occurrences. We now formally define this logic.
Formulas ofLTLA (denoting linear temporal logic with
action occurrences) are built from the set of propositional
symbols, the boolean operators, unary temporal operators
© (denoting ‘next’), 3 (denoting ‘eventually’), 2 (de-
noting ‘always’), occurs (denoting action occurrences),
occurs-only, and the binary temporal operator∪ (denoting
‘until’). Intuitively, the difference between ‘occurs-onlya’
and ‘occursa’ is that in the former the only action that can
occur isa, while in the latera is one of the actions that occur.
We now show howLTLA is intended to be used in constrain-
ing the evolution of the world.

1. Suppose we would like to specify that a state wheref
is true triggers the occurrence of actiona. This can be
expressed inLTLA as

2(f ⇒ occurs-onlya)

if no other actions are allowed to execute in parallel with
a. If other actions are allowed to be executed in parallel
with a then the correct way to express it is

2(f ⇒ occursa)

2. Similarly if we want to specify that actiona1 triggers
actiona2 to be the next action then this can be expressed
in LTLA as

2(occursa1 ⇒© occurs-onlya2)

3. Similarly if we want to specify that the occurrence of ac-
tion a1, leading to a state wheref is true makes another
agent to execute the actiona2 then this can be expressed
in LTLA as

2(occursa1 ∧©f ⇒© occursa2)

The semantics ofLTLA is given with respect to trajecto-
ries. Intuitively, a trajectory describes an evolution of the
world states due to actions. More formally, a trajectory
τ is a sequence of states and sets of actions of the form

τ = s0A1s1 . . . Aisi . . ., where the set of actionsAi when
executed (in parallel) transform the world from the statesi−1

to the statesi. Note that when anAi is a singleton set{ai}
often we simply writeai instead of{ai}.
We start with a definition of truth of anLTLA formula with
respect to a trajectoryτ = s0A1s1 . . . Aisi . . . and some ref-
erence statesj . In the followingp denotes propositional for-
mulas, andfis denoteLTLA formulas.

• 〈sj , τ〉 |= p iff p holds insj .

• 〈sj , τ〉 |= occurs-onlya iff Aj+1 = {a}.
• 〈sj , τ〉 |= occursa iff a ∈ Aj+1.

• 〈sj , τ〉 |= ¬f iff 〈sj , τ〉 6|= f .

• 〈sj , τ〉 |= f1 ∧ f2 iff 〈sj , τ〉 |= f1 and〈sj , τ〉 |= f2.

• 〈sj , τ〉 |= f1 ∨ f2 iff 〈sj , τ〉 |= f1 or 〈sj , τ〉 |= f2.

• 〈sj , τ〉 |= ©f iff 〈sj+1, τ〉 |= f .

• 〈sj , τ〉 |= 2f iff 〈sk, τ〉 |= f for everyk ≥ j.

• 〈sj , τ〉 |= 3f iff 〈sk, τ〉 for somek ≥ j.

• 〈sj , τ〉 |= f1 ∪ f2 iff there existsk ≥ j, such that
〈sk, τ〉 |= f2 and for all i, j ≤ i < k we have
〈si, τ〉 |= f1.

We say that a formulaf is true with respect to a trajectory (or
holds in a trajectory)τ , written asτ |= f , iff 〈s0, τ〉 |= f .

3 Representing and reasoning about actions
In this section we show how the additional specifications
about the evolution of the world, as described in the previ-
ous section, can be integrated with the other components of
representing and reasoning about actions. We start with the
specification of the evolution of the world.

3.1 Evolution Specification
For this part the language has three subparts:

• Specifying valid states and transitions.

• Specifying observations.

• Constraints on the evolution (or simply ‘evolution con-
straints’).

For specifying valid states and transitions we can use syntac-
tic constructs such as:

• a causesf if p1, . . . , pn or the more general
a causesψ if ϕ;

• executable a if q1, . . . , qm or the more general
executable a if ϕ; and

• q1, . . . , qm causesp or the more generalθ causesψ,

whereas are actions (or sets of actions)pis andqi are fluent
literals andϕ andψ are fluent formulas. Given a description
consisting of statements of the above syntactic form, its se-
mantics is defined by inferring (from the description) a tran-
sition functionΦ : States× 2actions → 2States. Since there
are many papers (for example,[Gelfond and Lifschitz, 1993;
Baralet al., 1997; McCain and Turner, 1995]) which present
what the transition function corresponding to a given descrip-
tion is, we do not give details of that aspect here. Note



that some of these papers have slightly different syntax and
slightly different semantics, but that is of not much conse-
quence here. It is sufficient for us to assume that there is a
way to characterize descriptions using a transition function,
and in fact usually a description is a succinct way to specify
the corresponding transition function.
Now let us consider the observations and the evolution con-
straints. We consider the observation language from[Baralet
al., 1997] where the observations are of the following form:

• t1 precedes t2;

• p at t1; and

• α occurs at t1,

wheretis are situations (or time points),α is an action se-
quence andp is a fluent literal.
The evolution constraints areLTLA formulas.
Now given a descriptionD, a set of observationsO and evo-
lution constraintsE, the evolution of the world is defined
through a pair(τ, µ), whereτ is a trajectory depicting how
the world could evolve andµ is a mapping from situations
(or time points) to points in the trajectory. For example, if the
observations only refer to the situationst1, . . . , t4, then we
may have a(τ1, µ1), whereτ1 = s0, A1, s1, A2, . . . , An, sn

andµ1 is a mapping from{t0, t1, t2, t3, t4} to {0, . . . , n}.
Definition 1 (trajectory interpretation) Given a descrip-
tion D, a set of observationsO and evolution constraintsE, a
pair (τ, µ), with τ = s0, A1, s1, A2, . . . , An, sn is said to be
a trajectory interpretation of(D, O, E) if

• si ∈ Φ(si−1, Ai), whereΦ is the transition function cor-
responding toD,

• µ(t0) = 0;

• if t1 precedes t2 is in O thenµ(t1) ≤ µ(t2);

• if p at t1 is in O thenp holds insµ(t1);

• if B1, . . . , Bk occurs at t1, then for1 ≤ i ≤ k, Bi ⊆
Aµ(t1)+i; and

• the formulas inE hold in the extended infinite trajectory
τ̂ = s0, A1, s1, A2, . . . , An, sn, ∅, sn, ∅, . . ..

In the above definition we define the notion of a trajectory in-
terpretation. To define trajectory models, which express how
the world could evolve, we incorporate the assumption that
no action occurs unless it is dictated by the observations or
the evolution constraints.We refer to this assumption asNo
Superfluous Action Occurrence (NSAO) assumption. The fol-
lowing example illustrates this point.

Example 1 Consider a domain with two fluentsp and q.
There are four possible statess0 = {}, s1 = {p}, s2 = {q},
ands3 = {p, q}. Suppose we have actionsa1 anda2 and have
descriptionsD1 = {a1 causesp, a2 causesq}. Now, sup-
pose we have the observationsO1 = {¬p at t0,¬q at t0}
and the evolution constraintE1 = {¬p ∧ ¬q ⇒ occursa1}.
Now let us consider the various trajectory interpretations of
(D1, O1, E1). Let µ(t0) = 0. Let τ0 = s0, τ1 = s0, a1, s1,
τ2 = s0, a1, s1, a2, s3, τ3 = s0, {a1, a2}, s3. It is easy to
see that(τ1, µ), (τ2, µ), and(τ3, µ) are all trajectory inter-
pretations of(D1, O1, E1). But in τ2 we have the actiona2

occurring ins1 without being dictated or forced byO1 or E1.
Similarly, in τ3 we have the actiona2 occurring ins0 without
being dictated or forced byO1 or E1. Thus they both vio-
late our non superfluous action occurrence assumption that
‘no action occurs unless it is dictated by the observations or
the evolution constraints.’ On the other hand(τ0, µ) is not a
trajectory interpretation of(D1, O1, E1), as the formula inE
does not hold in̂τ0 = s0, ∅, s0, ∅, . . ..
But (τ1, µ) is a trajectory interpretation of(D1, O1, E1) and
at the same time it seem to satisfy the No Superfluous Action
Occurrence (NSAO) assumption. Hence,(τ1, µ) elucidates
how the world evolves. 2

In the above example we illustrated the role of the No Su-
perfluous Action Occurrence (NSAO) assumption. We now
incorporate this assumption to define trajectory models. But
first we need the following definition to compare trajec-
tories. In this definition and later for a trajectoryτ =
s0, A1, s1, . . . , An, sn, by α(τ) we denote the sequence of
action setsA1, . . . , An of τ .

Definition 2 Let τ = s0, A1, s1, . . . , An, sn and τ ′ =
s′0, B1, s

′
1, . . . , Bm, s′m be trajectories, such thats0 = s′0.

We say thatα(τ) ≤ α(τ ′) if there exists a subsequence1

[Bi1 , . . . , Bin ] of α(τ ′) such that for everyAk ∈ α(τ),
Ak ⊆ Bik

. 2

Definition 3 (trajectory model) Given a descriptionD, a
set of observationsO and evolution constraintsE, a pair
(τ, µ), with τ = s0, A1, s1, a2, . . . , An, sn is said to be a tra-
jectory model of(D, O,E) if

• (τ, µ) is a trajectory interpretation of(D, O,E), and

• there does not exist a trajectory interpretation(τ ′, µ) of
(D, O, E) such thatα(τ ′) < α(τ). 2

Note that in this section we have limited the notion of tra-
jectory interpretations and trajectory models to finite trajec-
tories. In presence of evolution constraints that force contin-
uous triggering there may not exist any trajectory models that
are finite. We do not consider such cases in this paper and
will consider them in the sequel.

3.2 Queries
In this section we present the query language and define en-
tailment of queries from triplets(D, O, E). To motivate the
query language that we propose, let us first recall the query
language inA [Gelfond and Lifschitz, 1993] andL [Baralet
al., 1997]. In A queries are of the formp after a1, . . . , an

which intuitively asks whether a fluent literalp will become
true if the sequence of actionsa1, . . . , an were to be exe-
cuted in the initial situation. InL, queries are of the form
p after a1, . . . , an at t which intuitively asks whether a
fluent literal p will become true if the sequence of actions
a1, . . . , an were to be executed in the situationt. InA andL
a1, . . . , an can be thought of as actions that the agent is plan-
ning to execute and the agent wants to find out iff will be true

1Given a sequenceX = x1, . . . , xm, another sequenceZ =
z1, . . . , zn is a subsequence ofX if there exists a strictly increasing
sequencei1, . . . , in of indices ofX such that for allj = 1, 2 . . . , n,
we havexij = zj .



after that or not. Since we allow evolution constraints that
can express triggers if the agent were to execute (or observe)
the actionsa1, . . . , an it is possible that other actions may be
triggered betweenai andai+1. Thus we no longer have a se-
quence of actionsa1, . . . , an, but rather have a sampling of
actions. We denote it bya1; a2; . . . ; an. The ‘;’ betweenai

andai+1 indicates that there may be other actions that occur
in between them. Also, instead of just fluent literals, we may
ask about the trajectory starting from whena1 is executed.
Thus in our query language a query is of the form
f during A1; A2; . . . ; Am at t wheref is anLTL for-
mula2, andt either appears inE, or is t0 or is the current sit-
uationtC . We now define the entailment between(D, O,E)
and the above mentioned queries. Intuitively, we first com-
pute the trajectory models of(D, O,E). For each trajectory
model we find the state corresponding tot and then create
a new(D,O′, E) where theO′ encodes what is true in the
state corresponding tot as the fluent literals that hold in the
initial situation. In additionO′ encodes the occurrence of
A1; . . . ; An. f is then evaluated with respect to the trajectory
models of(D,O′, E). More formally, given(D,O, E) we
say(D, O,E) |= f during A1; A2; . . . ; Am at t if f holds
in all trajectory models of the theories(D, O′, E) constructed
as follows:

• Let (τ, µ) be a trajectory model of(D,O, E), whereτ =
s0, A1, s1, . . . , An, sn.

• If t = t0 then we assignk as 0; else ift = tC then we
assign the valuen to k; otherwisek is assigned the value
µ(t).

• O′ now consists of the following.

– For all fluentsp, if p ∈ sk thenO′ hasp at t0,
otherwise it has¬p at t0.

– In addition the following are part ofO′. (Here,
{a1, a2, . . . , al} occurs at t is a shorthand for the
set{a1 occurs at t, . . . , an occurs at t}.)
A1 occurs at t1,
A2 occurs at t2, . . . ,
Am occurs at tm,
t1 precedes t2,
t2 precedes t3, . . . ,
tm−1 precedes tm.

3.3 An example
Let us consider a domain with three fluentsp, q andr. Then
there are 8 possible states, which we refer as follows:s0 = ∅,
s1 = {p}, s2 = {q}, s3 = {r}, s4 = {p, q}, s5 = {p, r},
s6 = {q, r}, ands7 = {p, q, r}. We have four actionsa1, a2,
a3 anda4 whose effects are described by
D2 = {a1 causesp,

a1 causesq,
a2 causesr,
a3 causes¬p,
a4 causes¬q}.

The evolution constraints are given by
E2 = {2(q ⇒ occursa2),

2An LTL formula is anLTLA formula which does not have the
operatorsoccurs andoccurs-only .

2(p ⇒ occursa3),
2(¬p ∧ q ∧ r ⇒ occursa4)}.

The observations that we have are
O2 = {¬p at t0,¬q at t0,¬r at t0}.
Suppose our query isq2 = 32(¬p∧¬q∧ r) during a1. We
now show that(D2, O2, E2) |= q2.
It is easy to see that the only trajectory model of(D2, O2, E2)
is (τ2, µ2), whereτ2 = s0, andµ2(t0) = s0. Now let us
construct(D2, O

′
2, E2).

O′
2 = {¬p at t0,¬q at t0,¬r at t0, a1 occurs at t1}.

The only trajectory model of(D2, O
′
2, E2) is (τ ′2, µ

′
2), where

τ ′2 = s0, a1, s4, {a2, a3}, s6, {a2, a4}, s3, andµ′2(t0) = s0,
andµ′2(t1) = s0. This is because:

• s0 = ∅, and we have¬p at t0,¬q at t0,¬r at t0 in
O2’.

• Since we havea1 occurs at t1 in O2’, and no other
actions are dictated to be in betweent1 andt2, we have
a1 following s0 in τ ′2.

• Since we havea1 causesp anda1 causesq in D2, the
state followings0, a1 is {p, q} = s4.

• Since we have2(q ⇒ occursa2), and 2(p ⇒
occursa3) in E2, the set of actions{a2, a3} follow s4

in τ ′2.

• Since we havea2 causesr anda3 causes¬p in D2, the
state followings4, {a2, a3} is {q, r} = s6.

• Since we have2(¬p∧ q ∧ r ⇒ occursa4), and2(q ⇒
occursa2) in E2, the set of actions{a2, a4} follows s6

in τ ′2.

• Since we havea4 causes¬q in D2, the state following
s6, a4 is {r} = s3.

• Since neither O′2 nor E2’s dictate any ac-
tion to occur at s3, by minimality we have
τ ′2 = s0, a1, s4, {a2, a3}, s6, a4, s3.

Now to evaluate the goal part of the queryq, which is
32(¬p ∧ ¬q ∧ r), we consider the extension ofτ ′2, which is
τ̂ ′2 = s0, a1, s4, {a2, a3}, s6, {a2, a4}, s3, ε, s3, ε, s3, . . .. It
is easy to see that32(¬p ∧ ¬q ∧ r) holds in τ̂ ′2. Hence,
(D2, O2, E2) |= q2.

4 Augmenting with probabilities:
representing strategies

In the earlier sections we discussed the incorporation of evo-
lution constraints in reasoning about actions and its use in
expressing triggers. Our next goal is to be able to express
probabilistic triggers and randomized strategies. For exam-
ple, we are interested in expressing that wheneverp is true
then with probability 0.7 the next action isa. Our motiva-
tion in representing and reasoning about such occurrences ini-
tially came from the papers[Poole, 1997] and[Pearl, 1999;
2000]. In [Pearl, 2000] there is a statement that says ‘the
probability of occurrence of treatment is 0.5. We are inter-
ested in being able to represent and reason about such state-
ments. Similarly, in[Poole, 1997], there is a story about a
goalie (goal keeper in soccer) and a kicker. The goalie can
perform the actionsjump right (jr – meaning jumping to



its own right), andjump left (jl) and the kicker can per-
form the actionskick right (kr – meaning kicking to itsown
right), andkick left (kl). The likelihood of scoring a goal is
described by the following table:

kick left (kl) kick right (kr)
jump left (jl) 0.9 0.15

jump right (jr) 0.2 0.95

Using constructs from the action description language PAL
[Baral et al., 2002] this can be expressed by having inertial
unknown variablesu1, u2, u3 andu4 and having the follow-
ing D3: {jl, kl} causesgoal if u1.
{jl, kr} causesgoal if u2.
{jr, kl} causesgoal if u3.
{jr, kr} causesgoal if u4.
jl causes¬init.
jr causes¬init.
kl causes¬init.
kr causes¬init.
and the following probability information.
probability of u1 is 0.9.
probability of u2 is 0.15.
probability of u3 is 0.2.
probability of u4 is 0.95.
Let us assume that we have the following observationsO3

which basically says that in the initial situationinit is true
and¬goal is true.
init at t0.
¬goal at t0.
Let us have the following evolution constraintsE3 that says
that in any state whereinit is true one of the actionsjl or jr
occurs and also one of the actionskl or kr occurs. This can
be expressed as follows:
2(init ⇒ occursjl ∨ occursjr)
2(init ⇒ occurskl ∨ occurskr)
Ignoring the probability information the above(D3, O3, E3)
has 64 trajectory models (16 combinations ofu1, u2, u3, u4

and 4 combinations of{jl, jr} × {kl, kr}), some of which
are as follows:

1. {init, u1, u2, u3, u4}{jl, kl}{u1, u2, u3, u4, goal}
2. {init, u2, u3, u4}{jl, kl}{u2, u3, u4}
3. {init, u1, u2, u3, u4}{jl, kr}{u1, u2, u3, u4, goal}
4. {init, u1, u3, u4}{jl, kr}{u1, u3, u4}
5. {init, u1, u2, u3, u4}{jr, kl}{u1, u2, u3, u4, goal}
6. {init, u1, u2, u4}{jr, kl}{u1, u2, u4}
7. {init, u1, u2, u3, u4}{jr, kr}{u1, u2, u3, u4, goal}
8. {init, u1, u2, u3}{jr, kr}{u1, u2, u3}

Now using the probability associated withu1, u2, u3 andu4

we can compute the probability associated with each of the
trajectory models. (Our computation is simplified because as
u1, u2, u3 andu4 are unknown variables and hence are in-
dependent of each other. Also, we only have deterministic
actions and our trajectories are of finite length.) We can com-
pute the probability of goal as the sum of probabilities of tra-
jectories whose final state hasgoal in them. In this example,

this comes out to0.9+0.15+0.2+0.95
4 = 0.55. This is because

the occurrence ofjl andjr are equally likely and similarly
the occurrence ofkl andkr are also equally likely.
Now let us consider strategies where the goalie decides to
jump left 40% of the time (and jump right 60% of the time)
and the kicker decides to kick left 70% of the time (and kick
right 30% of the time). The first issue ishow to express such
strategies?
Here, we can follow the ideas in[Baral et al., 2002; Pearl,
1999; 2000] and again use unknown variables. Let us have
unknown variablesu5 andu6 and the following probability
statements.
probability of u5 is 0.4.
probability of u6 is 0.7.
Now we modify the evolution constraintsE3 so as to incor-
porateu4 andu5 and have the followingE4.
2(init ∧ u5 ⇒ occursjl)
2(init ∧ ¬u5 ⇒ occursjr)
2(init ∧ u6 ⇒ occurskl)
2(init ∧ ¬u6 ⇒ occurskr)
Now although(D3, O3, E4) will also have 64 trajectory mod-
els – as did(D3, O3, E3), the trajectory models will not be
exactly the same (because of new unknown variablesu5 and
u6) and the probability associated with them will also be dif-
ferent (because ofE4). Nevertheless, we can use the same
method of summing the probabilities of trajectories whose fi-
nal state hasgoal in them, to compute the probability ofgoal.
In this case it will be(0.9× 0.4× 0.7 + 0.15× 0.4× 0.3 +
0.2× 0.6× 0.7 + 0.95× 0.6× 0.3) = 0.525.
Above we have illustratedthrough exampleshow to represent
‘strategies’ (or triggered probabilistic occurrence of actions)
and reason about them. The main idea is to use unknown vari-
ables (with associated probabilities) in evolution constraints.
In addition we have an important assumption that the tran-
sition functions aredeterministic. This allows us to focus
on the initial state of a trajectory to compute the probability
of that trajectory. But because of the observations we may
have multiple trajectories with the same initial state. In that
case we consider each such trajectory to be equally probable
and compute the individual probability of a trajectory as the
probability of its initial state divided by the number of tra-
jectories with that same initial state. One drawback of our
assumption that transition functions are deterministic is that
it rules out non-inertial unknown variables that are used in
PAL [Baralet al., 2002]. Nevertheless, we still can represent
and reason about many strategies. In this context it must be
mentioned that in[Pearl, 1999] the unknown variables are all
non-inertial.

5 Conclusion, related work and future work
In this paper we have shown how to incorporate evolution
constraints to reason about the evolution of the world and how
this allows us to express triggering of one action by another,
and reason about actions of multiple agents following par-
ticular strategies. Since this is one of the initial attempt in
this direction we have used a very general language (LTLA)
to express evolution constraints. Further study is necessary
to decide whether this is a good idea or not, and whether



an alternative where a very small subclass ofLTLA is used
is better. For the later we need to identify important kinds
of evolution constraints and have specific syntax for them.
Overall, the main technical contribution of this paper are: (i)
we introduce evolution constraints, (ii) we present a notion
of minimization of trajectories that allows us to incorporate
the NSAO (no superfluous action occurrence) assumption in
presence of evolution constraints, (iii) we consider queries
that allow gaps in between actions in the plan part of the
query, and (iv) we show how to represent and reason about
triggers, probabilistic occurrences of actions and probabilis-
tic strategies.

In terms of related work this paper extends (and suggests ex-
tension to) theA [Gelfond and Lifschitz, 1993] class of high
level action description languages such asL [Baral et al.,
1997] and PAL [Baral et al., 2002]. The use ofLTLA to
expressing evolution constraints is yet another use of linear
temporal logic in reasoning about actions and change. This
raises the following question: Should we forgo action de-
scription languages such asA completely and switch to tem-
poral logics such as LTL or are there aspects where one is
preferable to the other? In the past LTL has been used in ex-
pressing queries, in expressing the condition partφ of actions
descriptions such asa causesf if φ, and in expressing the
transition functionΦ itself. The last one was recently pro-
posed in[Calvaneseet al., 2002]. It is not clear if the last use
is appropriate or not as[Calvaneseet al., 2002] shows that
expressing executability conditions of actions is problematic
in their temporal logic and the specification is not succinct.
Also, since standard temporal logics use classical connec-
tives it is difficult to express causality and static constraints
in them. Thus, a preliminary answer to the above questions
is that temporal logic is good for representing queries, and
evolution constraints (together with minimality), but perhaps
not for expressing transition functions and causality. For that
the constructs fromA and its successors are perhaps prefer-
able. Another related work is the paper[Reiter, 1996] (and
the Toronto situation calculus) which considers natural ac-
tions that occur at distinct times. But as mentioned in[Reiter,
1996] these approaches have the problem of premature min-
imization and hence have difficulty in expressing the NSAO
assumption.

In terms of future work in the sequel we will consider infinite
trajectories. Here we in essence assumed that the evolution
constraints are such that trajectories are finite. We also plan
to consider non-deterministic actions and presence of non-
inertial variables when dealing with probabilities. Finally,
we need to formalize the representation and reasoning about
strategies which we only illustrated (due to lack of space)
through an example in Section 4.
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