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Abstract al., 1997 observations about different time points play a role
in defining valid trajectories. Similarly, ifLevesque, 1996;
Son and Baral, 20§1more general plans such as conditional
plans are considered and[iBaralet al., 2001 more general
languages for (c) are considered.

In this paper our goal is to consider some additional aspects
of specifying how the world could evolve, beyond what has
been considered so failn this regard, most of the current
proposals focus on defining what valid states of the world are,
defining the transition between states of the world due to ac-
tions, and incorporating observations to determine valid tra-
jectories. The additional aspects that we are concerned about
in this paper involves the ability to express trigger conditions
such as: (i) whenever a fluefit(or a fluent formula) is true

] o in a state then a certain actiomusthappen in that state; and

1 Introduction and Motivation (ii) a particular actiormustbe followed by another particular

In the last one and half decade there has been treme@ction. Triggers of type (i) are often encountered in active
dous progress in representing and reasoning about actiof@tabaseBnidom and Ceri, 1996 One also encounters trig-
[Georgeff, 1994; Lifschitz, 1997; Sandewall, 19aéd its  9ers of types (i) and (i) when modeling cell-signaliftgan-
application to planning, hypothetical reasoning, reasoningock, 1997, when a particular set of conditions trigger a par-
about narratives, automatic control generation and verificaticular event inside the cell, or one event in the cell triggers
tion, explanation and diagnosis. At an abstract level there aranother event. We are also interested in multi-agent environ-
three main components of representing and reasoning abofitents when each agent is following a particular policy and a
actions (a) Specifying the various possible ways the worlgParticular agent would like to figure out how the world will
could ev0|\/e, (b) Spec|fy|ng a p|an or execution program, an(ﬁYOlve n reSp.Onse to its actions. For example CO'nS|der an en-
(c) Specifying a property over trajectories. For example, letvironment which has two agentsand B. AgentA is aware

us consider the simple language[Gelfond and Lifschitz, ©Of how agent3 would react to any action that agestdoes.
1993. In it the specification for how the world could evolve Now agent4 would like to reason about the effect of its own
includes statement of the formcausesf if pi,...,p, and  actionon how the world will evolve. In that case the evolution

statements of the forminitially . Together they define a Of the world not only depends on the action thaexecutes
transition function® : States x Actions — States, and  and the state transition due to that but also the actiof of
based on the transition function they define a set of possiblthat is triggered byd’s action.

trajectories of the form, a1, s1 ... such thats, satisfies all To make our motivation more explicit let us go back to the
the statements of the forrmitially f, ands; = ®(s;_1,a;), languageA. In A a query is of the forny after aq,...an,,
forall > 0. In A the language for plans — part (b) above, is awhere the agent wants to find out jf is true in the
simple one: plans are simply sequence of actions4,lpart  state (corresponding to the situation) reached after execut-
(c) is about goals that hold in the final state, and are repreing the sequence of actions, ..., a, in the initial situa-
sented by fluent literals. Altogethed, defines the entailment tion. If the state corresponding to the initial situation is
relation}=, as inD |= f after P, whereD is a description sy and ® is the transition function that specifies the tran-
corresponding to (a)f is fluent literal corresponding to (c), sition between states due to an action then finding out if

The first step in reasoning about actions and change
involves reasoning about how the world would
evolve if a certain action is executed in a certain
state. Most research on this assume the evolution
to be only a single step and focus on formulating
the transition function that defines changes between
states due to actions. In this paper we consider
cases where the evolution is more than just a single
change between one state and another. This is man-
ifested when the execution of an action may trigger
execution of other actions, or when multiple agents
act on the environment following certain strategies.

andP is of the formas, . .., a,, corresponding to (b). In later f after a4,...a, is true involves computing the state
languages more general (a), (b) and (c) are proposed. Fdr(®(...®(sp,a1)...a,-1),a,) and evaluating iff is true
example, iNfMcCain and Turner, 199%he transition func- in it. Now suppose the actions,,...,a, are the actions

tion is also dictated by static causal laws; andRaralet  that agentA is planning to take. But it knows that in re-



sponse to its actions another agent (or several other agents)= spA;sy ... A;s; ..., where the set of actiond; when
will take some action, or a particular series of actions. In thaexecuted (in parallel) transform the world from the state
case just computin@(®(. .. ®(sp,a1)...an—1),a,) is NOt  to the states;. Note that when a; is a singleton sefa, }
enough. Agentd needs to reason about the evolution of theoften we simply writen; instead of{a; }.
world more thoroughly. Similarly, iy, . .., a, are eachindi- We start with a definition of truth of ahT L 4 formula with
vidual database transactions then reasoning about the impaetspect to a trajectory = sgA1sy ... A;s; ... and some ref-
of executing this series of transactions on an initial databaserence statg;. In the followingp denotes propositional for-
also involves reasoning about what actions are triggered bgnulas, andf;s denotel. T'L 4, formulas.
these transactions and their impact. In thg following section (s;,7) k= piff pholds ins;.
we describe a way to constrain the evolution of the world so ,
as to take into account triggers, and reactions of other agents ® ) = occurs-onlya iff A;1, = {a}.

sj,T) = occursaiff a € A;11.

Sj,T
in a multi-agent world. ® (s;
sj77_> ': -f iff <SjvT> b& f

e~~~ o~~~ o~~~ —~

2 Constraining the evolution of the world:

additional specifications o (s I A AT (s5,7) = S and(s;, 7) = fo.
: - - - I o (sj;7) E f1V f2iff (s;,7) = fror(s;,T) = fo
As mentioned in the previous section, our goal in this paper )
is to be able to specify or constrain the evolution of the world sj,7) | Of iff (sj41,7) E f.

beyond just specifying what valid states are and how states e
transition due to actions. In this we propose to use linear
temporal logic with future operators and operators denoting ) ) )
action occurrences. We now formally define this logic. e (s;,7) = f1 U fp iff there existsk > j, such that
Formulas of LTL4 (denoting linear temporal logic with sk, 7) | f2 and for alli, j < i < k we have
action occurrences) are built from the set of propositional (si,7) = f1.

symbols, the boolean operators, unary temporal operatoi/e say that a formuld is true with respect to a trajectory (or
O (denoting ‘next’), & (denoting ‘eventually’), 0 (de-  holds in a trajectory), written asr = f, iff (so,7) = f.
noting ‘always’), occurs (denoting action occurrences),

occurs-only, and the binary temporal operator(denoting 3 Representing and reasoning about actions

‘until’). Intuitively, the difference betweenoccurs-onlya’ . : - e

and ‘occursa’ is that in the former the only action that can N this section we show how the additional specifications

occur isa, while in the latew is one of the actions that occur. 2P0t the evolution of the world, as described in the previ-

We now show how. T'L 4 is intended to be used in constrain- ous secthn, can be mtegrated with th_e other compone_nts of
representing and reasoning about actions. We start with the

ing the evolution of the W(_)rld' ) ) specification of the evolution of the world.
1. Suppose we would like to specify that a state whgre

is true triggers the occurrence of action This can be 3.1 Evolution Specification
expressed ifTL 4 as For this part the language has three subparts:
O(f = occurs-onlya) e Specifying valid states and transitions.

if no other actions are allowed to execute in parallel with e Specifying observations.

a. If other actions are allowed to be executed in parallel ¢ Constraints on the evolution (or simply ‘evolution con-
with a then the correct way to express it is straints’).

sj,7) | Of iff (sg,7) |= f for everyk > j.
sj,7) = O fiff (s, ) for somek > j.

O(f = occursa) For specifying valid states and transitions we can use syntac-
tic constructs such as:

2. Similarly if we want to specify that action; triggers .
y pecify 1 fngg e ¢ causesf if py,...,p, or the more general

actionas to be the next action then this can be expressed

in LTL ., as a causesy if ¢;
e executable a if ¢p,...,q, or the more general
O(occursa; = O occurs-onlyas) executable a if ; and
3. Similarly if we want to specify that the occurrence ofac- e ¢, ..., ¢, cause or the more general causes),

tion ay, leading to a state whetis true makes another \\hereqs are actions (or sets of actionsy andg; are fluent
agent to execute the actien then this can be expressed |itera|s andy and are fluent formulas. Given a description
InLTL4 as consisting of statements of the above syntactic form, its se-
O(occursa; A Of = () occursas) mantics is defined by inferring (from the description) a tran-
sition function® : States x 22¢tions _, 25tates  Since there
The semantics of.TL 4 is given with respect to trajecto- are many papers (for exampl&elfond and Lifschitz, 1993;
ries. Intuitively, a trajectory describes an evolution of theBaralet al, 1997; McCain and Turner, 1995vhich present
world states due to actions. More formally, a trajectorywhat the transition function corresponding to a given descrip-
7 is a sequence of states and sets of actions of the forrtion is, we do not give details of that aspect here. Note



that some of these papers have slightly different syntax andccurring ins; without being dictated or forced iy, or F;.
slightly different semantics, but that is of not much conse-Similarly, in 73 we have the action, occurring insg without
guence here. It is sufficient for us to assume that there is being dictated or forced b®; or F;. Thus they both vio-
way to characterize descriptions using a transition functionlate our non superfluous action occurrence assumption that
and in fact usually a description is a succinct way to specifyno action occurs unless it is dictated by the observations or
the corresponding transition function. the evolution constraints.” On the other hapndg, 1) is not a
Now let us consider the observations and the evolution contrajectory interpretation ofD,, Oy, F1), as the formula irf
straints. We consider the observation language fiBaralet  does not hold iy = s, 0, 59, 0, . . ..
al., 1997 where the observations are of the following form: But (71, 1) is a trajectory interpretation ¢fD;, O, E1) and
. at the same time it seem to satisfy the No Superfluous Action
* t1 precedests; Occurrence (NSAO) assumption. Hencey, ;1) elucidates

e p at t;and how the world evolves. O

e « occursat ¢y, In the above example we illustrated the role of the No Su-
wheret;s are situations (or time points), is an action se- Perfluous Action Occurrence (NSAO) assumption. We now
quence ang is a fluent literal. incorporate this assumption to define trajectory models. But
The evolution constraints af&l' I 4 formulas. first we need the following definition to compare trajec-
Now given a descriptioD, a set of observation® and evo-  tories. In this definition and later for a trajectory =
lution constraintsE, the evolution of the world is defined So; 41,51, ..., An, sn, Dy a(r) we denote the sequence of
through a pair(t, 1), wherer is a trajectory depicting how action setsd,, ..., A, of 7.
the world could evolve ang is a mapping from situations pefinition 2 Let 7 = sg, A1, 81,...,An, s, and 7/ =
(or time points) to points in the trajectory. For example, ifthes) B, s,...., B, s, be trajectories, such thay = s).

observations only refer to the situatiofis. . ., ¢4, then we  We say thatn(r) < «(7’) if there exists a subsequerce
may have &1, 1), wherer; = so, A1, 81, 42,..., Ap, 80 [B;,,...,B;,] of a(') such that for everyd;, € a(r),
andy; is a mapping from{to, t1, to, t3,t4} t0{0,...,n}. Ay C B;,. 0

Definition 1 (trajectory interpretation) Given a descrip-  pefinition 3 (trajectory model) Given a descriptionD, a
tion D, a set of observation@ and evolution constraints, a  set of observation® and evolution constraint®, a pair

pair (7, p), With 7 = s, Ay, 51, As, ..., An, sp is saidto be (7)) with r = sg, Ay, 51, a0, ..., Ay, s, is said to be a tra-
a trajectory interpretation dfD, O, E) if jectory model of D, O, E) if
® s € ‘P(g?—htf(%), whered is the transition functioncor- o (7 ;) is a trajectory interpretation ¢, O, E), and
respondin , . . .
P 9 e there does not exist a trajectory interpretatieh x) of
* u(to) =0; (D, 0, E) such thata (') < a(r). O
o if ¢, precedest, isin O thenp(t) < pu(t2); Note that in this section we have limited the notion of tra-
e if p at ¢ isin O thenp holds ins,,); jectory interpretations and trajectory models to finite trajec-

e if By..... B, occursat £, thenforl < i < k, B; C tories. In presence of evolution constraints that force contin-
) uous triggering there may not exist any trajectory models that
A,u,(tl)+i’ al’ld . . . .
) ) o _ are finite. We do not consider such cases in this paper and
e the formulas inE hold in the extended infinite trajectory will consider them in the sequel.
T = 5()7A1781aA27~ . 'aAnvsnv(Z)a 87“@, ceen

In the above definition we define the notion of a trajectory in-3-2 Queries

terpretation. To define trajectory models, which express hovin this section we present the query language and define en-
the world could evolve, we incorporate the assumption thatailment of queries from tripletéD, O, E). To motivate the

no action occurs unless it is dictated by the observations ofuery language that we propose, let us first recall the query
the evolution constraintsWe refer to this assumption &0  language in4 [Gelfond and Lifschitz, 1993and £ [Baralet

Superfluous Action Occurrence (NSAO) assumpfidre fol-  al., 1997. In A queries are of the form after as,...,a,
lowing example illustrates this point. which intuitively asks whether a fluent literalwill become
true if the sequence of actions, ..., a, were to be exe-

Example 1 Consider a domain with two fluengs and q.

: . _ — cuted in the initial situation. IrC, queries are of the form
There Te four possible states = {}, s1 = {p}, 2 = {a}, p after aq,...,a, at twhich intuitively asks whether a
andss = {p, ¢}. Suppose we have actionsanda, and have fluent literal p will become true if the sequence of actions
dgzgrwgi]nas\%th:e égéecr\?;t?ggx 42 {iaus;ats;t} ' ﬁNOV;’t stup}) ai,...,a, were to be executed in the situationin A and £
P P=P 0,74 0 ai,...,a, can be thought of as actions that the agent is plan-

and the evolution constraitf; = {—p A =¢ = occursa; }.
Now let us consider the various trajectory interpretations o
(D1,01, Ey). Letpu(ty) = 0. Letmy = so, 71 = 50,01, 51, lGiven a sequenc& = x1,...,zm, another sequencé =
Ty = 80,01,51,02,53, T3 = S0,1a1,a2},53. Itiseasyto . . . isasubsequence df if there exists a strictly increasing
see that(ry, i), (72, ), and (73, n) are all trajectory inter-  sequenceé,, ..., i, of indices ofX suchthatforallj = 1,2...,n,
pretations of( D, 01, E1). But in 5 we have the action, we haver;; = z;.

ping to execute and the agent wants to find oyitvfill be true



after that or not. Since we allow evolution constraints that
can express triggers if the agent were to execute (or observe)
., a, itis possible that other actions may be The observations that we have are

the actionsuy, . .
triggered between, anda;, 1. Thus we no longer have a se-
guence of actions,, ..., a,, but rather have a sampling of
actions. We denote it by;;as;...;a,. The ‘; betweena;

O(p = occursas),
O(-p A gAr = 0occurSay)}.

O, = {ﬁp at tp,—q at tp,—r at to}.
Suppose our query ip = CO(—pA—gAr) during a;. We
now show that Do, O, Es) E go.

anda;, indicates that there may be other actions that occultis easy to see that the only trajectory mode{bf, O, E-)

in between them. Also, instead of just fluent literals, we mayis (72, u2), wherer,

ask about the trajectory starting from whenis executed.

= S, and us(tp) = so. Now let us

construct( Dy, 0%, E3).

Thus in our query language a query is of the formO, = {-p at tg,—q at ¢y, at tg,a; occursat t}.

f during Ap;As;...; A, at twheref is anLTL for-
mul&?, andt either appears i, or ist, or is the current sit-
uationtc. We now define the entailment betwe@n, O, E)

and the above mentioned queries. Intuitively, we first com-

pute the trajectory models 4D, O, E'). For each trajectory

model we find the state correspondingitand then create

a new(D,O’, E) where theO’ encodes what is true in the
state corresponding toas the fluent literals that hold in the
initial situation. In additionO’ encodes the occurrence of
Al; ..
models of (D, 0’, E'). More formally, given(D, O, E) we

say(D,O,E) = fduring Aj; As;...; A, at tif f holds
in all trajectory models of the theorié®, O’, E) constructed
as follows:

e Let (7, u) be atrajectory model ¢fD, O, E), wherer =

SO)A17813"'?A71381’L'

e If t =ty then we assigi as 0; else it = t- then we
assign the value to k; otherwisek is assigned the value
(1)

e O’ now consists of the following.

— For all fluentsp, if p € s, thenO’ hasp at tg,
otherwise it hasp at ty.

— In addition the following are part o®’. (Here,
{a1,as,...,a;} occursat tis a shorthand for the
set{a; occursat t,...,a, occursat t}.)

A; occursat tq,

A, occursat to,. ..,
A,, occursat t,,,
t, precedests,

to precedests, .. .,
tm—1 precedest,,.

3.3 Anexample

Let us consider a domain with three flueptg andr. Then
there are 8 possible states, which we refer as folleys: 0,
s1 = {p}, s2 = {q}, 53 = {r}, sa = {p.q}, 55 = {p, 7},
s¢ = {q,r}, ands; = {p, q,r}. We have four actions,, as,
a3 anday Whose effects are described by
Dy = {a; cause,

a; causesy,

as causes,

az causesp,

a4 causes-q}.
The evolution constraints are given by
E, = {0O(q = occursas),

2An LT L formula is anL T L 4 formula which does not have the
operatoroccurs andoccurs-only.

.; A,. fisthen evaluated with respect to the trajectory

The only trajectory model of D2, O}, Es) is (74, 1), where

TS = 50,a1,34,{a2,.a3},36,{a2,a4},33, and b (to) = so,

andpb(t1) = so. This is because:

e s = 0, and we havep at ty,—q at tg,—r at tyin
05’

e Since we haver; occursat ¢; in Oy’, and no other
actions are dictated to be in betwegrandt,, we have
a, following sq in 74.

e Since we haver; cause anda; causes; in D,, the
state followingsg, a1 is {p, ¢} = s4.

e Since we haved(q = occursaz), and d(p =
occursag) in Es, the set of actiongas, as} follow sy
in 75.

e Since we have, causes andas causes—p in D, the
state followingsy, {a2, as} is {q,r} = s.

e Since we hav&(—p A ¢ A r = 0CCUrsay), andd(q =
occursag) in Es, the set of actiongas, a4} follows sg
in 5.
e Since we have, causes-q in D,, the state following
S, a4 iS{r} = s3.
e Since neither O, nor E,’'s dictate any ac-
tion to occur at s3, by minimality we have
Té = S0, a1, S4, {G'Q; G‘S}a 56, a4, 53
Now to evaluate the goal part of the quegy which is
<&O(—p A g A ), we consider the extension of, which is

A
Ty = 8070417547{0/2,0/3}786,{ag,a4}783,€,83,6783,.... It

is easy to see thabO(—p A —¢ A r) holds in 735. Hence,
(D2, 02, E2) [ ga.

4 Augmenting with probabilities:
representing strategies

In the earlier sections we discussed the incorporation of evo-
lution constraints in reasoning about actions and its use in
expressing triggers. Our next goal is to be able to express
probabilistic triggers and randomized strategies. For exam-
ple, we are interested in expressing that whenevisrtrue

then with probability 0.7 the next action is Our motiva-

tion in representing and reasoning about such occurrences ini-
tially came from the paper$oole, 1997 and[Pearl, 1999;
2004. In [Pearl, 200D there is a statement that says ‘the
probability of occurrence of treatment is 0.5. We are inter-
ested in being able to represent and reason about such state-
ments. Similarly, in[Poole, 1997, there is a story about a
goalie (goal keeper in soccer) and a kicker. The goalie can
perform the actiongump_right (jr — meaning jumping to



its own right), andjump_left (j1) and the kicker can per-
form the actiongick_right (kr — meaning kicking to itewn
right), andkick_left (kl). The likelihood of scoring a goal is
described by the following table:

Fick left (kl)
0.9
0.2

kick_right (kr)
0.15
0.95

Jump-left (jl)
Jump_right (jr)

Using constructs from the action description language PA
[Baral et al., 2004 this can be expressed by having inertial

unknown variables, us, uz anduy and having the follow-
ing D3: {jl, kl} causesgjoal if w;.

{jl, kr} causegjoal if us.

{jr, kl} causegoal if us.

{jr, kr} causegjoal if uy.

jl causes-init.

Jr causes—init.

kl causes—init.

kr causes—init.

and the
probability of
probability of
probability of wugis 0.2.

probability of w4 is 0.95.

Let us assume that we have the following observatiops
which basically says that in the initial situationit is true
and-—goal is true.

init at tg.

—goal at tg.

Let us have the following evolution constrainty that says
that in any state wherait is true one of the actiond or jr
occurs and also one of the actiokisor kr occurs. This can
be expressed as follows:

O(init = occursjl vV occursjr)

O(init = occurskl Vv occurskr)

Ignoring the probability information the aboy®s, O, E3)
has 64 trajectory models (16 combinationsuf us, us, uy
and 4 combinations ofji, jr} x {kl, kr}), some of which
are as follows:

following information.
U1 is 0.9.

ug is 0.15.

probability

1. {init,uy, ug, us, ug }{jl, kl}{u1, ua, us, ug, goal}
{init, ug, us, ug }{jl, kl}{uz, us, us}
{init, uy, ug, us, ug }{jl, kr}{u1, ug, us, ug, goal'}
{init, uy, us, ug }{jl, kr}{u1, ug, uqs}
{init, u1, uz, ug, ug H{jr, Kl }{u1, vz, us, ug, goal}
{init, uy, uz, ug }{jr, k1}H{u1, ua, ug}
{init, uy, uz, ug, ug H{jr, kr}{u, ua, us, uq, goal }

8. {init,u1,ug, uzH{jr, kr}{ui, us,us}
Now using the probability associated with, us, us anduy

N o ok~ owdh

this comes out td-2+0:-15+0.240.95 — ) 55 This is because
the occurrence ofl andjr are equally likely and similarly
the occurrence dfl andkr are also equally likely.

Now let us consider strategies where the goalie decides to
jump left 40% of the time (and jump right 60% of the time)
and the kicker decides to kick left 70% of the time (and kick
right 30% of the time). The first issue l®w to express such
strategie®

(Here, we can follow the ideas iBaral et al, 2002; Pearl,
1999; 2000 and again use unknown variables. Let us have
unknown variables:; andug and the following probability
statements.

probability of wus is 0.4.

probability of wg is 0.7.

Now we modify the evolution constrainfs; so as to incor-
porateu, andus and have the following,.

O(init A us = occursjl)

O(init A —us = OCCUIS;T)

O(init A ug = occurskl)

O(init A —ug = occurskr)

Now although(Ds, O3, E,) will also have 64 trajectory mod-
els — as did D3, O3, Es), the trajectory models will not be
exactly the same (because of new unknown variaibiesnd

ug) and the probability associated with them will also be dif-
ferent (because of’;). Nevertheless, we can use the same
method of summing the probabilities of trajectories whose fi-
nal state hagoal in them, to compute the probability 9bal.

In this case it will be(0.9 x 0.4 x 0.7+ 0.15 x 0.4 x 0.3 +

0.2 x 0.6 x 0.7+ 0.95 x 0.6 x 0.3) = 0.525.

Above we have illustratethrough examplekow to represent
‘strategies’ (or triggered probabilistic occurrence of actions)
and reason about them. The main idea is to use unknown vari-
ables (with associated probabilities) in evolution constraints.
In addition we have an important assumption that the tran-
sition functions aredeterministic This allows us to focus
on the initial state of a trajectory to compute the probability
of that trajectory. But because of the observations we may
have multiple trajectories with the same initial state. In that
case we consider each such trajectory to be equally probable
and compute the individual probability of a trajectory as the
probability of its initial state divided by the number of tra-
jectories with that same initial state. One drawback of our
assumption that transition functions are deterministic is that
it rules out non-inertial unknown variables that are used in
PAL [Baralet al, 2004. Nevertheless, we still can represent
and reason about many strategies. In this context it must be
mentioned that ifPearl, 1999the unknown variables are all
non-inertial.

5 Conclusion, related work and future work

In this paper we have shown how to incorporate evolution

we can compute the probability associated with each of theonstraints to reason about the evolution of the world and how
trajectory models. (Our computation is simplified because athis allows us to express triggering of one action by another,
u1, uz, uz anduy are unknown variables and hence are in-and reason about actions of multiple agents following par-
dependent of each other. Also, we only have deterministidgicular strategies. Since this is one of the initial attempt in
actions and our trajectories are of finite length.) We can comthis direction we have used a very general langudgel()

pute the probability of goal as the sum of probabilities of tra-to express evolution constraints. Further study is necessary
jectories whose final state hasal in them. In this example, to decide whether this is a good idea or not, and whether



an alternative where a very small subclasd.@fL 4 is used [Baraletal, 2004 C. Baral, V. Kreinovich, and R. Trejo.
is better. For the later we need to identify important kinds Computational complexity of planning with temporal
of evolution constraints and have specific syntax for them. goals. InlJCAI 2001, 2001.

Overall, the main technical contribution of this paper are: (i)[BaraIet al, 2004 C.Baral, N. Tran, and L. Tuan. Reason-

we introduce evolution constraints, (i) we present a notion ing about actions in a probabilistic setting. oc. of
of minimization of trajectories that allows us to incorporate AAAI'2002 pages 507-512, 2002.

the NSAO (no superfluous action occurrence) assumption i i

presence of evolution constraints, (i) we consider queriesCalvanesetal, 2004 D. Calvanese, G. De Giacomo, and
that allow gaps in between actions in the plan part of the M. Vardi. Reasoning about actions and planning in Itl ac-
query, and (iv) we show how to represent and reason about tion theories. IrKR'02, 2002.

triggers, probabilistic occurrences of actions and probabilis{Gelfond and Lifschitz, 1993M. Gelfond and V. Lifschitz.
tic strategies. Representing actions and change by logic programgt-

In terms of related work this paper extends (and suggests ex- nal of Logic Programmingl7(2,3,4):301-323, 1993.

tension to) thed [Gelfond and Lifschitz, 1993class of high  [Georgeff, 199% M. Georgeff, editor.Journal of Logic and
level action description languages such&g$Baral et al, Computation, Special issue on Action and Processas
1997 and PAL[Baral et al, 2003. The use ofLTL, to ume 4 (5). Oxford University Press, October 1994.

expressing evolution constraints is yet another use of line . .
temporal logic in reasoning about actions and change. Th?gl-lalg%c;ck, 199F J. Hancock. Cell Signalling - Longman,

raises the following question: Should we forgo action de- _ o
scription languages such ascompletely and switch to tem-  [Levesque, 1996H. Levesque. What is planning in the pres-
poral logics such as LTL or are there aspects where one is ence of sensing? IAAAI 96 pages 1139-1146, 1996.

preferable to the other? In the past LTL has been used in eXt jfschitz, 1997 V. Lifschitz, editor. Special issue of the
pressing queries, in expressing the condition partactions Journal of Logic Programming on Reasoning about ac-
descriptions such as causesf if ¢, and in expressing the  tjons and changevolume 31(1-3), May 1997.

transition function® itself. The last one was recently pro- . .

posed inCalvaneset al, 2003. It is not clear if the last use [McCain and Turner, 1995N. McCain and H. Turner. A

is appropriate or not akCalvaneseet al, 2003 shows that causal theory of ramifications and qualifications.Phoc.
expressing executability conditions of actions is problematic of IJCAI 95 pages 1978-1984, 1995.

in their temporal logic and the specification is not succinct.[Pearl, 1999 J. Pearl. Reasoning with cause and effect. In
Also, since standard temporal logics use classical connec- IJCAI 99 pages 1437-1449, 1999.

tives it is difficult to express causality and static constraints[Pear| 200D J. Pearl. Causality Cambridge University

in them. Thus, a preliminary answer to the above questions Pre’ss 2000.

is that temporal logic is good for representing queries, ancﬂ ' . ) .
evolution constraints (together with minimality), but perhapstPoole, 1997 D. Poole. The independent choice logic for
not for expressing transition functions and causality. For that Modelling multiple agents under uncertainiytificial In-

the constructs frord and its successors are perhaps prefer-  telligence 94(1-2 (special issue on economic principles of

able. Another related work is the pafd&eiter, 1996 (and multi-agent systems)):7-56, 1997.
the Toronto situation calculus) which considers natural ac{Reiter, 1996 R. Reiter. Natural actions, concurrency and
tions that occur at distinct times. But as mentionefRaiter, continuous time in the situation calculus. In L. Aiello,

1994 these approaches have the problem of premature min- J. Doyle, and S. Shapiro, editokR 96 pages 2—13, 1996.
imization and hence have difficulty in expressing the NSAO[SandewaIl, 1998BE. Sandewall. Special issueElectronic

assumption. Transactions on Atrtificial Intelligenge2(3-4):159-330,
In terms of future work in the sequel we will consider infinite  1998. http://www.ep.liu.se/ej/etail.

trajectories. Here we in essence assumed that the evoluti .
constraints are such that trajectories are finite. We also pl;t]gcs)sgr?sr,]iggBZLEtlilc')r?g'qgt.raigir;ioin?uncf:.ti(?na[)iée ngpr)I;chlt?]g

to consider non-deterministic actions and presence of non- i
inertial variables when dealing with probabilities. Finally, J.ournal, 125(1.'2)'19_93' 2.001' o
we need to formalize the representation and reasoning aboliVidom and Ceri, 1996 J. Widom and S Ceri, editorsAc-

strategies which we only illustrated (due to lack of space) tive Database Systems - Triggers and Rules for advanced
through an example in Section 4. database processingforgan Kaufmann, 1996.
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