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Question

Given an oracle B, what is the cardinality of the class

{A | MLRB ⊆ MLRA}

where MLRX is the class of Martin-Löf random sets relative to
X?
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The Cantor space

• 2ω is the space of infinite binary strings: the reals
• 2<ω is the space of finite binary strings
• The standard topology on 2ω is induced by the basic open

sets: [σ] = {σX : X ∈ 2ω} for all σ ∈ 2<ω.
• Lebesgue measure on the Cantor space: the measure of a

basic open set [σ] is µ([σ]) = 2−|σ|
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Martin-Löf Randomness

• Identify finite binary strings with intervals in 2ω: σ → [σ]

• Prefix-free sets of finite binary strings correspond to
independent (basic open) sets of reals

Definition
A Martin-Löf testM is a uniform sequence (Ei) of c.e. sets of
binary strings such that µ(Ei) ≤ 2−i . A real α avoidsM if some
for i , α 6∈ Ei . A real number is called random if it avoids all
Martin-Löf tests. W.l.o.g. assume Ei+1 ⊂ Ei .
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Martin-Löf tests

• Martin-Löf tests and randomness relativize to any oracle.
• There is a universal Martin-Löf test.
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Basic fact (Kjos-Hansen)

The following are equivalent:
• MLRB ⊆ MLRA

• For every Σ0,A
1 class T A of measure < 1 there is a Σ0,B

1
class V B of measure < 1 such that

T A ⊆ V B.

• For some member UA of a universal Martin-Löf test relative
to A there is V B ∈ Σ0,B

1 with µV B < 1 and

UA ⊆ V B.
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Back to the Question

Given an oracle B, what is the cardinality of the class

CB := {A | MLRB ⊆ MLRA}

where MLRX is the class of Martin-Löf random sets relative to
X?
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Note

• The reals in C∅ are also known as low for random.
• The relation MLRB ⊆ MLRA is also known as A ≤LR B.
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Known Facts

• If B = ∅ then CB ⊂ ∆0
2, so |CB| = ℵ0 (Nies).

• If B = ∅′ then |CB| = 2ℵ0 (Barmpalias, Lewis, Soskova).
• If (B ⊕ ∅′)′ <T B′′ then |CB| = 2ℵ0 (Barmpalias, Lewis,

Soskova).
• there is a c.e. B such that B′ ≤tt ∅′ and |CB| = 2ℵ0

(Barmpalias, Lewis, Stephan).
• If B is random relative to ∅′ then |CB| = ℵ0 (Miller).
• So |CB| = ℵ0 for almost all oracles B.
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The result

Theorem
Let B be ∆0

2. Then |CB| = ℵ0 iff B is low for random (i.e. B ∈ C∅).
Moreover, ∆0

2 is the largest arithmetical class for which the
theorem holds.

Corollary
Let B be ∆0

2 such that |CB| = 2ℵ0 . Then CB contains a perfect
Π0

1 set of reals.
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Proof

Given Nies’ result, it suffices to show the following.

Theorem
Given a ∆0

2 set B which is not low for random, the class CB

contains a perfect Π0
1 set of reals.
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The concept of an oracle Σ0
1 class

• the full binary tree
• with a recursive assignment of

measure along its branches
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Formalization

In view of Kjos-Hansen’s characterization of the relation
MLRB ⊂ MLRA:

Definition
An oracle Σ0

1 class V is an oracle Turing machine which, given
an oracle A it outputs a set of finite binary strings V A,
representing an open subset of the space 2ω. The oracle class
V can be seen as a c.e. set of axioms 〈τ, σ〉 (where τ, σ ∈ 2<ω)
so that

V A = {σ | ∃τ(τ ⊂ A ∧ 〈τ, σ〉 ∈ V )}
V ρ = {σ | ∃τ(τ ⊆ ρ ∧ 〈τ, σ〉 ∈ V )}

for A ∈ 2ω, ρ ∈ 2<ω.
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Oracle Martin-Löf tests

• An oracle Martin-Löf test is a uniform sequence of oracle
Σ0

1 classes such that the measure assigned on any path by
the eth class is less than 2−e.

• There is a universal oracle Martin-Löf test. Fix a member
of it U.
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The plan

It suffices to construct a perfect Π0
1 class

P and an oracle Σ0
1 class V which

assigns max measure 1/2 to any path of
the full binary tree, such that

∪β∈PUβ ⊆ V B.
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If we could control B

Lemma
For all ε > 0 there exists σ such that for all β ⊃ σ

µ(Uβ − Uσ) < ε.

Then, given that by changing B we can eject any unnecessary
measure from V B, it suffices to make P such that ∪β∈PUβ < 1.
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• Think of the construction dynamically.
• We construct the nodes Tσ, σ ∈ 2<ω of a perfect Π0

1 class

• Every Tσ is associated with number 2−2|σ|.
• Every time Tσ is redefined, either some Tτ , τ ⊂ σ is

redefined or U has gained measure 2−2|σ|.
• Inductively, every Tσ reaches a limit.
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But we don’t control B

• We merely have the information that B is not low for
random.

• This means that UB cannot be covered by a Σ0
1 class of

measure < 1.
• By attempting to cover UB in this way, we have a way to

force B to eject a lot of measure from a Σ0
1 relative to B, for

instance V B.
• This is a permitting property
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But we don’t control B

• We construct a Π0
1 class by approximating Tσ

monotonically.
• Everytime Tσ moves, some measure is added in a path

through U but not a constant amount as before.
• Using the fact that UB cannot be covered by a Σ0

1 class of
measure < 1 we argue that if Tσ moves infinitely often then
too much measure is loaded in a single path trough U, a
contradiction.
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Overview of the proof

• The key is to come up with an atomic strategy for defining
Tσ which can work with arbitrarily small cost, i.e. useless
measure in V B.

• There is finite injury, cost quota assignment and
reassignment (after an injury).

• The argument is a demonstration of ∆0
2 non-low-for

random permitting.
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Questions

• The general question of the cardinality of
{A | MLRB ⊆ MLRA} remains open.

• If B is ∆0
2 and not low for random, does

{A | MLRB ⊆ MLRA} contain a Π0
1 class without low for

random paths?
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