Relative Randomness and Cardinality

George Barmpalias

Victoria University of Wellington

December 13, 2007

Question

Given an oracle B, what is the cardinality of the class

$$
\left\{A \mid \operatorname{MLR}^{B} \subseteq \operatorname{MLR}^{A}\right\}
$$

where $M L R^{X}$ is the class of Martin-Löf random sets relative to X ?

The Cantor space

- 2^{ω} is the space of infinite binary strings: the reals
- $2^{<\omega}$ is the space of finite binary strings
- The standard topology on 2^{ω} is induced by the basic open sets: $[\sigma]=\left\{\sigma X: X \in 2^{\omega}\right\}$ for all $\sigma \in 2^{<\omega}$.
- Lebesgue measure on the Cantor space: the measure of a basic open set $[\sigma]$ is $\mu([\sigma])=2^{-|\sigma|}$

Martin-Löf Randomness

- Identify finite binary strings with intervals in $2^{\omega}: \sigma \rightarrow[\sigma]$
- Prefix-free sets of finite binary strings correspond to independent (basic open) sets of reals

Definition
A Martin-Löf test \mathcal{M} is a uniform sequence (E_{i}) of c.e. sets of binary strings such that $\mu\left(E_{i}\right) \leq 2^{-i}$. A real α avoids \mathcal{M} if some for $i, \alpha \notin E_{i}$. A real number is called random if it avoids all Martin-Löf tests. W.I.o.g. assume $E_{i+1} \subset E_{i}$.

Martin-Löf tests

- Martin-Löf tests and randomness relativize to any oracle.
- There is a universal Martin-Löf test.

Basic fact (Kjos-Hansen)

The following are equivalent:

- $\mathrm{MLR}^{B} \subseteq \mathrm{MLR}^{A}$
- For every $\Sigma_{1}^{0, A}$ class T^{A} of measure <1 there is a $\Sigma_{1}^{0, B}$ class V^{B} of measure <1 such that

$$
T^{A} \subseteq V^{B}
$$

- For some member U^{A} of a universal Martin-Löf test relative to A there is $V^{B} \in \Sigma_{1}^{0, B}$ with $\mu V^{B}<1$ and

$$
U^{A} \subseteq V^{B}
$$

Back to the Question

Given an oracle B, what is the cardinality of the class

$$
\mathcal{C}^{B}:=\left\{A \mid \operatorname{MLR}^{B} \subseteq \operatorname{MLR}^{A}\right\}
$$

where $M L R^{X}$ is the class of Martin-Löf random sets relative to X ?

Note

- The reals in \mathcal{C}^{\emptyset} are also known as low for random.
- The relation $\mathrm{MLR}^{B} \subseteq \mathrm{MLR}^{A}$ is also known as $A \leq{ }_{L R} B$.

Known Facts

- If $B=\emptyset$ then $\mathcal{C}^{B} \subset \Delta_{2}^{0}$, so $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Nies).
- If $B=\emptyset^{\prime}$ then $\left|C^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- If $\left(B \oplus \emptyset^{\prime}\right)^{\prime}<{ }_{T} B^{\prime \prime}$ then $\left|C^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B^{\prime} \leq_{t t} \emptyset^{\prime}$ and $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Stephan).
- If B is random relative to \emptyset^{\prime} then $\left|C^{B}\right|=\aleph_{0}$ (Miller).
- So $\left|C^{B}\right|=\aleph_{0}$ for almost all oracles B.

Known Facts

- If $B=\emptyset$ then $\mathcal{C}^{B} \subset \Delta_{2}^{0}$, so $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Nies).
- If $B=\emptyset^{\prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- If $\left(B \oplus \emptyset^{\prime}\right)^{\prime}<_{T} B^{\prime \prime}$ then $\left|C^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B^{\prime} \leq t t \theta^{\prime}$ and $\left|C^{B}\right|=2^{N_{0}}$ (Barmpalias, Lewis, Stephan).
- If B is random relative to \emptyset^{\prime} then $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Miller).
- So $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ for almost all oracles B.

Known Facts

- If $B=\emptyset$ then $\mathcal{C}^{B} \subset \Delta_{2}^{0}$, so $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Nies).
- If $B=\emptyset^{\prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- If $\left(B \oplus \emptyset^{\prime}\right)^{\prime}<{ }_{T} B^{\prime \prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B^{\prime} \leq_{t t} \phi^{\prime}$ and $\left|C^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Stephan).
- If B is random relative to \emptyset^{\prime} then $\left|C^{B}\right|=\aleph_{0}$ (Miller).
- So $\left|C^{B}\right|=\aleph_{0}$ for almost all oracles B.

Known Facts

- If $B=\emptyset$ then $\mathcal{C}^{B} \subset \Delta_{2}^{0}$, so $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Nies).
- If $B=\emptyset^{\prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- If $\left(B \oplus \emptyset^{\prime}\right)^{\prime}<{ }_{T} B^{\prime \prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B^{\prime} \leq_{t t} \emptyset^{\prime}$ and $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Stephan).
- If B is random relative to \emptyset^{\prime} then $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Miller).
- So $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ for almost all oracles B.

Known Facts

- If $B=\emptyset$ then $\mathcal{C}^{B} \subset \Delta_{2}^{0}$, so $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Nies).
- If $B=\emptyset^{\prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- If $\left(B \oplus \emptyset^{\prime}\right)^{\prime}<{ }_{T} B^{\prime \prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B^{\prime} \leq_{t t} \emptyset^{\prime}$ and $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Stephan).
- If B is random relative to \emptyset^{\prime} then $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Miller).
- So $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ for almost all oracles B.

Known Facts

- If $B=\emptyset$ then $\mathcal{C}^{B} \subset \Delta_{2}^{0}$, so $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Nies).
- If $B=\emptyset^{\prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- If $\left(B \oplus \emptyset^{\prime}\right)^{\prime}<_{T} B^{\prime \prime}$ then $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B^{\prime} \leq_{t t} \emptyset^{\prime}$ and $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$ (Barmpalias, Lewis, Stephan).
- If B is random relative to \emptyset^{\prime} then $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ (Miller).
- So $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ for almost all oracles B.

The result

Theorem
Let B be Δ_{2}^{0}. Then $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ iff B is low for random (i.e. $B \in \mathcal{C}^{\emptyset}$). Moreover, Δ_{2}^{0} is the largest arithmetical class for which the theorem holds.

Corollary
Let B be Δ_{2}^{0} such that $\left|C^{B}\right|=2^{N_{0}}$. Then C^{B} contains a perfect
Π_{1}^{0} set of reals.

The result

Theorem
Let B be Δ_{2}^{0}. Then $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ iff B is low for random (i.e. $B \in \mathcal{C}^{\emptyset}$). Moreover, Δ_{2}^{0} is the largest arithmetical class for which the theorem holds.

Corollary
Let B be Δ_{2}^{0} such that $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$. Then \mathcal{C}^{B} contains a perfect Π_{1}^{0} set of reals.

The result

Theorem
Let B be Δ_{2}^{0}. Then $\left|\mathcal{C}^{B}\right|=\aleph_{0}$ iff B is low for random (i.e. $B \in \mathcal{C}^{\emptyset}$).
Moreover, Δ_{2}^{0} is the largest arithmetical class for which the theorem holds.

Corollary
Let B be Δ_{2}^{0} such that $\left|\mathcal{C}^{B}\right|=2^{\aleph_{0}}$. Then \mathcal{C}^{B} contains a perfect Π_{1}^{0} set of reals.

Proof

Given Nies' result, it suffices to show the following.
Theorem
Given a Δ_{2}^{0} set B which is not low for random, the class \mathcal{C}^{B} contains a perfect Π_{1}^{0} set of reals.

The concept of an oracle Σ_{1}^{0} class

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_{1}^{0} class

- the full binary tree
- with a recursive assignment of measure along its branches

Formalization

In view of Kjos-Hansen's characterization of the relation $M L R^{B} \subset M L R^{A}$:

Definition

An oracle Σ_{1}^{0} class V is an oracle Turing machine which, given an oracle A it outputs a set of finite binary strings V^{A}, representing an open subset of the space 2^{ω}. The oracle class V can be seen as a c.e. set of axioms $\langle\tau, \sigma\rangle$ (where $\tau, \sigma \in 2^{<\omega}$) so that

$$
\begin{aligned}
V^{A} & =\{\sigma \mid \exists \tau(\tau \subset A \wedge\langle\tau, \sigma\rangle \in V)\} \\
V^{\rho} & =\{\sigma \mid \exists \tau(\tau \subseteq \rho \wedge\langle\tau, \sigma\rangle \in V)\}
\end{aligned}
$$

for $A \in 2^{\omega}, \rho \in 2^{<\omega}$.

Oracle Martin-Löf tests

- An oracle Martin-Löf test is a uniform sequence of oracle Σ_{1}^{0} classes such that the measure assigned on any path by the eth class is less than 2^{-e}.
- There is a universal oracle Martin-Löf test. Fix a member of it U.

The plan

It suffices to construct a perfect Π_{1}^{0} class P and an oracle Σ_{1}^{0} class V which assigns max measure $1 / 2$ to any path of the full binary tree, such that

$$
\cup_{\beta \in P} U^{\beta} \subseteq V^{B} .
$$

The plan

It suffices to construct a perfect Π_{1}^{0} class P and an oracle Σ_{1}^{0} class V which assigns max measure $1 / 2$ to any path of the full binary tree, such that

$$
\cup_{\beta \in P} U^{\beta} \subseteq V^{B} .
$$

The plan

It suffices to construct a perfect Π_{1}^{0} class P and an oracle Σ_{1}^{0} class V which assigns max measure $1 / 2$ to any path of the full binary tree, such that

$$
\cup_{\beta \in P} U^{\beta} \subseteq V^{B} .
$$

The plan

It suffices to construct a perfect Π_{1}^{0} class P and an oracle Σ_{1}^{0} class V which assigns max measure $1 / 2$ to any path of the full binary tree, such that

$$
\cup_{\beta \in P} U^{\beta} \subseteq V^{B} .
$$

The plan

It suffices to construct a perfect Π_{1}^{0} class P and an oracle Σ_{1}^{0} class V which assigns max measure $1 / 2$ to any path of the full binary tree, such that

$$
\cup_{\beta \in P} U^{\beta} \subseteq V^{B} .
$$

If we could control B

Lemma
For all $\epsilon>0$ there exists σ such that for all $\beta \supset \sigma$

$$
\mu\left(U^{\beta}-U^{\sigma}\right)<\epsilon .
$$

Then, given that by changing B we can eject any unnecessary measure from V^{B}, it suffices to make P such that $\cup_{\beta \in P} U^{\beta}<1$.

If we could control B

Lemma
For all $\epsilon>0$ there exists σ such that for all $\beta \supset \sigma$

$$
\mu\left(U^{\beta}-U^{\sigma}\right)<\epsilon .
$$

Then, given that by changing B we can eject any unnecessary measure from V^{B}, it suffices to make P such that $\cup_{\beta \in P} U^{\beta}<1$.

How to do that

How to do that

How to do that

How to do that

How to do that

How to do that

How to do that

- Think of the construction dynamically.
- We construct the nodes $T_{\sigma}, \sigma \in 2^{<\omega}$ of a perfect Π_{1}^{0} class
- Every T_{σ} is associated with number $2^{-2|\sigma|}$.
- Every time T_{σ} is redefined, either some $T_{\tau}, \tau \subset \sigma$ is redefined or U has gained measure $2^{-2|\sigma|}$.
- Inductively, every T_{σ} reaches a limit.

But we don't control B

- We merely have the information that B is not low for random.
- This means that U^{B} cannot be covered by a Σ_{1}^{0} class of measure <1.
- By attempting to cover U^{B} in this way, we have a way to force B to eject a lot of measure from a Σ_{1}^{0} relative to B, for instance V^{B}.
- This is a permitting property

But we don't control B

- We construct a Π_{1}^{0} class by approximating T_{σ} monotonically.
- Everytime T_{σ} moves, some measure is added in a path through U but not a constant amount as before.
- Using the fact that U^{B} cannot be covered by a Σ_{1}^{0} class of measure <1 we argue that if T_{σ} moves infinitely often then too much measure is loaded in a single path trough U, a contradiction.

Overview of the proof

- The key is to come up with an atomic strategy for defining T_{σ} which can work with arbitrarily small cost, i.e. useless measure in V^{B}.
- There is finite injury, cost quota assignment and reassignment (after an injury).
- The argument is a demonstration of Δ_{2}^{0} non-low-for random permitting.

Questions

- The general question of the cardinality of $\left\{A \mid M L R^{B} \subseteq M L R^{A}\right\}$ remains open.
- If B is Δ_{2}^{0} and not low for random, does $\left\{A \mid M L R^{B} \subseteq M L R^{A}\right\}$ contain a Π_{1}^{0} class without low for random paths?

References

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π_{1}^{0} classes, $L R$ degrees and Turing degrees, preprint.

These are available at www.mcs.vuw.ac.nz/ georgeb

References

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π_{1}^{0} classes, LR degrees and Turing degrees, preprint.

These are available at мммм mcs.vим ac.nz/ georgeb

References

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π_{1}^{0} classes, $L R$ degrees and Turing degrees, preprint.

These are available at www.mcs.vuw.ac.nz// georgeb

References

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π_{1}^{0} classes, $L R$ degrees and Turing degrees, preprint.

These are available at www.mcs.vuw.ac.nz// georgeb

References

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π_{1}^{0} classes, $L R$ degrees and Turing degrees, preprint.
These are available at www.mcs.vuw.ac.nz/ georgeb

