Relative Randomness and Cardinality

George Barmpalias

Victoria University of Wellington

December 13, 2007

Question

Given an oracle B, what is the cardinality of the class

$$\{A \mid \mathsf{MLR}^B \subseteq \mathsf{MLR}^A\}$$

where MLR^X is the class of Martin-Löf random sets relative to X?

The Cantor space

- 2^{ω} is the space of infinite binary strings: the *reals*
- $2^{<\omega}$ is the space of finite binary strings
- The standard topology on 2^{ω} is induced by the basic open sets: $[\sigma] = {\sigma X : X \in 2^{\omega}}$ for all $\sigma \in 2^{<\omega}$.
- Lebesgue measure on the Cantor space: the measure of a basic open set $[\sigma]$ is $\mu([\sigma]) = 2^{-|\sigma|}$

Martin-Löf Randomness

- Identify finite binary strings with intervals in 2^{ω} : $\sigma \to [\sigma]$
- Prefix-free sets of finite binary strings correspond to independent (basic open) sets of reals

Definition

A Martin-Löf test \mathcal{M} is a uniform sequence (E_i) of c.e. sets of binary strings such that $\mu(E_i) \leq 2^{-i}$. A real α avoids \mathcal{M} if some for $i, \alpha \notin E_i$. A real number is called random if it avoids all Martin-Löf tests. W.l.o.g. assume $E_{i+1} \subset E_i$.

Martin-Löf tests

- Martin-Löf tests and randomness relativize to any oracle.
- There is a universal Martin-Löf test.

Basic fact (Kjos-Hansen)

The following are equivalent:

- $MLR^B \subseteq MLR^A$
- For every $\Sigma_1^{0,A}$ class T^A of measure < 1 there is a $\Sigma_1^{0,B}$ class V^B of measure < 1 such that

$$T^A \subseteq V^B$$
.

• For some member U^A of a universal Martin-Löf test relative to A there is $V^B \in \Sigma_1^{0,B}$ with $\mu V^B < 1$ and

$$U^A \subseteq V^B$$
.

Back to the Question

Given an oracle B, what is the cardinality of the class

$$\mathcal{C}^{B} := \{A \mid \mathsf{MLR}^{B} \subseteq \mathsf{MLR}^{A}\}$$

where MLR^X is the class of Martin-Löf random sets relative to X?

Note

- The reals in \mathcal{C}^{\emptyset} are also known as *low for random*.
- The relation $MLR^B \subseteq MLR^A$ is also known as $A \leq_{LR} B$.

- If $B = \emptyset$ then $C^B \subset \Delta_2^0$, so $|C^B| = \aleph_0$ (Nies).
- If $B = \emptyset'$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- If $(B \oplus \emptyset')' <_T B''$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B' \leq_{tt} \emptyset'$ and $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Stephan).
- If *B* is random relative to \emptyset' then $|\mathcal{C}^B| = \aleph_0$ (Miller).
- So $|\mathcal{C}^B| = \aleph_0$ for almost all oracles B.

- If $B = \emptyset$ then $C^B \subset \Delta_2^0$, so $|C^B| = \aleph_0$ (Nies).
- If $B = \emptyset'$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- If $(B \oplus \emptyset')' <_T B''$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B' \leq_{tt} \emptyset'$ and $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Stephan).
- If *B* is random relative to \emptyset' then $|\mathcal{C}^B| = \aleph_0$ (Miller).
- So $|\mathcal{C}^B| = \aleph_0$ for almost all oracles B.

- If $B = \emptyset$ then $C^B \subset \Delta_2^0$, so $|C^B| = \aleph_0$ (Nies).
- If $B = \emptyset'$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- If $(B \oplus \emptyset')' <_T B''$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B' \leq_{tt} \emptyset'$ and $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Stephan).
- If *B* is random relative to \emptyset' then $|\mathcal{C}^B| = \aleph_0$ (Miller).
- So $|\mathcal{C}^B| = \aleph_0$ for almost all oracles B.

- If $B = \emptyset$ then $C^B \subset \Delta_2^0$, so $|C^B| = \aleph_0$ (Nies).
- If $B = \emptyset'$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- If $(B \oplus \emptyset')' <_T B''$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B' \leq_{tt} \emptyset'$ and $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Stephan).
- If *B* is random relative to \emptyset' then $|\mathcal{C}^B| = \aleph_0$ (Miller).
- So $|\mathcal{C}^B| = \aleph_0$ for almost all oracles B.

- If $B = \emptyset$ then $C^B \subset \Delta_2^0$, so $|C^B| = \aleph_0$ (Nies).
- If $B = \emptyset'$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- If $(B \oplus \emptyset')' <_T B''$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B' \leq_{tt} \emptyset'$ and $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Stephan).
- If B is random relative to \emptyset' then $|\mathcal{C}^B| = \aleph_0$ (Miller).
- So $|\mathcal{C}^B| = \aleph_0$ for almost all oracles B.

- If $B = \emptyset$ then $C^B \subset \Delta_2^0$, so $|C^B| = \aleph_0$ (Nies).
- If $B = \emptyset'$ then $|C^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- If $(B \oplus \emptyset')' <_T B''$ then $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Soskova).
- there is a c.e. B such that $B' \leq_{tt} \emptyset'$ and $|\mathcal{C}^B| = 2^{\aleph_0}$ (Barmpalias, Lewis, Stephan).
- If B is random relative to \emptyset' then $|\mathcal{C}^B| = \aleph_0$ (Miller).
- So $|\mathcal{C}^B| = \aleph_0$ for almost all oracles B.

The result

Theorem

Let B be Δ_2^0 . Then $|\mathcal{C}^B| = \aleph_0$ iff B is low for random (i.e. $B \in \mathcal{C}^{\emptyset}$).

Moreover, Δ_2^0 is the largest arithmetical class for which the theorem holds.

Corollary

Let B be Δ_2^0 such that $|\mathcal{C}^B|=2^{\aleph_0}$. Then \mathcal{C}^B contains a perfect Π_1^0 set of reals.

The result

Theorem

Let B be Δ_2^0 . Then $|\mathcal{C}^B|=\aleph_0$ iff B is low for random (i.e. $B\in\mathcal{C}^\emptyset$). Moreover, Δ_2^0 is the largest arithmetical class for which the theorem holds.

Corollary

Let B be Δ_2^0 such that $|C^B| = 2^{\aleph_0}$. Then C^B contains a perfect Π_1^0 set of reals.

The result

Theorem

Let B be Δ_2^0 . Then $|\mathcal{C}^B| = \aleph_0$ iff B is low for random (i.e. $B \in \mathcal{C}^\emptyset$). Moreover, Δ_2^0 is the largest arithmetical class for which the theorem holds

Corollary

Let B be Δ_2^0 such that $|\mathcal{C}^B|=2^{\aleph_0}$. Then \mathcal{C}^B contains a perfect Π_1^0 set of reals.

Proof

Given Nies' result, it suffices to show the following.

Theorem

Given a Δ_2^0 set B which is not low for random, the class C^B contains a perfect Π_1^0 set of reals.

- the full binary tree.
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

- the full binary tree
- with a recursive assignment of measure along its branches

The concept of an oracle Σ_1^0 class

- the full binary tree
- with a recursive assignment of measure along its branches

Formalization

In view of Kjos-Hansen's characterization of the relation $MLR^B \subset MLR^A$:

Definition

An *oracle* Σ^0_1 *class* V is an oracle Turing machine which, given an oracle A it outputs a set of finite binary strings V^A , representing an open subset of the space 2^ω . The oracle class V can be seen as a c.e. set of axioms $\langle \tau, \sigma \rangle$ (where $\tau, \sigma \in 2^{<\omega}$) so that

$$V^{A} = \{ \sigma \mid \exists \tau (\tau \subset A \land \langle \tau, \sigma \rangle \in V) \}$$

$$V^{\rho} = \{ \sigma \mid \exists \tau (\tau \subseteq \rho \land \langle \tau, \sigma \rangle \in V) \}$$

for $A \in \mathbf{2}^{\omega}$, $\rho \in \mathbf{2}^{<\omega}$.

Oracle Martin-Löf tests

- An oracle Martin-Löf test is a uniform sequence of oracle
 Σ⁰₁ classes such that the measure assigned on any path by
 the eth class is less than 2^{-e}.
- There is a universal oracle Martin-Löf test. Fix a member of it U.

$$\cup_{\beta\in P}U^{\beta}\subseteq V^{B}.$$

$$\cup_{\beta\in P}U^{\beta}\subseteq V^{B}.$$

$$\cup_{\beta\in P}U^{\beta}\subseteq V^{B}.$$

$$\cup_{\beta\in P} U^{\beta}\subseteq V^{B}.$$

$$\cup_{\beta\in P}U^{\beta}\subseteq V^{B}.$$

If we could control B

Lemma

For all $\epsilon > 0$ there exists σ such that for all $\beta \supset \sigma$

$$\mu(U^{\beta}-U^{\sigma})<\epsilon.$$

Then, given that by changing B we can eject any unnecessary measure from V^B , it suffices to make P such that $\bigcup_{\beta \in P} U^{\beta} < 1$.

If we could control B

Lemma

For all $\epsilon > 0$ there exists σ such that for all $\beta \supset \sigma$

$$\mu(U^{\beta}-U^{\sigma})<\epsilon.$$

Then, given that by changing B we can eject any unnecessary measure from V^B , it suffices to make P such that $\bigcup_{\beta \in P} U^{\beta} < 1$.

$$2^{-2n}$$

$$2^{-2n}$$

20.

 2^{-2}

21.

 2^{-4}

2²·

 2^{-6}

 2^{n} .

 2^{-2n}

- Think of the construction dynamically.
- We construct the nodes T_{σ} , $\sigma \in 2^{<\omega}$ of a perfect Π_1^0 class
- Every T_{σ} is associated with number $2^{-2|\sigma|}$.
- Every time T_{σ} is redefined, either some T_{τ} , $\tau \subset \sigma$ is redefined or U has gained measure $2^{-2|\sigma|}$.
- Inductively, every T_{σ} reaches a limit.

But we don't control B

- We merely have the information that B is not low for random.
- This means that U^B cannot be covered by a Σ_1^0 class of measure < 1.
- By attempting to cover U^B in this way, we have a way to force B to eject a lot of measure from a Σ₁⁰ relative to B, for instance V^B.
- This is a permitting property

But we don't control B

- We construct a Π_1^0 class by approximating T_σ monotonically.
- Everytime T_{σ} moves, some measure is added in a path through U but not a constant amount as before.
- Using the fact that U^B cannot be covered by a Σ^0_1 class of measure < 1 we argue that if T_σ moves infinitely often then too much measure is loaded in a single path trough U, a contradiction.

Overview of the proof

- The key is to come up with an atomic strategy for defining T_{σ} which can work with arbitrarily small cost, i.e. useless measure in V^{B} .
- There is finite injury, cost quota assignment and reassignment (after an injury).
- The argument is a demonstration of Δ⁰₂ non-low-for random permitting.

Questions

- The general question of the cardinality of {A | MLR^B ⊆ MLR^A} remains open.
- If B is Δ₂⁰ and not low for random, does
 {A | MLR^B ⊆ MLR^A} contain a Π₁⁰ class without low for random paths?

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π⁰₁ classes, LR degrees and Turing degrees, preprint.

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π⁰₁ classes, LR degrees and Turing degrees, preprint.

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π⁰₁ classes, LR degrees and Turing degrees, preprint.

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π⁰₁ classes, LR degrees and Turing degrees, preprint.

- G. Barmpalias, Relative Randomness and Cardinality, preprint.
- G. Barmpalias, A. Lewis and M. Soskova, Lowness, Randomness and Degrees, to appear in JSL.
- G. Barmpalias, A. Lewis and F. Stephan, Π⁰₁ classes, LR degrees and Turing degrees, preprint.