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Abstract. We show that if 0′ is c.e. traceable by a, then a is array
non-computable. It follows that there is no minimal almost everywhere
dominating degree, in the sense of Dobrinen and Simpson [DS04]. This
answers a question of Simpson and a question of Nies [Nie09, Problem
8.6.4]. Moreover, it adds a new arrow in [Nie09, Figure 8.1], which
is a diagram depicting the relations of various ‘computational lowness’
properties. Finally, it gives a natural definable property, namely non-
minimality, which separates almost everywhere domination from high-
ness.

1. Introduction

In recent years, research in algorithmic randomness has enriched classi-
cal computability theory with new notions and concepts, which give new
insights to the subject. A well known example is the ‘lowness’ notion of
K-triviality, which was studied in [DHNS03, Nie05] and turned out to be
degree theoretic. In fact, it was shown that the K-trivial sets form an ideal
in the Turing degrees. Other examples are ‘highness’ notions like almost
everywhere domination, which was introduced by Dobrinen and Simpson in
[DS04]. This was motivated by some questions on the reverse mathematics
of measure theory. Recall that, given functions f, g : N→ N, we say that f
dominates g if f(n) ≥ g(n) for almost all n ∈ N.

Definition 1.1 (Dobrinen and Simpson [DS04]). A Turing degree a is called
almost everywhere (a.e.) dominating, if for almost all X ∈ 2ω and all
functions g ≤T X, there is a function f ≤T a which dominates g.

Kurtz [Kur81] showed that 0′ is a.e. dominating. This notion is very
related to the highness property from classical computability theory: recall
that a set A is high if A′ ≥T ∅′′. This means that if we can answer Σ0

1(A)
questions, then we can answer any Σ0

1(∅′) question. In this sense, A is
close to the halting problem ∅′, hence the name ‘high’. Martin [Mar66]
showed that A is high iff it can compute a function which dominates all
computable functions. Hence, it is easy to see that every a.e. dominating
degree is high. Toward a characterization of the a.e. dominating degrees,

Supported by the Marsden Foundation of New Zealand, via a postdoctoral fellowship.
We would like to thank Noam Greenberg and Keng Meng Ng for helpful discussions on
the problem.

1



2 GEORGE BARMPALIAS

Dobrinen and Simpson asked if this notion is equivalent to either highness
or Turing completeness. In [BKHLS06, CGM06] it was shown that the
class of a.e. dominating degrees lies strictly in between high and complete
degrees, even in the local structure of computably enumerable degrees. Also,
Kjos-Hanssen, Miller and Solomon [KHMS10] (also see [Sim07] or [Nie09,
Section 5.6]) showed that a degree a is a.e. dominating iff every Martin-Löf
random sequence relative to a is 2-random (i.e. Martin-Löf random relative
to 0′). Thus a.e. domination can also be viewed as a notion from algorithmic
randomness.

There has been an interest in clarifying the connections of this highness
property with concepts from classical computability theory. For example,
what role it plays in the partial ordering of the Turing degrees and whether
it can be expressed purely in degree theoretic terms, without resorting to
measure or randomness.1 In this respect, the following questions were raised.

Recall from [TZ01] that a sequence of sets (Ti) is a trace for a function
f , if f(n) ∈ Tn for all n ∈ N. We say that (Ti) has bound h, if |Tn| < h(n)
for all n ∈ N. A degree a c.e. traceable, if there is a computable function h
such that every function f ≤T a has a c.e. trace with bound h.

• (Simpson, 2006) Is there a minimal a.e. dominating degree?
• (Nies [Nie09, Problem 8.6.4]) Is there a c.e. traceable a.e. dominating

degree?

Our main result (Theorem 1.1) shows that each a.e. dominating degree is ar-
ray non-computable, which answers these questions in the negative.2 More-
over, it adds a new arrow in [Nie09, Figure 8.1], which is a diagram depicting
the relations of various ‘computational lowness’ properties.

For the high degrees, there are several natural order theoretic properties
which distinguish them in the structure of Turing degrees. As an example
we mention that every high ∆0

2 degree bounds a minimal degree, Cooper
[Coo73]. In the computably enumerable degrees, Cooper [Coo74] showed
that every high degree bounds a minimal pair.3

Almost everywhere domination can be expressed as a completeness notion
with respect to the LR reducibility. This is a pre-ordering that is obtained by
partially relativizing the notion of ‘low for random’ from [KT99]: A ≤LR B
iff every Martin-Löf random relative to B is also Martin-Löf random relative

1This question can be seen as part of a larger program, which aims at characterizing
notions from algorithmic randomness in computability theoretic and/or combinatorial
terms. For example, a major open question in this area is whether the Martin-Löf random
degrees are first order definable in the partially ordered structure of the Turing degrees,
see [MN06, Question 2.3]. Another well known example, is the open question whether
K-triviality (equivalently, low for Martin-Löf randomness) can be characterized in purely
combinatorial terms, see [MN06, Question 3.1]. Such a characterization was found for the
notion of ‘low for Schnorr random’ in [TZ01].

2for definitions and more details, see below.
3The latter is known to fail for lower jump classes, even for high2. See [DLS93].
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to A. A set A is LR-complete if ∅′ ≤LR A. In [KHMS10] (also see [Sim07])
it was shown that a set is LR-complete iff it is a.e. dominating.

There is, in fact, a whole array of highness notions that are obtained in this
way and are motivated by different areas in computability theory. In con-
nection to the study of mass problems, we mention the BLR-completeness
of Cole/Simpson [CS07] and the equivalent JT-completeness. Let (Φe) be
an effective list of all Turing functionals. Recall from [Nie06] that a set A
is jump-traceable if the jump function JA(e) ' ΦA

e (e) has a c.e. trace with
a computable bound. Let (We) be an effective list of all c.e. sets. Simp-
son [Sim07], partially relativizing the notion of jump traceability, gave the
following definition: X is jump traceable by Y if there are computable func-
tions f, g such that JX(e) ∈ W Y

f(e) and |W Y
f(e)| < g(e) for all e ∈ N. A set

A is JT-complete, if ∅′ is jump traceable by A. The same can be said about
c.e. traceability: X is c.e. traceable by Y if there is a computable function h
such that every function f ≤T X has a Y -c.e. trace with bound h. A set A
is ∅′-tracing if ∅′ is c.e. traceable by A. Clearly, these definitions also make
sense for Turing degrees. By [Sim07, Kur81] (also see [Nie09, Chapter 8])
we have the following implications, where none of them can be reversed.

(1.1) Turing complete⇒
6⇐

LR-complete⇒
6⇐

JT-complete⇒
6⇐
∅′-tracing.

It is possible to show that ∅′-tracing does not imply high. Corollary 1 below
shows that high does not imply ∅′-tracing. Therefore the two notions are
incomparable. However it is well known (e.g. see Simpson [Sim07]) that
JT-completeness implies highness.

Recall from [DJS96] that a degree a is called array computable if there
exists a function f ≤wtt ∅′ which dominates all functions g ≤T a.

Definition 1.2. A degree a is weakly array computable if there exists a
function f ≤T ∅′ which dominates all functions g ≤T a.

We notice that although weak array computability has not been defined
explicitly in the literature, it has appeared implicitly in many arguments
that are presented in terms of array computability or generalized low2 sets
(for example, see [Ler83, Chapter IV.3]). We show the following.

Theorem 1.1. If c is c.e. and is c.e. traceable by a, then no function that
is computable in c dominates every function computable in a.

According to (1.1), we have the following.

Corollary 1. If a degree is 0′-tracing (or JT-complete, or a.e. dominating)
then it is not (weakly) array computable.

Recall from [DJS96] that all minimal degrees are array computable.

Corollary 2. Every a.e. dominating degree is array non-computable. In
particular, it is not minimal.
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Corollary 2 contrasts the existence of a high minimal degree, which was
shown in Cooper [Coo73]. In particular, the property of non-minimality
separates almost everywhere domination (or JT-completeness) from high-
ness.

The same question has been investigated for local structures of the Turing
degrees. For example, in the Σ0

1 structure of the Turing degrees Harrington
(see [Mil81]) showed that some high degrees are non-cuppable. That is, their
supremum with any incomplete c.e. degree is incomplete. The property of
non-cupping was a candidate for separating a.e. domination from highness in
the Σ0

1 structure, until it was shown in [BM09] that there is a non-cuppable
a.e. dominating c.e. degree. A very promising candidate for such a property
is the existence of minimal pairs. Lachlan [Lac66] showed that there is a
pair of high c.e. degrees that form a minimal pair. The existence of minimal
pairs of c.e. almost everywhere dominating degrees has been the object of
intense research in the past few years. However, it remains open. In Section
3 we show that there is a minimal pair of ∆0

2 almost everywhere dominating
degrees.

2. Proof of theorem 1.1

Let c,a be as in the hypothesis of Theorem 1.1. Also let C be a c.e. set of
degree c and A a set of degree a. Then there exists a computable function
f such that every C-computable function has an A-c.e. trace with bound f .
Let (Ee,i) be an effective sequence of all c.e. operators such that |EXe,i| < f(i)
for all X ∈ 2ω and e, i ∈ N. This is an effective sequence of all c.e. traces
relative to any oracle, with bound f . We obtain a universal trace by letting
Vi =

⋃
e<iEe,i (and hence, V X

i =
⋃
e<iE

X
e,i for any X ∈ 2ω). Let h(i) :=

if(i). Clearly, h is a bound for (V X
i ) for every X ∈ 2ω. Moreover, for every

C-computable function g we have g(i) ∈ V A
i for almost all i ∈ N. Since

we have no effective way to locate A, we will work simultaneously for all
(uncountably many) sets X such that C is c.e. traceable by X with bound
f .

Let g = ΦC be any given Turing C-computable function, where Φ is a
Turing functional with use ϕ. Based on g, we will build a C-computable
function ΘC and a Turing functional Γ such that

• ΓX(n) ↓ for all n ∈ N[e]

• ΓX(t) > ΦC(t) for some t ∈ N[e]

for all X, e such that ΘC(e) ∈ V X
e . Since C is c.e. traceable by A, there will

be some n such that ΘC is traced by V A
i on arguments ≥ n. In that case

ΓA can easily be extended to a total A-computable function which is not
dominated by g. Hence such a construction suffices for the proof of Theorem
1.1.

2.1. Requirements and plan. It suffices to satisfy the following require-
ments.
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Re : for all X, if ΘC(e) ∈ V X
e

{
(a) ∀n ∈ N[e], ΓX(n) ↓
(b) ∃n ∈ N[e], ΓX(n) > ΦC(n)

}
.

In order to describe the idea behind the construction, assume that we only
had to deal with one path X. Then we would choose an argument n and try
to achieve ΓX(n) > ΦC(n). Before we enumerate such a Γ-axiom, we would
define ΘC(e) to be a large4 number with use ϕ(n) and wait until this value
of ΘC(e) appears in V X

e . If later C � ϕ(n) changes causing ΓX(n) ≤ ΦC(n),
we would repeat the same procedure on a different argument n′. Notice that
after an unsuccessful round, ΘC(e) is undefined due to the C change. Hence,
in each round we always (re)define ΘC

e . Moreover, after each unsuccessful
round |V X

e | increases by one. Hence there can be at most h(e) unsuccessful
rounds, before we succeed.

In reality, we have to deal with many paths X simultaneously. To achieve
this, we will use compactness and focus on a Π0

2 relation to measure our
success in a universal way (not depending on a particular X). Given e ∈ N,
consider the Π0

2 condition (2.1) and its negation (2.2).

∀n, s0 ∃σ ∃s > s0, ∀i ∈ N[e] � n [Γσ(i)[s] ↓ ∧ ΦC(i)[s] ≥ Γσ(i)[s]](2.1)

∃n, s0 ∀σ ∀s > s0, ∃i ∈ N[e] � n [Γσ(i)[s] ↑ ∨ ΦC(i)[s] < Γσ(i)[s]](2.2)

Relation (2.1) is a strong form of failure to satisfy Re and is exactly the
outcome we wish to avoid. On the other hand (2.2) does not, by itself,
imply the satisfaction of Re. However, given (2.2) the construction will be
able to guarantee Re. If a definition Γσ(n) ↓ is made at stage s of the
construction, we set Γσ(n) to be a large number. Since ΦC is total, this
means that the sets

(2.3) Tn = {X | ∀i ≤ n [ΓX(i) ↓ ∧ ΦC(i) ≥ ΓX(i)]}

are clopen (Tn consists of the reals extending one of the finitely many strings
σ such that Γσ(n)[s0] ↓ and ΦC(n) ≥ Γσ(n), where s0 is the stage where the
approximation to ΦC(n) settles). If (2.1) holds, Tn 6= ∅ for all n ∈ N hence
by compactness there is some X such that ΓX is total and ΓX(n) ≤ ΦC(n)
for all n ∈ N[e]. This is exactly the outcome that the construction will
prevent. For such reals X that seem to be a member of all Tn (notice that
this is a Π0

2 condition) we will pick a target argument n and decide not
to define ΓX(n) unless ΘC(e) is traced by V X

e . Since we only work with
finite approximations to reals, we will do this for strings σ. If σ seems to be
extended by such a real X, we will pick a target n and enumerate it into a
target set Iσ (in fact, all Iτ , τ ⊃ σ). When we try to define Γ(n) for some
real extending σ and n ∈ Iσ, we are committed to refrain from the definition
unless the appropriate tracing (as described above) takes place.

4that is, larger than any value of any parameter in the construction up to the current
stage.
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A graphical visualization of the argument is as follows. We start with the
binary tree, and at each stage s we consider the strings of length s. For each
finite path σ, we represent the numbers n in the target set Iσ by a dot on
the nth digit of σ. A path through the binary tree may have many dots,
because of previously assigned targets that were not successful. The largest
number nσ in Iσ (for a path σ of length s) is the active or current target for
σ at stage s. This means that either Γσ(nσ) ↑ or Γσ(nσ) > ΦC(n) at stage s.
A dot on σ may be active for some τ ⊃ σ at some stage and non-active for
another τ ′ ⊃ σ. The construction will explicitly ensure that at each stage
s, every path of length s has an active dot. Condition (2.2) requires that
there is a single level on the binary tree, where every path of that level has
a permanently active dot. This interpretation of the strategy is illustrated
in Figure 1.

Figure 1. A graphical representation of the construction.
Black dots along the paths σ represent positions in Iσ.

In the following we define and verify the strategy for Re, which will only
enumerate axioms for Γ on arguments in N[e]. The full construction is a
straightforward combination of these strategies, where there is not interac-
tion amongst different strategies. The module for Re takes place on stages
s ∈ N[e]. By speeding up the approximation to Φ, C we may assume that for
all stages s ∈ N we have ΦC(i)[s] ↓ for all i ≤ s. This assumption is without
loss of generality. At stage s, we consider all strings σ of length s, and
decide if s belongs to Iσ. If it does not, then we trivially define Γσ(s) = 0.
Otherwise we consider a definition subject to the tracing condition described
above.

2.2. Strategy for Re. At stage s ∈ N[e] do the following for each string σ
of length s:

(I) Determine if s is in Iσ.

• If ∃i < s, i ∈ N[e] [Γσ(i) ↑ ∨ ΦC(i)[s] ≤ Γσ(i)], let Γσ(s) = 0.
• Otherwise let s ∈ Iτ for all τ ⊇ σ.

Let ms = max(∪|σ|=sIσ).
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(II) Attempt to define Γσ(n) if n ∈ Iσ ∩ N[e] and Γσ(n)[s] ↑.
• If ΘC(e)[s] ↑ define ΘC(e)[s] with use C[s] � ϕ(ms)[s] to be a large

number.
• If n ∈ Iσ ∩ N[e], Γσ(n) ↑ (there is at most one such) and ΘC(e)[s] ∈
V σ
e , define Γσ(n) to be a large number.

2.3. Verification for the Re strategy.

Lemma 2.1. The functional Γ is consistent.

Proof. At stage s the construction can only define Γσ(n) for some n ≤ s if
• σ is of length s.
• Γσ(n) is currently undefined.

The consistency of Γ follows from this feature of the construction. �

Lemma 2.2. At the end of each stage s, for each string σ of length s there
exists exactly one number nσ ∈ Iσ (namely max Iσ) such that

(2.4) Γσ(nσ)[s] ↑ ∨ Γσ(nσ) > ΦC(nσ)[s].

Proof. This follows by a straightforward induction on the construction of
Section 2.2. �

Lemma 2.3. If (2.1) holds, then ΘC(e) is redefined infinitely many times
and the sequence of values that it takes is increasing.

Proof. Let nσ = max Iσ for each string σ. The value of nσ depends on
the stage of the construction. If there was a stage s0 such that ΘC(e) was
defined for the last time, according to the construction the C use of this
definition will be ϕ(ms0). This is larger than ϕ(nσ) for all σ of length s0.
Given any string σ of length s0 and X ⊃ σ, according to Lemma 2.2 and
the fact that

C[s0] � ϕ(nσ[s0]) = C � ϕ(nσ[s0])
one of the following is true

• Γσ(nσ) > ΦC(nσ)
• ΘC(e) 6∈ V X

e , in which case ΓX(nσ) ↑
• ΘC(e) ∈ V X

e , in which case ΓX(nσ) will be defined after stage s0
and thus, ΓX(nσ) > ΦC(nσ).

But in that case no more numbers will be enumerated in I := ∪X∈2ωIX after
stage s0, which contradicts (2.1). �

Lemma 2.4. If Γ is constructed as in Section 2.2, then (2.2) holds.

Proof. For a contradiction, suppose that (2.1) holds. Then, as explained in
Section 2.1, the clopen sets Tn of (2.3) are non-empty and since Ti+1 ⊆ Ti,
by compactness there is some X ∈ ∩iTi. Let IX := ∪σ⊂XIσ.

We claim that IX is infinite. Indeed, otherwise there is some stage s0
where ΦC settles on all arguments in IX , and is larger than ΓX on all of
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these arguments. But since X ∈ ∩iTi the construction of Section 2.2 would
enumerate s0 into IX�s0 , which is a contradiction; thus IX has to be infinite.

For the final contradiction, we will show that Ve is unbounded. Let t ∈ N.
By Lemma 2.3 consider a stage s1 where ΘC(e)[s1] > t. Consider some
n ∈ IX such that n > s1 and let s2 be the stage where ΓX(n) is defined.
Then ΘC(e)[s2] ↓∈ V X

e and so, by Lemma 2.3 some number larger than t
belongs to V X

e . This completes the proof of the lemma. �

Lemma 2.5. The set I := ∪X∈2ωIX is finite and ΘC(e) is permanently
defined .

Proof. Since (2.2) holds by Lemma 2.4, I is bounded by the number n in
the existential quantifier of (2.2). Then ΘC(e) will only be defined with use
at most ϕ(n), so it will eventually settle. �

Lemma 2.6. Requirement Re in (2.1) is satisfied.

Proof. Suppose that X is a real such that ΘC(e) ∈ V X
e . Since IX is finite,

the parameter nX�t will reach a limit nx as t→∞. Now by (2.4) of Lemma
2.2 we have that ΓX(nx) is defined and greater than ΦC(nx). By clause (II)
of the construction this implies that, if ΘC(e) ∈ V X

e then ΓX is total on
N[e]. �

The global construction of Θ,Γ is a straghtforward combination of the Re
modules: at stage s, if s ∈ N[e] run the strategy for Re. The verification for
Re presented above implies that Re is met for each e ∈ N. This concludes
the proof of Theorem 1.1.

3. A minimal pair of a.e. dominating degrees ≤T ∅′

This section is devoted to a proof of the following fact.

Theorem 3.1. In the Turing degrees, there exists a minimal pair of a.e.
dominating degrees below 0′.

We wish to construct two a.e. dominating sets A,B such that the following
requirements are satisfied.

Me : ΦA
e = ΦB

e total ⇒ ΦA
e is computable

where (Φe) is an effective list of all Turing functionals. It is not hard to
see that if A,B are non-computable and all Me are satisfied, then A,B
form a minimal pair. In order to ensure that A,B are a.e. dominating, by
[KH07, Sim07] it suffices to ensure for some c.e. operator V : 2ω → P(2<ω)
we have

µ(V A) < 1 and U∅
′ ⊆ V A(3.1)

µ(V B) < 1 and U∅
′ ⊆ V B(3.2)

where U∅
′

is the second member of the universal Martin-Löf test relative
to ∅′. Notice that µ(U∅

′
) < 2−2. We define V in advance as follows: fix
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a computable function f : N → 2<ω such that for all σ ∈ 2<ω there exist
infinitely many m ∈ N such that f(m) = σ. Then for all X ∈ 2ω define
V X = {f(m) | X(m) = 1}, which is clearly a c.e. operator. The choice of V
is such that, for any string σ and any clopen set C we can effectively choose
τ ⊃ σ such that V τ − V σ = C.

Our argument is a finite extension construction relative to ∅′. For the
satisfaction of Me we will try to find an e-splitting extending the currently
defined segments of A,B. Recall that an e-splitting is a pair of strings σ, τ
such that Φσ

e (n) 6= Φτ
e(n) for some n ∈ N. If there is no such e-splitting,

it is easy to see that any total function computed by both ΦA
e and ΦB

e has
to be computable. Thus in this case Me is met. Otherwise we would like
to extend the current segments of A,B with the e-splitting strings, thus
meeting Me in another way. However the e-splitting extensions may add
too much measure in V A, V B, in which case we may refrain from doing so.
In general, we will allow strategy Me to add at most 2−e−2 measure in each
of V A, V B.

The construction defines monotone sequences of strings (σs), (τs) and lets
A = ∪sσs, B = ∪sτs. At each stage s we also define segments of A,B in
order to cover U∅

′�s with V A, V B. Suppose that at some stage s+ 1 we do
not find suitable extensions σs+1, τs+1 for the satisfaction of Me. In that
case Me is satisfied unless µ(V A − V σs) > 2−e−2 or µ(V B − V τs) > 2−e−2.
If we continuously check for the availability of suitable extensions for Me,
we claim that Me will be satisfied. Indeed, there will be some stage s0 such
that µ(V A − V σs0 ) ≤ 2−e−2 and µ(V B − V τs0 ) ≤ 2−e−2. If at s0 we ask
for a suitable e-splitting for Me and we do not find it, we can employ the
usual Kleene-Post argument to show that every total function computed by
both ΦA

e and ΦB
e has to be computable. We say that strategy Me requires

attention at stage s+1 if we have not acted on it and there are σ ⊇ σs, τ ⊇ τs,
n ∈ N such that Φσ

e (n) 6= Φτ
e(n) and µ(V σ − V σs) < 2−e−2, µ(V τ − V τs) <

2−e−2.

Construction. Let σ0 = τ0 = ∅. At stage s+ 1 choose σ ⊃ σs, τ ⊃ τs such
that

V σ − V σs = V τ − V τs = U∅
′�s+1 − U∅′�s

Moreover, if there is a strategy that requires attention, choose the least one
Me and let σs+1, τs+1 be an e-splitting extending σ, τ respectively, such that

µ(V σs+1 − V σ) < 2−e−2 and µ(V τs+1 − V τ ) < 2−e−2.

Say that we have acted on Me.

Verification. By construction, µ(V A), µ(V B) are at most µ(U∅
′
)+
∑

e 2−e−2

so less than 1. Also, U∅
′
is contained in both V A and V B. It remains to show

that Me is satisfied, for all e ∈ N. Clearly, each Me stops requiring attention
after some stage. Fix e and choose some stage s0 such that µ(V A−V σs0 ) ≤
2−e−2, µ(V B − V τs0 ) ≤ 2−e−2 and no Mi, i < e requires attention after s0.
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Suppose that ΦA
e ,Φ

B
e are total and equal to the same function f . Then Me

never requires attention in the construction. To compute f on an argument
n we just need to look for a string σ ⊇ σs0 such that µ(V σ − V σs0 ) < 2−e−2

and Φσ
e (n) ↓. If f(n) did not equal Φσ

e (n) ↓ we would get the contradiction
that at stage s0 the construction acts on Me.
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