Topology and the Physical
Properties of Electromagnetic
Fields

Terence W. Barrett”

Keywords: topology, O(3) Aharonov Bohm effect

Beginning with G.W. Leibniz in the 17", L. Euler in the 18", B. Reimann, J.B. Listing and
AF. Mdbius in the 19" and H. Poincaré in the 20™ centuries, “analysis situs” (Riemann) or
“topology” (Listing) has been used to provide answers to questions concerning what is most
fundamental in physical explanation. That question itself implies the question concerning
what mathematical structures one uses with confidence to adequately “paint” or describe
physical models built from empirical facts. For example, differential equations of motion
cannot be fundamental, because they are dependent on boundary conditions which must be
justified—usually by group theoretical considerations. Perhaps, then, group theory is funda-
mental. Group theory certainly offers an austere shorthand for fundamental transformation
rules. But it appears to the present writer that the final judge of whether a mathematical group
structure can, or cannot, be applied to a physical situation is the topology of that physical
situation. Topology dictates and justifies the group transformations.

So for the present writer, the answer to the question of what is the most fundamental
physical description is that it is a description of the topology of the situation. With the topol-
ogy known, the group theory description is justified and equations of motion can then be
justified and defined in specific differential equation form. If there is a requirement for an
understanding more basic than the topology of the situation, then all that is left is verbal
description of visual images. So we commence an examination of electromagnetism under
the assumption that topology defines group transformations and the group transformation
rules justify the algebra underlying the differential equations of motion.

For some time, the present writer has been engaged in showing that the spacetime topol-
ogy defines electromagnetic field equations'—whether the fields be of force or of phase. That
is to say, the premise of this enterprise is that a set of field equations are only valid with re-
spect to a set defined topological description of the physical situation. In particular, the writer
has addressed demonstrating that the A, potentials, =0, 1, 2, 3, are not just a mathematical
convenience, but—in certain well-defined situations—are measurable, i.e., physical. Those
situations in which the A, potentials are measurable possess a topology, the transformation
rules of which are describable by the SU(2) group; and those situations in which the A, po-
tentials are not measurable possess a topology, the transformation rules of which are describ-
able by the U(1) group.
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Table 1
U(1) Symmetry
Form(Traditional SU(2) Symmetry Form
Maxwell Equations)
Gauss VeE=1J, VeE=J,-ig(AsE-EeA)
Law
Ampere’s
Law Z—f—v B-J=0 %E—VXB J+iq[A),E]-ig(AxB-BxA)=0
VeB=0 VeB+ig(AeB-BeA)=0
Faraday’s B B
Law VxE+0,)—t 0 VxE+ﬂ +iq[Ay,B]=ig(AxE-ExA)=0
Table 2
U(1) Symmetry
Form (Tradi- SU(2) Symmetry Form
tional Maxwell
Theory)
Pe =0 Pe=Jo—iq(AeE-EeA)=J,+qJ,
P =0 pn =-ig(AsB-BeA)=—iqJ,
g.=J =iq[A,E]-ig(AxB-BxA)+J =iq[A,,E]-iqJd, +J
g,=0 n =Iq[A;,B]-iq(AxE-ExA) = iq[A),B]-igJ,
o=J/E {lq[AO E]-ig(AxB-BxA)+J} {ig[A,E]-iqJ, +J}
E - E
s=0 {ig[A,B]-ig(AxE-ExA)} {iq[A,B]-iqJ,}
s= =
H H

Historically, electromagnetic theory was developed for situations described by the U(1)
group. The dynamic equations describing the transformations and interrelationships of the
force field are the well known Maxwell equations, and the group algebra underlying these
equations is U(1). There was a need to extend these equations to describe SU(2) situations
and to derive equations whose underlying algebra is SU(2). These two formulations are
shown in Table 1. Table 2 shows the electric charge density, p., the magnetic charge density,
P> the electric current density, g., the magnetic current density, g,,, the electric conductivity,

o, and the magnetic conductivity, s.
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Fig 1. Two-slit diffraction experiment of the Aharonov-Bohm effect. Electrons are
produced by a source at X, pass through the slits of a mask at Y1 and Y2, interact
with the A field at locations | and Il over lengths /; and /,, respectively, and their
diffraction pattern is detected at Ill. The solenoid-magnet is between the slits and
is directed out of the page. The different orientations of the external A field at the
places of interaction | and Il of the two paths 1 and 2 are indicated by arrows
following the right-hand rule.

As an example of the basic nature of topological explanation, we considered the Aharo-
nov-Bohm effect. Beginning in 1959 Aharonov and Bohm? challenged the view that the
classical vector potential produces no observable physical effects by proposing two experi-
ments. The one which is most discussed is shown in Fig 1. A beam of monoenergetic elec-
trons exists from a source at X and is diffracted into two beams by the slits in a wall at Y7 and
Y2. The two beams produce an interference pattern at Il which is measured. Behind the wall
is a solenoid, the B field of which points out of the paper. The absence of a free local mag-
netic monopole postulate in conventional U(1) electromagnetism (V e B =0) predicts that
the magnetic field outside the solenoid is zero. Before the current is turned on in the solenoid,
there should be the usual interference patterns observed at III, of course, due to the differ-
ences in the two path lengths.

Aharonov and Bohm made the interesting prediction that if the current is turned on, then
due to the differently directed A fields along paths 1 and 2 indicated by the arrows in Fig. 1,
additional phase shifts should be discernible at III. This prediction was confirmed experi-
mentally® and the evidence for the effect has been extensively reviewed®.

The topology of this situation dictates its explanation. Therefore we must clearly note the
topology of the physical layout of the design of the situation which exhibits the effect. The
physical situation is that of an interferometer. That is, there are two paths around a central
location—occupied by the solenoid—and a measurement is taken at a location, III, in the Fig
1, where there is overlap of the wave functions of the test waves which have traversed, sepa-
rately, the two different paths. (The test waves or test particles are complex wave functions
with phase.) It is important to note that the overlap area, at IIl, is the only place where a
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measurement can take place of the effects of the A field (which occurred earlier and at other
locations (I and II). The effects of the A field occur along the two different paths and at loca-
tions I and II, but they are inferred, and not measurable there. Of crucial importance in this
special interferometer, is the fact that the solenoid present a topological obstruction. That is,
if one were to consider the two joined paths of the interferometer as a raceway or a loop and
one squeezed the loop tighter and tighter, then nevertheless one cannot in this situation—
unlike as in most situations—reduce the interferometer’s raceway of paths to a single point.
(Another way of saying this is: not all closed curves in a region need have a vanishing line
integral, because one exception is a loop with an obstruction.) The reason one cannot reduce
the interferometer to a single point is because of the existence in its middle of the solenoid,
which is a positive quantity, and acts as an obstruction.

The existence of the obstruction changes the situation entirely. Without the existence of
the solenoid in the interferometer, the loop of the two paths can be reduced to a single point
and the region occupied by the interferometer is then simply-connected. But with the exis-
tence of the solenoid, the loop of the two paths cannot be reduced to a single point and the
region occupied by this special interferometer is multiply-connected. The Aharonov-Bohm
effect only exists in the multiply-connected scenario. But note that the Aharonov-Bohm
effect is a physical effect and simple and multiple connectedness are mathematical descrip-
tions of physical situations.

The topology of the physical interferometric situation addressed by Aharonov and Bohm
defines the physics of that situation and also the mathematical description of that physics. If
that situation were not multiply-connected, but simply-connected, then there would be no
interesting physical effects to describe. The situation would be described by U(1) electro-
magnetics and the mapping from one region to another is conventionally one-to-one. How-
ever, as the Aharonov-Bohm situation is multiply-connected, there is a two-to-one mapping
(SU(2)/Z;) of the two different regions of the two paths to the single region at III where a
measurement is made. Essentially, at Il a measurement is made of the differential histories of
the two test waves which traversed the two different paths and experienced two different
forces resulting in two different phase effects.

In conventional, i.e., normal U(1) or simply-connected situations, the fact that a vector
field, viewed axially, is pointing in one direction, if penetrated from one direction on one
side, and is pointing in the opposite direction, if penetrated from the same direction, but on
the other side, is of no consequence at all—because that field is of U(1) symmetry and can be
reduced to a single point. Therefore in most cases which are of U(1) symmetry, we do not
need to distinguish between the direction of the vectors of a field from one region to another
of that field. However, the Aharonov-Bohm situation is not conventional or simply-
connected, but special. (The physical situation has a non-trivial topology). It is a multiply-
connected situation and of SU(2)/Z, symmetry. Therefore the direction of the A field on the
separate paths is of crucial importance, because a test wave traveling along one path will
experience an A vectorial component directed against its trajectory and thus be slowed down,
and another test wave traveling along another path will experience an A vectorial component
directed with its trajectory and thus its speed is increased. These “slowing down’s” and “in-
creases in speed” can be measured as phase changes, but not at the time nor at the locations
(I and 1I) where they occur along the separate paths, but later, and at the overlap location of
ML It is important to note that if measurements are attempted at locations I and II in the Fig 1,
these effects will not be seen because there is no two-to-one mapping at either I and II and
therefore no referents. The locations I and II are simply-connected and therefore only the
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conventional U(1) electromagnetics applies. It is only region III which is multiply-connected
and at which the histories of what happened to the test particles at I and II can be measured.
In order to distinguish the “sped-up” A field (because the test wave is traveling “with” its
direction) from the “slowed-down” A field (because the test wave is traveling “against” its
direction), we introduce the notation: A, and A_.

Because of the distinction between the A oriented potential fields at positions I and 1I—
which are not measurable and are vectors or numbers of U(l) symmetry—and the A
potential fields at Ill—which are measurable and are tensors or matrix-valued functions of
(in the present instance) SU(2)/Z, = SO(3) symmetry (or higher symmetry)—for reasons of
clarity we might introduce a distinguishing notation. In the case of the potentials of U(1)
symmetry at I and II we might use the lower case, a,, u = 0,1,2,3 and for the potentials of
SU2)/Z, = SO(3) at 1l we might use the upper case A,, 4 = 0,1,2,3. Similarly, for the
electromagnetic field tensor at I and II, we might use the lower case, f,, and for the
electromagnetic field tensor at III, we might use the upper case, F,,. Then the following
definitions for the electromagnetic field tensor are:

At locations I and II the Abelian relationship is:

f,(x)=70a,x)-0,a,(x), (D

where, as is well known, f  is gauge invariant; and at location III the nonAbelian relation-

> Tuv
ship is:
F,, =0,4,(0)~0,4,(x)~ig,[ 4,(),4,(0], @)
where F,, is gauge covariant, g, is the magnetic charge density and the brackets are com-

mutation brackets. We remark that in the case of nonAbelian groups, such as SU(2), the
potential field can carry charge. It is important to note that if the physical situation changes
from SU(2) symmetry to U(1), then F,, — f,,

Despite the clarification offered by this notation, the notation can also cause confusion,
because in the present literature, the electromagnetic field tensor is a/ways referred to as F,
whether F is defined with respect to U(7) and SU(2) or other symmetry situations. Therefore,
we shall not proceed with this notation. However, its important to note that the A field in the
U(1) situation is a vector or a number, but in the SU(2) or nonAbelian situation, it is a tensor
or a matrix-valued function.

We referred to the physical situation of the Aharonov-Bohm effect as an interferometer
with an obstruction and it is 2-dimensional. It is important to note that it is not a toroid. A
toroid is also a physical situation with an obstruction and is also of SU(2) symmetry. How-
ever, the toroid effects a two-to-one mapping in not only the x and y dimensions but also in
the z dimension, and without the need of an electromagnetic field pointing in two directions
+ and — The physical situation of the Aharonov-Bohm effect is defined only in the x and y
dimensions (there is no z dimension) and in order to be of SU(2)/Z, symmetry requires a field
to be oriented differentially on the separate paths. If the differential field is removed from the
Aharonov-Bohm situation, then that situation reverts to a simple interferometric raceway
which can be reduced to a single point and with no interesting physics.

How does the topology of the situation affect the explanation of an effect? A typical pre-
vious explanation® of the Aharonov-Bohm effect commences with the Lorentz force law:

F=cE+evxB 3)
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The electric field, E, and the magnetic flux density, B, are essentially confined to the in-
side of the solenoid and therefore cannot interact with the test electrons. An argument is
developed by defining the E and B fields in terms of the A and ¢ potentials:

E:—i—‘?—w, B=VxA. 4)

Now we can note that these conventional U(1) definitions of E and B can be expanded to
SU(2) forms:
A OA

E=—(V><A)—E—V¢, B:(VXA)—E—Vyﬁ. (5)

Furthermore, the U(1) Lorentz force law, Eq 3, can hardly apply in this situation because
the solenoid is electrically neutral to the test electrons and therefore E = 0 along the two
paths. Using the definition of B in Eq 5, the force law in this SU(2) situation is:

F:evaZevx((VxA)—i—?—V¢j, (6)

but we should note that Eqs 3 and 4 are still valid for the conventional theory of electromag-
netism based on the U(1) symmetry Maxwell’s equations provided in Table 1 and associated
with the group U(1) algebra. They are invalid for the theory based on the modified SU(2)
symmetry equations also provided in Table 1 and associated with the group SU(2) algebra.

The typical explanation of the Aharonov-Bohm effect continues with the observation that
a phase difference, o, between the two test electrons is caused by the presence of the sole-
noid:

AS = A, - Aa, =§(jA-dzz— jA-le:% | vmws:%ps-ds:%% )
L I

IZ _/1

where Aa; and Aay, are the changes in the wave function for the electrons over paths 1 and 2,
S is the surface area and ¢,, is the magnetic flux defined:

oy = [[A, (0ax* = [[F,do*". ®)

Now, we extend this explanation further, by observing that the local phase change at III
of the wavefunction of a test wave or particle is given by:

O =exp [igm J‘J.AF (x)dx"} = exp[igm(pM] . 9)

@, which is proportional to the magnetic flux, ¢,, , is known as the phase factor and is gauge

covariant. Furthermore, @, the phase factor measured at position III is the holonomy of the
connection, A,; g, is the SU(2) magnetic charge density.
We next observe that,, is in units of volt-seconds (V.s) or kg.m’/(A.s’) = J/A. From Eq

7 it can be seen that A6 and the phase factor, @, are dimensionless. Therefore we can make
the prediction that if the magnetic flux, ¢,, , is known and the phase factor, @, is measured

(as in the Aharonov-Bohm situation), the magnetic charge density, g,, can be found by the
relation:

g, =In(®)/(ip, ). (10)
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Continuing the explanation: as was noted above, Vx A =0 outside the solenoid and the
situation must be redefined in the following way. An electron on path 1 will interact with the
A field oriented in the positive direction. Conversely, an electron on path 2 will interact with
the A field oriented in the negative direction. Furthermore, the B field can be defined with
respect to a local stationary component B; which is confined to the solenoid and a component
B, which is either a standing wave or propagates:

B=B, +B,,

B, =VxA, (11)
A

B,=-—-V¢.

2= VY

The magnetic flux density, B;, is the confined component associated with U(7) and SU(2)
symmetry and B, is the propagating or standing wave component associated only with SU(2)
symmetry. In a U(1) symmetry situation, B, = 0.

The electrons traveling on paths 1 and 2 require different times to reach III from X, due to
the different distances and the opposing directions of the potential A along the paths /; and /..
Here we only address the effect of the opposing directions of the potential A. The change in
the phase difference due to the presence of the A potential is then:

AS =Aa, —Aa, =< j(— A, —V¢+j.d12 - j(—&—w_)dzl °dS =
I j ot (12)

hl ot
e e
%J.B2 OdS=EgoM.

There is no flux density B; in this equation since this equation describes events outside the
solenoid, but only the flux density B, associated with group SU(2) symmetry; and the “+”
and “~” indicate the direction of the A field encountered by the test electrons—as discussed
above.

We note that the phase effect is dependent on B, and B, but not on B; alone. Previous
treatments found no convincing argument around the fact that whereas the Aharonov-Bohm
effect depends on an interaction with the A field outside the solenoid, B, defined in U(1)
electromagnetism as B=Vx A , is zero at that point of interaction. However, when A is
defined in terms associated with an SU(2) situation, that is not the case as we have seen.

We depart from former treatments in other ways. Commencing with a correct observa-
tion that the Aharonov-Bohm effect depends on the topology of the experimental situation
and that the situation is not simply-connected, a former treatment then erroneously seeks an
explanation of the effect in the connectedness of the U(7) gauge symmetry of conventional
electromagnetism, but for which (1) the potentials are ambiguously defined, (the U(7) A field
is gauge invariant) and (2) in U(7) symmetry V x A =0 outside the solenoid.

Furthermore, whereas a former treatment again makes a correct observation that the
nonAbelian group, SU(2), is simply-connected and that the situation is governed by a multi-
ply-connected topology, the author fails to observe that the nonAbelian group SU(2) defined
over the integers modulo 2, SU(2)/Z,, is, in fact, multiply-connected. Because of the two
paths around the solenoid it is this group which describes the topology underlying the Aharo-
nov-Bohm effect’. SU(2)/Z, 2SO(3) is obtained from the group SU(2) by identifying pairs of
elements with opposite signs. The A measured at location III in Fig. 1 is derived from a
single path in SO(3) because the fwo paths through locations I and II in SU(2) are regarded
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as a single path in SO(3). This path in SU(2)/Z,= SO(3) cannot be shrunk to a single point by
any continuous deformation and therefore adequately describes the multiple-connectedness
of the Aharonov-Bohm situation. Because the former treatment failed to note the multiple
connectedness of the SU(2)/Z, description of the Aharonov-Bohm situation, it fell back on a
U(1) symmetry description.

Now back to the main point of this excursion to the Aharonov-Bohm effect: the reader
will note that the author appealed to topological arguments to support the main points of his
argument. Underpinning the U(1) Maxwell theory is an Abelian algebra; underpinning the
SU(2) theory is a nonAbelian algebra. The algebras specify the form of the equations of
motion. However, whether one or the other algebra can be (validly) used can only be deter-
mined by topological considerations.
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